
THE NONLINEAR SCHRÖDINGER EQUATION ON
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Abstract. In this article we study some aspects of dispersive and concentra-
tion phenomena for the Schrödinger equation posed on hyperbolic space Hn,

in order to see if the negative curvature of the manifold gets the dynamics

more stable than in the Euclidean case. It is indeed the case for the dispersive
properties : we prove that the dispersion inequality is valid, in a stronger form

than the one on Rn. However, the geometry does not have enough of an effect

to avoid the concentration phenomena and the picture is actually worse than
expected. The critical nonlinearity power for blow-up turns out to be the same

as in the euclidean case, and we prove that there are more explosive solutions

for critical and supercritical nonlinearities.
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1. Introduction

Let (M, g) be a Riemannian manifold and let ∆M be the Laplace-Beltrami op-
erator. The study of the nonlinear Schrödinger equation{

i∂tu + ∆Mu = V ′(|u|2)u,
u(0) = u0,

where u is a space-time function with complex values, and V is a real function with
controlled growth at infinity, was motivated by number of problems coming from
Physics.

It is known that the geometry influences the dynamics of the equation. Instability
phenomena appear, even in the defocusing case.
For instance, on the one hand, for the cubic defocusing Schrödinger equation on
the sphere S2 {

i∂tu + ∆S2u = |u|2u,
u(0, x) ∈ Hs(S2) ,

the critical regularity index for having the uniform continuity of the flow on the
bounded sets of Hs is s = 1

4 , as it was proved recently by Burq-Gérard-Tzvetkov
([7], [9], see also [3]).
On the other hand Bourgain ([6]) and Cazenave-Weissler ([11]) have proved that
the Cauchy problem of the same equation, considered on T2 and on R2 respectively,
is Hε well-posed for all positive ε, meanwhile for negative s instability phenomena
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appear ([7],[12]). It follows that the critical regularity index for the flat torus and
for R2 is zero.

Hence these results point out the importance played by the geometry of the
manifold in the dynamics of the equation.

It is expected that the positive curvature generates the differences, since for
having the instability result on the sphere the dynamics of spherical harmonic
concentrated on closed geodesics are studied.

In this article we study dispersive and concentration phenomena for the Schrödinger
equation posed on hyperbolic space Hn, manifold of negative curvature, expecting
that the dynamics are stabler than in the Euclidean case.

We shall define in §2 the hyperbolic space and the tools used on it. For the mo-
ment, let us introduce some notations. We denote by 0 the origin of the hyperbolic
space, 0 = (1, 0, .., 0). In the sequel we shall use the Lp spaces on Hn

Lp = Lp(Hn) = Lp(dΩ),

and weighted spaces, defined by

Lp(w) = Lp(w dΩ),

where dΩ denotes the measure on hyperbolic space Hn and w is a function on Hn.

First, we shall treat the linear equation. We obtain an explicit representation of
the solutions.

Theorem 1.1. The solution of the linear Schrödinger equation posed on hyperbolic
space Hn

(SL)
{

i∂tu + ∆Hnu = 0
u(0, x) = u0

,

is, for n ≥ 3 odd,

(1) u(t,Ω) =
c

|t| 12
e−it

(n−1)2

4

∫
Hn

uo(Ω′)
(

∂ρ

sinh ρ

)n−1
2

ei ρ2

4t dΩ′,

and for n ≥ 2 even

(2) u(t,Ω) =
c

|t| 32
e−it

(n−1)2

4

∫
Hn

uo(Ω′)
(

∂ρ

sinh ρ

)n−2
2
∫ ∞

ρ

ei s2
4t s√

cosh s− cosh ρ
ds dΩ′,

where by ρ we denote the hyperbolic distance between the points Ω and Ω′.

As harmonic analysis can be done on Hn, the proof is based on the representation
of the solution via the Fourier transform and on calculus of oscillatory integrals.
There are many points in common with the proof of the inverse Fourier formula on
hyperbolic space.

This explicit representation of the solution allows us to study the dispersive
properties and to obtain the following results.

Theorem 1.2. i) For all dimension n ≥ 2, the solution satisfies the following local
dispersion inequality

(3) |u(t,Ω)| ≤ c
1
|t|n

2

∫
Hn

|u0(Ω′)|
(

ρ

sinh ρ

)n−1
2

dΩ′.

For large times, the following dispersion estimate holds for all n ≥ 3 odd,

(4) |u(t, Ω)| ≤ c
1
|t| 32

∫
Hn

|u0(Ω′)|
(

ρ

sinh ρ

)n−1
2

dΩ′,
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and for all n ≥ 2 even

(5) |u(t, Ω)| ≤ c
1
|t| 32

∫
Hn

|u0(Ω′)|
(

ρ

sinh ρ

)n−1
2 1 + ρ

√
ρ

dΩ′,

ii) Moreover, for n ≥ 3 and radial initial data, we have a weighted-space local
dispersion inequality

(6) ‖u(t)‖L∞(w) ≤
c

|t|n
2
‖u0‖L1(w−1),

where the weight is

w(Ω) =
sinh d(0,Ω)

d(0,Ω)
.

Finally, for n ≥ 3, for a finite time T and for radial initial data, we have the local
Strichartz weighted estimates

(7) ‖u‖Lp([0,T ], Lq(wq−2)) ≤ c‖u0‖L2 ,

for all pairs (p, q) satisfying 2
p + n

q = n
2 , (p, q, n) 6= (2,∞, 2) and 2 ≤ p, q.

The new term that appears in (3),
ρ

sinh ρ
,

is specific to hyperbolic space ; it comes from the Harish-Chandra coefficient and
from a kernel that involves the eigenfunctions of the Laplace-Beltrami operator.
This new term informs us that, apart from the classical decay in time, we have a
new one, in space.

Remark 1.3. In dimension 3, all the dispersion estimates from Theorem 1.2 are
global in time, which is not the case for other dimensions.

Remark 1.4. For dimensions allowed in Theorem 1.2, away from the support of
the initial data, the decay is stronger than in the Rn case. More precisely, for
initial data with support a domain A of Hn, the solution satisfies, for any point Ω
not included in A, at small times,

|u(t, Ω)|
(

sinh d(Ω, A)
d(Ω, A)

)n−1
2

≤ c

|t|n
2

∫
Hn

|u0(Ω′)|
(

d(Ω′,c A)
sinh d(Ω′,c A)

)n−1
2

dΩ′.

Remark 1.5. In dimension 3, for radial initial data in a more restrictive space,
that is L1(w̃−1) with the weight

w̃(Ω) = sinh d(Ω, 0),

we obtain a local dispersion-type estimate stronger in time,

‖u(t)‖L∞( ew) ≤
c

|t| 12
‖u0‖L1( ew−1).

However, it is only in (6), in the radial case, that we obtained the dispersion
stated in weighted spaces, independently of the initial data.

Let us also notice that the improvements in the dispersive estimates stated in
Theorem 1.2 are better decays away from the origin. Near the origin -where the
Laplace-Beltrami operator on hyperbolic space is almost the one on Rn- we have
the same decays as in the euclidean case. The infinite speed of propagation of the
Schrödinger operator is not sufficient to impose on the dispersion estimate at the
origin an influence from the metric at infinity.

As a consequence of (3), we obtain the classical local dispersion inequality

‖u(t)‖L∞ ≤ c

|t|n
2
‖u0‖L1 .
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From the dispersion inequality, by using the TT* functional analysis argument
([26]), the local Strichartz estimates are obtained too. We recall here that for
the wave equation on hyperbolic space, the Strichartz estimates have been proved
recently by Tataru ([24]).

Let us now remark that on the sphere, the local Strichartz-type estimates are
known to hold with a loss of 1

p derivatives, that is the LpLq norms of the solutions

are controlled by the H
1
p norm of the initial data, instead of the L2 norm ([8]).

This shows that on hyperbolic space, the dispersion estimates are stronger.

Remark 1.6. An important problem related to the linear Schrödinger equation is
the problem of the potential. The radial Schrödinger equation perturbed with a rough
time dependent potential on hyperbolic space was recently treated by Pierfelice in
([23]). By using Theorem 1.2 ii) and fixed point arguments she obtains for the radial
perturbed Cauchy problem the Strichartz estimates with the same weight, pointing
out again the influence of the negative curvature on the dispersive properties. These
estimates hold even in the case of more general nonlinearities.

Remark 1.7. It is expected that the results obtained should hold on all symmetric
spaces of rank 1.

