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1 Introduction

In this paper, we are interesting by the study of special values of The Jacobi forms in two
variables DL(z;ϕ). We introduce shifted elliptic Dedekind sums in terms of values of these
Jacobi forms and we state and prove their Dedekind reciprocity Laws. Furthermore, in this
study, we show how to use our techniques to obtain a closed new reciprocity law for the so-called
Shifted-elliptic Dedekind-Sczech Sums 1.0.1. It allows us to obtain a strong generalization
of Sczech’s result [23].

In a concise way, we introduce the following main object of our study

1
ak

∑
t∈L/akL

∏
16j 6=k6n

DL

(
ϕj
āj

; aj
zk + t

ak
− zj

)
(1.0.1)

We called them the Shifted-elliptic Dedekind Sums. We state and prove Dedekind reci-
procity laws for these sums.

Let E1(z;L) be the first Eisenstein serie. As an application of our study, we show how to
use our techniques to obtain a closed new reciprocity law for the following “Shifted-elliptic
Dedekind-Sczech Sums”1.0.2. Precisely, we deduce reciprocity laws for

1
ak

∑
t∈L/akL

∏
16j 6=k63

E1

(
aj
zk + t

ak
− zj ;L

)
(1.0.2)

Then we get a strong generalization to Sczech’s result [23].

Basically, it’s well known that the classical Dedekind sums appears in various areas. In ana-
lytic and algebraic number theory, topology, differential geometry, algebraic and combinatorial
geometry, algorithmic complexity ... etc. See [2, 14, 15, 16, 20, 24].

From our main result we can get several applications in the following areas: Study the Eisen-
stein Cohomology of the groups SL2(OK) where K is an imaginary quadratic field, we establish
connection between special values of Hecke L-functions at s = 1 associated to some quadratic
forms, closely related to quadratic residue symbols (i.e we can connect Legendre symbol ) to
elliptic Dedekind sums. Finally we give recent result concerning the density of elliptic Dedekind
sums.

In this paper several questions which are formulated are only partially solved and thus they
remain still opened.
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2 Special properties of Jacobi forms DL(z; ϕ)

2.1 Definitions and notations

Let τ ∈ H = {z ∈ C : Im(z) > 0} =upper half plane. We use the following notations. For all
ϕ ∈ C, we can write ϕ = ϕ1τ + ϕ2, (ϕ1, ϕ2) ∈ R2, because {τ, 1} is an R-basis of C. We put

e(z) = e2πiz, qτ = e(τ).(2.1.3)

We recall the Jacobi’s Theta function

θτ (z) =
∑
n∈Z

e

(
1
2

(n+
1
2

)2τ + (n+
1
2

)(z +
1
2

)
)

(2.1.4)

By the well known Jacobi Triple product formula, we can rewrite Theta function as follows

θτ (z) = iq1/8
τ (e(z/2)− e(−z/2))

∞∏
n=1

(1− qnτ ) (1− qnτ e(z)) (1− qnτ e(−z))(2.1.5)

In this paper we need to define the following R-alternating bilinear form

EL(z, ϕ) =
z̄ϕ− zϕ̄
2iIm(τ)

(2.1.6)

is a symplectic form on C associated to the complex lattice L = Zτ + Z.

2.2 Eisenstein series and Jacobi forms of two variables DL(z, ϕ).

We fix a complex Lattice L. Eisenstein series, associated to Lattice L, are defined by

Ek(z, L) = lim
s→0+

∑
w∈L

(e)
(w + z)−k|w + z|−s, k = 1, ...(2.2.7)

the sum being over ω ∈ L if z 6∈ L and ω ∈ L\{−z} if z ∈ L. Where
(e)∑
ω∈L

is the Eisenstein

summation equal to

(e)∑
ω∈L

= lim
M,N→∞

m=M∑
m=−M

n=N∑
n=−N

, Where ω = mτ + n.(2.2.8)

For ϕ ∈ C, we write
ϕ = ϕ1τ + ϕ2, (ϕ1, ϕ2) ∈ R2.

