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1 Introduction

In this paper, we are interesting by the study of special values of The Jacobi forms in two
variables Dy (z;¢). We introduce shifted elliptic Dedekind sums in terms of values of these
Jacobi forms and we state and prove their Dedekind reciprocity Laws. Furthermore, in this
study, we show how to use our techniques to obtain a closed new reciprocity law for the so-called
Shifted-elliptic Dedekind-Sczech Sums 1.0.1. It allows us to obtain a strong generalization
of Sczech’s result [23].

In a concise way, we introduce the following main object of our study

(1.0.1) || DL(‘?, ]Z’“a:t zj>

tEL/akL 1<j#k<n

We called them the Shifted-elliptic Dedekind Sums. We state and prove Dedekind reci-
procity laws for these sums.

Let Eq(z; L) be the first Eisenstein serie. As an application of our study, we show how to
use our techniques to obtain a closed new reciprocity law for the following “Shifted-elliptic
Dedekind-Sczech Sums”1.0.2. Precisely, we deduce reciprocity laws for

1 2E+ 1
1.0.2 — E i—— — 25 L
(102) D RN CE ey

a
kel anl 1<4k<3

Then we get a strong generalization to Sczech’s result [23].

Basically, it’s well known that the classical Dedekind sums appears in various areas. In ana-
lytic and algebraic number theory, topology, differential geometry, algebraic and combinatorial
geometry, algorithmic complexity ... etc. See [2, 14, 15, 16, 20, 24].

From our main result we can get several applications in the following areas: Study the Eisen-
stein Cohomology of the groups SLa(Og) where K is an imaginary quadratic field, we establish
connection between special values of Hecke L-functions at s = 1 associated to some quadratic
forms, closely related to quadratic residue symbols (i.e we can connect Legendre symbol ) to
elliptic Dedekind sums. Finally we give recent result concerning the density of elliptic Dedekind
sums.

In this paper several questions which are formulated are only partially solved and thus they
remain still opened.



2 Special properties of Jacobi forms Dy (z; )

2.1 Definitions and notations

Let 7 € H = {z € C : Im(z) > 0} =upper half plane. We use the following notations. For all
¢ € C, we can write ¢ = ©17 + @2, (¢1, p2) € R?, because {7, 1} is an R-basis of C. We put

(2.1.3) e(z) = 2™ ¢, = e(7).
We recall the Jacobi’s Theta function
1 1 1 1
2.1.4 (2) = Z(n it 2)2 b L
( ) 0-(2) %e(z(n+2)7+(n+2)(2+2)>

By the well known Jacobi Triple product formula, we can rewrite Theta function as follows
o
219)  0:(:) = ig* oo/ — e(=2/2) [T 0= ) (1= () (1~ e(—2)

In this paper we need to define the following R-alternating bilinear form

Zp—zp

(2.1.6) Ep(z,p) = 2iTm(r)

is a symplectic form on C associated to the complex lattice L = Zt + Z.

2.2  Eisenstein series and Jacobi forms of two variables Dy (z, ¢).

We fix a complex Lattice L. Eisenstein series, associated to Lattice L, are defined by

(2.2.7) Ei(z L) = lim “lw + 27w+ 27 k=1, ...
o +wEL
(¢)
the sum being over w € L if z ¢ L and w € L\{—=z} if z € L. Where Z is the Eisenstein

welL
summation equal to

(e) m=M n=N
(2.2.8) Z = M}J{frgoo Z Z , Where w = m7 + n.
weL m=—Mn=—N

For ¢ € C, we write
=17 + @2, (01, 2) € RZ

We associate to L a Jacobi form of two variables
07(0)0- (2 + ¢)

(2.2.9) Di(z¢) :;26(2(’01) 0 (2) 0- (i)



2.3 Properties of D(z; ).

We quote from [6] the following fondamental properties of D, (z;¢).

