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Abstract. We prove asymptotic completeness in the energy space for the
nonlinear Schrödinger equation posed on hyperbolic space Hn in the radial

case, for n > 4, and any energy-subcritical, defocusing, power nonlinearity. The

proof is based on simple Morawetz estimates and weighted Strichartz estimates.
We investigate the same question on spaces which sort of interpolate between

Euclidean space and hyperbolic space, showing that the family of short range

nonlinearities becomes larger and larger as the space approaches the hyperbolic
space. Finally, we describe the large time behavior of radial solutions to the

free dynamics.

1. Introduction. Consider the defocusing nonlinear Schrödinger equation on Eu-
clidean space

i∂tu+ ∆u = |u|2σu, x ∈ Rn, n > 3 ; u|t=0 = u0 ∈ H1(Rn), (1.1)

where ∆ stands for the usual Laplacian. For 0 < σ 6 2/(n − 2), the solution to
(1.1) is global in time, in the class of finite energy solutions [17, 13, 23, 26]. If in
addition σ > 2/n, then there is scattering in H1 [18, 13, 23, 26]:

∃u± ∈ H1(Rn),
∥∥u(t)− eit∆u±

∥∥
H1 −→

t→±∞
0.

On the other hand, if σ is too small, then long range effects are present, and the
above result holds only in the trivial case [7, 24]: if σ 6 1/n and u+ ∈ L2(Rn),
u ∈ C(R;L2(Rn)) are such that∥∥u(t)− eit∆u+

∥∥
L2 −→

t→+∞
0,

then necessarily u+ = u = 0 (even if the functions are supposed to be radial).
In other words, linear and nonlinear dynamics are not comparable for large time
if σ 6 1/n. In this paper, we show that this phenomenon disappears for radial
solutions, when the space variable belongs to the hyperbolic space instead of the
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R.C., by the ANR project RAS, and T.D., by the ANR project ONDNONLIN.

1
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Euclidean space. Such a phenomenon was established in [5] in the three-dimensional
case, with partial results in other dimensions. We prove asymptotic completeness
in the case of higher dimensions. Moreover, we consider rotationally symmetric
manifolds, which may be viewed as interpolations between Euclidean and hyperbolic
spaces, as introduced in [6]. We show that asymptotic completeness holds for radial
solutions and σ0(n) < σ, for some explicit value σ0(n), going to zero as the space
approaches the hyperbolic space. The proof relies on simple Morawetz estimates
(as opposed to interaction Morawetz estimates, as introduced in [12]), and weighted
Strichartz estimates [22, 6]. The energy-critical case is not considered: we always
assume σ < 2/(n− 2). So far, scattering in the energy-critical case is known in the
Euclidean case ([13, 23, 26]), but is open even for radial solutions on the hyperbolic
space.

We begin with the nonlinear Schrödinger equation on hyperbolic space

i∂tu+ ∆Hnu = |u|2σu, x ∈ Hn ; u|t=0 = u0 ∈ H1(Hn), (1.2)

where x = (cosh r, ω sinh r) ∈ Hn ⊂ Rn+1, r > 0, ω ∈ Sn−1 and

∆Hn = ∂2
r + (n− 1)

cosh r
sinh r

∂r +
1

sinh2 r
∆Sn−1 .

In [5] it has been proved that for small radial initial data, there is asymptotic
completeness in L2 for all 0 < σ < 2/n and n > 2. At the H1 level, wave operators
were proved to exist for all 0 < σ < 2/(n− 2) and n > 2, without restriction on the
size of the radial data. The main ingredient were radial Strichartz estimates similar
to those used on Rd, with arbitrary d > n; when working on Hn, we can pretend
that we are on Rd, where d > n is arbitrary. Typically, the assumption σ > 2/d,
which is made on Rd to have scattering in the energy space, boils down to σ > 0,
since d > n is arbitrary. Such estimates stem from weighted Strichartz estimates
on Hn in the radial case (see [4] for n = 3, [22] for n > 4, and [5] for n = 2).
Finally, asymptotic completeness was proved for all 0 < σ < 2/(n − 2), without
restriction on the size of the radial data, but only in dimension n = 3. The latter
result used in addition interaction Morawetz estimates, valid also in the non-radial
case, in all dimensions n > 3. The issue for n > 4 was that the passage from the
interaction Morawetz estimates to global in time estimates in mixed spaces is done
via a delicate Fourier argument on Rn [25], difficult to adapt to hyperbolic space.
Moreover, the historical approach based on simple Morawetz estimates relies on a
precise dispersive rate for the free Schrödinger group (see e.g. [11]),∥∥eit∆Rn

∥∥
L1(Rn)→L∞(Rn)

6
C

|t|n/2
, ∀t 6= 0.