Moreover, let us notice that the dispersion kernel obtained is close to the kernel
of the heat operator et∆, which has been studied intensively on hyperbolic space,
usually for t real, but also for complex t with <t > 0 ([13], [2], [14]). In view of this
work, we expect that the dispersion estimate for large time can be improved by an
additional decay, for all n ≥ 2 :

|u(t,Ω)| ≤ c
1
|t| 32

∫
Hn

|u0(Ω′)|
(

ρ

sinh ρ

)n−1
2
(

1
1 + ρ

)n−3
2

dΩ′.

Let us turn now our attention to the concentration phenomena for the nonlinear
equation, and more precisely to blow-up of solutions in the sense of the explosion
in finite time of the L2 norm of their gradient.

We consider the focusing Schrödinger equation with power nonlinearity

(S)
{

i∂tu + ∆Hnu + |u|p−1u = 0
u(0, x) = u0 ∈ H1(Hn) .

First, let us notice that, as for the Euclidean case, since integration by parts
works on hyperbolic space, the mass of a solution of (S)∫

Hn

|u|2dΩ,

and its energy

E(u) =
1
2

∫
Hn

|∇u|2dΩ− 1
p + 1

∫
Hn

|u|p+1dΩ,

are conserved in time.
By using the classical Strichartz estimates, derived from the dispersion estimate

(3) on the linear equation, one can obtain, as in the Euclidean case ([16],[27]), the
H1 local existence of solutions of the equation (S) with p ≤ 1 + 4

n−2 .
The argument used on Rn in the most of the blow-up results is the scale in-

variance. The construction of explicit blow-up solutions is done using the pseudo-
conformal invariance. Informations on the blow-up solutions are obtained by study-
ing the dilatations of the solution and by using the virial identity ([22]). The main
difficulty when working on hyperbolic space is that these techniques and notions
do not have an obvious analogue.
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One can expect that maybe there will be no blow-up solutions, due to the neg-
ative curvature of the manifold. In fact it turns out that the geometry does not
have enough of an effect to avoid the concentration phenomena. Moreover, we have
more types of initial data generating blow-up in finite time than in the Euclidean
case.

Theorem 1.8. For p < 1 + 4
n , the solutions of the equation (S) are global in

H1(Hn). The global existence still holds for the power p = 1 + 4
n and for initial

data of mass smaller than a certain constant.
However, for p ≥ 1 + 4

n , blow-up solutions exist. More precisely, if the initial
data is radial, of finite variance∫

Hn

|u0(Ω)|2d2(0,Ω)dΩ < +∞,

and its energy satisfies
E(u0) < cn‖u0‖2

2,

then the solution blows up in finite time. Here cn is a geometric positive constant
given by

cn =
inf ∆2

Hnd(0, ·)
16

.

The proof of the global existence up to the critical power p = 1 + 4
n -which

is also the one of the Euclidean space- involves the Sobolev embeddings on Hn

([18]), together with the conservation laws of the equation. The existence of blow-
up solutions is shown by adapting the arguments of Glassey and Zakharov on Rn

([17], [28]) and of Kavian on a star-shaped domain of Rn ([20]), to the particular
metric on Hn.

Remark 1.9. We obtain a new virial identity adapted to hyperbolic space that al-
lows us to conclude that solutions of null energy and finite virial blow up in finite
time. Probably this new concentration phenomena is the consequence of the im-
proved dispersion of the solutions. We recall that this is not the case on Rn for
the critical power, since the ground state, that is the unique positive solution of the
elliptic equation

∆RnQ + Qp = Q,

gives us the global solution eitQ of null energy.
Moreover, on Rn, the mass of the ground state is the critical mass for having
explosive solutions in critical power. In our case, the Theorem 1.8 implies that
the ground state on hyperbolic space has positive energy and mass smaller than the
expected critical mass for blow-up on Hn.

It should be interesting to see what is the minimal blow-up mass, and to get
informations about the blow-up speed and about the profiles of the explosive solu-
tions.

This article is organized as follows. In the second section we give the definition
of hyperbolic spaces and of the tools used on it, namely the Laplace-Beltrami op-
erator and the Fourier transform. In §3.1 we recall the proof of the representation
of the solutions and the dispersion inequality in the Euclidean case, then we give
in §3.2 the proof of Theorem 1.1. In §4 we prove the first point of Theorem 1.2,
concerning the L1−L∞ estimates. The section §5 concerns the weighted dispersion
inequalities of the second point of Theorem 1.2, and of the Remarks 1.4 and 1.5.
The last section contains the proof of Theorem 1.8. In Appendix A is proved a
technical proposition, crucial for obtaining the dispersion estimates in §4 .
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2. hyperbolic space

2.1. Definition. We shall use here the model of hyperbolic space given by the
upper branch of the hyperboloid.

We define the hyperbolic space as being the following surface of Rn+1, given by
the parametrization :

Hn = {Ω = (t, x) ∈ Rn+1, (t, x) = (cosh r, sinh r ω), r ≥ 0, ω ∈ Sn−1}.

Let us introduce the inner product on Rn+1

(8) [x, y] = x0y0 − ....− xnyn.

An alternative definition for hyperbolic space is

Hn = {x = (x0, x1, ..., xn) ∈ Rn+1, [x, x] = 1, x0 > 0}.

This space is invariant under SO(1, n), the group of Lorentz transformations of
Rn+1 that preserve this inner product.

One has
dt = sinh rdr, dx = cosh r ω dr + sinh r dω,

and the metric induced on Hn by the Lorenzian metric on Rn+1

dl2 = −dt2 + dx2,

is
ds2 = dr2 + sinh2 r dω2,

where dω2 is the metric on the sphere Sn−1.
The volume element is∫

Hn

f(Ω) dΩ =
∫ ∞

0

∫
Sn−1

f(r, ω) sinhn−1 r dr dω.

The length of a curve

γ(t) = (cosh r(t), sinh r(t) ω(t)),

with t varying from a to b, is defined to be as usual,

L(γ) =
∫ b

a

√
|r′(t)|2 + | sinh r(t)|2|ω′(t)|2dt.

The distance between two points of X will be the infimum of the lengths of the
paths connecting the points. By direct calculus, one has that the distance of a
point to the origin of the hyperboloid O = (1, 0, ..., 0) is

d((cosh r, sinh r ω), O) = r.

More generally, the distance between two arbitrary points is

(9) d(Ω,Ω′) = cosh−1([Ω,Ω′]).

Starting from the general definition of the Laplace-Beltrami operator, one can
find its expression on Hn

∆Hn = ∂2
r + (n− 1)

cosh r

sinh r
∂r +

1
sinh2 r

∆Sn−1 .

In Section 6 we will denote ∆ = ∆Hn .
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2.2. The Fourier transform.

For θ ∈ Sn−1 and λ a real number, the functions of the type

(10) hλ,θ(Ω) = [Ω,Λ(θ)]iλ−
n−1

2 ,

are generalized eigenfunctions of the Laplacian-Beltrami operator. Here we denoted
by Λ(θ) the point of Rn+1 given by (1, θ). Indeed, we have

−∆Hnhλ,θ =
(

λ2 +
(n− 1)2

4

)
hλ,θ.

By analogy with the Rn case, the definition of the Fourier transform is, for a
function on Hn,

f̂(λ, θ) =
∫

Hn

hλ,θ(Ω)f(Ω) dΩ.

It turns out that this is the good definition, and one has the Fourier inversion
formula for function on Hn

f(Ω) =
∫ ∞

−∞

∫
Sn−1

hλ,θ(Ω)f̂(λ, θ)
dθdλ

|c(λ)|2
,

where c(λ) is the Harish-Chandra coefficient

1
|c(λ)|2

=
1

2(2π)n

|Γ(iλ + n−1
2 )|2

|Γ(iλ)|2
.

Fore more details on hyperbolic space, see Helgason ([19]) and Terras ([25]).

3. The representation of the solutions

3.1. The Euclidean case.

For the linear equation on Rn{
i∂tu + ∆Rnu = 0,

u(0) = u0 ∈ L2(Rn), ,

the solution can be written explicitly. By applying the Fourier transform to the
equation, one gets

û(ξ) = e−it|ξ|2 û0(ξ),

so the solution is

u(t, x) =
1

(2π)n

∫
Rn

e−it|ξ|2+ixξû0(ξ)dξ.

By the Plancherel formula, the solution can also be written

u(t, x) =
1

(4πit)
n
2

∫
Rn

ei
|x−y|2

4t u0(y)dy,

and therefore one obtains the following estimate

‖u(t)‖∞ ≤ c

|t|n
2
‖u0‖1,

called dispersion estimate.
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3.2. Proof of Theorem 1.1.