Theorem 2.3.1 (Properties of Dy (z;¢))
i) Dy, is meromorphic in the first variable z, and only real analytic on the second variable .
it) Homogeneity: Dy, is homogenous of degre —1 i.e

Dar(Az; Ap) = A" DL(z; ), VA € C\{0}.
i11) Symmetry: we have the following symmetry
Dr(=z—¢) = =DL(z; ).
iv) ( Periodicity of Dr(z;p)):

Dp(z;0+p) = Dr(2;9)
{ Dr(z+ p;p) = e(EL(p, »))DL(z; ¥) el

v) (Functional Equation):
Dr(z @)e(=EL(2,¢)) = Di(p; 2)-

vi) (Modularity): Dy, is a Jacobi modular form for SLy(Z), with index 0 and weight 1 i.e

z i a b
Dear ot d - d)D-(z; ¢), Lo(Z
= <c7'—|—d’c7-+d> (cr +d) D (2 @)V<C d)ES 2(Z)

where
Dy (z;¢) := D, (2;9), Ly = ZT + Z, T € H.

vii) The Jacobi form Dr(z,¢) have the following Laurent expansion

_ 2me)™
Dr(z0) = Y Bl 1) m,) 7
m2=20 )
Where
?0(@71—’) =1,
Bi(p; L

e)
m! €(EL(LU7 90))
_ _ _(mgmz If m>1

1 If m=0

Eisenstein-Kronecker series of Weight m.



viii) (at Cusp oo)
For z e R\Z, o = 17 + @2 with @1 ¢ Z. Then

1
— lim  Dy(z¢) = e(z{p1})
271 Im(7)—o0 e(z)—1

iz) ( Distribution Formulas for Dy (z;p)) :
For L, A complex lattices such that : L C A, [A: L] =1. We have:

> Dillzp+1t) = DAz ).
teA/L

In the next section we study the properties of B,,(¢, L) coefficents of Laurent expansion of
Dy(z, ) in the first variable z.

3 Elliptic Bernoulli functions B,,(¢, L) and their fondamental
properties.

In the following theorem we precise the most important properties of elliptic Bernoulli numbers
and functions.

Theorem 3.0.2 (properties of B,,(p, L))

i) (Homogeneity) For each m € N*, B,,(p, L;) is homogenous of degre —m i.e

B (M@, AL) = X" B, (0, L), YA € C\{0}.

i1) (Periodicity ):

(3.0.10) B¢ +p; L) = Bu(p; L),Vp € L

i11) (Symmetry ):

Bi(—=¢; L) = (=1)""' By (5 L)

iv) (Modularity): We let By, (¢, 7) := Bu(¢, Lr).
B (i, 7) is a modular form for SLy(Z), with index 0 and weight m i.e

B p ar+b
"\er+d er+d

) = er 4" Bl

v) Bernoulli functions: For all p € C\Z7 + Z, we have

Re <Imlim BT(@; Zr + Z)> = Bu({¢1})

(T)—00



vi) Elliptic Raabe Formula
For L, A complex lattices such that : L C A. Then, we have

S Bulp+tL) = [A: L] "Bu(piA).Y @ €C\A and¥ m > 1
teA/L

and
> dm(tL) = En(0;L) — [A: L] Ep (0 A),m > 1
teA/L\{0}

In particular, for A = %L we have

> dm(tL) = (1 — W) En(0,L),¥Ym > 2

teA/L\{0}

where

Proof:

This theorem 3.0.2 is a direct consequence of the theorem 2.3.1. The idea consists in extract-
ing the coefficients of Laurent series of the Jacobi forms in the results of the previous theorem
2.3.1.

4 Dedekind Sums.

This paragraph consists of two parts. In the first one, we regroup together the significant results
on the classical Dedekind sums. In the second part of this section, we clarify the problems
connected to the elliptic Dedekind sums (or special values of Jacobi forms). We formulate the
problems similar to the classical case and give some new results.

4.1 Classical Dedekind sums: An overview
The Bernoulli numbers are defined by the serie

z > zZ"
pe— :ZBHH, 2| < 2m,
n=0

The Bernoulli polynomials are similarly defined by the generating function

x n

ze® > z
~ 1:nzz(]Bn(m)m, |z| < 2.

To recall the famous Dedekind reciprocity Law we define:



"EE Ba({z})  Otherwise .

and L
b= { O e

Otherwise .

