ON THE NONLINEAR SCHRODINGER DYNAMICS ON §2
VALERIA BANICA

ABSTRACT. We analyze the evolution of the highest weight spherical harmonics by the
nonlinear Schrédinger equation on S2. Sharp estimates are proved for the dynamics
parallel and orthogonally to the initial data. Also, we give an ansatz of the solution
with respect to the spherical harmonics.

2000 Mathematics Subject Classification: 35Q55 (35B35, 35R25, 58J35, 35CXX)
Keywords:nonlinear Schrédinger, eigenfunctions, ansatz.

Published in J. Math. Pures Appl. 83 (2003), no. 1, 77-98.

1. INTRODUCTION

The nonlinear Schrodinger equation
i + Au = F(u)

is motivated by many questions raised in Physics (see the recent survey of the subject
[17]). On R? the Cauchy problem has been largely studied in the past twenty years. In
the one-dimensional case the Sobolev embedding suffices to have well-posedness in the
energy space. Unfortunately in higher dimensions this argument is no longer effective.
The Strichartz estimates ([18]) were then successfully exploited in order to get existence
and regularity results ([8],[10], [19]).

For the same problem on a compact Riemannian manifold, with A being the associated
Laplace-Beltrami operator, it appears that the geometry influences the dynamics of the
equation.

The Strichartz estimates with fractional loss of derivative have been proved by Burq,
Gérard and Tzvetkov in [2]. If we consider the low regularity equation with defocusing
polynomial nonlinearity, these estimates imply local existence results. Moreover, on
surfaces in the case of defocusing polynomial nonlinearities and on three-manifolds in
the case of defocusing cubic nonlinearities the global existence in the energy space H!
follows.

However, instability phenomena appear, even in the defocusing case.

On the one hand the same authors proved in [3] that the flow map of the cubic
defocusing Schrodinger equation on the sphere S?2

i0u + Ageu = |ul?u,
u(0, z) € H*(S?)

is not uniformly continuous for s € [0, i[, that is for Sobolev regularity indices greater
than zero, which is the scaling index. Similar results hold also on a plane domain [4].
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For S2, the same authors have proved recently that the index i is the critical regularity
index, that is for s > i, the Cauchy problem is well posed ([5]).

On the other hand Cazenave-Weissler [6] and Bourgain [1] proved that the Cauchy
problem is H¢ well-posed on R? and on T? respectively for all positive e. Moreover, on
T2, the flow is not uniformly continuous for s negative ([3]), therefore zero is the critical
regularity index.

Hence these results point out the importance played by the geometry of the manifold
in the dynamics of the equation. This is not in contradiction with the positive results on
the wave operator, since the Schrodinger equation does not enjoy the property of finite
speed of propagation.

Instability phenomena appear for a large class of dispersive equations. In the recent
paper [11], Kenig, Ponce and Vega have studied the low regularity properties of the
focusing nonlinear Schrédinger and Korteweg-de Vries equations. Then, in [7], Christ,
Colliander and Tao have extended this study to the defocusing analogues of these equa-
tions. The lack of well-posedness appear also for the defocusing wave equation in R?,
with supercritical nonlinearity, as Lebeau has shown in [13] (see also [14]). Koch and
Tzvetkov have shown in [12] that the flow of the Benjamin-Ono equation fails to be uni-
formly continuous on H® for all positive s. All these results are obtained by constructing
families of exact solutions of the equations, that contradict the well-posedness.

In order to obtain in [3] the instability result on S? the evolution of certain spherical
harmonics, concentrated on geodesics, is studied as follows. Let v, be the H*-normalized
spherical harmonic obtained by restricting to the sphere the harmonic polynomial

U (21, Te, T3) = n%_s(aﬁl + ix9)".