For the hyperbolic space we will try the same approach, by using the Fourier
transform introduced previously. By Fourier transforming on Hn, one has(

i∂t −
(

λ2 +
(n− 1)2

4

))
û(t, λ, θ) = 0,

so that

û(t, λ, θ) = e
−it

„
λ2+

(n−1)2

4

«
û0(λ, θ).

By applying the inverse Fourier transform,

u(t, Ω) =
∫ ∞

−∞

∫
Sn−1

e−it(λ2+
(n−1)2

4 )hλ,θ(Ω)û0(λ, θ)
dθdλ

|c(λ)|2
.

Finally, by making explicit the Fourier transform of the initial data,

(11) u(t, Ω) = e−it
(n−1)2

4

∫
Hn

uo(Ω′)
∫ ∞

−∞
e−itλ2

Lλ(Ω,Ω′)
dλ

|c(λ)|2
dΩ′,

where
Lλ(Ω,Ω′) =

∫
Sn−1

hλ,θ(Ω)hλ,θ(Ω′)dθ.

Lemma 3.1. For all g ∈ SO(1, n),

Lλ(Ω,Ω′) = Lλ(gΩ, gΩ′).

Proof. Using the definition (10) of the functions hλ,θ, and the fact that g preserves
the inner product, we have

(12) Lλ(Ω,Ω′) =
∫

Sn−1
[gΩ, gΛ(θ)]−iλ−n−1

2 [gΩ′, gΛ(θ)]iλ−
n−1

2 dθ.

Consider now the map F on Sn−1,

F (θ) = θ̃,

given by the relation

(13) gΛ(θ) = µ(θ)Λ(θ̃),

for some real µ(θ). Then, one can get ([15], Prop. 8.4.1) that this application is
unique, is a diffeomorphism,

µ(θ) = cosh rg + sinh rg θ1,

for some constant rg depending only on g, and the relation between the volume
elements dθ̃ and dθ on Sn−1 is

(14) dθ̃ =
dθ

(cosh rg + sinh rg θ1)n−1
=

dθ

(µ(θ))n−1 .

Here we denoted by θ1 the first Rn-component of θ.

Then, by making in the right hand side of (12) the change of variable F , and by
using (13) and (14), we obtain

Lλ(Ω,Ω′) =
∫

Sn−1
[gΩ,Λ(θ̃)]−iλ−n−1

2 [gΩ′,Λ(θ̃)]iλ−
n−1

2 dθ̃ = Lλ(gΩ, gΩ′),

so the Lemma is proved. �

Let us remark that Lemma 3.1 can also be proved by using the classical argument
of the fundamental point pair invariant ([13], p.177).
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Lemma 3.2. We have the following identity

Lλ(Ω,Ω′) = c(sinh ρ)−
n−2

2 P
−n−2

2
− 1

2+iλ
(cosh ρ),

where ρ = d(Ω,Ω′), and by Pµ
ν (z) we denoted the Legendre function, solution of the

equation

(1− z2)∂2
zw − 2z∂zw +

(
ν(ν + 1)− µ2

1− z2

)
w = 0.

Proof. Let us choose a transformation g ∈ SO(1, n), which maps Ω on the origin
of Hn. Then g will send Ω′ in a point of Hn of coordinates

Ω∗ = (cosh ρ, sinh ρ γ).

Since g preserves the product, the radius of Ω∗ can be calculated,

ρ = cosh−1[Ω,Ω′] = d(Ω,Ω′).

So, by using Lemma 3.1,

Lλ(Ω,Ω′) = Lλ(0,Ω∗) =
∫

Sn−1
[Ω∗,Λ(θ)]iλ−

n−1
2 dθ,

therefore

(15) Lλ(Ω,Ω′) =
∫

Sn−1
(cosh ρ− sinh ρ γ.θ)iλ−n−1

2 dθ.

Consider now a transformation T ∈ SO(n) such that

T (1, 0, 0...) = γ.

Then for θ ∈ Sn−1, we obtain an α ∈ [0, π[ and a θ′ ∈ Sn−2, well defined by the
relation

θ = T (cos α, sinα θ′).
Moreover, the angle between γ and θ is α,

γ.θ = cos α.

The change of variable from θ to α and θ′ is

dθ = sinn−2 α dα dθ′.

Let us now apply this change of variables in (15), and obtain

Lλ(Ω,Ω′) = c

∫ π

o

(cosh ρ− sinh ρ cos α)iλ−n−1
2 sinn−2 α dα.

Therefore, in view of the integral form of Pµ
ν (cosh r) ([4]), we obtain the identity

of the Lemma.
�

We shall now use the following Lemma, corresponding to Lemma 8.5.2 and 8.5.3
of [15].

Lemma 3.3. The function defined by

Ln
λ(ρ) = c(sinh ρ)−

n−2
2 P

−n−2
2

− 1
2+iλ

(cosh ρ),

is, for ρ > 0 and for n ≥ 1 odd,

(16) Ln
λ(ρ) = c

|Γ(iλ)|2

|Γ(iλ + n−1
2 )|2

(
∂ρ

sinh ρ

)n−1
2

cos λρ,

and for n ≥ 2 even,

(17) Ln
λ(ρ) = c

|Γ(iλ)|2

|Γ(iλ + n−1
2 )|2

∫ ∞

ρ

sinh s√
cosh s− cosh ρ

(
∂s

sinh s

)n
2

cos λs ds.
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By using in the formula (11) the expression of Lλ(Ω,Ω′) given by the Lemma
3.2 and Lemma 3.3, we obtain that

u(t,Ω) = ce−it
(n−1)2

4

∫
Hn

uo(Ω′)Kn(t, d(Ω,Ω′))dΩ′,

where the kernel Kn is, forρ > 0 and for n ≥ 3 odd,

Kn(t, ρ) =
∫ ∞

−∞
e−itλ2

(
∂ρ

sinh ρ

)n−1
2

cos λρ dλ,

and for n ≥ 2 even,

(18) Kn(t, ρ) =
∫ ∞

−∞
e−itλ2

∫ ∞

ρ

sinh s√
cosh s− cosh ρ

(
∂s

sinh s

)n
2

cos λs ds dλ.

In the case of odd dimensions, the kernel can be written

(19) Kn(t, ρ) =
(

∂ρ

sinh ρ

)n−1
2
∫ ∞

−∞
e−itλ2

cos λρ dλ =
c

|t| 12

(
∂ρ

sinh ρ

)n−1
2

ei ρ2

4t ,

so the representation (1) of the Theorem 1.1 is obtained.
In the case of even dimensions, the kernel can be expressed by induction ([15],

formula (8.5.23)) in terms of the kernel of the dimension 2

Kn(t, ρ) =
(

∂ρ

sinh ρ

)n−2
2

K2(t, ρ).

As K2 can be written, after applying the Fubini theorem in (18), in the form

K2(t, ρ) =
∫ ∞

ρ

1√
cosh s− cosh ρ

∫ ∞

−∞
e−itλ2

sinλs λ dλ ds =
c

|t| 32

∫ ∞

ρ

ei s2
4t s√

cosh s− cosh ρ
ds,

we get that

(20) Kn(t, ρ) =
c

|t| 32

(
∂ρ

sinh ρ

)n−2
2
∫ ∞

ρ

ei s2
4t s√

cosh s− cosh ρ
ds,

so we obtain also the representation (2) and the first point of Theorem 1.1 is proved.

4. The L1 − L∞ dispersion estimates

We shall use the following Proposition, which shall be proved in the Appendix
A.

Proposition 4.1. For all m ≥ 1 integer, the following identity holds

(21)
(

∂s

sinh s

)m

ei s2
4t =

m∑
k=1

ei s2
4t

tk
Fm

k (s),

where, modulo constants,

(22) Fm
m (s) =

( s

sinh s

)m

,

and, for 1 ≤ k < m, Fm
k (s) can be written

(23)

Fm
k (s) =

k∑
r=0

∑
8<: i1 + · · ·+ ir = m− k

ij ≥ 1

( s

sinh s

)k−r
(

∂s

sinh s

)i1 s

sinh s
...

(
∂s

sinh s

)ir s

sinh s
.
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Moreover, for α ∈ {0, 1} and 1 ≤ k ≤ m

(24)
∣∣∣∣∂α

s

(
sinh s

s
Fm

k (s)
)∣∣∣∣ ≤ c sα

( s

sinh s

)m−1

,

and the second derivative of sinh s
s Fm

k (s) is bounded for m ≥ 2.