We associate to L a Jacobi form of two variables

DL(z;ϕ) =
1
ω2
e (zϕ1)

θ′τ (0)θτ (z + ϕ)
θτ (z) θτ (ϕ)

(2.2.9)
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2.3 Properties of DL(z; ϕ).

We quote from [6] the following fondamental properties of DL(z;ϕ).

Theorem 2.3.1 (Properties of DL(z;ϕ))

i) DL is meromorphic in the first variable z, and only real analytic on the second variable ϕ.

ii) Homogeneity: DL is homogenous of degre −1 i.e

DλL(λz;λϕ) = λ−1DL(z;ϕ), ∀λ ∈ C\{0}.

iii) Symmetry: we have the following symmetry

DL(−z;−ϕ) = −DL(z;ϕ).

iv) ( Periodicity of DL(z;ϕ)):{
DL(z;ϕ+ ρ) = DL(z;ϕ)
DL(z + ρ;ϕ) = e(EL(ρ, ϕ))DL(z;ϕ)

, ∀ρ ∈ L

v) (Functional Equation):

DL(z;ϕ)e(−EL(z, ϕ)) = DL(ϕ; z).

vi) (Modularity): DL is a Jacobi modular form for SL2(Z), with index 0 and weight 1 i.e

Daτ+b
cτ+d

(
z

cτ + d
;

ϕ

cτ + d

)
= (cτ + d)Dτ (z;ϕ),∀

(
a b
c d

)
∈ SL2(Z)

where
Dτ (z;ϕ) := DLτ (z;ϕ), Lτ = Zτ + Z, τ ∈ H.

vii) The Jacobi form DL(z, ϕ) have the following Laurent expansion

Dτ (z;ϕ) =
∑
m>0

B̄m(ϕ;L)
(2πi)m

m!
zm−1

Where 
B̄0(ϕ;L) = 1,
B̄1(ϕ;L).2πi = E1(ϕ;L),
B̄2(ϕ;L) (2πi)2

2! = 1
2E1(ϕ,L)2 − 1

2℘L(ϕ),

B̄m(ϕ;L) =


− m!

(2πi)m

(e)∑
ω∈L
ω 6=0

e(EL(ω, ϕ))
ωm

If m > 1

1 If m = 0

Eisenstein-Kronecker series of Weight m.
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viii) (at Cusp ∞)
For z ∈ R\Z, ϕ = ϕ1τ + ϕ2 with ϕ1 6∈ Z. Then

1
2πi

lim
Im(τ)→∞

Dτ (z, ϕ) =
e(z{ϕ1})
e(z)− 1

ix) ( Distribution Formulas for DL(z;ϕ)) :

For L, Λ complex lattices such that : L ⊂ Λ, [Λ : L] = l. We have:∑
t̄∈Λ/L

DL(lz;ϕ+ t) = DΛ(z;ϕ).

In the next section we study the properties of B̄m(ϕ,L) coefficents of Laurent expansion of
DL(z, ϕ) in the first variable z.

3 Elliptic Bernoulli functions B̄m(ϕ, L) and their fondamental
properties.

In the following theorem we precise the most important properties of elliptic Bernoulli numbers
and functions.

Theorem 3.0.2 (properties of B̄m(ϕ,L))

i) (Homogeneity) For each m ∈ N∗, B̄m(ϕ,Lτ ) is homogenous of degre −m i.e

B̄m(λϕ, λL) = λ−mB̄m(ϕ,L), ∀λ ∈ C\{0}.

ii) (Periodicity):

B̄m(ϕ+ ρ;L) = B̄m(ϕ;L), ∀ρ ∈ L(3.0.10)

iii) (Symmetry):
B̄m(−ϕ;L) = (−1)m−1B̄m(ϕ;L)

iv) (Modularity): We let B̄m(ϕ, τ) := B̄m(ϕ,Lτ ).
B̄m(ϕ, τ) is a modular form for SL2(Z), with index 0 and weight m i.e