Such an estimate is known on H3, and on Hn with n 6= 4 locally in time (say, for
|t| 6 1); see [4]. For large time, dispersion estimates are proven with the decay rate
|t|−3/2 (see also [5] for the global exact dispersion in radial setting for n = 2, and [1],
[20] for exact large time dispersion in all even dimensions). So for n ≥ 4 the global
dispersion is not available. Let us notice that in [22], global weighted Strichartz
estimates are proven in the radial setting, thanks to a change of unknown function
after which these estimates stem from [9], where dispersion is not used either.

In this paper we cover the cases n > 4 by using simple Morawetz estimate and
weighted Strichartz estimates. We focus on the radial case.

Remark 1.1. Quite simultaneously to this work, the existence of scattering opera-
tors in H1(Hn) for n > 2 and 0 < σ < 2/(n−2) was established in [20] (see also [1]),
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without the radial symmetry assumption that we make in this paper. The authors
have derived new Morawetz estimates, which overcome the difficulties pointed out
above, thanks also to new Strichartz estimates. Our point of view in the present
paper is rather to insist on the transition between Euclidean to hyperbolic geometry,
as explained below. Also, the proof of the asymptotic completeness in the radial
case is naturally shorter, and serves as a basis to study the case of intermediary
metrics, where in addition no Fourier analysis seems to available.

Theorem 1.2. Let n > 4 and

0 < σ <
2

n− 2
.

Then asymptotic completeness holds in H1
rad(Hn) for (1.2): for all u0 ∈ H1

rad(Hn),
there exists u+ ∈ H1

rad(Hn) such that∥∥u(t)− eit∆Hnu+

∥∥
H1(Hn)

−→
t→+∞

0,

where u is the solution to (1.2).

In view of [5], the wave operators W± are well-defined on H1
rad(Hn) for this range

of σ. The above result shows that the wave operators are invertible on H1
rad(Hn)

(u+ = W−1
+ u0), so we infer the existence of a scattering operator for arbitrarily

large data, with no long range effect. This extends the result of [5], established for
n = 3 only.

Corollary 1.3. For n > 3, and

0 < σ <
2

n− 2
,

the scattering operator S = W−1
+ W− associated to (1.2) is well-defined from H1

rad(Hn)
to H1

rad(Hn): for all u− ∈ H1
rad(Hn), there exists u ∈ C(R;H1

rad(Hn)) solution to

i∂tu+ ∆Hnu = |u|2σu,
such that ∥∥u(t)− eit∆Hnu−

∥∥
H1(Hn)

−→
t→−∞

0,

and a unique u+ = Su− ∈ H1
rad(Hn) such that∥∥u(t)− eit∆Hnu+

∥∥
H1(Hn)

−→
t→+∞

0.

The absence of long range effects is of course an effect of the geometry of the
hyperbolic space. Typically, the usual algebraic decay on Rn is replaced by an
exponential decay. This vague statement can be compared to the phenomenon
studied in [10], where instead of changing the geometry of the space, an external
potential was added:

i∂tu+ ∆u = −|x|2u+ |u|2σu, x ∈ Rn ; u|t=0 = u0 ∈ Σ = H1 ∩ F(H1).

The effect of this repulsive harmonic potential (as opposed to the usual harmonic
potential +|x|2) is to accelerate the particle which goes to infinity exponentially
fast, so that asymptotic completeness holds in Σ for any 0 < σ < 2/(n − 2) (no
long range effect). In [8] linear scattering theory was considered for perturbations
of the Hamiltonian −∆ − |x|α, for 0 < α 6 2. It is shown that the borderline
between short range and long range moves as α varies from 0 to 2. Essentially,
a potential V is short range as soon as |V (x)| . 〈x〉−1+α/2−ε when α < 2, and
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|V (x)| . (1 + log 〈x〉)−1−ε when α = 2, for some ε > 0; the dynamics generated
by −∆ − |x|α accelerates the particles, from an algebraic decay with a larger and
larger power, to the limiting exponential case (if α > 2, the underlying operator is
not even essentially self-adjoint on C∞0 (Rn), due to infinite speed of propagation,
see e.g. [15]). Note that nonlinear perturbations of −∆ − |x|α for 0 < α < 2 have
not been studied, due to a lack of suitable technical tools. In the present paper, we
analyze what can be considered as the geometrical counterpart of this problem.

Notation 1.4. Let k ∈ N and

φ(r) =
k∑
j=0

1
(2j + 1)!

r2j+1.

We denote by Mn
k (or simply M when there is no possible confusion) the n-

dimensional rotationally symmetric manifold with metric

ds2 = dr2 + φ(r)2dω2,

where dω2 stands for the metric on Sn−1.