4.1. Dispersive estimates for odd dimensions. From the expression (19), for
odd dimensions, the kernel is for ρ > 0

Kn(t, ρ) =
c

|t| 12

(
∂ρ

sinh ρ

)n−1
2

ei ρ2

4t ,

so by (21) it can be developed in powers of t as follows

(25) Kn(t, ρ) =

n−1
2∑

k=1

ei s2
4t

tk+ 1
2
F

n−1
2

k (ρ).

Combining this with (24) for α = 0 we obtain the dispersion estimates (3) and (4)
for all n ≥ 3 odd.

4.2. Local dispersion for even dimensions. Between two kernels of consecutive
order, there is a induction relation, namely

Kn(t, ρ) = c

∫ ∞

ρ

sinh s√
cosh s− cosh ρ

Kn+1(t, s) ds,

(see for example formula (5.7.4) in the book of Davies ([13])).
Therefore, by using the development (25) of the kernels of odd order, we can get

the one for kernels of even order for ρ > 0

(26) Kn(t, ρ) =

n
2∑

k=1

1
tk+ 1

2

∫ ∞

ρ

ei s2
4t s√

cosh s− cosh ρ

sinh s

s
F

n
2

k (s) ds.

Therefore the local dispersion (3) is obtained for n = 2 by (22) and the following
Proposition. For all even dimensions n ≥ 4, the estimates (34) and (35) of Corollary
4.4 give us

|Kn(t, ρ)| ≤
(

ρ

sinh ρ

)n−1
2

 1
t

n
2

+

n−2
2∑

k=1

1
tk+ 1

2

 ,

and the local dispersion (3) follows.

Proposition 4.2. The integral

I(t, ρ) =
∫ ∞

ρ

ei s2
4t s√

cosh s− cosh ρ
ds

can be estimated, for small times, by

(27) |I(t, ρ)| ≤ c
√

t

√
ρ

sinh ρ
.

Proof. In the following we shall use frequently the estimate

(28)
1√

cosh s− cosh ρ
≤ c

(s− ρ)
√

cosh ρ
≤ c

s− ρ

for s > ρ ≥ 0, and

(29)
1√

cosh s− cosh ρ
≤ c√

(s− ρ) sinh ρ
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for s > ρ > 0.

For small time, in order to get the decay (27), we have to get advantage of the
imaginary phase. Let t < 1

2 .
The case ρ ≥

√
t

2 .

By doing in the integral I(t, ρ) the change of variable s = τ t
ρ + ρ, we obtain

I(t, ρ) =
tei ρ2

4t

ρ

∫ ∞

0

e
iτ2 t

4ρ2 +i τ
2 (τ t

ρ + ρ)√
cosh(τ t

ρ + ρ)− cosh ρ
dτ =

= 2ei ρ2

4t

√
t

√
ρ

sinh ρ

∫ ∞

0

e
iτ2 t

4ρ2 +i τ
2 (τ t

2ρ2 + 1
2 )√

ρ
t sinh ρ

(
cosh(τ t

ρ + ρ)− cosh ρ
)dτ.

We split the integral into two pieces

(30) I(t, ρ) = 2ei ρ2

4t

√
t

√
ρ

sinh ρ

(∫ 1

0

+
∫ ∞

1

)
= 2ei ρ2

4t

√
t

√
ρ

sinh ρ
(J1 + J2).

We shall show that J1 and J2 are bounded independently of t and ρ.
By using (29),

|J1| ≤
1
2

∫ 1

0

τ t
ρ2 + 1√

ρ
t sinh ρτ t

ρ sinh ρ
=

1
2

∫ 1

0

τ t
ρ2 + 1
√

τ
.

Since we are in the case ρ ≥
√

t
2 , it follows that

t

ρ2
≤ 4,

and therefore

|J1| ≤
1
2

∫ 1

0

5√
τ

= 5,

The second term can be written

J2 =
∫ ∞

1

eiφ(τ)φ′(τ)α(τ)dτ,

where
φ(τ) = τ2 t

4ρ2
+

τ

2
,

and
α(τ) =

1√
ρ

t sinh ρ

(
cosh(τ t

ρ + ρ)− cosh ρ
) .

By integrating by parts in J2 we get

J2 =
eiφ(τ)

i
α(τ)|∞1 −

∫ ∞

1

eiφ(τ)

i
α′(τ)dτ,

so

(31) |J2| ≤ 2 sup
1≤τ

|α|+
∫ ∞

1

|α′(τ)|dτ.

Let us notice that by (29)

α(1) ≤ 1√
ρ

t sinh ρ
t
ρ sinh ρ

= 1,
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and that α is a decreasing function. Therefore,

|J2| ≤ 2 +
∫ ∞

1

|α′(τ)|dτ.

Since the derivative of α is negative,

|J2| ≤ 2 +
∣∣∣∣∫ ∞

1

α′(τ)dτ

∣∣∣∣ = 2 + |α(τ)|∞1 | ≤ 4.

Therefore we have obtained that J1 and J2 are bounded independently of t and
ρ. In view of (30) the decay (27) is obtained in the region ρ ≥

√
t

2 .
The case ρ <

√
t

2 .

Since t < 1
2 , then ρ < 1

2
√

2
, and by noticing that the quotient ρ

sinh ρ is bounded
near zero, it will be sufficient to prove that

(32)
∫ ∞

ρ

ei s2
4t s√

cosh s− cosh ρ
ds ≤ c

√
t.

Let us split this integral in three parts :∫ ∞

ρ

ei s2
4t s√

cosh s− cosh ρ
ds =

∫ 2ρ

ρ

+
∫ √

t

2ρ

+
∫ ∞

√
t

= I1 + I2 + I3.

If ρ = 0 then I1 is zero, otherwise by (29)

|I1| ≤
∫ 2ρ

ρ

s√
cosh s− cosh ρ

ds ≤ 2ρ

∫ 2ρ

ρ

1√
(s− ρ) sinh ρ

ds =

= 4ρ

√
ρ

√
sinh ρ

.

Since we are in the case ρ <
√

t
2 we get that

|I1| ≤ 2
√

t

√
ρ

sinh ρ
≤ c

√
t.

If s ≥ 2ρ, which is the case in I2, then by (28)
s√

cosh s− cosh ρ
≤ s

s− ρ
≤ 3,

and we obtain
|I2| ≤ 3(

√
t− 2ρ) ≤ 3

√
t.

By performing in I3 the change of variable s =
√

tτ ,

I3 =
√

t

∫ ∞

1

ei τ2
4 a(

√
tτ)dτ,

where
a(s) =

s√
cosh s− cosh ρ

for s ≥
√

t. By integrating by parts two times the integral I3, we get

|I3| ≤ c
√

t,

provided that the following lemma holds. (see Theorem I.8.1 of [1]).

Lemma 4.3. The function a(
√

tτ), its first and second derivative in τ , are all
bounded independently of t, for all τ ≥ 1.
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Proof. By using the same argument as in the estimate of I2, we have that a(
√

tτ)
is upper-bounded by 3 for τ ≥ 1.

The derivative of a is

a′(s) =
1√

cosh s− cosh ρ
− s sinh s

2(cosh s− cosh ρ)
3
2
.

Since we are in the region s ≥
√

t, ρ <
√

t
2 , the first term can be estimated by (28)

1√
cosh s− cosh ρ

≤ c

s− ρ
≤ c
√

t−
√

t
2

≤ c√
t
.

The second term in the derivative of a can be written as

−a(s)
2

sinh s

cosh s− cosh ρ
.

Since s ≥
√

t > ρ, the second fraction is positive, and as a was already proved to
be bounded, we get

|a′(s)| ≤ c√
t

+ c sup
s≥
√

t

sinh s

cosh s− cosh ρ
.

We have (
sinh s

cosh s− cosh ρ

)′
=

1− cosh s cosh ρ

(cosh s− cosh ρ)2
≤ 0,

so it follows that

sup
s≥
√

t

sinh s

cosh s− cosh ρ
=

sinh
√

t

cosh
√

t− cosh ρ
.

As t < 1
2 and ρ <

√
t

2 ,

(33) sup
s≥
√

t

sinh s

cosh s− cosh ρ
≤ c

√
t

(
√

t− ρ)2
≤ c

√
t

(
√

t−
√

t
2 )2

≤ c√
t
,

and we have obtained that for s ≥
√

t

|a′(s)| ≤ c√
t
.