B̄m

(
ϕ

cτ + d
;
aτ + b

cτ + d

)
= (cτ + d)mB̄m(ϕ; τ),

v) Bernoulli functions: For all ϕ ∈ C\Zτ + Z, we have

Re
(

lim
Im(τ)→∞

Bm

(
ϕ; Zτ + Z

))
= Bm({ϕ1})
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vi) Elliptic Raabe Formula

For L, Λ complex lattices such that : L ⊂ Λ. Then, we have

∑
t̄∈Λ/L

B̄m(ϕ+ t;L) = [Λ : L]1−mB̄m(ϕ; Λ),∀ ϕ ∈ C\Λ and ∀ m > 1

and ∑
t̄∈Λ/L\{0̄}

dm(t;L) = Em(0;L)− [Λ : L]1−mEm(0; Λ),m > 1

In particular, for Λ = 1
ωL we have

∑
t̄∈Λ/L\{0}

dm(t;L) =
(

1− |ω|
2

ω̄m

)
Em(0, L),∀m > 2

where
dm(ϕ;L) = B̄m(ϕ;L)

(2πi)m

m!
.

Proof:

This theorem 3.0.2 is a direct consequence of the theorem 2.3.1. The idea consists in extract-
ing the coefficients of Laurent series of the Jacobi forms in the results of the previous theorem
2.3.1.

4 Dedekind Sums.

This paragraph consists of two parts. In the first one, we regroup together the significant results
on the classical Dedekind sums. In the second part of this section, we clarify the problems
connected to the elliptic Dedekind sums (or special values of Jacobi forms). We formulate the
problems similar to the classical case and give some new results.

4.1 Classical Dedekind sums: An overview

The Bernoulli numbers are defined by the serie

z

ez − 1
=
∞∑
n=0

Bn
zn

n!
, |z| < 2π ,

The Bernoulli polynomials are similarly defined by the generating function

zezx

ez − 1
=
∞∑
n=0

Bn(x)
zn

n!
, |z| < 2π .

To recall the famous Dedekind reciprocity Law we define:
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B̄n(x) :=
{

0 if x ∈ Z, n = 1
Bn({x}) Otherwise .

and

B̄1(x) =
{
{x} − 1

2 if x 6∈ Z
0 Otherwise .

Let a, b ∈ N∗. The classical Dedekind sums is

s(a, b) :=
∑

k mod b

B̄1

(
ka

b

)
B̄1

(
k

b

)
;

By discrete Fourier series of the sawtooth function (see, for example, [?, p. 14]) we obtain

B̄1

(
n

p

)
=
((

n

p

))
=

i

2p

p−1∑
k=1

cot
(
πk

p

)
e2πikn/p ,(4.1.11)

Now, we can rewrite s(a, b) in terms of cotangents:

s(a, b) =
1
4b

b−1∑
k=1

cot
πka

b
cot

πk

b
.

Then, we obtain two representations of s(a, b) and provides us various generalizations of the
Dedekind sums in the litterature.
In the next theorem, we state the Dedekind reciprocity law

Theorem 4.1.1 (Dedekind-1880)
Let a, b ∈ N∗ coprime. then

s(a, b) + s(b, a) = −1
4

+
1
12

(
a

b
+

1
ab

+
b

a

)
.

Since s(−a,−b) = s(a, b), we can define s(ab ) = s(a, b) for an irreductible fraction a
b and get a

function on the rational field Q. Hickerson in [13] has proved the following.

Theorem 4.1.2 (Hickerson-1977) The set
{(

a
b , s(

a
b )
)

: ab ∈ Q
}

is dense in the plane.