Let us notice that when n tends to infinity, 1, concentrates on the circle 22 + 22 = 1.
By direct calculus one can estimates the I.” norms of v

1_
[Vnllo 2 1%,
[¥nll2 =777,
1 1
W [l i
[¢nll§ = n272
The equivalents are considered as n goes to infinity, and so shall be in all the paper :
fomgn <= 3¢,0 €R",cgy < fr < Cp.
fo Sgn = 3C R, [, <Cg,.
Consider now the Schrodinger equation
(S) i0pu + Agou = |ul?u,
Un(oa x) = KnYn (.T),
where k,, is a number between % and 1. For every real « the rotation R, defined on R?
by
R, (21,9, 23) = (71 COS @ — o sin o, 1 Sin @ + T3 €OS v, T3)
verifies the relation

Y(Ra(2)) = e™*(z).
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Then the uniqueness of the solution for the same Cauchy problem (S) with initial data
e (z) gives us the identity

u(t, Ry(z)) = e™u(t, z).

Using this fact and an algebraic lemma on the spherical harmonics, in [3] it is shown that
the solution u can be decomposed only on 1, and on {h,,;};>1, the spherical harmonics
of order n + j satisfying

hitj(Ra(2)) = €y (2).
We shall consider these spherical harmonics to be normalized in 1.2.

Let w,1,, be the orthonormal projection of |, |*¢,, on the space spanned by %, and 7,
the remainder term of this projection

|'¢Jn‘2¢n = wnd)n + Ty

By the same arguments above, 7, express only in terms of h,;’s. One can write the
solution of ()

Un(t, ) = fpe NI (14 2, (8))9n (2) + a8, 2)),

with g, only in terms of A, ;’s.

For s €], z[, it is shown in ([3]) that the H® norm of g, (%) is negligible with respect to
the one of 9,,, and |Z,(t)| tends to 0 when n tends to infinity. These results imply that the
solution behaves like the initial data 1, with an oscillating exponential type coefficient.
Knowing that w, tends to infinity, a good choice of a bounded sequence x, gives an
important dephasing between the solutions u,, so the Cauchy problem for the equation
(Sq) is ill-posed on H®(S?), in the sense that the flow is not uniformly continuous on
bounded sets of H*.

The purpose of this paper is to provide a further analysis of these solutions. We prove
sharp estimates for |z,(¢)| and for ||q(¢)||gs. In particular these results point out that
even in the remainder part z,v¥, + ¢,, the dynamics orthogonally to v, is weak. We also
obtain an ansatz of the solution with respect to the spherical harmonics A, ;.

For simplicity, the indices n of the functions defined above will be ignored from now
on. We define

Q= 2”] +]2 +.7 - l{zw ) kj,l = K/2 < hn-H w21hn+j >,

Wi = \/ (3kjj + ) (ki + o).
Consider the operator
A=—-A—-n(n+1)
and the operator M defined on the space spanned by the h,;’s by
M (hnij) = pihnaj.
Theorem 1.1. Let T > 0. For every s € [0, i[, for t € [0,T], the solution of (S) is

u(t,z) = ke TR (5 (1) (2) + q(t, ),
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with the sharp estimates

{ SUPo<t<T ||‘](t)||H% ~nT3s,

|z(t) — 1| = tn™.

(in the second equivalent, t is present in order to include the case t = 0, when z(0) =1)
Moreover,

i) For s € [0, i[ the coefficient of 1 is

a4
z(t) = e v <A + O(nfé_Gs).
it) For s €]55, ;| we have the ansatz

. 4
—it 3k

. A~ lrp b -
u(t, z) = ke P TR) (e T >1/J(ac) - z/ e”Mrds> + u(t, x),
0

with )
() < n727".
The proof is based on a further exploitation of the conservation laws than in [3]. Also,
by using Sogge’s estimates on the spherical harmonics ([15], [16])

(2) ||, < Cmi~2 for 2 < p <6,

we give upper bounds for the I” norms of ¢ better than the ones obtained by interpolation
between I? and H'. By using all these estimates in the study of the equations of z and
q, we have the description of z. It follows then that the upper bounds founded before are
sharp. Finally, we obtain the ansatz by analyzing the system obtained by projecting the
equation (S) on each mode, and by using the important distance between two consecutive
eigenvalues of the laplacian.