It follows that
∂τa(

√
tτ) =

√
ta′(

√
tτ)

is bounded independently of t for τ ≥ 1.
Finally, the second derivative of a is

a′′(s) = − sinh s

2(cosh s− cosh ρ)
3
2
− s cosh s

(cosh s− cosh ρ)
3
2

+
3s sinh2 s

4(cosh s− cosh ρ)
5
2
.

By using (33) and then (28) we can treat the first term

sinh s

2(cosh s− cosh ρ)
3
2
≤ c√

t

1√
cosh s− cosh ρ

≤ c√
t

c

s− ρ
≤ c

t
.

The second term in the derivative can be written
s cosh s

(cosh s− cosh ρ)
3
2

= a(s)
cosh s

cosh s− cosh ρ
= a(s)

(
1 +

cosh ρ

cosh s− cosh ρ

)
.

As a was proved to be bounded and as the fraction in the brackets is decreasing,
for s ≥

√
t

s cosh s

(cosh s− cosh ρ)
3
2
≤ c

(
1 +

cosh ρ

(
√

t− ρ)2

)
.
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We are in the region ρ <
√

t
2 < 1

2
√

2
, so the second term in the derivative can be

estimated
s cosh s

(cosh s− cosh ρ)
3
2
≤ c

(
1 +

c

t

)
≤ c

t
.

Finally, the third term in the derivative can be written as

3a(s)
4

(
sinh s

cosh s− cosh ρ

)2

,

and can be upper-bounded using (33) by c
t . In conclusion, for s ≥

√
t

|a′′(s)| ≤ c

t
.

So we get that
∂2

τa(
√

tτ) = ta′′(
√

tτ)

is bounded independently of t for τ ≥ 1. �

In conclusion, we have obtained that the three integrals I1, I2 and I3 are upper-
bounded by c

√
t, and (32) follows. Therefore the estimate (27) is proved and

Proposition 4.2 follows.
�

Corollary 4.4. For small times and n ≥ 4 the following estimates hold

(34)

∣∣∣∣∣
∫ ∞

ρ

ei s2
4t s√

cosh s− cosh ρ

sinh s

s
F

n
2

n
2

(s) ds

∣∣∣∣∣ ≤ c
√

t

(
ρ

sinh ρ

)n−1
2

,

and for 1 ≤ k < n
2

(35)

∣∣∣∣∣
∫ ∞

ρ

ei s2
4t s√

cosh s− cosh ρ

sinh s

s
F

n
2

k (s) ds

∣∣∣∣∣ ≤ c

(
ρ

sinh ρ

)n−1
2

.

Proof. We redo the proof of Proposition 4.2, which is the particular case n = 2 of
its Corollary. The only delicate point will be the integral J2 which will generate
the two different estimates (34) and (35).

By using the upper-bound (24) for α = 0 and 1 ≤ k ≤ n
2 , and the fact that the

integration is done for s ≥ ρ,∣∣∣∣ sinh s

s
F

n
2

k (s)
∣∣∣∣ ≤ ( s

sinh s

)n−2
2 ≤

(
ρ

sinh ρ

)n−2
2

.

Therefore everytime the imaginary phase is ignored, we find ourselves in the same
situation as in Proposition 4.2, and we obtain the desired estimates.

The imaginary phase has been taken in account only in the terms J2 and I3.
For estimating I3 we have to prove Lemma 4.3 with

ã(s) = a(s)
sinh s

s
F

n
2

k (s).

We had that a is bounded by a constant, its first derivative bounded by ct−
1
2 , and

its second derivative bounded by ct−1. We want the same for ã. As t is small, it
will be sufficient to prove that sinh s

s F
n
2

k (s) is bounded, and also are its first and
second derivative. Since we are in the case n ≥ 4, Proposition 4.1 tells us already
that its second derivative is bounded. Moreover, for 1 ≤ k ≤ n

2 , by (24) for α = 0∣∣∣∣ sinh s

s
F

n
2

k (s)
∣∣∣∣ ≤ ( s

sinh s

)n−2
2

,
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and by (24) for α = 1∣∣∣∣∂s
sinh s

s
F

n
2

k (s)
∣∣∣∣ ≤ s

( s

sinh s

)n−2
2

=
s2

sinh s

( s

sinh s

)n−4
2

.

Again, since we are in the case n ≥ 4, these two quantities are bounded, so Lemma
4.3 still holds in the context of the Corollary.

In conclusion, up to the term J2, our integrals have the decay of Proposition 4.2
√

t

√
ρ

sinh ρ

improved by the extra term (
ρ

sinh ρ

)n−2
2

.

Let us now first treat J2 for obtaining (34). By (22),

sinh s

s
F

n
2

n
2

(s) =
( s

sinh s

)n−2
2

.

Therefore the same arguments as in Proposition 4.2 can be performed in J2, by
replacing the function α(τ) by

α(τ)

 τ t
ρ + ρ

sinh
(
τ t

ρ + ρ
)


n−2
2

,

which is still a decreasing function, bounded at 1 by
(

ρ
sinh ρ

)n−2
2

. So J2 will be also

upper-bounded by
(

ρ
sinh ρ

)n−2
2

and (34) is proved.
In view to obtain (35), we restart the argument performed on J2 in Proposition

4.2, with α(τ) replaced by

α(τ)
sinh s

s
F

n
2

k (s),

where
s = τ

t

ρ
+ ρ.

When getting to (31) we need to estimate

I4 =
∫ ∞

1

∣∣∣∣∂τ

(
α(τ)

sinh s

s
F

n
2

k (s)
)∣∣∣∣ dτ.

Now the function sinh s
s F

n
2

k (s) is not necessarily decreasing, so we are not able to get
rid of the modulus in the integral, as easily as before. We will be able to estimate

(36) I4 ≤
1√
t

(
ρ

sinh ρ

)n−2
2

,

that is with a loss of
√

t.
In the derivation of the product,

I4 =
∫ ∞

1

∣∣∣∣α′(τ)
sinh s

s
F

n
2

k (s) + α(τ)
t

ρ
∂s

(
sinh s

s
F

n
2

k (s)
)∣∣∣∣ dτ,

we can use the estimate (24) for α ∈ {0, 1} and then

I4 ≤
(

ρ

sinh ρ

)n−2
2
∫ ∞

1

|α′(τ)| dτ +
(

ρ

sinh ρ

)n−2
2
∫ ∞

1

∣∣∣∣α(τ)
t

ρ

(
τ

t

ρ
+ ρ

)∣∣∣∣ dτ.
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The first integral is exactly the one in Proposition 4.2, so it has been proved that
it is bounded independently of t and ρ. For treating the second integral, we shall
use that for all odd N ,

α(τ) =
1√

cosh
(
τ t

ρ + ρ
)
− cosh ρ

≤ 1√
sinh ρ

(
τ

t

ρ

)−N
2

.

Using this estimate for N = 5 and for N = 3,∫ ∞

1

∣∣∣∣α(τ)
t

ρ

(
τ

t

ρ
+ ρ

)∣∣∣∣ dτ ≤ 1√
sinh ρ

∫ ∞

1

((
τ

t

ρ

)− 5
2

τ

(
t

ρ

)2

+
(

τ
t

ρ

)− 3
2 t

ρ
ρ

)
dτ.

The integrals in τ are bounded, so∫ ∞

1

∣∣∣∣α(τ)
t

ρ

(
τ

t

ρ
+ ρ

)∣∣∣∣ dτ ≤ 1√
sinh ρ

(
t

ρ

)− 1
2

(1 + ρ) ≤ c√
t
,

so estimate (36) follows and the (35) is proved. �

4.3. Large time dispersion for even dimensions. By using the development
(26) of the dispersion kernel and the estimates (24) for α = 0 we obtain

(37) |Kn(t, ρ)| ≤
n
2∑

k=1

1
tk+ 1

2

(
ρ

sinh ρ

)n−2
2
∣∣∣∣∫ ∞

ρ

s√
cosh s− cosh ρ

ds

∣∣∣∣ .
Let us notice that we have not taken into account the oscillatory phase in the
integral. We shall split the remaining integral into two pieces∣∣∣∣∫ ∞

ρ

s√
cosh s− cosh ρ

ds

∣∣∣∣ =
∣∣∣∣∣
∫ ∞

0

s + ρ√
cosh(s + ρ)− cosh ρ

ds

∣∣∣∣∣ =
∫ 1

0

+
∫ ∞

1

.

For ρ > 0, the first part is upper-bounded by∫ 1

0

s + ρ√
s sinh ρ

ds ≤ c
1 + ρ√
sinh ρ

,

and the second, for a N odd integer sufficiently large, by∫ ∞

1

s + ρ√
sN sinh ρ

ds ≤ c
1 + ρ√
sinh ρ

.

