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Abstract. In this paper we prove the global dispersion and the Strichartz inequalities for a class
of one-dimensional Schrödinger equations with step-function coefficients having a finite number of
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1. Introduction. Strichartz estimates [7], [11] are an important tool for the un-
derstanding of nonlinear evolution equations. In the study of the dispersive properties
of the Schrödinger equation with variable coefficients, the absence of the property
of finite speed of propagation raises more difficulties than in the case of the wave
equation. A way to “replace” this property is to impose a nontrapping condition
on the trajectories. There are many results of wellposedness and smoothing effect
for Schrödinger operators with smooth coefficients which are asymptotically flat and
satisfy a nontrapping condition [4], [5], [8]. Staffilani and Tataru [10] proved the
Strichartz estimates under the same conditions, but for lower regularity coefficients,
only of C2-class. However, in order to have wellposedness for nonlinear Schrödinger
equations (NLS), the nontrapping condition can be dropped. In their recent paper
[2], Burq, Gérard, and Tzvetkov have obtained Strichartz estimates with fractional
loss of derivative for metrics on Rd with uniformity assumptions at infinity, without
geometric conditions. These new dispersive estimates imply local and global existence
results for the Cauchy problem.

In this paper we study the dispersion property and the Strichartz inequalities for
the one-dimensional Schrödinger equation{

(i ∂t + ∂xa(x)∂x)u(t, x) = 0 for (t, x) ∈ (0,∞)× R,
u(0, x) = u0(x) ∈ L2(R)

(S)

for certain rough coefficients a(x) without any geometric nontrapping condition.
In section 2 we prove global dispersion in the case of positive lamina coefficients,

i.e., step functions with a finite number of singularities. Let us note in this situation
the existence of trapped trajectories.

Theorem 1.1. Consider a partition of the real axis

−∞ = x0 < x1 < x2 < · · · < xn−1 < xn =∞
and a step function

a(x) = b−2
i for x ∈ (xi−1, xi),
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where bi are positive numbers.
The solution of the Schrödinger equation (S) satisfies the dispersion inequality

‖u(t, ·)‖L∞(R) ≤ Cn√
t
‖u0‖L1(R)

and the Strichartz inequalities

‖u‖Lp(R,Lq(R)) ≤ Cn‖u0‖L2(R)

for every pair (p, q) verifying

2

p
+
1

q
=
1

2
.

The proof consists of writing the solution by using the resolvent of the operator
−∂xa(x)∂x. The resolvent is calculated and expressed in terms of series of exponen-
tials. In order to get global dispersion, we discuss these series within the framework
of the theory of Wiener’s almost periodic functions.

We can also prove a similar result for the operator

i ∂t +
1

ρ(x)
∂xa(x)∂x ,

where ρ(x) is a step function of the same type as a(x).
Moreover, if v(t, x) is the solution of the associated wave system

(
∂2
t − ∂xa(x)∂x

)
v(t, x) = 0 for x ∈ R,

v(0, x) = u0(x) ∈ L2(R),
∂tv(0, x) = 0,

(O)

the same method gives us the following estimate:

sup
x∈R

∫ ∞

−∞
|v(t, x)|dt ≤ Cn‖u0‖L1(R).

Dispersion is not satisfied if the step function coefficients are periodic. In section 3,
by using the Krönig–Penney model, we show that the local dispersion fails in the case
of 2-valued periodic step function coefficients.

Theorem 1.2. Let x0 ∈ (0, 1) and let b0, b1 be positive numbers satisfying
b0x0 = b1(1− x0). Consider the 1-periodic function

a(x) =

{
b−2
0 for x ∈ [0, x0),
b−2
1 for x ∈ [x0, 1).

The local dispersion estimate fails for the Schrödinger equation (S).
The proof is based on the representation of the solution by its Floquet decompo-

sition.
The fact that the coefficient a is not very oscillating at infinity seems to be

essential for having dispersion. Applying the method used by Avellaneda, Bardos, and
Rauch in [1], we can construct counterexamples for global dispersion and Strichartz’s
inequalities in the case of certain continuous coefficients oscillating at infinity.