Let a,b € N*. The classical Dedekind sums is

By discrete Fourier series of the sawtooth function (see, for example, [?, p. 14]) we obtain

s ()= ((G) e ()

Now, we can rewrite s(a,b) in terms of cotangents:

b—1

Then, we obtain two representations of s(a,b) and provides us various generalizations of the
Dedekind sums in the litterature.
In the next theorem, we state the Dedekind reciprocity law

Theorem 4.1.1 (Dedekind-1880)
Let a,b € N* coprime. then

1 1 (a 1 b
S(a’b)+8(b’a):4+12<b+ab+a) .

Since s(—a,—b) = s(a,b), we can define s(f) = s(a,b) for an irreductible fraction § and get a
function on the rational field Q. Hickerson in [13] has proved the following.

Theorem 4.1.2 (Hickerson-1977) The set {($,s(%)) : ¢ € Q} is dense in the plane.

Now, we state the problems for generalized classical Dedekind sums:

Let a,a1,...,a, be positive integers, m1, ..., m, nonnegative integers, and z1, ..., z, com-
plex numbers. Study the arithmetic properties of the following two Shifted classical
Dedekind Sums

no ka;
S f first Kind : B | — + z;
ums of firs in kn%;iajl_[l ]<a +z]>




Sums of second Kind: Z H cot(mi) 1 <ZJ + zj>
k mod a j=1

We have here two kinds of generalized classical Dedekind sums.
In general, these representations are differents, but there are the same in the case stutied by
Dedekind himself ( corresponding to n = 2).
Essentially, the problem considered here is to give a generalized Dedekind reciprocity laws for
these two sums and get their applications in differents areas in mathematics.
Several mathematicians studied the Dedekind reciprocity Laws for these two sums. In partic-
ular: Apostol [1], Beck [7], Berndt [8], Carlitz [9], Dieter [10], Meyer [22], Rademacher [21],
Halbritter [11], Hall- Wilson-Zagier [12, 25| and many others mathematicians.

On the other hand the above density problem remains still opened concerning the study of
two differents kinds of Dedekind two sums.
Now, I am going to clarify the wellknown results on the Dedekind reciprocity laws of them. The
above reciprocity law problem is solved:

i) partially for the sums of the first kind only for n = 2 and arbitrary my,mo. See [12]

ii) On the other hand for the sums of the second kind is solved completely for arbitrary n,
mi,...,mq. See [7].

These results are formulated in the following two theorems.

We set

ak—l
5 t
S(ZZ,X_];,RZ,T) = Z H BT‘J' (awk+ —x])

J
, ag
t=0 1<j#k<n

Now, we consider the generating function of these sums

N S(ﬂa)?kvl?];,r) Pj e
S(AL X @)= Y T (2
Riawo 0T ke MY

Now, for n = 3 we can formulate the main theorem in [12] as follows

Theorem 4.1.3 (Hall-Wilson-Zagier-1995) Let ai,as,as be three positive integers which
—

have no common factor, A = (a1, az,as),r1,x2,x3 three real numbers, and 1,2, p3 three vari-

ables with sum zero. Then

[ =

3 B 3
S S(An Xi Br) =9 If YgRA+Z
k=1 0 otherwise.

Where A = (al,ag,ag),y = (z1,x2,3)



In order to state the next theorem, we denote by cot(™) the m’th derivative of the cotangent
function and let aq,...,a, € N, mq,...,m, € N, z1,...,z, are real numbers. Beck in his paper

[7] study the following sums

~

ak al o .. ak: ... an 1 t —"_ x
S — (my) . k..
Q: mg | My +ll mk/i_ lk mn+ln = akmk—i-l Z H cot\"/ (aj ar $j>
T T . Tk . Tn, t mod ap 1<j#k<n
We quote from [7] the result
Theorem 4.1.4 (Beck-2003)
Letay,...,an € N, my,...,my €N, x1,...,x, are real numbers. Assuming that
a;x, —arpx; & Zaj + Zag, Y1 <j#k<n.
Then, we have the following Dedekind reciprocity Law
n all...(;l\k...aln Ak a1 /d-\k\ n
Z(—l)mkmk! Z 1' /li' 7: Sl my |mi+hL - my+ My + I
k=1 Useonslgreesln 20 bl gl ! Tk T @ Tn
Aot +tln=my,
_ (—1)71771 if all my, =0 and n odd
0 otherwise.
4.2 Elliptic Dedekind sums: Problems and results.
Now, we precise the elliptics problem for the multiple elliptic Dedekind sums.
Let L = Z1 + Z be a complex lattice we denote by O, := {x € C: 2L C L}. Let ay,...,ay
be elements in Oy, , the a; being pairwise coprime , z1,...,2, € C and ¢1, -+, ¢, be complex