The Laplace–Beltrami operator on Mn
k is

∆M = ∂2
r + (n− 1)

φ′(r)
φ(r)

∂r +
1

φ(r)2
∆Sn−1 .

Remark 1.5. If k = 0, we recover the Euclidean case. The hyperbolic case corre-
sponds to k =∞. The manifold Mn

k can thus be viewed as an interpolation between
these two cases. Note also that for finite k, the volume element of M behaves at
infinity like the one on RN , for N = (2k + 1)(n− 1) + 1, a parameter which turns
out to play an crucial role in scattering theory, as shown below.

Theorem 1.6. Let n > 4. For k ∈ N, consider the nonlinear Schrödinger equation

i∂tu+ ∆Mu = |u|2σu, x ∈Mn
k ; u|t=0 = u0 ∈ H1

rad(Mn
k ). (1.3)

Set N = (2k + 1)(n − 1) + 1. For 2/N < σ < 2/(n − 2), asymptotic completeness
holds in H1

rad(M): for all u0 ∈ H1
rad(M), there exists u+ ∈ H1

rad(M) such that∥∥u(t)− eit∆Mu+

∥∥
H1(M)

−→
t→+∞

0.

From the above example, we see that this result is a transition between Euclidean
(k = 0) and hyperbolic (k →∞) cases. In view of the results of [6], we infer

Corollary 1.7. For n > 4, k ∈ N, N = (2k + 1)(n− 1) + 1 and
2
N

< σ <
2

n− 2
,

the scattering operator S = W−1
+ W− associated to (1.3) is well-defined from H1

rad(M)
to H1

rad(M): for all u− ∈ H1
rad(M), there exists u ∈ C(R;H1

rad(M)) solution to

i∂tu+ ∆Mu = |u|2σu,
such that ∥∥u(t)− eit∆Mu−

∥∥
H1(M)

−→
t→−∞

0,

and a unique u+ = Su− ∈ H1
rad(M) such that∥∥u(t)− eit∆Mu+

∥∥
H1(M)

−→
t→+∞

0.
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Remark 1.8. We see that as soon as k > 1, 2/N < 1/n. In view of the results of
[7, 24], this shows that the curved geometry already changes the short range/long
range borderline. In §5, we present a formal argument (rigorous justification is left
out), relying on the description of the free dynamics (see Proposition 1.12 below)
indicating that for σ 6 1/N , long range effects are present (see Remark 5.2).

Remark 1.9. The proof we present still works for other functions φ. We choose
to restrict our attention to such spaces Mn

k in order to emphasize the transition
between Euclidean and hyperbolic spaces.

Remark 1.10. The existence of a “scattering” dimension N = (2k+ 1)(n− 1) + 1
can be compared to Sobolev embeddings on the Heisenberg group. It is shown in
[3] that the indices for Sobolev embeddings on the (2n+ 1)-dimensional Heisenberg
group correspond to their counterparts on R2n+2.

Remark 1.11. Such a scattering dimension appears in [6] under more general
(and more geometrically relevant) assumptions on the manifold M : the function φ
does not necessarily have the precise form we study in the present paper. These
assumptions are related to the growth of the volume element and to the sectional
curvature of the manifold M , and imply the existence of wave operators for a
larger range of nonlinearities than in the Euclidean case [6]. However, generalizing
the Morawetz estimates proved in Lemma 2.3 below (which is a crucial step to
prove asymptotic completeness) under these more general assumptions remains an
interesting open question.

To conclude this introduction, and give a rather general picture of large time
dynamics of solutions to Schrödinger equations, we describe the asymptotic behavior
of the free dynamics in the radial setting. It seems that the analogous result in the
non-radial case, even on hyperbolic space, is not available so far.

Proposition 1.12. Let n > 2.
(1) Consider the linear equation

i∂tu+ ∆Hnu = 0, x ∈ Hn ; u|t=0 = u0 ∈ L2
rad(Hn).

There exists a linear operator L, unitary from L2
rad(Hn) to L2

rad(Rn), such that

‖u(t)− v(t)‖L2(Hn) −→t→+∞
0,

where v(t, r) =
e−i(n−1)t/2+ir2/(4t)

tn/2

( r

sinh r

)n−1
2

(Lu0)
(r
t

)
.

(2) Let k > 1. Consider the linear equation

i∂tu+ ∆Mu = 0, x ∈Mn
k ; u|t=0 = u0 ∈ L2

rad(Mn
k ).