Also, as Castro and Zuazua have recently shown in [3], even if the coefficients
are flat at infinity, but rough (C0,α) and locally very oscillating, the local Strichartz
inequalities fail.

All these results suggest the conjecture that the one-dimensional Schrödinger
equations with strictly positive BV (bounded variation) coefficients satisfy the dis-
persion property.
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2. Laminar media.

2.1. Representation of the resolvent of−∂xa(x)∂x. The operator−∂xa(x)∂x,
defined from

{h ∈ H1(R), a ∂x h ∈ H1(R)}
to L2(R), is self-adjoint. For ω ≥ 0 let Rω be its resolvent

Rωg = (−∂xa(x)∂x + ω2I)−1g.

In order to obtain the expression of the resolvent on the intervals where a is constant,
the second-order equations

1

b2i
(Rωg)

′′ = ω2Rωg − g

must be solved. Then, for x ∈ (xi−1, xi), we have

Rωg(x) = c2i−1e
ωbix + c2ie

−ωbix +

∫ ∞

−∞

g(y)

2ω
bie

−ωbi|x−y|dy.

Since Rωg belongs to L2(R) the coefficients c2 and c2n−1 are zero. The conditions of
continuity of Rωg and of a ∂xRωg at the points xi give a system of 2n− 2 equations
on the ci’s. The matrix Dn of this system is

eωb1x1 −eωb2x1 −e−ωb2x1 0 0 0 0 0

b2e
ωb1x1−b1e

ωb2x1b1e
−ωb2x1 0 0 0 0 0

0 eωb2x2 e−ωb2x2 −eωb3x2 −e−ωb3x2 0 0 0

0 b3e
ωb2x2 −b3e

−ωb2x2−b2e
ωb3x2b2e

−ωb3x20 0 0
: : : : : : : :

0 0 0 0 0 eωbn−1xn−1 e−ωbn−1xn−1 −e−ωbnxn−1

0 0 0 0 0 bne
ωbn−1xn−1−bne

−ωbn−1xn−1bn−1e
−ωbnxn−1


.

The right-hand side of the system is

Tn =

 t1
:
tn−1

 ,
with

ti =

( ∫∞
−∞

g(y)
2ω (−bie−ωbi|xi−y| + bi+1e

−ωbi+1|xi−y|)dy∫∞
−∞

g(y)
2ω bi+1bi(−e−ωbi|xi−y| + e−ωbi+1|xi−y|)sign(xi − y)dy

)
.

Therefore the resolvent on each interval (xi, xi+1) is a finite sum of terms

Rωg(x) =
∑
finite

Ceωβ(x)

∫
I(xi)

g(y)

2ω

e+ωbiy

detDn(ω)
dy +

∫ ∞

−∞

g(y)

2ω
bie

−ωbi|x−y|dy,(1)

where β(x) are real functions depending on {x, xi, bi}, C is a constant depending of

{bi} and bounded by (max b−2
i )n, and I(xi) is either (−∞, xi) or (xi,∞). Let D̃n be

the same matrix as Dn, with the last two terms of the last column replaced by( −eωbnxn−1

−bn−1e
ωbnxn−1

)
.
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The development of the determinants of Dn and D̃n with respect to the last column
gives the following induction relations:

detDn = e
−ωbnxn−1

[
(bn−1 − bn)e−ωbn−1xn−1 det D̃n−1−
−(bn−1 + bn)e

ωbn−1xn−1 detDn−1

]
,

det D̃n = e
ωbnxn−1

[
(bn−1 − bn)eωbn−1xn−1 detDn−1−
−(bn−1 + bn)e

−ωbn−1xn−1 det D̃n−1

]
.

Let us define for n ≥ m ≥ 2

Qm(ω) = e
−2ωbmxm

det D̃m

detDm
.