Remark 1.2. It will be shown that
31{:4 —1 —4s
—— < A rr>xn

1113

so the oscillation of the solution is stronger as s decreases to zero, that is if the amplitude
of the initial data grows faster.

Remark 1.3. The linear part that comes from the cubic nonlinearity of the equation has
an essential contribution in the ansatz of the solution. From it the operator M 1is defined
in terms of p; instead of o, and the effective dynamics orthogonally to 1

t
—1 / e“Mrds
0

verifies an equation depending on M

{ (i0; + M)v(t, z) + ir(z) = 0,
v(0,z) = 0.

Remark 1.4. In the case s = i, it is not known if the flow is uniformly continuous or
not.



ON THE NLS DYNAMICS ON §2 5

The paper is organized as follows. In §3.2.1, by using the energy laws, we find upper
bounds for the norms of ¢, for |z — 1| and for the coefficients of the spherical harmonics
hny in the solution u. In §3.2.2 sharp estimates are given for some particular scalar
product of spherical harmonics. In §3.2.3, by using these estimates in the study of the
equation verified by z(t), we get the description of z(¢). In §3.2.4 this description implies
that the upper bounds obtained previously on ||¢||gs and on |z — 1| are sharp. By
projecting the equation (S) on the space spanned by h,;, we describe in §3.3 the ansatz
of the solution with respect to the spherical harmonics.

I thank my advisor Patrick Gérard for having guided this work.

2. ESTIMATES ON THE SOLUTION

2.1. Upper bounds on norms of ¢ and on |z — 1|. The conservation laws of the
equation (S) are
{ 20 P11 + Nlg@I1Z = 1113, .
=@ PIVYIE + Va3 + sz lu@)lls = IV + Sl
By subtracting from the second conservation law the first one multiplied by n(n + 1) we
obtain

K2 1
(3) IVa(@)|l3 = n(n+Dllg@)l; = 5||1/)||i - 2—,§2||U(t)lli-
As mentioned in the introduction, one can decompose
sz ho+j (@
Jj1
Obviously,
Y+ )HOF <Y (G+n)G+n+1)—n(n+1)z0)f,
j>1 §>1
SO

la@®I% y S IVa@)l3 — n(n + 1lla@)ll2,
and the identity (3) gives

le®1%1 5 5 ||¢||4 - —IIZ( ) +q(t)]l3-
The numbers k will be chosen to be bounded with respect to n, so
(4) lg@I% 5 < Ills = [l2()v + a )]l

and by using the estimates (1) on the norms of v,

1
la@l,3 S I3 < na .

Then one has a first upper bound on the I? and on the H* norm of ¢

5) { Jals i

lg@) s S m=57e.
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By exploiting further the inequality (4), better estimations on ¢(¢) are found, namely
the ones claimed in Theorem 1.1.

Lemma 2.1. For s € [0, i[ the norms of q are upper—bounded by

la@ll, 3 S
(6) la@®)ll2 < n 5‘38
la(®)lne S b2

Proof. By developing the right-hand side of (4) and by neglecting the negative terms,
1115 = llz(6)¥ + a(t) /\¢|4 1= 2@ + 2@ Pl*at)] + |2(t)][ve* (D).

The conservation of the mass gives

la@)1l3
(7) 1—|2(t)] = :
12113
and the preliminary estimates (5) obtained above on ¢(t) ensures us that
(8) )P =1+0(Mn2%) ~ 1.