Now, by (37) we get for ρ > 0

|Kn(t, ρ)| ≤
n
2∑

k=1

1
tk+ 1

2

(
ρ

sinh ρ

)n−2
2 1 + ρ√

sinh ρ
.

Therefore we have obtained the dispersion estimate (5) for large times, and the last
part of Theorem 1.2 i) follows.

5. The weighted dispersion estimates

Let us prove now the weighted dispersion (6). From (3) we have that for small
times and n ≥ 3

(38) |u(t,Ω)| ≤ c

|t|n
2

∫
Hn

|u0(Ω′)|
(

ρ

sinh ρ

)n−1
2

dΩ′ ≤ c

|t|n
2

∫
Hn

|u0(Ω′)|
ρ

sinh ρ
dΩ′.

The initial data is considered here radial, that is

u0(Ω′) = u0(cosh r′, sinh r′ω′) = u0(r′).
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Also in hyperbolic coordinates we can write, using (8) and (9)

ρ = d(Ω,Ω′) = cosh−1[Ω,Ω′] = cosh−1(cosh r cosh r′ − sinh r sinh r′ ω.ω′).

Therefore, by passing in hyperbolic coordinates in (38),

(39) |u(t,Ω)| = |u(t, r)| ≤ c

|t|n
2

∫ ∞

0

|u0(r′)|K(t, r, r′) sinhn−1 r′ dr′,

where

K(t, r, r′) =
∫

Sn−1

cosh−1(cosh r cosh r′ − sinh r sinh r′ ω.ω′)
sinh cosh−1(cosh r cosh r′ − sinh r sinh r′ ω.ω′)

dω′.

By doing a rotation as in the proof of the Lemma 3.2,

K(t, r, r′) = c

∫ π

0

cosh−1(cosh r cosh r′ − sinh r sinh r′ cos α)
sinh cosh−1(cosh r cosh r′ − sinh r sinh r′ cos α)

sinn−2 α dα.

Now let us do the change of variable cos α = x and get

K(t, r, r′) = c

∫ 1

−1

cosh−1(cosh r cosh r′ − sinh r sinh r′ x)
sinh cosh−1(cosh r cosh r′ − sinh r sinh r′ x)

(1− x2)
n−3

2 dx.

Since here n is larger or equal to 3,

K(t, r, r′) ≤ c

∫ 1

−1

cosh−1(cosh r cosh r′ − sinh r sinh r′ x)
sinh cosh−1(cosh r cosh r′ − sinh r sinh r′ x)

dx.

Finally, let us do the change of variable

cosh r cosh r′ − sinh r sinh r′ x = cosh y,

and then

K(t, r, r′) ≤ c

sinh r sinh r′

∫ r+r′

|r−r′|
y dy = c

r r′

sinh r sinh r′
.

Using now (39), we obtain that

|u(t,Ω)| = |u(t, r)| ≤ c

|t|n
2

∫ ∞

0

|u0(r′)|
r r′

sinh r sinh r′
sinhn−1 r′ dr′.

Remembering that r = d(Ω, 0) we can go back to the Ω-coordinates and

|u(t,Ω)| sinh d(Ω, 0)
d(Ω, 0)

≤ c

|t|n
2

∫
Hn

|u0(Ω′)|
d(Ω′, 0)

sinh d(Ω′, 0)
dΩ′,

so the weighted local dispersion estimate (6) is proved.

For proving the weighted Strichartz estimates we will apply the general lemma
of Keel and Tao (Theorem 10.1 of [21]), in the case

H = B0 = L2
rad , B1 = L1

rad(w
−1) , σ =

n

2
, 2 ≤ 4

nθ
, 0 ≤ θ ≤ 1 ,

(
4
nθ

, θ, σ

)
6= (2, 1, 1).

We obtain that for radial u

‖u‖
L

4
nθ ([0,T ], (L2,L1(w−1))∗θ,2)

≤ c‖u0‖L2 ,

where (L2, L1(w−1))∗θ,2 is the dual of the real interpolation space between L2 and
L1(w−1). The conditions on θ can be rewritten, for n ≥ 2,

0 ≤ θ ≤ 2
n

, (θ, n) 6= (1, 2).

For any r ≤ 2 we have

(L2, L1(w−1))θ,r ⊆ (L2, L1(w−1))θ,2,
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so that

(40) ‖u‖
L

4
nθ ([0,T ], (L2,L1(w−1))∗θ,r)

≤ c‖u0‖L2 .

By the Theorem 5.5.1. of [5], for 0 < θ < 1,

(L2, L1(w−1))θ,r = Lr(w̃),

with
1
r

=
1− θ

2
+

θ

1
, w̃ = w−rθ.

So the value of r has to be 2
1+θ , which implies indeed that r ≤ 2, and we have

(L2, L1(w))θ,r = L
2

1+θ (w−
2θ

1+θ ).

By using the classical formula

Lp(w)∗ = Lp′(w−
p′
p )

(see for example (7.4.15) of [15] with s = 0 and the definition of Lp(w) corresponding
to Lp(w

1
p ) in our notations) we get that

(L2, L1(w))∗θ,r = L
2

1−θ (w
2θ

1−θ ).

Now the relation (40) gives us the weighted Strichartz estimates

‖u‖
L

4
nθ

„
[0,T ], L

2
1−θ (w

2θ
1−θ )

« ≤ c‖u0‖L2 ,

for all θ in ]0, 2
n ] satisfying (θ, n) 6= (1, 2). Let us notice that we are able to include

the value θ = 0, since in this case the estimate corresponds to the mass conservation.
By denoting

p =
4
nθ

, q =
2

1− θ
,

we have that
2θ

1− θ
= −2 +

2
1− θ

= q − 2.

Also, the couple (p, q) satisfies 2
p + n

q = n
2 , (p, q, n) 6= (2,∞, 2) and 2 ≤ p, q, therefore

the weighted Strichartz estimates (7) are found and the Theorem 1.2 is completely
proved.

5.1. Proof of the Remark 1.4.

Let us choose a point Ω outside the support A of the initial data, and a point Ω′

in A. Let us denote M a point of the intersection of the boundary of A with the
part of geodesic relying Ω and Ω′. Then

d(Ω,Ω′) = d(Ω,M) + d(M,Ω′),

and
d(Ω,Ω′) ≥ d(Ω,c A) + d(Ω′, A),

As the function r
sinh r is a decreasing function,

d(Ω,Ω′)
sinh d(Ω,Ω′)

≤ d(Ω,c A) + d(Ω′, A)
sinh (d(Ω,c A) + d(Ω′, A))

.

By using that
a + b

sinh(a + b)
≤ c

a

sinh a

b

sinh b
,

we finally obtain
d(Ω,Ω′)

sinh d(Ω,Ω′)
≤ c

d(Ω,c A)
sinh d(Ω,c A)

d(Ω′, A)
sinh d(Ω′, A)

.



20 V. BANICA

By using now the inequality (3) we obtain the estimate of the Remark 1.4.

5.2. Proof of the Remark 1.5.

We shall follow the same approach as in §3.2 for proving the weighted dispersion
estimate (6).
In dimension 3, by the explicit form (1), the relation (38) becomes

u(t, Ω) =
c

|t| 32

∫
Hn

u0(Ω′)
ρ

sinh ρ
ei ρ2

4t dΩ′,

and the kernel K given by

u(t,Ω) =
c

|t| 32

∫ ∞

0

|u0(r′)|K(t, r, r′) sinhn−1 r′ dr′,

is exactly

K(t, r, r′) =
c

sinh r sinh r′

∫ r+r′

|r−r′|
ei y2

4t y dy = t
c

sinh r sinh r′
ei r2+r′2

4t cos
rr′

2t
.

Therefore

|u(t,Ω)| sinh d(Ω, 0) ≤ c

|t| 12

∫
Hn

|u0(Ω′)|
dΩ′

sinh d(Ω′, 0)
,

so the dispersion estimate of the Remark 1.5 is proved.

6. Global existence and blow-up solutions

6.1. Global existence.

The Sobolev embeddings have their analogue on hyperbolic space ([18])

‖v‖2∗ ≤ K(n, 2)‖∇v‖2 − ω
− 2

n
n ‖v‖2,

where K(n, 2) is the best constant for the Sobolev embeddings on Rn, and ωn is
the volume of the sphere Sn. By interpolation between the L2 and the L2∗ norms,
we get the Gagliardo-Nirenberg inequality for functions on Hn

‖v‖p+1
p+1 ≤ Cp+1‖v‖

2+(p−1) 2−n
2

2 ‖∇v‖(p−1) n
2

2 .