There exists a linear operator L, unitary from L2
rad(Mn

k ) to L2
rad(Rn), such that

‖u(t)− v(t)‖L2(M) −→t→+∞
0,

where v(t, r) =
eir

2/(4t)

tn/2

(
r

φ(r)

)n−1
2

(Lu0)
(r
t

)
.

Remark 1.13. In the Euclidean case k = 0, L is, up to a multiplicative constant
and a dilation, the usual Fourier transform. In the case of H3, the first point of
Proposition 1.12 was established in [5]. There again, L is essentially the Fourier
transform. It is not clear whether the same holds in the case of Hn, for n 6= 3,
where Fourier analysis is well developed. See Remark 5.1.
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The rest of the paper is organized as follows. In the next paragraph, we recall
the general approach for Morawetz inequalities, and give applications for the case
of defocusing nonlinear Schrödinger equations on Hn or M . We prove Theorems 1.2
and 1.6 in §3 and §4, respectively. Proposition 1.12 is established in §5.

2. Morawetz inequality. We first recall the general virial computation on a man-
ifold M , where technical ingredients such as integration by parts work as in the
Euclidean case. Typically, M can be chosen to be Rn, Rn × Rn, Hn or Mn

k , with
no restriction on the dimension. The homogeneous contribution is treated in [19],
and the inhomogeneous case is easily inferred.

Lemma 2.1 (Virial inequality). Let a be a real function on M with positive Hessian.
If v is a global L∞(R, H1(M)) solution of

i∂tv + ∆Mv = Fv ; v|t=0 = v0 ∈ H1(M), (2.1)

then there exists a positive constant C such that∫ T

0

(∫
M

(−∆2a)
|v|2

2
+ Re

∫
M

2Fv∇v · ∇a+ F |v|2∆a
)

6

6 C sup
t∈[0,T ]

∫
M

|v∇v · ∇a|.
(2.2)

Lemma 2.2 (Morawetz inequality on Hn). Let n > 4. All solutions u of equation
(1.2) (not necessarily radial) satisfy to∫ T

0

∫
Hn

cosh r
sinh3 r

|u(t, x)|2dx dt 6 C sup
t∈[0,T ]

‖u(t)‖2H1 , (2.3)

where r = dHn(O, x).

Proof. We apply Lemma 2.1, with M = Hn, u = v, F = |u|2σ and a(x) = r =
dHn(O, x). In the left hand side of (2.2), the contribution of the nonlinearity is

N =
∫ T

0

(∫
Hn

2
2σ + 2

∇(|u|2σ+2) · ∇a+ |u|2σ+2∆a
)
,

so by integrating by parts the first term,

N =
∫ T

0

(∫
Hn

− 1
σ + 1

|u|2σ+2∆a+ |u|2σ+2∆a
)

=
∫ T

0

∫
Hn

σ

σ + 1
|u|2σ+2∆a.

Since ∆a = (n − 1) cosh r
sinh r , the nonlinear contribution is non-negative (defocusing

nonlinearity), and we get∫ T

0

∫
M

(−∆2a)
|u|2

2
6 C sup

t∈[0,T ]

‖u(t)‖2H1 .

By computing −∆2a(x) = (n− 1)(n− 3)
cosh r
sinh3 r

, the lemma follows.

Lemma 2.3 (Morawetz inequality on M). Let n > 4 and k ∈ N. All solutions to
(1.3) (not necessarily radial) satisfy to∫ T

0

∫
M

1
r3
|u(t, x)|2dxdt 6 C sup

t∈[0,T ]

‖u(t)‖2H1(M), (2.4)

where r = dM (O, x).
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Proof. The proof follows the same lines as above. For k = 0, this is the standard
Morawetz estimate; see e.g. [11]. We therefore assume k > 1. The manifold Mn

k

has a negative sectional curvature, so the Hessian of the function distance to the
origin is positive (Theorem 3.6 of §6 in [21]). For a(x) = r = dM (O, x), we compute

∆Ma = (n− 1)
φ′

φ
,

∆2
Ma =

n− 1
φ3

(
φ2φ(3) + (n− 4)φφ′φ′′ − (n− 3) (φ′)3

)
.

Since ∆Ma is non-negative, the nonlinear term is neglected, just like in the proof
of Lemma 2.2. We check

−∆2
Ma ∼

r→0
(n− 1)(n− 3)

1
r3
,

−∆2
Ma ∼

r→∞
(n− 1)(2k + 1) (2k(n− 1) + n− 3)

1
r3
.

To establish the lemma, it suffices to prove that −∆2
Ma > 0 for r > 0. Write the

numerator of −∆2
Ma as

(n− 1)
(

(n− 3)φ′
(

(φ′)2 − φφ′′
)

+ φ
(
φ′φ′′ − φφ(3)

))
.