By denoting

dm−1 =
bm−1 − bm
bm−1 + bm

,

we have for n ≥ 3

detDn(ω) = (b1 + b2)e
−ω(b2−b1)x1

∏
i=2...n−1

(bi + bi+1)e
ω(bi−bi+1)xi(1− diQi(ω)),(2)

and for n = 2

detD2(ω) = (b1 + b2)e
−ω(b2−b1)x1 .(3)

Also, we obtain an induction formula on the Qm’s:

Qm(ω) = e
−2ωbm(xm−xm−1)

−dm−1 +Qm−1(ω)

1− dm−1Qm−1(ω)
.(4)

Note that a Möbius transform on the unit disc occurs in this expression.
Let εn > 0 be such that for every complex ω with

�ω > −εn,
the estimate

|Q2(ω)| = |d1e−2ωb2(x2−x1)| < 1
holds and gives by induction

|Qm(ω)| < 1.
Hence (detDn(ω))

−1 is uniformly bounded and well defined in this region, which
contains the imaginary axis. Therefore ωRωu0(x) can be analytically continued, and
we can use the following spectral theory lemma.

Lemma 2.1. The solution of the Schrödinger equation (S) verifies

u(t, x) =

∫ ∞

−∞
eitτ

2

τRiτu0(x)
dτ

π
.(5)
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2.2. The algebra of Wiener’s almost-periodic functions. Let us recall the
structure of the Banach algebra of Wiener’s almost-periodic functions:

B =

{
h : R �→ C , h(t) =

∑
λ∈R

c(λ)eiλt with ‖h‖B =
∑
λ∈R

|c(λ)| <∞
}
.

We define for h ∈ B

‖h‖∞ = sup
t∈R

|h(t)|

and

ρ(h) = inf{r > 0 | ∃Cr > 0 for all k ∈ N , ‖hk‖B ≤ Crrk}.

The following classical result, which is a consequence of Theorems 6§4 and 2§29 of
[6], will be used.

Theorem 2.2. For all h ∈ B we have

ρ(h) = ‖h‖∞.

Corollary 2.3. Let h ∈ B with ‖h‖∞ < 1 and let α be a complex number on
the open unit disc. Then

g =
h− α
1− αh

also belongs to B and

ρ(g) < 1.

Proof. The function αh belongs to B and

‖αh‖∞ < |α| < 1.

By using Theorem 2.2 we have

‖(αh)k‖B ≤ C|α|k.

Since

h− α
1− αh = (h− α)

∞∑
k=0

(αh)k,

it follows that g belongs to B. Moreover, by the maximum principle,

‖g‖∞ < 1.

By again applying Theorem 2.2, the corollary is proved.
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2.3. The dispersion inequality. The Qm(iτ)’s are series of complex exponen-
tials. In this subsection we will show that they belong to B with respect to the real
variable τ . The estimates of their norm in this algebra will imply the dispersion for
the Schrödinger equation (S).

Let us define

r2 = |d1|, rm =
|dm−1|+ rm−1

1− |dm−1|rm−1
.

Obviously Q2 ∈ B and

‖Q2‖∞ = r2.

Therefore Theorem 2.2 gives us

ρ(Q2) = r2 < 1.

By using Corollary 2.3 and the Möbius transform which occurs in formula (4), one
can show by induction that Qm ∈ B and

ρ(Qm) ≤ rm < 1.

Then formulae (2) and (3) lead us to the estimate

‖(detDn(iτ))
−1‖B < Kn,(6)

where Kn is a constant depending on bi.
In order to prove dispersion, it is sufficient, using (1) and (5), to estimate terms

of the following type:

Ji(t, x) =

∫ ∞

−∞
eitτ

2

Ceiτβ(x)

∫
I(xi)

u0(y)

2iτ

e+iτbiy

detDn(iτ)
dy τ

dτ

2π
.