This inequality implies that the energy of the solution u of the equation (S) is
bounded from below by

‖∇u‖2
2

(
1
2
− Cp+1

p + 1
‖u‖2+(p−1) 2−n

2
2 ‖∇u‖(p−1) n

2−2
2

)
.

As a consequence, if p < 1 + 4
n , since the mass is conserved, the gradient of u

is controlled by the energy. Therefore the solution does not blow up and global
existence occurs.
In the case p = 1 + 4

n , if the mass of the initial condition is small enough so that

‖u‖
4
n
2 <

2 + 4
n

2C2+ 4
n

,

then the energy controls the gradient and again, the global existence is proved for
the equation (S).

Remark 6.1. The best constant in the Gagliardo-Niremberg inequality can be
proved to be larger or equal to the one on Rn, but it is not obvious that it is exactly
equal to it.
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6.2. Blow-up solutions.

The power p = 1 + 4
n shall be proved to be the critical power, in the sense that

the nonlinearity is strong enough to generate solutions blowing up in a finite time.
In the following we shall show the existence of blow-up solutions, by analyzing an
appropriate virial function on hyperbolic space.

Let u be a radial solution of (S) and let h be a radial C∞0 (Hn) function. Then,
by using the fact that u satisfies (S), we obtain the first derivative in time of a
virial-type function

∂t

∫
Hn

|u(t)|2h dΩ = 2
∫

Hn

< (u(t)ut(t))h dΩ = 2
∫

Hn

= (u(t)∆u(t))h dΩ.

By integrating by parts

(41) ∂t

∫
Hn

|u(t)|2h dΩ = −2
∫

Hn

= (u(t)∇u(t))∇h dΩ.

By using again the equation (S) we obtain

∂t
2

∫
Hn

|u|2h = −2
∫

Hn

<
(
(∆u + |u|p−1u)∇u

)
∇h + 2

∫
Hn

<
(
u∇(∆u + |u|2u)

)
∇h

=
∫

Hn

2|∇u|2∆h−
(

2− 4
p + 1

)
|u|p+1∆h− 4< (∆u∇u)∇h− |u|2∆2h.

Since u and h are radial functions, it follows that

∂t
2

∫
Hn

|u|2h =
∫

Hn

4|∇u|2∂2
rh− 2

p− 1
p + 1

|u|p+1∆h− |u|2∆2h.

By performing a density argument in the spirit of ([10], Lemmas 6.4.3-6), the pre-
vious identities are valid for

h(Ω) = h(cosh r, sinh rω) = r2.

By direct computation we obtain

∂2
rr2 = 2,

and
∆r2 = 2 + 2(n− 1)

cosh r

sinh r
r.

Therefore we can display the energy in the second derivative of the virial
(42)

∂t
2

∫
Hn

|u|2r2 = 16E(u)−
∫

Hn

|u|2∆2r2−2
p− 1
p + 1

∫
Hn

|u|p+12(n−1)
(

cosh r

sinh r
r − 1

)
−

−
(
− 16

p + 1
+ 2

p− 1
p + 1

2n

)∫
Hn

|u|p+1.

We have

(43) ∆2r2 = 4(n−1)
1

sinh3 r
(r cosh r− sinh r)+2(n−1)2

cosh r

sinh3 r
(cosh r sinh r−r),

nonnegative for all r ≥ 0, since{
r cosh r − sinh r ≥ 0
cosh r sinh r − r ≥ 0 .

Therefore, since p is considered larger than 1, the second and the third term in the
right hand side of (42) are negative. The last one is also negative, provided that

− 16
p + 1

+ 4n
p− 1
p + 1

≥ 0,
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that is exactly

p ≥ 1 +
4
n

.

Let us notice, by (43), that ∆2r2 is bounded between two positive constants de-
pending only on the dimension n,

0 < kn < ∆2r2 < Kn.

In conclusion, if u is a solution of (S) of initial data satisfying

16E(u0) < kn‖u0‖2
2,

there exists a constant C such that for any t

(44) ∂t
2

∫
Hn

|u(t)|2r2 < C < 0.

It follows that there is a finite time T for which

lim
t→T

∫
Hn

|u(t)|2r2 = 0.

Then, using the uncertainty principle(∫
Hn

|u|2
)2

≤ c

(∫
Hn

|u|2r2

)(∫
Hn

|∇u|2
)

,

tells us that
lim
t→T

∫
Hn

|∇u(t)|2 = +∞,

so the Theorem 1.8 is proved.
Finally, let us mention that in the Euclidean case, one has

∂t
2

∫
Rn

|u|2|x|2 = 16E(u),

so the argument used before does not work for any solutions of null energy.

7. Appendix A

In this Appendix the following Proposition shall be proved.

Proposition 4.1 For all m ≥ 1 integer, the following identity holds

(21)
(

∂s

sinh s

)m

ei s2
4t =

m∑
k=1

ei s2
4t

tk
Fm

k (s),

where, modulo constants,

(22) Fm
m (s) =

( s

sinh s

)m

,

and, for 1 ≤ k < m, Fm
k (s) can be written

(23) Fm
k (s) =

k∑
r=0

∑
8<: i1 + · · ·+ ir = m− k

ij ≥ 1

( s

sinh s

)k−r
(

∂s

sinh s

)i1 s

sinh s
...

(
∂s

sinh s

)ir s

sinh s
.

Moreover, for α ∈ {0, 1} and 1 ≤ k ≤ m

(24)
∣∣∣∣∂α

s

(
sinh s

s
Fm

k (s)
)∣∣∣∣ ≤ c sα

( s

sinh s

)m−1

,

and the second derivative of sinh s
s Fm

k (s) is bounded for m ≥ 2.
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Proof. Each time we differentiate the exponential ei s2
4t we obtain a term with one

negative power of t times s
sinh s . Therefore the terms Fm

k (s) are the ones corre-

sponding to the derivation of ei s2
4t k times, and they contain k times the function

s
sinh s or its derivatives.

We have denoted in (23) by k − r the number of times s
sinh s appears, where 0 ≤

r ≤ k ; the other r terms are derivatives of s
sinh s . Since only k derivatives have

fallen on the exponential term, there are m − k left derivatives which act on the
remainder term. That is the reason for which in (23) we have the sum

i1 + ... + ir = m− k.

For showing the estimates of Fm
k (s) we shall need the following Lemma.

Lemma 7.1. The following property

(45) ∃ cl > 0 such that

∣∣∣∣∣
(

∂ρ

sinh ρ

)l

eiρ2

∣∣∣∣∣ ≤ cl

(
ρ

sinh ρ

)l

,∀ρ ≥ 0,

is valid for all positive integer l. From it follows also that

(46) P (l) : ∃ cl > 0 such that

∣∣∣∣∣
(

∂ρ

sinh ρ

)l
ρ

sinh ρ

∣∣∣∣∣ ≤ cl

(
ρ

sinh ρ

)l+1

,∀ρ ≥ 0.

Proof. We shall split the proof into two cases, one when ρ is small, and one when
it is large.

The case ρ < 1.
The function

Gl(ρ) =
(

∂ρ

sinh ρ

)l

eiρ2

is a C∞ even function. It is obvious for l = 0, and for other values it can be proved
by induction as follows. Supposing that the fact is true for l, we have the existence
of a C∞ odd function Hl such that

G′
l(ρ) = Hl(ρ).

Therefore

Gl+1(ρ) =
∂ρ

sinh ρ
Gl(ρ) =

G′
l(ρ)

sinh ρ
=

Hl(ρ)
sinh ρ

,

and the induction argument is done.
As ρ is small, and Gl is a C∞ even fuction, we obtain the existence of a constant

c such that
|Gl(ρ)| ≤ c.

Again because ρ is small, we have the quotient ρ
sinh ρ bounded, and we can find for

all integer l a constant cl such that

|Gl(ρ)| ≤ cl

(
ρ

sinh ρ

)l

.

So in the case ρ < 1 the property (45) is satisfied.

The case ρ ≥ 1.
Let us perform the change of variable r = cosh ρ. Then

∂ρ

sinh ρ
= ∂r,
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and ρ can be written
ρ = log(r +

√
r2 − 1).

With these notations, the property (45) becomes∣∣∣∂l
re

i(log(r+
√

r2−1))2∣∣∣ ≤ cl

(
log(r +

√
r2 − 1)√

r2 − 1

)l

,∀ρ ≥ 1.

