
Arakawa-Kaneko L-functions and generalized
poly-Bernoulli polynomials

Evry Val d’Essonne Abdelmejid Bayad
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1 Introduction
The aim of this exposition is to generalize poly-Bernoulli numbers and Arakawa-Kaneko zeta functions that are
introduced and studied in [1], [2], [5]. Our work is a continuation of the previous work [3], which introduces and
discusses poly-Bernoulli polynomials and generalized Arakawa-Kaneko zeta functions. It should be noted that [4]
and [6] treat the topics relevant to our results.

2 Generalized poly-Bernoulli polynomials
Throughout this report, let χ be a Dirichlet character with conductor f = fχ. The generalized Bernoulli numbers
Bm,χ ∈ Q

(
χ(1), χ(2), ...

)
associated to χ (m = 0, 1, . . .) are defined by the generating function

f∑
a=1

χ(a)
t

eft − 1
eat =

∞∑
n=0

Bn,χ
tn

n!
, | t |< 2π

f
.

The main interest of these numbers is that they give the values at negative integers of Dirichlet L-series: if

L(s, χ) =

∞∑
n=1

χ(n)

ns
(Re(s) > 1) is the L-series attached to χ, then we have the formula

L(−n, χ) = −Bn+1,χ

n+ 1
(n > 0).

The main purpose of this section is to introduce and investigate the generalized poly-Bernoulli polynomials and
numbers. These polynomials include the generalized Bernoulli polynomials and numbers and the poly-Bernoulli
polynomials and numbers. Let us briefly review poly-Bernoulli polynomials ([3]). For an integer k ∈ Z, put

Lik(z) =

∞∑
n=1

zn

nk
,

which is the k-th polylogarithm if k ≥ 1, and a rational function if k ≤ 0. One knows that Li1(z) = − log(1− z).
The formal power series Lik(z) can be used to define poly-Bernoulli polynomials. The polynomials B(k)

n (x)
(n = 0, 1, 2, . . .) are said to be poly-Bernoulli polynomials if they satisfy

Lik(1− e−t)
1− e−t

ext =

∞∑
n=0

B(k)
n (x)

tn

n!
.

It should be noted that the definition of poly-Bernoulli polynomials by Coppo-Candelpergher [4] is different from
ours. For any n ≥ 0, we have

(−1)nB(1)
n (−x) = Bn(x),

where Bn(x) are the classical Bernoulli polynomials given by

t

et − 1
ext =

∞∑
n=0

Bn(x)
tn

n!
, | t |< 2π.

Using a Dirichlet character, we generalize poly-Bernoulli polynomials and numbers as follows. Let k ∈ Z. For
a Dirichlet character χ modulo f , we define generalized poly-Bernoulli polynomials B(k)

n,χ(x) associated to χ by

1

f

f∑
a=1

χ(a)
Lik(1− e−ft)

eft − 1
e(x+a)t =

∞∑
n=0

B(k)
n,χ(x)

tn

n!
, | t |< 2π

f
.
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In particular, we put B(k)
n,χ := B

(k)
n,χ(0). We call them generalized poly-Bernoulli numbers associated to χ.

The following two identities hold:
B(1)
n,χ(x) = Bn,χ(x).

If χ0 is the trivial Dirichlet character, then

B(k)
n,χ0

(x) = B(k)
n (x),

where Bn,χ(x) are the generalized Bernoulli polynomials associated to the Dirichlet character χ defined by

f∑
a=1

χ(a)
t

eft − 1
e(x+a)t =

∞∑
n=0

Bn,χ(x)
tn

n!
, | t |< 2π

f
.

We state some identities. Let k be a given any integer. The generalized poly-Bernoulli polynomials can be
expressed in terms of poly-Bernoulli polynomials:

Theorem 2.1 For any n ≥ 0,

B(k)
n,χ(x) = fn−1

f∑
a=1

χ(a)B(k)
n

(
x+ a

f
− 1

)
.

In particular,

B(k)
n,χ = fn−1

f∑
a=1

χ(a)B(k)
n

(
a

f
− 1

)
.