By performing a change of variable in τ ,

|Ji(t, x)| ≤ C
∫
I(xi)

|u0(y)|
4π

√
t

∣∣∣∣∣
∫ ∞

−∞
eis

2 e
i s√

t
(β(x)±biy)

detDn(i
s√
t
)
ds

∣∣∣∣∣ dy

≤ C ‖uo‖L1(R)√
t

‖(detDn(iξ))
−1‖B .

Then (6) implies that

sup
x

|Ji(t, x)| ≤ Kn

‖u0‖L1(R)√
t

,

so the dispersion inequality for the Schrödinger equation (S) is satisfied.
Remark 2.4. The finite sum in (1) contains n2n terms. Therefore, by estimating

the solution as above, term by term, we cannot obtain the dispersion for equation (S)
if a(x) has an infinite number of steps. Therefore the method is too rough to prove
dispersion for an arbitrary strictly positive BV coefficient a(x).
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Strichartz inequalities follow from the dispersion inequality by the classical duality
argument TT ∗ [12], so the proof of Theorem 1.1 is complete.

Since we can express the solution of the wave equation (O) as

v(t, x) =

∫ ∞

−∞
eitτRiτu0(x)iτ

dτ

2π
,

the property

sup
x∈R

∫ ∞

−∞
|v(t, x)|dt ≤ C‖u0‖L1(R)

follows similarly to the dispersion inequality for the solution of (S).

3. Periodic laminar media.

3.1. General theory of periodic-coefficient equations. Let θ be a number
in [0, 2π] and consider the operator on L2(S1)

Aθ = −(iθ + ∂x)a(x)(iθ + ∂x).

This operator is self-adjoint with a compact resolvent, hence the eigenvalues form a se-
quence of strictly positive numbers {ω2

θ,n}n∈N. Moreover, the set of the corresponding

eigenfunctions pn(θ, x) is an orthonormal basis of L2(S1).
Let us provide a way to construct the elements of this basis. Finding the eigen-

function pn(θ, x) is equivalent to finding the function

Ψn(θ, x) = e
iθxpn(θ, x)

that satisfies

−∂xa(x)∂xΨn(θ, x) = ω
2
θ,nΨn(θ, x).(Hθ,n)

Note that this new function has the quasi-periodic property

Ψn(θ, x+ 1) = e
iθΨn(θ, x).

Equation (Hθ,n) is of the type

−∂xa(x)∂xΨ(x) = λ2Ψ(x)(H)

on

{Ψ ∈ H1
loc(R), a ∂xΨ ∈ H1

loc(R)}.

This equation can be treated similarly to Hill’s equation [9]. Let T be an operator
acting on the solution space as follows:

T (Ψ)(x) = Ψ(x+ 1).

On the one hand, the eigenvalues of T verify

x2 − xTr(T ) + detT = 0.
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On the other hand, the generalized Wronskian

W = Ψ1a∂xΨ2 −Ψ2a∂xΨ1

associated with (Ψ1,Ψ2), a normalized basis of solutions of (H), i.e.,

Ψ1(0) = (a ∂xΨ2)(0) = 1, (a ∂xΨ1)(0) = Ψ2(0) = 0,

is constant. Therefore

detT =W (1) =W (0) = 1,

and the eigenvalues are eiξ and e−iξ for some complex ξ. If |Tr(T )| is larger than 2,
then ξ is purely imaginary and there exists a basis of solutions of exponential growth.
In this case λ2 belongs to an instability interval of the equation. Otherwise, if |Tr(T )|
is less than or equal to 2, ξ is real and λ2 belongs to a stability interval. Moreover, if
ξ ∈ πZ, periodic solutions exist. If ξ ∈ R\πZ, the existence of a basis of quasi-periodic
solutions is assured.

So, the eigenvalues of Aθ are exactly the values λ
2 for which the operator T

associated with (H) admits eiθ and e−iθ as eigenvalues. If θ ∈ (0, π) ∪ (π, 2π), then
these eigenvalues are simple. Therefore, in order to construct the L2(S1) basis made
of the eigenfunctions of Aθ, one has to find all λ for which the operator T associated
with (H) verifies

TrT = 2 cos θ.