We claim that for all r > 0 (and k > 1),

φ′(r)
(

(φ′(r))2 − φ(r)φ′′(r)
)
> 1 ; φ(r)

(
φ′(r)φ′′(r)− φ(r)φ(3)(r)

)
> 0.

Since
φ′φ′′ − φφ(3) =

(
(φ′)2 − φφ′′

)′
,

and φ(0) = φ′′(0) = 0 and φ′(0) = 1, it suffices to show that the above quantity is
non-negative. From

φ′′(r) = φ(r)− 1
(2k + 1)!

r2k+1, φ(3)(r) = φ′(r)− 1
(2k)!

r2k,

we infer(
φ′φ′′ − φφ(3)

)
(r) = − φ′(r)

(2k + 1)!
r2k+1 +

φ(r)
(2k)!

r2k

=
k∑
j=0

1
(2j)!(2k)!

(
1

2j + 1
− 1

2k + 1

)
r2k+2j+1 > 0.

The estimate announced above follows, hence the lemma.

Remark 2.4. If the function φ is replaced by

φ(r) =
k∑
j=0

aj
(2j + 1)!

r2j+1

for some aj > 0, then the results of [6] show that weighted Strichartz estimates
are available in the radial setting, showing the existence of wave operators with the
same algebraic conditions as in Theorem 1.6. However, for k > 2 and a general
family (aj)06j6k of positive numbers, it is not clear whether the analogue of the
above lemma is valid or not: it may very well happen that with our choice for a,
−∆2

Ma has some zero for 0 < r <∞, thus ruining the above argument.
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3. Asymptotic completeness in hyperbolic space. In this paragraph, we prove
Theorem 1.2.

Since we are in a defocusing case, we have a global in time a priori estimate for
the H1-norm of u, hence the following control, without radial assumption:∥∥∥∥∥

√
cosh r
sinh3 r

u(t, x)

∥∥∥∥∥
L2(R,L2(Hn))

6 C(u0). (3.1)

This global control will allow us to prove that u belongs globally in time to
certain weighted mixed spaces, yielding asymptotic completeness. We set:

wn = wn(r) =
(

sinh r
r

)n−1
2

,

and we denote by dΩ the measure on Hn. We recall that (p, q) is n-admissible if

2
p

+
n

q
=
n

2
, p > 2, (p, q, n) 6= (2,∞, 2). (3.2)

We shall use the following global Strichartz estimates for the radial free evolution,
established in [22] for n > 4 :∥∥eit∆Hn f(·)

∥∥
Lp(R,Lq(wq−2

n dΩ))
6 C‖f‖L2 , (3.3)∥∥∥∥∥

∫
I∩{s6t}

ei(t−s)∆HnF (s)ds

∥∥∥∥∥
Lp(I,Lq(wq−2

n dΩ))

6 C ‖F‖
Lr′

“
I,Ls′ (ws′−2

n dΩ)
” , (3.4)

for all radial functions f ∈ L2
rad(Hn), F ∈ Lr′

(
I;Ls

′

rad

(
Hn, ws

′−2
n dΩ

))
and every

n-admissible pairs (p, q) and (r, s). If A is a derivative in space of order one, similar
estimates hold with the operator A in front of f and of the integral in (3.4). The
constants are independent of the time interval I.

Let A ∈ {Id,∇}. In view of the above Strichartz estimates, we wish to control

w1−2/q′

n A
(
|u|2σu

)
in Lp

′
(
I;Lq

′
)

by some power of ‖u‖X(I), where

X(I) =
{
v ∈ L∞

(
I,H1(dΩ)

)
∩ L2

(
I,W 1,2∗(w2∗−2

n dΩ)
)
,

‖v‖X(I) = ‖v‖L∞(I,H1(dΩ)) + ‖v‖
L2(I,W 1,2∗ (w2

∗−2
n dΩ)) <∞

}
,

(3.5)

and 2∗ = 2n
n−2 (the pair (2, 2∗) is admissible, since n > 3). This is achieved in the

following lemma.