Thus one can write

bl — l1=(e0 + q() ‘/WMWWﬂ2+w%uN+qu»

The terms in the right side can be estimated as follows

_1_
[ 10615 Ilellall S nt =1l g 07Nl

/WQ\ S 1¥llsllall < > llgll

and

4 llali3 < 2 1gl12 < —251] 1|2
[t S Wl el S nd >l

So for n large enough

1 1
[ll2 = l=@)w +a@)lls S n > la@ll ;1 + = Zla@®I2 , +n T la@)IF 4
By using (4),
_ _1_ _1_
la@I?, < n=*lla@l,,3 +n 5> la@I? ), +n @]
Since

lg(O)l,,3 =0,

the term that gives the behavior of the right-hand side is n=3%||q(¢ )|l ;1 and the claimed
better estimations (6) are obtained. In particular, we also obtain

el s
) l/W|“¢m T 1a(t)] + lwa*(®)] S n ¥l
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and by (3)
(10) IVa@®Iz = n(n+ Dlla@)lz = 1vll; — ()¢ +a@)lls S n~*

These new estimates on ¢ will imply the ones on z mentioned in Theorem 1.1.

Lemma 2.2. For s € [0, i[ the coefficient z verifies

l2(t) = 1| <t~
Proof. The function

C(t) — efit(n(n—}—l)—knzw)
verifies
i0yc — n(n + 1)c = K*wlc/’c.
Then, the projection of the equation (S) on the space spanned by % is
{ (02 + ww2)|[Y]5 = K2 [ |29 + a* (29 + @9,
z(0) = 1.

Since

Il
Iz

the equation of z — 1 writes

(11) 10y(z —1) |\¢||2 (f 20 + ¢ (29 + Q)¢ — [ z|y|* )
(== 1)(0) =0.

By integrating in time and by developing the right-hand side of the equation,
1 t
2(t)-1] S W/ / Y1220 P =1+ 2P| a(T)[+]2(6) |4 (7) |+ [ e (7) [dzdr.
2

By using again the informations (7), (8) on z, we have

0 -115 o [ [ IOE o))+ wieto) + e o) dear

The square term on the right-hand side can be upper bounded by estimates (1) and (6)
/WQZ(T) S Iellla(m)lzn2llg(m)ll gy S ne~*n72 = 02 ]lg(r)lly < n~*lla(7)l 3

and the others have been upper bounded in (9), therefore
(12) [2(t) = 1] S n*tn=* sup lg(7) 4 Stn™",
0<T<T

HY ~
and Lemma 3.2.2 is proved. O

Finally, let us prove some estimates on the norms of ¢ and on the coefficients z; of
the spherical harmonics in g that will be used in the next sections. We will use Sogge’s
estimates (2) on the spherical harmonics in order to obtain better estimations on the 1.7
norms of ¢ than the ones given by interpolation between I? and H'.
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Lemma 2.3. One has

(13) (Zj\zj(t)\2> Sn

N

j>1

and

14 { Jol < dsear,
lg(®)[I§ < n~'"*(logn)>.

Proof. By repeating the argument on the conservation laws, one has

nYy ilzOF <D (G +mG+n+1) —n(n+1)|z )
j>1 Jj>1
< IVa@®)ll3 = n(n + Dlla@)[l5,
so (13) is obtained by using (10).
Let us decompose

at2)= 3 5(0)hai(@) + aalt,),

j=1l..ne
where « is a positive number to be fixed later. Here g, is the part of ¢ containing only
the spherical harmonics of order greater than n + n®.
The same argument before, for o smaller or equal to 1, gives

nn®||ga (B3 < IVea(®)l —n(n +1)llga(t)]]3
< [IVa@®)l5 = n(n+ g5 < n™*.
Then
(15) { el s

2’
IVaa(®)ll2 S n2=275,

and by interpolation

{ lga(B)lls S n=7%,
190 ()lls < 335,
Now we are able to estimate the I.” norms of ¢

Ot hn _s_g
la@lls < 3~ 1) 1nsalls + llga(®)lls < (Zﬂz,v) (Z” +a”4) 3-g

=1 j>1 j>1

Sogge’s estimates (2) on the norms of the A, ;’s and the relation (13) imply

lg®3 S n ' "%nilogn+n %" <n i "logn

(Z ||hn+g||6> e

j>1

if av is chosen larger enough. Similarly,

llq(t IIG<ZIZz Mhntills + llga@)lls < (Zﬂ\zg )

1=1 ji>1

N =
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and

ifa=1.