For such a λ, we consider (Ψ1,Ψ2) a normalized basis of solutions of (H). If Ψ2(1) �= 0,
then

Ψ(x) = Ψ1(x)− Ψ1(1)− eiθ
Ψ2(1)

Ψ2(x)(7)

is a solution of (H) and an eigenfunction of T for the eigenvalue eiθ. Finally,

p(x) = Ψ(x)e−iθx

is an eigenfunction of the operator Aθ, associated with the eigenvalue λ
2.

3.2. Representation of solutions. In order to find the representation of the
solution of (S), we decompose the initial data as follows:

u0(x) =
1

2π

∫ ∞

−∞
eixξ û0(ξ)dξ =

1

2π

∑
k∈Z

∫ 2(k+1)π

2kπ

eixξ û0(ξ)dξ

=
1

2π

∑
k∈Z

∫ 2π

0

ei(2kπ+θ)x û0(2kπ + θ)dθ.

Thus u0 can be written

u0(x) =
1

2π

∫ 2π

0

v(θ, x) dθ,



876 VALERIA BANICA

with

v(θ, x) =
∑
k∈Z

ei(2kπ+θ)x û0(2kπ + θ).(8)

Moreover,

‖u0‖2
L2(R) =

1

2π
‖û0‖2

L2(R) =
1

2π

∑
k∈Z

∫ 2(k+1)π

2kπ

|û0(x)|2dx =
∑
k∈Z

∫ 2π

0

|û0(2kπ + θ)|2dθ

=

∫ 2π

0

∫ 1

0

|e−iθxv(θ, x)|2dxdθ =
∫ 2π

0

∫ 1

0

|v(θ, x)|2dxdθ.

Since v satisfies the quasi-periodicity property

v(θ, x+ 1) = eiθv(θ, x),

then v(θ, x)e−iθx is 1-periodic. Therefore we can decompose it with respect to the
L2(S1) basis of eigenfunctions of the operator Aθ introduced in section 3.1. If θ ∈
(0, π) ∪ (π, 2π), the eigenvalues of Aθ are simple and we can write

v(θ, x)e−iθx =
∑
n∈N

cn(θ)pn(θ, x);

that is,

v(θ, x) =
∑
n∈N

cn(θ)Ψn(θ, x).(9)

Finally,

u(t, x) =
1

2π

∫ 2π

0

∑
n∈N

eitω
2
θ,ncn(θ)Ψn(θ, x)dθ(10)

is the solution of the Schrödinger equation (S). Moreover, using the above link between
the L2 norms of the initial datum u0 and of v,

‖u0‖2
L2(R) =

∑
n∈N

‖cn‖2
L2(0,2π).

Let us now express the solution u in terms of the initial datum u0. By using the
definitions (8) and (9),

cn(θ) = 〈v(θ, ·),Ψn(θ, ·)〉 =
∑
k∈Z

û0(2kπ + θ)〈ei(2kπ+θ) ·,Ψn(θ, ·)〉.

Since e−iθxΨn(θ, x) is 1-periodic, its Fourier decomposition contains only even expo-
nentials:

e−iθxΨn(θ, x) =
∑
k∈Z

dn,k(θ)e
i2πkx.
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Therefore

cn(θ) =
∑
k∈Z

û0(2kπ + θ)dn,k(θ) =

∫ ∞

−∞
u0(y)e

−iyθ
∑
k∈Z

e−i2kπydn,k(θ)dy

=

∫ ∞

−∞
u0(y)Ψn(θ, y)dy.

In conclusion, for any initial datum u0, the solution of the Schrödinger equation
(S) is

u(t, x) =
1

2π

∫ ∞

−∞
u0(y)

∫ 2π

0

∑
n∈N

eitω
2
θ,nΨn(θ, x)Ψn(θ, y)dθdy.