Lemma 3.1. Fix n > 4 and 0 < σ < 2
n−2 . Let u be a radial solution to (1.2), and

A ∈ {Id, ∂r}. There exist an n-admissible pair (p, q), 0 < α < 2σ, and C > 0 such
that for all time interval I,∥∥∥w1−2/q′

n A
(
|u|2σu

)∥∥∥
Lp′ (I;Lq′ )

6 C‖f‖α/2L1(I×Hn) ‖u‖
2σ+1−α
X(I) , (3.6)

where X(I) is defined in (3.5), and

f(t, r) =
cosh r
sinh3 r

|u(t, r)|2.
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Proof. First, note that we have the uniform point-wise estimate∣∣A (|u|2σu)∣∣ . |u|2σ |Au| .
We want to apply Hölder’s inequality, after the following splitting:

w1−2/q′

n |u|2σ |Au| =

(√
cosh r
sinh3 r

|u|

)α
× |u|2σ−α

× w2/n
n |Au| × w1−2/q′

n w−2/n
n

(
sinh3 r

cosh r

)α/2
. (3.7)

The first term will be estimated in L
2/α
t,x , the second in L∞t L

2∗/(2σ−α)
x , the third in

L2
tL

2∗

x , and the last in L∞t L
θ
x, where 2∗ = 2n

n−2 . Write

1
q′

=
α

2
+

2σ − α
2∗

+
1
2∗

+
1
θ

;
1
p′

=
α

2
+

1
2
. (3.8)

Thanks to Sobolev embedding, the third term will be controlled by

‖u‖2σ−αL∞t L2∗
x

. ‖u‖2σ−αL∞t H1
x

. ‖u‖2σ−αX(I) .

Since the pair (2, 2∗) is n-admissible (endpoint), the lemma will follow if we can
choose (p, q) and α such that:
• (p, q) is n-admissible.
• α > 0, with 2σ − α > 0. (Morally, 0 < α� 1.)
• The last factor in (3.7) is in Lθ(Hn), for some θ ∈ [1,∞[.

If p is imposed in view of (3.8), that is

1
p

=
1
2
− α

2
,

then (p, q) is n-admissible if
1
q

=
1
2∗

+
α

n
. (3.9)

This is consistent with the first equality of (3.8) provided that

1
θ

=
2
n
− n− 2

n
σ − 2α

n
. (3.10)

Examine the last condition of the three listed above. Working in radial coordinates,
recall that the measure element is sinhn−1 rdr. Integrability near r = 0 is not a
problem. Integrability as r →∞ follows from an exponential decay, provided that:

θ

(
α+

n− 1
2

(
1− 2

q′
− 2
n

))
+ n− 1 < 0.

Using (3.9) and (3.10), this becomes:

α

n− 1
− α

2
− 2σ − α

2∗
< 0. (3.11)

Consider the extreme case α = 0. The above condition is obviously fulfilled, and θ
is finite since σ < 2

n−2 , with θ > 1 since σ > 0.

Since the conditions θ ∈]1,∞[ and (3.11) are open, by continuity, we can find
α > 0 such that they remain valid. So we have fulfilled all the conditions listed
above, and the lemma follows from Hölder’s inequality.
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Proof of Theorem 1.2. Let I be some time interval, and t0 ∈ I. For (p, q) the
n-admissible pair of Lemma 3.1, weighted Strichartz estimates (3.3)–(3.4) yield

‖u‖X(I) 6 C
(
‖u(t0)‖H1(Hn) + ‖f‖α/2L1(I×Hn) ‖u‖

2σ+1−α
X(I)

)
.

We have seen in the proof of Lemma 3.1 that α > 0 is such that 2σ > α. Therefore,
the exponent 2σ+1−α is larger than one. Recall the standard bootstrap argument
(see e.g. [2]).

Lemma 3.2 (Bootstrap argument). Let γ = γ(t) be a nonnegative continuous
function on [0, T ] such that, for every t ∈ [0, T ],

γ(t) 6 ε1 + ε2γ(t)θ,

where ε1, ε2 > 0 and θ > 1 are constants such that

ε1 <

(
1− 1

θ

)
1

(θε2)1/(θ−1)
, γ(0) 6

1
(θε2)1/(θ−1)

.

Then, for every t ∈ [0, T ], we have

γ(t) 6
θ

θ − 1
ε1.

Let ε > 0. Since f ∈ L1(R×Hn), we can split R+ into a finite family

R+ =
J⋃
j=1

Ij , Ij = [Tj , Tj+1[,with T1 = 0 and TJ+1 = +∞,

so that ‖f‖L1(Ij×Hn) 6 ε. Choosing ε > 0 sufficiently small and summing up over
the Ij ’s, we conclude:

u ∈ X(R).
Using weighted Strichartz inequality again, we see that

(
e−it∆Hnu(t, ·)

)
t>0

is a
Cauchy sequence in H1(Hn) as t→ +∞. So, there is scattering at the H1 level:

∃u+ ∈ H1 (Hn) ,
∥∥u(t)− eit∆Hnu+

∥∥
H1(Hn)

−→
t→+∞

0.

This completes the proof of Theorem 1.2. In view of [5], Corollary 1.3 follows.