2.2. Sharp estimates for < [1|%¢), hy o >.
Lemma 2.4. We have the sharp estimate

1_
< |1/J|2"/)7hn+2 >R n2 35'
Proof. In polar coordinates

x1 =sinfcos¢ , xo =sinfsin¢ , x3 = cosb,

the spherical harmonics h,,; can be written in terms of the associated Legendre functions

(&)
hn+l(¢a 9) = ¢j¢€ m¢P7?+l(COS(0))7
where ¢ is the coefficient of the L? normalization
N(n+1)
q=4/——".
: 27 (2n 4 1)!
Since ) is the restriction of (z1 + iz2)" to the sphere, we can calculate

< (6, bt >= / [t i) sinGe) 2 (cos(o) dss

= 27rcln1_33/ P2, (cos(8)) sin®(6)d6.
0

A way to write the associated Legendre functions Py, is ([9])
n ZCn+ D! . I(1—1)
Py (cos(9)) = (—1) Sl il (0) { cos'(6) 22T 9)
W=D0=3)=4) 1 arp s .
> 1@+ 2)(2n T 1) cos' ™% (@) sin“(0) — ... | ;

the sum ends when the power of the cosinus, decreasing each time by 2, becomes 1 or 0.
In particular, this formula implies that for odd [

14 ﬂ
< W}|2¢; gy >= Z Cfl;g/ Coslf%(ﬁ) sin®nt! (6)df = 0.
k=0 0

cos'™2(6) sin?(9)

Let us also remark that < [|?1, h,; > is a real number.
For | = 2, Stirling’s formula gives us the sharp estimate

5 3 4 2n+ 3
< |2, hpyo > nant=>* in‘"*t(g) (1 - in?(6) ) df
|11, hpga nin /0 sin“""(0) 2n+2s1n ()
~ n2735 1 2” ~ n% 3s

Van +1(2n+2)(4n+3)
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Since .
Irllz < llells < n=™,
then we also get the sharp estimate of 7 in L2

1
I7{l2 = (Z\ < P, |97 > |2) ~ne

1>1

N[

Notice that we also get the equivalent
(16) < A7'rr > nT0,

2.3. The description of z(t). The equation (11) verified by z can be developed

2
e~ D+ 2P+ 0 + 2Pl + 20+ B

On the one hand the identity (7) on z and the estimates (6) on ¢ give

z'atz =

||Q||2 ~1-4
(17) 2> =1- S1+4n %
1913

On the other hand ¢ and v are orthogonal, so

/W|2EQ=W/E(I+/F(]:<(1,T>.

/|¢‘4 —1-— 4s+|w2q |+‘wq3|+n—l—4s|qr|.

Then one has

10,2 — (2<q,r>+z <q7F>) <

||¢||2 |¢||2
By using the estimates (1) on ¢ and (6), (14) on g, the terms on the right side are upper

bounded as follows
/|1/J‘4n_1_45 5 n—%—SS’

/WQQ\ < ol llally S n27,
/WJQ?’I S [¥llallglls S n~" 71 (logm)?,

mw

and
[larta = S ol S e

So, the equation of z becomes
2

Il

The equation of ¢ is given by the projection of the equation (S) on the space spanned
by the hp4;’s

iz = ——=(2<q,7r>+2"<q,T>)+0(n %)

i0g — Ag = K11 (|20 + q|* (29 + q) + wq) ,
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where II is the associated projector. One can write
<gr>=<Aq,A'r >=— <k (|2¢ + ¢|*(2¥ + ¢) + wq) , A7'r > + < idyq, A7 > .

The operator A~! induces a decay of n~! so the first term can be estimated as follows

[ 1waantnl s e wllalelill S o,
[ 1647 0 gl 02 ogm)?,

o [laa v s P gl 00t
< |[YPy, A7 lr >=<r, A7 lr >xn

For the last term the equivalent is given by (16). His coefficient is |z|?z, so using the
behavior (17) of z,

(18) |22z < W2, A7 r >=z <1, A7l > +O(n17109).
Therefore

and
—6s

<qr>=—z22 <1, A7 > +id, < ¢, A'r > +0(n"27%).