3.3. Explicit solutions for the Krönig–Penney model. Let

a(x) =

{
b−2
0 for x ∈ [0, x0),
b−2
1 for x ∈ [x0, 1)

as defined in the statement of Theorem 1.2. Fix θ ∈ (0, π) ∪ (π, 2π). Following
the approach presented in section 3.1, in this subsection we will explicitly find the
functions Ψn(θ, x).

The basis of normalized solutions associated with the (H) is
Ψ1(x) =

{
1
2e

iλb0x + 1
2e

−iλb0x for x ∈ (0, x0),

a1je
iλb1x + b1je

−iλb1x for x ∈ (x0, 1),

Ψ2(x) =

{
− ib0

2λ e
iλb0x + ib0

2λ e
−iλb0x for x ∈ (0, x0),

a2je
iλb1x + b2je

−iλb1x for x ∈ (x0, 1)

with 

a1j =
1

4b0
[(b0 + b1)e

iλx0(b0−b1) + (b0 − b1)e−iλx0(b0+b1)],

b1j =
1

4b1
[(b0 + b1)e

−iλx0(b0−b1) + (b0 − b1)eiλx0(b0+b1)],

a2j =
i

4λ [−(b0 + b1)eiλx0(b0−b1) + (b0 − b1)e−iλx0(b0+b1)],

b2j =
i

4λ [(b0 + b1)e
−iλx0(b0−b1) − (b0 − b1)eiλx0(b0+b1)].

The trace of the shift operator T is

TrT = Ψ1(1) +
1

b21
∂xΨ2(1).

One can calculate

Tr(T ) = (r + 1) cos[λ(x0b0 + (1− x0)b1)]− (r − 1) cos[λ(x0b0 − (1− x0)b1)],

where

r =
b20 + b

2
1

2b0b1
.
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By setting the conditions

Tr(T ) = 2 cos θ, x0b0 = (1− x0)b1,

it follows that

2 cos θ = (r + 1) cos(λ2x0b0)− (r − 1).
Hence we have

λ ∈
{
2πj + f(θ)

2x0b0
, j ∈ Z

}
,

where f(θ) is the analytic function

f(θ) = arccos
r − 1 + 2 cos θ

r + 1
.

As the solutions Ψ1 and Ψ2 are the same for λ and for −λ, we have to check if
there exist different integers j and k such that

2πj + f(θ) = ±(2πk + f(θ)).
If this is true, it follows that

j + k =
f(θ)

π
.

Since r > 1 gives f(θ) < π and θ �= 0 gives f(θ) �= 0, then j and k must satisfy
0 < |j + k| < 1.

In conclusion, the values ∣∣∣∣2πj + f(θ)2x0b0

∣∣∣∣
are different, so we can consider the eigenvalues of the operator Aθ indexed by j ∈ Z

as follows:

ωθ,j =
2πj + f(θ)

2x0b0
.(11)

Note that since θ has been fixed in (0, π) ∪ (π, 2π),
ωθ,j �= 0 for all j ∈ Z.

By using (7), we obtain a quasi-periodic solution for equation (Hθ,j):

Ψ̃j(θ, x) =

(
1

2
+ hj(θ)

)
eiωθ,jb0x +

(
1

2
− hj(θ)

)
e−iωθ,jb0x for x ∈ (0, x0)(12)

with

hj(θ) = i
(b0 + b1) cos(2ωθ,jb0x0) + (b0 − b1)− eiθ

(b0 + b1) sin(2ωθ,jb0x0)
.
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The definition (11) of ωθ,j gives

hj(θ) = h(θ) = i
(b0 + b1) cos f(θ) + (b0 − b1)− eiθ

(b0 + b1) sin f(θ)
.