variables.
We study the arithmetical properties of the following elliptic Dedekind sums

n
. . . — k+ 20
Elliptic sums of first Kind: ) E H B, (aj u + zj;L>
keL/aL Jj=1

n
. L. - (m;) k+20
Elliptic sums of second Kind: ) E H DLm’ <g0j, aj—— + zj>
keL/aL J=1




In my paper [6], recently i proved the Dedekind reciprocity law for the elliptic Dedekind
sums of the first kind.
In this paper we study the reciprocity law for the shifted-Dedekind elliptic sums in terms of
special values of Jacobi forms (i.e elliptic sums of second kind) for m; =1,Vj =1,...,n.

In the last section of this paper, we treat the other interesting questions connected to these
sums.

Now, we state the following reciprocity laws

Theorem 4.2.1
Letay,...,ay be elements in Op, z1, ..., 2z, complex numbers and 1, ..., on complex variables
n

such that Z pj = 0.
j=1

We obtain the following reciprocity laws

i) If we assume that
ajz, —arzj € ajL+apL, V,1<j#k<n,

Then
n
1 j t
— > Il o <(€]§aj2k+ —Zj> =0
— ay, A a; ag
k=1 teL/ap L 1<j#k<n
i1) More general, for fited 1 <1< n such that: z; =--- =2 =0

we assume that
a;jzr — arzj € ajL + apL

for all 1 < j # k < n such that

then we obtain
L ; zr+1
72 DL<(€J; j i —zj)——Res H DL(Q_OJ;ajz—zj>,z—0
ay a; ag , a;
k=1 t 1<j#£k<n J 1<<n J
where
Y if1<k<l
4 teL/ajL
>
¢ Z Otherwise
tGL/(ZkL

We will establish in the following that our theorem 4.2.1 contains and generalized the Sczech’s
result [23].

10



Theorem 4.2.2 Let a1, a0, a3 be three elements in Or, being pairwise coprime, z1, zo, z3 complex
numbers.

Then, we have

?23 dg((llzg — aszy; L) —f- _ELE dQ(CLQZl — a129; L) [f

azail

— a1 d2(a223 — a3z9; L) ‘I—

a20a3

a

ajzp —agz; € LV1 < j#k <n,

= 7&} dg(a223; L) + aﬁésdz(alzg; L) - ,aé GQ(L) — 3 EQ(Z?); L) [f

asas asai aiaz

21 =2 =0 and ajzs € a; L+ asL,Vj =1,2,3

| = GaD)I (525 + 52 + 22 ) o =2 =2 =0,

. 1
where I(z) = z—z and d;(p; L) = (2m)” Bi(g;L), ¥V j € Nand Gop(L) = Z WN k > 2

pii
weL\{o}

are the classical Eisenstein series ( or numbers).

Remark 4.2.3

The result in the last case of our corollary 4.2.2, represent an Homogenization of the main
Theorem of Sczech in [23]. More precisely, for a; = a,as = ¢ coprime and a3 = 1, we get exactly
the Sczech’s result in [23].

5 Proofs of Theorems 4.2.1 and 4.2.2

We consider the function
J
a;

n
F(Z,a,z) = HDL <ajz — Zj; (P>
j=1

Where



Our hypothesis is:

n

(5.0.12) Z% =0
j=1
and we assume that
(5.0.13) ajzi —agz; € a;L+apl, ¥ j#k
Otherwise if there exists 2 <! < n such that:

s==g =0,

we assume that

(5.0.14)  ajzr —arzj €ajL+arl, V1< j#k<n with {j,k} ¢ {1,---

Now, we have the following interesting properties of F’
Proposition 5.0.4 The function
F:ZHF(Z,E),Z)

i) F is meromorphic, with poles only at

z:zk+ ,te kL

aj

7l}'

it) Under the conditions 5.0.12 and 5.0.13 all the poles of F' have order 1.