Now, we state the problems for generalized classical Dedekind sums:
Let a, a1, . . . , an be positive integers, m1, . . . ,mn nonnegative integers, and z1, . . . , zn com-

plex numbers. Study the arithmetic properties of the following two Shifted classical
Dedekind Sums

Sums of first Kind :
∑

k mod a

n∏
j=1

B̄mj

(
kaj
a

+ zj

)
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Sums of second Kind:
∑

k mod a

n∏
j=1

cot(mj) π

(
kaj
a

+ zj

)

We have here two kinds of generalized classical Dedekind sums.
In general, these representations are differents, but there are the same in the case stutied by
Dedekind himself ( corresponding to n = 2).
Essentially, the problem considered here is to give a generalized Dedekind reciprocity laws for
these two sums and get their applications in differents areas in mathematics.
Several mathematicians studied the Dedekind reciprocity Laws for these two sums. In partic-
ular: Apostol [1], Beck [7], Berndt [8], Carlitz [9], Dieter [10], Meyer [22], Rademacher [21],
Halbritter [11], Hall- Wilson-Zagier [12, 25] and many others mathematicians.

On the other hand the above density problem remains still opened concerning the study of
two differents kinds of Dedekind two sums.
Now, I am going to clarify the wellknown results on the Dedekind reciprocity laws of them. The
above reciprocity law problem is solved:

i) partially for the sums of the first kind only for n = 2 and arbitrary m1,m2. See [12]

ii) On the other hand for the sums of the second kind is solved completely for arbitrary n,
m1, ...,md. See [7].

These results are formulated in the following two theorems.

We set

S(−→Ak,
−→
Xk,
−→
Rk; τ) :=

ak−1∑
t=0

∏
16j 6=k6n

B̄rj

(
aj
xk + t

ak
− xj

)
Now, we consider the generating function of these sums

S(−→Ak,
−→
Xk,
−→Φk) :=

∑
−→
Rk∈Nn−1

S(−→Ak,
−→
Xk,
−→
Rk; τ)

r1! . . . řj ! . . . rn!

∏
16j 6=k6n

(
ϕj
aj

)rj−1

Now, for n = 3 we can formulate the main theorem in [12] as follows

Theorem 4.1.3 (Hall-Wilson-Zagier-1995) Let a1, a2, a3 be three positive integers which
have no common factor,−→A = (a1, a2, a3),x1, x2, x3 three real numbers, and ϕ1, ϕ2, ϕ3 three vari-
ables with sum zero. Then

3∑
k=1

S(−→Ak,
−→
Xk,
−→Φk) =

{
−1

4 If −→X ∈ R−→A + Z3

0 otherwise.

Where −→A = (a1, a2, a3),−→X = (x1, x2, x3)
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In order to state the next theorem, we denote by cot(m) the m’th derivative of the cotangent
function and let a1, . . . , an ∈ N , m1, . . . ,mn ∈ N, x1, . . . , xn are real numbers. Beck in his paper
[7] study the following sums

C

 ak a1 · · · âk · · · an

mk m1 + l1 · · · m̂k + lk · · · mn + ln
xk x1 · · · x̂k · · · xn

 :=
1

akmk+1

∑
t mod ak

∏
16j 6=k6n

cot(mj) π

(
aj
t+ xk
ak

− xj
)

We quote from [7] the result

Theorem 4.1.4 (Beck-2003)
Let a1, . . . , an ∈ N , m1, . . . ,mn ∈ N, x1, . . . , xn are real numbers. Assuming that

ajxk − akxj 6∈ Zaj + Zak, ∀ 1 6 j 6= k 6 n.

Then, we have the following Dedekind reciprocity Law

n∑
k=1

(−1)mkmk!
∑

l1,...,
clk,...,ln>0

l1+...+clk+...+ln=mk

al11 · · · â
lk
k · · · a

ln
n

l1! · · · l̂k! · · · ln!
C

 ak a1 · · · âk · · · an

mk m1 + l1 · · · m̂k + lk · · · mn + ln
xk x1 · · · x̂k · · · xn



=

{
(−1)

n−1
2 if all mk = 0 and n odd

0 otherwise.