Then we can calculate for x ∈ (0, x0)

Ψ̃j(θ, x) = cos(ωθ,j b0x) + 2h(θ) sin(ωθ,j b0x),

and for x ∈ (x0, 1)

Ψ̃j(θ, x) =

(
a1j − a2j h(θ)

2ωθ,j
ib0

)
eiωθ,jb1x +

(
b1j − b2j h(θ)

2ωθ,j
ib0

)
e−iωθ,jb1x

=
b0 + b1
4b0

(1 + 2h(θ))eiωθ,j(x0(b0−b1)+b1x) +
b0 − b1
4b0

(1− 2h(θ))e−iωθ,j(x0(b0+b1)−b1x)

+
b0 + b1
4b0

(1− 2h(θ))e−iωθ,j(x0(b0−b1)+b1x) +
b0 − b1
4b0

(1 + 2h(θ))eiωθ,j(x0(b0+b1)−b1x).

It follows that ∫ 1

0

|Ψ̃j(θ, x)|2dx = αj(θ) = β(θ) + γ(θ)

2πj + f(θ)
,

with β(θ) strictly positive. Let Ψj(θ, x) be the L2 normalization of Ψ̃j(θ, x):

Ψj(θ, x) =
Ψ̃j(θ, x)√
αj(θ)

.

We are now in the context described in section 3.2.

3.4. The failure of local dispersion. Let X be a 2π-periodic function whose
restriction to (0, 2π) is C∞

0 . One can write

X (ξ) =
∑
k∈Z

ske
ikξ.

Let v0 be the Fourier localization outside 2πZ points of the initial data u0

v̂0(ξ) = û0(ξ)X (ξ).

By applying Plancherel’s theorem one has

v0(x) =

∫ ∞

−∞
eixξû0(ξ)X (ξ) dξ

2π
=
∑
k∈Z

u0(x+ k)sk.

Since X|(0,2π) is in C∞
0 , ∑

k∈Z

|sk| = S <∞,
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so the localization preserves the regularity L1(R) ∩ L2(R) with{ ‖v0‖L1(R) ≤ C‖u0‖L1(R),
‖v0‖L2(R) ≤ C‖u0‖L2(R).

For such an initial datum v0, the coefficients cj(θ) defined in section 3.2 are

cj(θ) =
∑
k∈Z

û0(2kπ + θ)X (2kπ + θ)dj,k(θ)

= X (θ)
∫ ∞

−∞
u0(y)e

−iyθ
∑
k∈Z

e−i2kπydj,k(θ)dy = X (θ)
∫ ∞

−∞
u0(y)Ψθ,j(y)dy.

Then, by the representation formula (10), the solution v(t, x) of the equation (S) with
initial datum v0 can be written as

v(t, x) =

∫ ∞

−∞
u0(y)Kt(x, y)dy,

where

Kt(x, y) =
1

2π

∫ 2π

0

∑
j∈Z

eitω
2
θ,jΨθ,j(x)Ψθ,j(y)X (θ)dθ.

Since

‖v0‖L1(R) ≤ C‖u0‖L1(R),

in order to have the dispersion inequality

‖v(t, ·)‖L∞(R) ≤ C√
t
‖v0‖L1(R),

the dispersion kernel must satisfy

‖Kt‖L∞(x,y) ≤ C√
t
.

We will show that there exist times t, arbitrarily small, for whichKt is not an L∞(x, y)
function.

Let us change t in t
4b2ox

2
0
and x in x

2x0
. By using definition (11) of ωθ,j and formula

(12) for Ψ̃j(θ, x), we have that Kt(x, y) is, for x < x0, equal to

1

4π

∑
j∈Z

∫ 2π

0

eit(2πj+f(θ))2
(
eix(2πj+f(θ))(1 + 2h(θ)) + e−ix(2πj+f(θ))(1− 2h(θ))

)

×
(
e−iy(2πj+f(θ))(1 + 2h(θ)) + eiy(2πj+f(θ))(1− 2h(θ))

) X (θ)
αj(θ)

dθ.