Noticing that < 7, A=lr > is a real number, and using (18), the equation of z can be

written now
2

w13

The value of z at zero is 1 so the Duhamel formula implies

102 = T (—i23K% <1, AT'r > 4200, < g, AT'r > =20, <, AT >) + 0(n77%).

3xt — t o\ 3kt -
z(t) —e AT < n* / e sy <ra lr>83 <q,A7'r > ds
0
t
—i(t— <r,A-lr>
+n? / e S)'W”z AT 22(8)0, < g, A'7 > ds| + O(n "’63).
0

By integration by parts in the first term
t it 3rt ,A_l
A R e A e A e B B
0

5 (1 + n—4s)n—1—65 Sl n—l—Gs.

Let us notice that from (11), the derivative of z has the same upper bound as z — 1, that
is n~%. This fact, together with the behavior (17) of z, gives by integrations by parts
the same upper bound for the second term as for the first one.

Therefore the description of the coefficient of 4 in the solution u is

’Lt—2'<T'A

(19) Z(t) =€ 103 g O(n‘%‘ﬁs),

and the assertion ) of the Theorem 3.1.1 is proved.
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2.4. The exact growth of ||¢||zs and of |z—1|. For s > 0 the result (19) of the former
section implies that
;3 t
z2(t) —1=— M < AT Yryr > 4+0(n™*%),
Tl

and the equivalent (16) gives the exact growth
|2(t) — 1| = tn™*
The link (12) between the estimates of z — 1 and ¢

[2(t) = 1| St sup lg(7)]|,3 S tn™",
0<7<T
implies that
sup [lg(7)[ly ~=n .
0<r<T
If s = 0 then by (16)
3K 4
lim —— < A7'r r >#£0,
n—voo|¢[[3
and by using the description (19) of z,
|2(t) — 1] ~ t.

By the same arguments above

sup {lg(t)lly = 1,
0<t<T

and the equivalents claimed in the begining of Theorem 3.1.1 are proved.

Remark 2.5. As a consequence, firt > 0,

_ _1_
1(2(t) = Dol mtn %> tn 22 & sup [lg(#)llyn =+ 2 lg(®) e
0<t<T

This shows that the main part in the remainder term in the evolution of 1 by the equation
(S) remains parallel to 1.

3. THE ANSATZ OF THE SOLUTION
3.1. The equations of the z;’s. We recall the notations done in the introduction
o =2nj+ 5" +j— Kw, kg =K < Bph?, hogy >,
1y = \/ (3kjj + a;)(kjj + o).

The equation of z; is obtained by taking the scalar product of the equation (S) with the
spherical harmonic Ay, ;

{ 1025 — ajz; = K2 < |2p + q[*(2¢ + q), Pngy >,
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Let o be a number smaller than 1. The equation can be written

na

i0hzj = ajzj + Z(Qzl +zZ)kj + 15,
=1

where

na

rj =k < |2+ q* (20 + @), huiy > — (22 + Bk
=1
Notice that 7; does not contain linear terms in 2;’s. Consider now the system of equations
of the real and imaginary parts of z;

%Zj ' . 0 a; + k‘j,j §R2j
%Zj o —Otj — 3kj,j 0 %Zj

o ' 0 1 §Rzl %Tj
+Zk7’l(—3 O)(%zl>+<—§Rrj)'

I#j
The eigenvalues of the first matrix on the righthandside are +iu;. Notice that
0 @ + kj,j -1
< —a; — 3k, 0 =B 4

where A; is the diagonal matrix

and
K
B :L< L )
7 5 —q K
aj+kj,j
Set,
k. 0 1 _
Aju = é’lBJ<—3 0>B’1
and

The system in the new variables is

d;\' d;i\ dy Sr;
(g.)—Aj(g.)JFZAN(gl ~Bil _wr, )
! ’ I#j

By performing a second change of variable

ARES
(fj ‘ dj )’
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the system becomes

with

The integration in time gives

(F0) =3 v (53 ) o=t

1]
Lemma 3.1. For j # | there are matrices M;,(t) and B;; verifying the relation

M.