4.2 Elliptic Dedekind sums: Problems and results.

Now, we precise the elliptics problem for the multiple elliptic Dedekind sums.
Let L = Zτ + Z be a complex lattice we denote by OL := {x ∈ C : xL ⊂ L}. Let a1, . . . , an

be elements in OL , the ai being pairwise coprime , z1, . . . , zn ∈ C and ϕ1, · · · , ϕn be complex
variables.
We study the arithmetical properties of the following elliptic Dedekind sums

Elliptic sums of first Kind:
∑

k̄∈L/aL

n∏
j=1

B̄mj

(
aj
k + z0

a
+ zj ;L

)

Elliptic sums of second Kind:
∑

k̄∈L/aL

n∏
j=1

D
(mj)
L

(
ϕj ; aj

k + z0

a
+ zj

)
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In my paper [6], recently i proved the Dedekind reciprocity law for the elliptic Dedekind
sums of the first kind.
In this paper we study the reciprocity law for the shifted-Dedekind elliptic sums in terms of
special values of Jacobi forms (i.e elliptic sums of second kind) for mj = 1, ∀j = 1, ..., n.

In the last section of this paper, we treat the other interesting questions connected to these
sums.

Now, we state the following reciprocity laws

Theorem 4.2.1
Let a1, . . . , an be elements in OL, z1, . . . , zn complex numbers and ϕ1, ..., ϕn complex variables

such that
n∑
j=1

ϕj = 0.

We obtain the following reciprocity laws

i) If we assume that
ajzk − akzj 6∈ ajL+ akL, ∀ , 1 6 j 6= k 6 n,

Then

n∑
k=1

1
ak

∑
t∈L/akL

∏
16j 6=k6n

DL

(
ϕj
āj

; aj
zk + t

ak
− zj

)
= 0

ii) More general, for fixed 1 6 l 6 n such that: z1 = · · · = zl = 0
we assume that

ajzk − akzj 6∈ ajL+ akL

for all 1 6 j 6= k 6 n such that
{j, k} 6⊂ {1, · · · , l}

then we obtain

n∑
k=1

1
ak

′∑
t

∏
16j 6=k6n

DL

(
ϕj
āj

; aj
zk + t

ak
− zj

)
= −Res

 ∏
16j6n

DL

(
ϕj
āj

; ajz − zj
)

; z = 0


where

′∑
t

=



∑
t∈L/akL
t6=0

if 1 6 k 6 l

∑
t∈L/akL

Otherwise

We will establish in the following that our theorem 4.2.1 contains and generalized the Sczech’s
result [23].
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Theorem 4.2.2 Let a1, a2, a3 be three elements in OL being pairwise coprime, z1, z2, z3 complex
numbers.

Then, we have

n=3∑
k=1

1
ak

∑
tmod(akL)

∏
16j 6=k6n

E1

(
aj
zk + t

ak
− zj ;L

)



= ā1

ā2ā3
d2(a2z3 − a3z2; L) + ā2

ā1ā3
d2(a1z3 − a3z1; L) + ā3

ā2ā1
d2(a2z1 − a1z2; L) If

ajzk − akzj 6∈ L,∀1 6 j 6= k 6 n,

= ā1

ā2ā3
d2(a2z3; L) + ā2

ā1ā3
d2(a1z3; L)− ā3

ā2ā1
G2(L)− a3

a1a2
E2(z3; L) If

z1 = z2 = 0 and ajz3 6∈ ajL + a3L,∀j = 1, 2, 3

= G2(L)I
(

a1

a2a3
+ a2

a1a3
+ a3

a1a2

)
If z1 = z2 = z3 = 0.

where I(z) = z− z̄ and dj(ϕ;L) = (2πi)j

j! Bj(ϕ;L), ∀ j ∈ N and G2k(L) =
∑

ω∈L\{o}

1
|ω|2k

,∀ k > 2

are the classical Eisenstein series ( or numbers).

Remark 4.2.3
The result in the last case of our corollary 4.2.2, represent an Homogenization of the main

Theorem of Sczech in [23]. More precisely, for a1 = a, a2 = c coprime and a3 = 1, we get exactly
the Sczech’s result in [23].