It follows that the kernel is the sum of four terms of the following type:

Jt(x, y) =
1

4π

∑
j∈Z

∫ 2π

0

eit(2πj+f(θ))2ei(x−y)(2πj+f(θ))(1 + 2h(θ))(1 + 2h(θ))
X (θ)
αj(θ)

dθ.
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In view of the forthcoming applications of the stationary phase formula, we can con-
sider that Jt(x, y) is, modulo an L∞ function, the same sum as above, with α0 replaced
by α1. Since |f(θ)| < π, one can choose a function αξ(θ) which is strictly positive,
bounded, and C∞ with respect to the variable ξ such that

αξ(θ) = β(θ) +
γ(θ)

ξ + f(θ)
for |ξ| > π.

This allows us to apply the Poisson formula, so Jt(x, y) can be written as

1

2

∑
l∈Z

eiξl
∫ ∞

−∞

∫ 2π

0

eit(ξ+f(θ))2ei(x−y)(ξ+f(θ))(1 + 2h(θ))(1 + 2h(θ))
X (θ)
αξ(θ)

dθdξ.

By changing ξ + f(θ) into ζ,

Jt(x, y) =
1

2

∑
l∈Z

∫ 2π

0

e−if(θ)l Il(t, x− y, θ) dθ,

where

Il(t, x− y, θ) = X (θ)(1 + 2h(θ))(1 + 2h(θ))
∫ ∞

−∞
eitζ

2

ei(x−y+l)ζ dζ

αζ−f(θ)(θ)

verifies

|∂θkIl(t, x− y, θ)| ≤ C for all k ∈ N.

The only critical point of f |(0,2π) is π, which is nondegenerate, so we can apply the
stationary phase formula for large l. In view of the definition of αζ(π), Jt(x, y) is,
modulo an L∞ function,

Jt(x, y) =
∑
l∈Z∗

(
e−if(π)l√|l| Il(t, x− y) 1

2
X (π)(1 + 2h(π))(1 + 2h(π)) +O(|l|− 3

2 )

)
with

Il(t, x− y) =
∫ ∞

−∞
eitζ

2

ei(x−y+l)ζ dζ

β(π) + γ(π)
ζ

.

We have used the known result that the sum of exponentials

F (α) =
∑
l∈Z∗

e−iαl√|l|(13)

blows up as

1√|α|
if α tends to zero, and otherwise the sum is finite. Here f(π) ∈ (0, π).

By changing ζ in x−y+l√
t

and by considering that (x, y) lies in a compact set, we

have

Il(t, x− y) = x− y + l√
t

∫ ∞

−∞
e
i(x−y+l)2(ζ2+ ζ√

t
) dζ

β(π) + γ(π)
√
t

(x−y+l)ζ

.
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The stationary phase formula applied again for ζ = − 1
2
√
t
gives

Il(t, x− y) = 1√
t
e−i

(x−y+l)2

4t
1

β(π)− 2γ(π)t
x−y+l

+
O((x− y + l)−2)√

t
.

Thus, modulo an L∞ function, we obtain that

Jt(x, y) =
C√
t

∑
l∈Z∗

e−if(π)l√|l| e−i
(x−y+l)2

4t ,

with C �= 0. Let t verify
1

4t
∈ 2πZ.

Note that t can be chosen arbitrary small. Also,

Jt(x, y) =
Ce−i

(x−y)2

4t√
t

∑
l∈Z∗

e−i( x−y
2t +f(π))l√|l| .

It follows then that Kt(x, y) is, modulo an L∞ function,

e−i
(x−y)2

4t√
t

(
C1 F

(
x− y
2t

+ f(π)

)
+ C2 F

(
−x− y

2t
+ f(π)

))

+
e−i

(x+y)2

4t√
t

(
C3 F

(
x+ y

2t
+ f(π)

)
+ C4 F

(
−x+ y

2t
+ f(π)

))
.

Since f(π) �= 0, in view of the behavior of F presented above (see (13)), the kernel
Kt(x, y) is not in L∞(x, y). Therefore the local dispersion for the Schrödinger equation
(S) fails and Theorem 1.2 is proved.
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work.
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