i11) Under the conditions 5.0.12 and 5.0.1/4 all the poles, except for z =0 modulo L, of F' have

order 1, otherwise the order is | for the pole at z = 0 modulo L.

iv) F is periodic with periods the lattice L i.e

—

F(z+p,$,A,M):F(z,g,z,ﬁ),VpeL

Then, to prove the theorem 4.2.1 we use Liouville residue theorem for the elliptic function F'

with periods the Lattice L, as follows:
For the proof of our this theorem we have the first hypothesis

Y =0
j=1

Now, we have to consider two different cases
Case 1: We assume that

12



5.0.15 a;zk —apzi €a;L+arl, V12>2j5#k>=n.
J J J

Then, by Liouville’s theorem we obtain

Z Z Res (F(z,a,z)dz;z:zk—i_t)zo
ak

k=1 tEL/akL

k

k=1 " teL/a)L 1<j#k<n

Now by using the functional equation of Dy (z,¢) and the condition 5.0.12 we obtain

Z I m(“f?,f’fa:t—zj):o

= tEL/akL 1<j#k<n

This proves the first part of Theorem 4.2.1.

Case 2: Now we fix 1 <[ < n such that: z1 = --- = z; = 0 and we assume that

ajz, —arzj € ajL+apL, V1> j#k>

)=
a;

"1 Dk 2k +1 ©j
. ...
g - g e (EL(t, 2L )) | I Dy, (a] o zj; —

The proof is similar as below, except at the pole at z = 0 modulo L because it has order
I, of the function z — F(z,@_{;, Z) Precisely, in the first case we have no pole at z = 0, but
here we have a pole at z = 0 of order equal to [. Then again by using Liouville residue theo-
rem and functional equation of Dy (z;¢) we obtain the desired remaing part of Theorem 4.2.1 [

Proof of Theorem 4.2.2:
Here we must consider three different cases

Case 1: We assume that
ajz —arzj € ajL+apL, V1<j#k<3

We use the following Laurent expansion of Jacobi forms

i t a; zE+1 zp+1
Dy, <Zj]';aj€§a>—}6. . )—zj> :#+d1 <ajkak —Zj;L> + do <aj k —

J ag

Now, we compute the product

t
II o <"JZk+ Zj)
j a

1<#k<3

, for j =1,2,3.



as a serie in terms of variables (1, @2 and 3.
Then, we obtain

(5.0.17) Z SOOI DL(% Z’“”_zj):

a
kel anL 1<j#k<n k

Z::; Z H E1<ajzk+t Z],L>+
k=1

a
tmod(ap L) 1<j#k<n

“ S02—1_@3d (agzg — agzo; L) + —— @ 901+g03d (a1z3 —agz1; L) + —— 9 $1t P2

——=ds(a1z2 — agz1; L)
aza3  P1 aiaz Y2 aiaz 3

+monomial terms of total degre greater than 1 in terms of ¢;, ¢, j,k = 1,2, 3.

Now, by using the first part of Theorem 4.2.1 we obtain that coefficient, of our serie in 5.0.19,
is equal to zero. Now, the first coeflicient here is zero implies that

SV JETCE DR
k=

tmod(ar L) 1<j#k<n

ai

a2 as
do(agzz — azze; L) + ——da(a123 — azz1; L) + ——da(azz1 — a122; L)
asas3 aijas az2a1

This represent the case 1 of our second theorem 4.2.2.

Case 2: We assume z; = 23 = 0 and a;23 & a;L + a3L,Vj = 1,2,3. Now, we compute the
residue of z — F(z, 3, _A)) at z = 0 is a pole of order 2 where

n=3
- — (28
o, A)= 1_[1DL (ajz—zj;aj>
J:

and
N

A= (a17a2>a3)76> = (801?9027903)