7

t
l(t) = / e_TAjAj’leTAldT = e_tAij,letA’ - Bj,l
0

and the estimates

n%*QS
M'lt ~ B',l S - .
Myalt) ~ Byl S

Proof. Finding Bj; is equivalent to solving the matrix equation

Aj,l - (Bj,lAl - Aij,l)-

(Y
Ba= (7 7).

In view of the expression of A;, the equation becomes
r -y
Aj,zZ(Mj—,uz)( . ¢ )

Thus the existence of B;; is proved and estimates on it can be found as follows. Since

Let us denote

1_
kj; Sn27% we have p; = aj, so
1 95
|Bjl ~1 , |Ajl Sn2™7,

and consequently

< |A',l| < n%—Zs

N =l Y onlj =1

| M;,(t)| = |Bjy

Since f;(0) = E(O) = 0, after integrating by parts

(40) =S (40) -3 [0 (46 ) - o

I#5
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~1
Using the expression of f] and f; we obtain

ety (50) =S a0 (D05 [ 3 eraern (50 Yo

1] 1] kel

ne t Y %Tl
— Z / e JBj,lBl Ry dr + Bj,lRl,l (t) - Rjaj (t)
0 l

l#£j
%Zj _ tA; -1 fvj(t))
(%‘zj)‘e bi (fj(t) ’

(Rel;) is the searched relation between the z;’s.

Since

3.2. Estimates on the source terms R;,.

Lemma 3.2. Let s €]15, 1[, and let a €]1 — 4s,8s[. Then we have the estimates

( 3s

|R2’2| ~ ’I’L_%_ ,

n~ %— —3s
J

(20) 1\ RS if j € natts

| [Rju| Sn%7% for the other j < n®.
Proof. Let us recall the expression of r;
P = K2 < (2221 P 2|12 = g g0) [P+ (20— ) 0P+ 2206 g P+ Z g+ g 2, s > -

Since |B;| ~ 1 one can estimate
t

Rjy— < [¢", hnys > / e dr
0

t
< \< 60, > [ (2(r) () — )
0

[ QPUall? = 1+ laab + 9621+ laPa) el
By using Cauchy-Schwarz’s inequality and (1)
| < [P, b > | S 3,

with equivalence for [ = 2, and cancellation for odd /, by Lemma 2.4. Therefore
t

(21) ‘< W20, By > / eFiThI
0

1
77/5735

S

Y

nj
also with equivalence for [ = 2. Note that from (11) one has the same estimate for (z—1)’

as for z — 1. Integration by parts gives

%—35

< —.
nj

t
\< 67 asa > [ €57 (or) () — Ve
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By using the upper bounds (14) and (15) the other terms can be estimated as follows

/ 024(22 — Vst < sup [z = 1[I lalls S n™®,
o<t<T

: [¢]3
[ 1 tahaia] < n gl S 0758,

/|¢q2hn+z| < [ lloollgllt S n72 7" logn < n777F,

and
[l < Nl 5 0t (0gm)t <> %,

Therefore

t
[Rjal S ‘< W2, hngt > / e dr| + O(n™>7%) + O(n™").
0

In view of (21), in order to have the first term as dominant for small j, we choose

a €]1 — 4s, 8s].
Indeed )

7?,7557% < ni=%

nj

for all j < n 2+25+% and

n—9s < n—SS—%
for all j. This condition on « implies the restriction s E]i2 i[ In conclusion, for o
chosen in |1 — 4s, 8s[, we have the estimates (20). O

Remark 3.3. The restriction s 6]12, 4[ is due to the presence in the source terms Ry
of the linear terms in z;’s, that have only the decay O(n=%). These terms come from

< 226’(/12, hn-H >7

and have variable coefficients. If we consider them in the linear part of the system of the
zj’s, we are unable to obtain the decay estimates claimed in Theorem 3.1.1.