4. Asymptotic completeness in intermediary manifolds. The proof of The-
orem 1.6 follows the same strategy as above. Introduce

wn = wn(r) =
(
φ(r)
r

)n−1
2

,

and denote by dΩ the measure on Mn
k . The following weighted Strichartz estimates

are established in [6]:∥∥eit∆M f(·)
∥∥
Lp(R,Lq(wq−2

n dΩ))
6 C‖f‖L2 ,∥∥∥∥∥

∫
I∩{s6t}

ei(t−s)∆MF (s)ds

∥∥∥∥∥
Lp(I,Lq(wq−2

n dΩ))

6 C ‖F‖
Lr′

“
I,Ls′ (ws′−2

n dΩ)
” ,

for all radial functions f ∈ L2
rad(M), F ∈ Lr

′
(
I;Ls

′

rad

(
Hn, ws

′−2
n dΩ

))
and every

n-admissible pairs (p, q) and (r, s). If A is a derivative in space of order one, similar
estimates hold with the operator A in front of f and of the above retarded integral.
The constants are independent of the time interval I. Mimicking the proof of
Theorem 1.2, it suffices to prove the following
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Lemma 4.1. Fix n > 4, k > 1 and 2/N < σ < 2
n−2 , where N = (2k+1)(n−1)+1.

Let u be a radial solution to (1.3), and A ∈ {Id, ∂r}. There exist an n-admissible
pair (p, q), 0 < α < 2σ, and C > 0 such that for all time interval I,∥∥∥w1−2/q′

n A
(
|u|2σu

)∥∥∥
Lp′ (I;Lq′ )

6 C‖f‖α/2L1(I×Hn) ‖u‖
2σ+1−α
X(I) , (4.1)

where X(I) is defined as in (3.5), and

f(t, r) =
1
r3
|u(t, r)|2.

Proof. The proof is very similar to the proof of Lemma 3.1. We want to apply
Hölder’s inequality, after the following splitting:

w1−2/q′

n |u|2σ |Au| =
(

1
r3/2
|u|
)α
× |u|2σ−α × w2/n

n |Au| × w1−2/q′

n w−2/n
n r3α/2.

Write
1
q′

=
α

2
+

2σ − α
a

+
1
2∗

+
1
θ

;
1
p′

=
α

2
+

1
2
, (4.2)

where 2∗ = 2n
n−2 . The lemma will follow if we can choose (p, q), a, and α, such that:

• (p, q) is n-admissible.
• α > 0, with 2σ − α > 0.
• a ∈ [2, 2∗] (to control the second term thanks to Sobolev embedding).
• The last factor in the above splitting is in Lθ(Mn

k ), for some θ ∈ [1,∞[.
With p given by the second equation in (4.2), the first condition is equivalent to

1
q

=
1
2∗

+
α

n
. (4.3)

This is consistent with the first equality of (4.2) provided that

1
θ

=
2
n
− 2σ

a
− α

(
1
a

+
1
n

+
1
2

)
. (4.4)

Let us examine the last condition of the four listed above. Working in radial coor-
dinates, recall that the measure element is φ(r)n−1dr. Integrability near r = 0 is
not a problem. Integrability as r →∞ holds if:

θ

(
3α
2

+ k(n− 1)
(

1− 2
q′
− 2
n

))
+ (2k + 1)(n− 1) < −1,

that is, thanks to (4.3),

θ

(
3α
2

+
N − n
n

α− 2(N − n)
n

)
+N < 0⇐⇒ 1

θ
<

2
n
− 2
N
− α

(
1

2N
+

1
n

)
.

Consider the extreme case α = 0. The above condition on θ yields
2
N

<
2σ
a
⇐⇒ a

N
< σ.

In view of (4.4), θ is finite if

σ <
a

n
.

Moreover θ is always larger than 1 (n > 4 and σ > 0). Since k > 1, N > n, and
since 2

N < σ < 2
n−2 , we can find a ∈ [2, 2∗] such that

a

N
< σ <

a

n
.
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Fix the parameter a. Since the requirements we have made are open conditions,
by continuity, we can find 0 < α � 1 such that they are still satisfied. So we
have fulfilled all the conditions listed above, and the lemma follows from Hölder’s
inequality.

5. The free dynamics in the radial case. To prove Proposition 1.12, we first
reduce the analysis to the Euclidean case, as in [22, 6]. Consider the equation

i∂tu+ ∆u = 0, (5.1)

where ∆ stands for the Laplace–Beltrami associated to an n-dimensional rotation-
ally symmetric manifold with metric

ds2 = dr2 + φ(r)2dω2, where φ(r) =
k∑
j=0

1
(2j + 1)!

r2j+1,

and k is possibly infinite. Introduce ũ, given by

ũ(t, r) = u(t, r)
(
φ(r)
r

)n−1
2

.