After mutatis mutandis, a laborious, computation we obtain

(5.0.18) Res (F(z, 3, Z)dz; z= O) =

w() a(s)
Dy, (—23;%> + - + -2 p, (—23;Sf3>

a1 a2 aiaz az

14



Then

teL/ap L
E :: t£0
t g Otherwise
tEL/akL

Next, we use the Laurent expansion 5.0.16 of Jacobi forms to compute the product
© zp +t +t
H DL(j_v 4=, _Zﬂ'>
1<£k<3 k

as a serie in terms of variables 1, @2 and 3.
Then, the term corresponding to the part of total degre zero of

n=3 !
1 %) zEp +t
5.0.19 § — E | | D J.og. 2812
( ) ax 4 L <aj J a ])
k=1 teL/apL 1<j#k<n=3
Hence, this term is exactly the qunatity

3 1k Z H F <ajzka:t —zj;L> _

k= tmod(ap L) 1<j#k<n

a
dQ(CLQZg, L) — % da(aiz3; L)
asa3 aas

_ 02 P8 D) — P g L)+ 2B ‘”(1—‘”) Go(L) + -2 ‘“(1—“2) Ga(L)

a103 Y2 a2a3 p1 a1az ©3 ay a20a1 Y3 as

Now, to compute the term corresponding to the part of total degre zero of

dl (@2 L) dl <<P1 L)
D ((fg, —23> + . Dy, <—23; ng> 2 (EL <23, <_p3>>
as ai a2 a1a2 az as

we use Laurent expansion 5.0.16 and

15



LI positive power of ¢, @.
a(L) ¢

and the functional equation of Dy (z; ). Therefore, the term corresponding to the part of total
degre zero of

dy (&;L) dy (ﬂ;L)
—Dy, (—23; 8_03> @ + “ % D,L (—23; 8_03> e <EL <Z3, (f?)))
as a as aag as az

is exactly equal to

Dy, (z9) = —Ea(z; L) —

ay

92 P34 (i L) — Py L) + P P2ay(0) + PP Gy(L) + B Bz L)
a1a3 P2 a2a3 @1 a1a2 P3 a2a1 P3 a20a1

Finally, we apply our theorem 4.2.1, we obtain

21 > I a(e® sir)-
k=

tmod(ar L) 1<j#k<n

a a a a
= — } dg(a22:3;L) + — % dQ(CLlZg;L) — = :i GQ(L) — 3 EQ(Zg;L).
as2as3 ajas asa a1a9

This proves the second case of our theorem 4.2.2.

Case 3: we assume 21 = 29 = 23 =0
- —
Now, we compute the residue of z — F(z, ®, A) at z =0 is a pole of order 3 where again

n=3
- — Y4
F(z,®,A) = H Dy, <ajz; aj)
and

A = (a1,a2,a3), ® = (1, ¢2,93)

Our computation of this residue is

(5.0.20) Res (F(z, 6), Z)dz; z= ) =
“_d, <(_pg;L> + -2 g, (S_@;L) + g, (@;L> +
ai1an as ajas ag ajas al

1 1 1
—dy (i”;L) dy (i”’;L) +d (‘fl;L) dy (‘f‘”’;L) Fd <*"2 ) dy < L) .
al a as an al as as an al




Again, by using the following expansions near zero

= 1 — z— Lé 22
dl(va)_ > G?(L) CL(L) +O( )
and
B m z  7wGa(L) _
dy(z,L) = —Gao(L) — D)3 a(QL) 7z + o(2).

We obtain, the part of total degre zero ( in terms of 1, p2, 3 and @1, P2, @3) for the following
quantity

n=3
Pj
5.0.21 —-R | | D iz —=
( ) es I3 (ajz dj)

=1
is equal to

a a a ™ a D: a D: a D
Gz(L)< R 3>+ < 5 /s, B ve, T S01>+
azaz  ai1a3 G102 G(L) ajaz Y3  a1a3 P2 4203 Y1

a a a a a a
Gz(L< 2 p5, B8, M Ps, WA, PRy “01)+

aijaz @2  a1G2 3 G263 Y1 G201 Y3 a3a2 P1 a3ai P2

us az P3 as @2 ap ¥3 as ¥1 a1 P2 az ¥1
— L 2y s, A, A, A
a(L) \aiaz p2  araz 3 G203 Q1  aa1 @3 azaz Pl G301 P2

Now using that
o1+ p2+p3=0

we obtain that the part of total degre zero term of

n=3
0
(5.0.22) —Res H Dy, (ajz; aj)

j=1

is exactly

a a a a a a a a a
G2L< L 2 B B, B, N, BA f¢2+3%>
a2a3 aias a1az a1as Y2 a1a2 $3 a2a3 P1 a2a1 P3 azaz $1 aszay Y2