An explicit formula for B(k)
n,χ(x) is given as follows:

Theorem 2.2 (Explicit formula) For any n ≥ 0,

B(k)
n,χ(x) =

1

f

n∑
m=0

1

(m+ 1)k

m∑
j=0

(−1)j
(
m

j

) f∑
a=1

χ(a) (x+ a− (j + 1)f)
n
.

The generalized poly-Bernoulli polynomials satisfy the following difference identity:

Theorem 2.3 (Difference formula) For any n ≥ 0,

B(k)
n,χ(x+ f)−B(k)

n,χ(x) =
1

f

n∑
m=0

1

(m+ 1)k

m+1∑
j=0

(−1)j
(
m+ 1

j

) f∑
a=1

χ(a)(x+ a− jf)n.

We provide recurrence formulae of two types.

Theorem 2.4 (Recurrence formula 1) For any n ≥ 0,

B(k)
n,χ(x) =

n∑
m=0

B
(k−1)
n−m

(
n

m

) m∑
l=0

(−1)m+lfn−l

n− l + 1

(
m

l

)
Bl,χ(x).

Theorem 2.5 (Recurrence formula 2) We have

B
(k)
0,χ =

{
1 (χ = χ0)
0 (χ 6= χ0)

,

B
(k)
1,χ =

1

2

(
B

(k−1)
1,χ (x) + (x− f)B

(k)
0,χ +

1

f

f∑
a=1

χ(a)a

)
,

B(k)
n,χ(x) =

1

n+ 1

{
B(k−1)
n,χ (x)−

n−1∑
m=1

fn−m
(

n

m− 1

)
B(k)
m,χ(x)

+(x− f)

n−1∑
m=0

fn−1−m
(
n

m

)
B(k)
m,χ(x)

+fn−2
n−1∑
m=0

(
n

m

) f∑
a=1

χ(a)aB(k)
m

(
x+ a

f
− 1

)}
.

(n ≥ 2)
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For m,n ≥ 0, we define the following symmetrized Bernoulli polynomial of two variables:

C(−m)
n,χ (x, y) =

1

fn

f∑
b=1

χ(b)

m∑
k=0

(
m

k

)
B(−k)
n,χ (x)

(
y + b

f
− 1

)m−k
.

Theorem 2.6 (Symmetric formula) For m,n ≥ 0, we have

∞∑
n=0

∞∑
m=0

C(−m)
n,χ (x, y)

tn

n!

um

m!
=

∞∑
n=0

∞∑
m=0

C(−n)
m,χ (y, x)

tn

n!

um

m!

=
1

f

f∑
a=1

f∑
b=1

χ(a)χ(b)e(x+a)t/fe(y+b)u/f

et + eu − et+u
.

As a corollary, we have the duality property for C(−m)
n,χ (x):

Theorem 2.7 (Duality) For m,n ≥ 0,

C(−m)
n,χ (x, y) = C(−n)

m,χ (y, x).

We deduce a closed formula from Theorem 1.6.

Theorem 2.8 (Closed formula) For m,n ≥ 0,

C(−m)
n,χ (x, y)

=
1

f

min(n,m)∑
j=0

(j!)2
f∑
a=1

f∑
b=1

(
n∑
k=0

χ(a)

(
x+ a

f

)n−k(
n

k

){
k
j

})( m∑
l=0

χ(b)

(
y + b

f

)m−l(
m

l

){
l
j

})
,

where {
n
m

}
=

(−1)m

m!

m∑
l=0

(−1)l
(
m

l

)
ln

is the Stirling number of the second kind.

3 Arakawa-Kaneko L-functions
Firstly, we overview Arakawa-Kaneko zeta functions (cf. [3], [4].) Let k ∈ Z. The Arakawa-Kaneko zeta function
Zk(s, x) is by definition the Laplace-Mellin integral

Zk(s, x) =
1

Γ(s)

∫ ∞
0

Lik(1− e−t)
1− e−t

e−xtts−1dt.