In the case of radial solutions, (5.1) is equivalent to

i∂tũ+ ∆Rn ũ = V ũ,

where V (r) =
n− 1

2
φ′′(r)
φ(r)

+
(n− 1)(n− 3)

4

((
φ′(r)
φ(r)

)2

− 1
r2

)
.

We check easily the following dichotomy:
• If k is finite, then V is smooth, with V (r) = O(r−2) as r →∞.
• If k = ∞ (case of hyperbolic space), then φ′′ = φ, and V = (n − 1)/2 + Ṽ ,

where Ṽ is as above.
Up to replacing ũ with ei(n−1)t/2ũ when k is infinite, we see that it suffices to study
the first case. The potential V is a short range potential, as far as linear scattering
theory is concerned (see e.g. [14, 27]). Therefore, there exists ũ+ ∈ L2

rad(Rn) such
that ∥∥ũ(t)− eit∆Rn ũ+

∥∥
L2(Rn)

−→
t→+∞

0.

Moreover, the map ũ|t=0 7→ ũ+ is linear and continuous from L2
rad(Rn) to L2

rad(Rn).
Recalling that the volume element is rn−1dr on Rn, and φ(r)n−1dr on the manifold
that we consider, we infer

‖u(t)− v1(t)‖L2(M) −→t→+∞
0,

where

v1(t, r) =
(

r

φ(r)

)n−1
2

eit∆Rn (ũ+(r)) .

Proposition 1.12 then follows from the standard large time asymptotics for eit∆Rn ,∥∥eit∆Rnϕ− Λ(t)
∥∥
L2(Rn)

−→
t→+∞

0, where Λ(t, x) =
ei|x|

2/(4t)

tn/2
(Fϕ)

( x
2t

)
, (5.2)

and the Fourier transform F is normalized so the above relation holds true. This
asymptotics is, for instance, a straightforward consequence of the factorization
eit∆Rn = MDFM, where M is the multiplication by an exponential, and D is
the L2-unitary dilation at scale t.
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Remark 5.1. We notice that V = 0 if φ′ is constant: in the Euclidean case,
ũ = cu. If n = 3 and φ′′ = cφ, V is constant: for radial solutions on H3, and up
to a purely time dependent phase shift, there is no external potential. In the two
cases distinguished here, we have ũ+ = ũ|t=0. Then (5.2) shows why the Fourier
transform is present in the description of the asymptotic behavior of radial solutions
to (5.1). Recall that the Fourier transform for radially symmetric functions on Hn

is much simpler when n = 3; see [4] and references therein.

Remark 5.2. Following the formal argument given in [16], Proposition 1.12 sug-
gests that for σ 6 1/N , long range effects are present in (1.3). Suppose that n > 2
and 0 < σ 6 1/N , where N = (2k+ 1)(n− 1) + 1. Let u ∈ C([T,∞[;L2

rad(Mn
k )) be

a solution of (1.3) such that there exists u+ ∈ L2
rad(Mn

k ) with∥∥u(t)− eit∆Mu+

∥∥
L2 −→

t→+∞
0.

Formal computations indicate that necessarily, u+ ≡ 0 and u ≡ 0: the linear and
nonlinear dynamics are no longer comparable, due to long range effects. To see this,
let ψ ∈ C∞0 (M) be radial, and t2 > t1 > T . By assumption,〈

ψ, e−it2∆Mu(t2)− e−it1∆Mu(t1)
〉

= −i
∫ t2

t1

〈
eit∆Mψ,

(
|u|2σu

)
(t)
〉
dt

goes to zero as t1, t2 → +∞. Proposition 1.12 implies that for t→ +∞, we have〈
eit∆Mψ,

(
|u|2σu

)
(t)
〉
≈ 1
tnσ+n

∫ ∞
0

(
r

φ(r)

)(n−1)(σ+1)

ϕ
(r
t

)
φ(r)n−1dr,

for ϕ = Lψ|Lu+|2σLu+. With the change of variable r 7→ tr, the above integral is
equal to

1
tnσ+n−1

∫ ∞
0

(
tr

φ(tr)

)(n−1)(σ+1)

ϕ (r)φ(tr)n−1dr.

For r > 1 and large t, the function at stake behaves like

1
tnσ+n−1

(
tr

(tr)2k+1

)(n−1)(σ+1)

ϕ(r) (tr)(n−1)(2k+1) =
r−(N−n)σ+n−1

tNσ
ϕ(r).

This function of t is not integrable, unless ϕ ≡ 0. This means that Lu+ = 0 = u+

(KerL = {0}). The assumption and the conservation of mass then imply u ≡ 0.
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