3.3. Estimates on the z;’s. Since !4 B;| ~ 1

(70)=1(328)!
The relation (Rel;) gives

(7 )+ mat0) s pDTFINED D) SIFED SENTAE

I#j I#j k#l I#j
Then the estimate (13) on the z;’s, Lemma 3.3.1 and (20) imply that the term on the
right is upper bounded by

Ry

n- 2Slogn(n 3738 32 h 3slogn2+(n 2 3s+n’58’%)).
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Therefore, since « is smaller than 1 + 4s,

() e

By using again (20) we get the behavior of |f;| and implicitly the one of |z;]|
(

(22) <n 't %logn + no2 T logn < n > 2.

| 20| ~ n=373s

_1_
| @l

3s

if j < pot2sts

L |Z]| S n~5~2 for the other 7 K n”

If « is taken to be 8s — 2¢ with € small and positive, these estimates become

( |zo| ~ n->73s

—1_3s
\ 2] S 2=

if j < n3toe

WEARS n~%%¢ for the other j < nds—2¢
3.4. The ansatz. As was proved in §3.2.2,
<[P, g >=<1, oy >

is a real number independent of time. As a consequence, using (22) and the analysis of
the source terms R;,; done in §3.3.2 for & = 8s — 2¢, one can write for all j < n% 2

. Rz, ¢ . 0
—tA . J _ —9s+e€\ _ —TA )
e ]BJ<%zj ) =0(n ) /0 e ]dTBJ< <1y > >

Rz, 9 1 t A 0
7 _ —9s+e€\ _ R—- TAj .
( Sz, ) =0(n ) — B; /0 e’ drB; ( <1 by > ) :

Using the explicit form of A; and B,

2i(t) = O(n_95+6)—i7< T it > / t T O R W . B R
J 2 0 3]€j7]’ + O!j 3l€j,j + Oéj

Therefore

t

_ . %7 .
=O0(n ) —i <1 hyyj > /0 m CoS T + i sin Tp;dr.

Let )
0,68 — =
elus]

and gg the part of ¢ containing only the spherical harmonics of order greater than n+nf.
Hence ¢(t, ) can be decomposed as follows

t t
q(t,z) = —i/ e™Mrdr +i Z <7y gy > / e dr hpyi(z) + q(t, z) + qs(t, x),
0 0

j=nb..co
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where

t
~ —9s+e . Hj
q(t,z) = jZQZnB (O(n W) — i <1 by > (m - 1) /0 COST,ude) hptj ().

3s

As was proved in §3.2.2, the upper bound n2=3 of < 7, hnyj > is an equivalent for

j = 2 so the H® norm of the principal part of ¢ is

t 2
. <71 hyy; > | 1
GWM’I“ dr ~ § : | ) 'on+g n4 i 2s ~ nf§f2s‘
' /0 ( (nj +j2)? (n+)

j=2..00

(M

Hs

Similarly

t
§ j Z <71 hpy >
‘ < r, hn+] > |/ €ZT,ude h'rH—] 5 71’7”4—'7(”_’_])5 < ’]’),7%723_
0

j=nP..c0 s j=nh..c0
Using the upper bounds (15) on the norms of gz

— _1l_95 B _1_
lgslles < llgsllallgsllin Sn727>72 < n72

Finally, one can estimate the H* norm of ¢ as follows

1 1
e S w4l 3 (g o) 040)° S
j;ﬂ 3kjjtaj Ky
ki -
Snﬁ*85+6+n%*38 Z |Oj;2] (TL—i—j)S.
j:2..n5 J

The estimates

1_ . .
|kjl < ||¢||go =n ¥ < nj+it~ Q;

imply that
_ _ (n+j)°
”aHHS snﬁ 85+e+n1 5s Z = S
s (I +7%)
SJ n—%—Zs(n,B—F%—Gs—I—e + n—%—2s) < n—%—Qs'
Therefore

t
||q+i/ e ™Mr dr|| g <<n_%_25,
0

and the proof of Theorem 3.1.1 is complete.
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