It is defined for Re(s) > 0 and x > 0 if k ≥ 1, and for Re(s) > 0 and x > |k| + 1 if k ≤ 0. If x = 1, then
Zk(s, x) reduces to the original Arakawa-Kaneko zeta function introduced in [1]. The function s 7→ Zk(s, x) has
analytic continuation to an entire function on the whole complex s-plane and has

Zk(−n, x) = (−1)nB(k)
n (−x),

for all non-negative integers n and x > 0. Here B(k)
n (x) (n = 0, 1, 2, . . .) are the poly-Bernoulli polynomials. In

addition, this zeta function can be rewritten to have an explicit formula as follows. For k ∈ Z,

Zk(s, x) =

∞∑
m=0

1

(m+ 1)k

m∑
j=0

(−1)j
(
m

j

)
1

(x+ j)s
.

Note that for k = 1 we have

Z1(s, x) = sζ(s+ 1, x),

where ζ(s, x) is the Hurwitz zeta function.

3



We next introduce Arakawa-Kaneko L-functions. For k ∈ Z, the L-series attached to χ are given by

Lk(s, x, χ) =
1

Γ(s)

∫ ∞
0

1

f

f∑
a=1

χ(a)
Lik(1− e−ft)

1− e−ft
e−(x−a+f)tts−1dt,

the Laplace-Mellin integral. It is defined for Re(s) > 0 and x > 0 if k ≥ 1, and for Re(s) > 0 and x > |k| + 1
if k ≤ 0. The L-series Lk(s, x, χ) are called the Arakawa-Kaneko L-functions. It is easy to see that the Arakawa-
Kaneko L-functions include the Arakawa-Kaneko and Hurwitz zeta functions. To be exact, for the trivial Dirichlet
character χ0,

Lk(s, x, χ0) = Zk (s, x) .

If furthermore k = 1, then we have

L1(s, x, χ0) = sζ(s+ 1, x).

We state the fundamental properties of Lk(s, x, χ).

Theorem 3.1 For k ∈ Z, we have

Lk(s, x, χ) = f−s−1
f∑
a=1

χ(a)Zk

(
s,
x− a
f

+ 1

)
.

Theorem 3.2 (Interpolation formula) The function s 7→ Lk(s, x, χ) has analytic continuation to an entire func-
tion on the whole complex s-plane and for any positive integer n, we have

Lk(−n, x, χ) = (−1)nB(k)
n,χ(−x).

Furthermore Lk(s, x, χ) satisfies the functional equation

∂

∂x
Lk(s, x, χ) = −sLk(s+ 1, x, χ).

As an immediate consequence of these theorems and an explicit formula for Zk(s, x), we get an explicit formula
for Lk(s, x, χ) as follows. For k ∈ Z,

Lk(s, x, χ) =
1

f

∞∑
m=0

1

(m+ 1)k

m∑
j=0

(−1)j
(
m

j

) f∑
a=1

χ(a)

(x− a+ (j + 1)f)s
.

Theorem 3.3 (Difference identity) The Arakawa-Kaneko L-functions satisfy the following difference identity

Lk(s, x+ f, χ)− Lk(s, x, χ) =

1

f

∞∑
m=0

1

(m+ 1)k

m+1∑
j=0

(−1)j+1

(
m+ 1

j

) f∑
a=1

χ(a)

(x− a+ (j + 1)f)s
.

Theorem 3.4 (Raabe’s identity) For s ∈ C with s 6= 1 we have∫ f

0

Lk(s, x+ w,χ) dw

= − 1

s− 1
(Lk(s− 1, x+ f, χ)− Lk(s− 1, x, χ))

=
1

s− 1

1

f

∞∑
m=0

1

(m+ 1)k

m+1∑
j=0

(−1)j
(
m+ 1

j

) f∑
a=1

χ(a)

(x− a+ (j + 1)f)s−1
.

We remark that combining Theorem 3.2 and Theorem 3.4, we deduce Raabe’s type formulae for generalized poly-
Bernoulli polynomials, Arakawa-Kaneko and Hurwitz zeta functions.
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