To finish our computation, we use again the Laurent expansion 5.0.16 of the Jacobi form
Dy (z; ). Hence, we obtain the part of total term of degre zero of

n /
(5.0.23) Z;Z 1 o <§j;ajz’“+t—zj>
k=1

X Qg
t 1<j#h<n
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it’s correspond to the following quantity

Yo > ] a(egr)

K el jan L\{0} 1<G#k<n

— + + — —
ai1as Y2 a1a2 Y3 a2a3 L1 aza1 Y3 azaz Y1 azayl 2

a a a a a a
GZ(L<2903+3902+1903 3 ¥1 1902+2<P1>

+——+ + + + —
a103 2 aias ©s3 a2a3 1 201 Y3 asaz 1 as3ay Y2

Finally, we now by theorem 4.2.1, that the quantities 5.0.22 and 5.0.22 are the same. Then,
there parts of total degre zero are also the same. The above compuation implies that

P T DR

tmod(ap L) 1<j#k<n

G, L)( Gy @3 | a3 o A1 p3 | Gz p1 | @1 P2 | G 901)

al as as a as as
Gs(L) p2 o s @ B 9
aza3 aias a1az az0a3 aias a1az

Thus we obtain our theorem 4.2.2. [

6 Applications and questions

In this section we give some known applications of Dedekind elliptic sums and we precise some
open questions related to them.

6.1 Applications

The following applications concerns only the case when n = 2 ( the number of elements ay, ..., a,,).
Our references for this section are [17, 19, 23]. In fact, in these papers [17, 19, 23] H. Ito and R.
Sczech studied a simplest form of our elliptic Dedekind sums and give some intersting applica-
tions.

Let K = Q,Q(v/D), D negative integer.

Put .
t t
D =— > Bia—L)E(—L
(a1,a2) 1<a1a2, ) 1(@2, )

a2
tmod (a2 L)

Let A = (Zl Z3> in SL2(Ok) We define the function
2 a4

' EQ(O)MJM — D(aj,a3) Ifas#0
¢ A {EQ(O) i Otherwise

18



In 1984 R. Sczech in his paper [23] proved the following result

Theorem 6.1.1 (Eisenstein Cohomology) ® is a group morphism: (SLy(Ok), x) — (C,+).
Non trivial iff K # Q,Q(v/—1), Q(v/—3).

Then, we obtain a cocycle in H'(SLa(Ok),C) it represented Eisenstein cohomology class of

SLo(Ok) For A = <Zl 23) in SLy(Ox) with ay + a4 # 0,41, £2. Then as X2+ (a4 — a1)X —
2 a4

as = 0 has two distincts solutions «, @’ in C. We define the quadratic form
Q(m,n) = (ma + n)(ma’ +n)

satisfies
Q((m,n)A) = Q(m,n)
Then A operates on L = O Define the Hecke L-function

L(s,A)= )

(mn)

Q(m,n)
Q) Re(s) >

3
2

In 1987 H. Ito proved the result [17]

Theorem 6.1.2 (Values of Hecke L-function) Let € = asa + as. Then

®(A) = sgn (logle]) .(a — a’).L(1, A)

Now, we set U(A) = \/%ﬁ)(o)

In 1990 H. Ito proved in [18] the following result
Theorem 6.1.3 (Quadratic residues symbols) There exists explicit group morphism
X : (SLa(Ok), x) — (Z/8Z,+)

such that
U(A) = x(A)mod(80x)

Then we get cohomology class in H' (['(8),Z/2Z).

In 2004 H. Ito again proved the following result [19]
Theorem 6.1.4 (Density of elliptic Dedekind sums) If K is euclidian # Q,Q(v/—1), Q(v/—3).

Then the set
{(al’ D(a1,a2)) : “u IS K}
az’ \/DEy(0)) a2

is dense in the space C x R.
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6.2

Open questions.

The following questions are not solved yet:

i)

ii)
iii)

iv)

Find the similar theorems as 6.1.1, 6.1.2, 6.1.3 and 6.1.4 for multiple elliptic Dedekind
sums?