Let us denote
a(r) = r +

√
r2 − 1,

and
b(r) = log a(r).

Since r is larger than cosh 1, then for proving the property (45) it suffices to
prove that

(47)
∣∣∣∂l

re
ib2(r)

∣∣∣ ≤ cl
bl(r)
rl

,∀ r ≥ 3.

In the following we shall use the following general formula

(48) ∂l
rf(g(r)) =

l∑
q=1

cqf
(q)(g(r))

∑
p1+...+pq=l

cp1,..,pq
∂p1

r g(r)...∂pq
r g(r).

This is a weaker form of the Faa di Bruno formula, in which the constants are
described.

Let us notice first that

(49) |∂p
r a(r)| ≤ cr1−p,

and that, since r is large enough,

(50) | log(q)(a(r))| ≤ cr−q,

for all q ≥ 1. Then, by using (48), for l ≥ 1,

∂l
r log(a(r)) =

l∑
q=1

cq log(q)(a(r))
∑

p1+...+pq=l

cp1,..,pq
∂p1

r a(r)...∂pq
r a(r).

Now the estimates (49) and (50) tell us that

|∂l
r log(a(r))| ≤ c

l∑
q=1

r−q
∑

p1+...+pq=l

r1−p1 ...r1−pq = cr−l.

Therefore we have obtained that for l ≥ 1,

(51) |∂l
rb(r)| ≤ cr−l.

Let us compute now the derivatives of b2

∂l
rb

2(r) =
l∑

q=0

∂q
rb(r)∂l−q

r b(r) = 2b(r)∂l
rb(r) +

l−1∑
q=1

∂q
rb(r)∂l−q

r b(r).

By using (51) we get

|∂l
rb

2(r)| ≤ c|b(r)|r−l + c̃
l−1∑
q=1

r−qr−(l−q) ≤ (c|b(r)|+ c)r−l.

As the variable r is large, it follows that

b(r) = log(r +
√

r2 − 1) ≥ c,

and therefore

(52) |∂l
rb

2(r)| ≤ c|b(r)|r−l.
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Finally, by using again the general formula (48),∣∣∣∂l
re

ib2(r)
∣∣∣ ≤ c

l∑
q=1

∑
p1+...+pq=l

∂p1
r b2(r)...∂pq

r b2(r),

so the estimates (52) allows us to write∣∣∣∂l
re

ib2(r)
∣∣∣ ≤ c

l∑
q=1

bq(r)r−l.

We have already noticed that b(r) is large, therefore∣∣∣∂l
re

ib2(r)
∣∣∣ ≤ cbl(r)r−l,

and we finally proved (47), which implies the wanted property (45).

Property (46) can be proved by induction. P (0) is obvious. Suppose that the
properties P (1),...,P (l− 1) are true. Then the development (21) for m = l + 1 will
contain, by (22) and (23) only one term of the type(

∂ρ

sinh ρ

)l
ρ

sinh ρ
,

all others being of order less than l. More precisely, we have, modulo constants,(
∂s

sinh s

)l+1

ei s2
4t =

l+1∑
k=1

ei s2
4t

tk
F l+1

k (s) =

=
ei s2

4t

t

(
∂ρ

sinh ρ

)l
ρ

sinh ρ
+

ei s2
4t

tl+1

( s

sinh s

)l+1

+

+
l∑

k=2

ei s2
4t

tk

k∑
r=0

∑
8<: i1 + · · ·+ ir = l + 1− k

ij ≥ 1

( s

sinh s

)k−r
(

∂s

sinh s

)i1 s

sinh s
...

(
∂s

sinh s

)ir s

sinh s
.

In the last term all index ij are less than l, and the properties P (1),...,P (l− 1) tell
us that the term is upper-bounded by( s

sinh s

)l+1

.

Therefore, by using (45) we obtain that also the first term in the right-hand-side is
bounded by the same quantity∣∣∣∣∣

(
∂ρ

sinh ρ

)l+1
ρ

sinh ρ

∣∣∣∣∣ ≤ ck

(
ρ

sinh ρ

)l+1

,

so the property P (l) is proven and the induction argument is complete.
�

Let us return now to the estimates of Proposition 4.1.

For k = m, estimate (24) when α = 0 is obvious using (22). For 0 ≤ k < m, by
(23) and we get that∣∣∣∣ sinh s

s
Fm

k (s)
∣∣∣∣ ≤ k∑

r=0

∑
8<: i1 + · · ·+ ir = m− k

ij ≥ 1

( s

sinh s

)k−r−1 ( s

sinh s

)i1+1

...
( s

sinh s

)ir+1

,



26 V. BANICA

so estimate (24) when α = 0 follows by using (46).

We start now to look at the derivatives. One has

(53) ∂s

(
sinh s

s
Fm

k (s)
)

=
s cosh s− sinh s

s2
Fm

k (s) +
sinh2 s

s

∂s

sinh s
Fm

k (s)

The forms (22) and (23) of Fm
k (s), together with estimate (46), imply∣∣∣∣∂s

(
sinh s

s
Fm

k (s)
)∣∣∣∣ ≤ s cosh s− sinh s

s2

( s

sinh s

)m

+
sinh2 s

s

( s

sinh s

)m+1

.

We deduce that∣∣∣∣∂s

(
sinh s

s
Fm

k (s)
)∣∣∣∣ ≤ s

( s

sinh s

)m−1
(

s cosh s− sinh s

s2 sinh s
+ 1
)

,

and estimate (24) for α = 1 follows.

Knowing (53) one can get the expression of the second derivative

∂2
s

(
sinh s

s
Fm

k (s)
)

=
s2 sinh s− 2(s cosh s− sinh s)

s3
Fm

k (s)+

+
3s cosh s sinh s− 2 sinh2 s

s2

∂s

sinh s
Fm

k (s) +
sinh3 s

s

(
∂s

sinh s

)2

Fm
k (s).

By using again the forms (22) and (23) of Fm
k (s) and the estimate (46)∣∣∣∣∂2

s

(
sinh s

s
Fm

k (s)
)∣∣∣∣ ≤ ( s

sinh s

)m−2
(

s2 sinh s− 2(s cosh s− sinh s)
s sinh2 s

+

+s
3s cosh s− 2 sinh s

sinh2 s
+

s3

sinh s

)
.

As the term in the brackets of the right-hand-side is bounded, for m ≥ 2 we
obtain that the second derivative of sinh s

s Fm
k (s) is bounded, and Proposition 4.1 is

completely proved. �
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Ann. I. H. P. Analyse non-linéaire 2 (1985), no. 4, 309-327.

[17] R. T. Glassey, On the blowing up of solutions to the Cauchy problem for nonlinear
Schrödinger equations, J. Math. Phys. 18 (1977), 1794-1797.

[18] E. Hebey, Nonlinear analysis on manifolds: Sobolev spaces and inequalities, NY Courant

Institute of Mathematical Sciences, New York 1999.
[19] S. Helgason, Geometric analysis on symmetric spaces, Publication Providence RI Ameri-

can mathematical society (1994).

[20] O. Kavian, A remark on the blowing-up of solutions to the Cauchy problem for nonlinear
Schrödinger equations, Trans. Amer. Math. Soc. 299 (1987), no. 1, 193-203.

[21] M. Keel, T. Tao, Endpoint Strichartz estimates, Amer. J. Math. 120 (1998), no. 5, 955-980.
[22] F. Merle, Determination of blow-up solutions with minimal mass for nonlinear Schrödinger

equation with critical power, Duke Math. J. 69 (1993), 427-454.

[23] V. Pierfelice, Weighted Strichartz estimates for the radial perturbed Schrödinger equation
on the hyperbolic space, Manuscripta Mathematica 120 (4), 377-389.

[24] D. Tataru, Strichartz estimates in the hyperbolic space and global existence for the semi-

linear wave equation, Trans. Amer. Math. Soc. 353 (2001), no. 2, 795-807.
[25] A. A. Terras, Harmonic analysis on symmetric spaces and applications 1, New York NY

Berlin Heidelberg Springer 1985.

[26] P. Tomas, A restriction theorem for the Fourier transform, Bull. Amer. Math. Soc. 81
(1975), 177-178.

[27] K. Yajima, Existence of solutions for Schrödinger evolution equations, Comm. Math.

Phys. 110 (1987), no. 3, 415-426.
[28] V. E. Zakharov, Collapse of Lagmuir waves, Sov. Phys. JETP 35 (1972), 908-914.

V. Banica, University of Evry, Valeria.Banica@univ-evry.fr