Similar question for the classical multiple Dedekind sums ?
Generalized these results to quantum modular forms?

Give geometric or topological interpretation of these results?

References

[1] T. M Apostol, Theorems on generalized Dedekind Sums, Pacific. J. Math, 2 (1952) 1-9.

[2] M.F. Atiyah, The Logarithm of the Dedekind n-Function, Math. Ann, 278, (1987), 335-
380.

[3] A. Bayad, Sommes de Dedekind elliptiques et formes de Jacobi, Ann. Instit. Fourier, Vol.
51, Fasc. 1, 2001, 29-42.

[4] A. Bayad, Sommes elliptiques multiples d’Apostol-Dedekind-Zagier, C.R.A.S Paris, Ser. I
339, fascicule 7, Série I, 2004, 457-462.

5] A. Bayad, Applications aur sommes elliptiques multiples d’Apostol-Dedekind-Zagier

[5] vad, App ptiq p p gier,
C.R.A.S Paris, Ser. I 339, fascicule 8, Série I, 2004, 529-532.

[6] A. Bayad, Jacobi forms in two variables: Multiple elliptic Dedekind sums, The Kummer-
von Staudt Clausen Congruences for elliptic Bernoulli functions and values of Hecke L-
functions, Submitted for publication.

[7] M. BECK, Dedekind cotangent sums, Acta Arithmetica 109, no. 2 (2003), 109-130.

[8] B. C. BERNDT, Reciprocity theorems for Dedekind sums and generalizations, Adv. in
Math. 23, no. 3 (1977), 285-316.

[9] L.Carlitz, Arithmetics properties of generalized Bernoulli numbers, J. Reine Angew. Math;
202 (1959), 164-182.

[10] U. DIETER, Cotangent sums, a further generalization of Dedekind sums, J. Number Th. 18
(1984), 289-305.

[11] U. Halbritter, Some new reciprocity formulas for generalized Dedekind sums, Results in
Mathematics 8, (1985), 21-46.

[12] R. R. HaLr, J. C. WILSON, D. ZAGIER, Reciprocity formulae for general Dedekind-

Rademacher sums, Acta Arith. 73, no. 4 (1995), 389-396.

20



[13]

[14]

[15]

[16]

[17]

[18]

[19]
[20]

[21]

22]

[23]
[24]

[25]

D.Hickerson, Continued fractions and density results for Dedekind sums, J. reine und
angew Math. 290, ( 1977), 113-116.

F. Hirzebruch, The signature theorem: reminiscences and recreation , Prospects in Math-
ematics. Ann. of Math.Studies 70, 3-31, Princeton University Press, Princeton, 1971.

F. Hirzebruch, T. Berger and R. Jung, Manifolds and Modular forms , Aspects of Math.E.
20,Vieweg (1992).

F. Hirzebruch and D. Zagier, The Atiyah-Singer Theorem and Elementary Number Theory,
Math. Lecture Series 3, Publish or Perish Inc, 1974.

H. Ito, A function on the upper half space which is analogous to the imaginary part of
logn(z), J. reine angew. Math. 373, (1986), 148 — 165.

H. Ito, Dedekind sums and quadratic residues symbols, Nagoya Math. J, Vol. 118, (1990),
35 — 43.

H. Ito, A density result for elliptic Dedekind sums, Acta. arith. 112, (2004), 199 — 2008.

R. Kirby, P. Melvin, Dedekind sums, p-invariants and the signature cocycle, Math. Annalen
299 (1994), 231-267.

H. RADEMACHER, Some remarks on certain generalized Dedekind sums, Acta Arith. 9
(1964), 97-105.

C. Meyer, Uber einige Anwendungen Dedekindscher Summen, J.Reine angew. Math. 198,
(1957), 143-203.

R.Sczech, Dedekindsummen mit elliptischen Funktionen, Invent.math, 76, (1984), 523-551.

U. Weselmann, FEisensteinKohomologie und Dedekindsummen fir GLo tber imagindr-
quadratischen Zahlenkdrpern, J. reine. angew. Math. 389, (1988), 90-121.

D. Zagier, Higher order Dedekind sums, Math.Ann, 202, 1973, 149-172.

21