5 Proofs of Theorems 4.2.1 and 4.2.2

We consider the function

F (z,−→Φ ,−→A ) =
n∏
j=1

DL

(
ajz − zj ;

ϕj
āj

)
Where

−→
A = (a1 . . . , an) ,−→Φ = (ϕ1, . . . , ϕn)

11



Our hypothesis is:

n∑
j=1

ϕj = 0(5.0.12)

and we assume that

ajzk − akzj 6∈ ajL+ akL, ∀ j 6= k(5.0.13)

Otherwise if there exists 2 6 l 6 n such that:

z1 = · · · = zl = 0,

we assume that

ajzk − akzj 6∈ ajL+ akL, ∀ 1 6 j 6= k 6 n with {j, k} 6⊂ {1, · · · , l}.(5.0.14)

Now, we have the following interesting properties of F

Proposition 5.0.4 The function

F : z → F (z,−→Φ ,−→A )

i) F is meromorphic, with poles only at

z =
zk + t

ai
, t ∈ L

ii) Under the conditions 5.0.12 and 5.0.13 all the poles of F have order 1.

iii) Under the conditions 5.0.12 and 5.0.14 all the poles, except for z = 0 modulo L, of F have
order 1, otherwise the order is l for the pole at z = 0 modulo L.

iv) F is periodic with periods the lattice L i.e

F (z + ρ,
−→Φ ,−→A,−→M) = F (z,−→Φ ,−→A,−→M),∀ρ ∈ L

Then, to prove the theorem 4.2.1 we use Liouville residue theorem for the elliptic function F
with periods the Lattice L, as follows:
For the proof of our this theorem we have the first hypothesis

n∑
j=1

ϕj = 0

Now, we have to consider two different cases

Case 1: We assume that

12



ajzk − akzj 6∈ ajL+ akL, ∀ 1 > j 6= k > n.(5.0.15)

Then, by Liouville’s theorem we obtain

n∑
k=1

∑
t∈L/akL

Res
(
F (z,−→Φ ,−→A )dz; z =

zk + t

ak

)
= 0

n∑
k=1

1
ak

∑
t∈L/akL

e

(
EL(t,

ϕk
āk

)
) ∏

16j 6=k6n
DL

(
aj
zk + t

ak
− zj ;

ϕj
āj

)
= 0

Now by using the functional equation of DL(z, ϕ) and the condition 5.0.12 we obtain

n∑
k=1

1
ak

∑
t∈L/akL

∏
16j 6=k6n

DL

(
ϕj
āj

; aj
zk + t

ak
− zj

)
= 0

This proves the first part of Theorem 4.2.1.

Case 2: Now we fix 1 6 l 6 n such that: z1 = · · · = zl = 0 and we assume that

ajzk − akzj 6∈ ajL+ akL, ∀ 1 > j 6= k > n.

The proof is similar as below, except at the pole at z = 0 modulo L because it has order
l, of the function z → F (z,−→Φ ,−→A ). Precisely, in the first case we have no pole at z = 0, but
here we have a pole at z = 0 of order equal to l. Then again by using Liouville residue theo-
rem and functional equation of DL(z;ϕ) we obtain the desired remaing part of Theorem 4.2.1 �

Proof of Theorem 4.2.2:
Here we must consider three different cases

Case 1: We assume that

ajzk − akzj 6∈ ajL+ akL, ∀ 1 6 j 6= k 6 3

We use the following Laurent expansion of Jacobi forms

DL

(
ϕj
āj

; aj
zk + t

ak
− zj

)
=
āj
ϕj

+ d1

(
aj
zk + t

ak
− zj ;L

)
+ d2

(
aj
zk + t

ak
− zj ;L

)
ϕj
āj

+ ..., for j = 1, 2, 3.(5.0.16)

Now, we compute the product∏
16j 6=k63

DL

(
ϕj
āj

; aj
zk + t

ak
− zj

)

13



as a serie in terms of variables ϕ1, ϕ2 and ϕ3.
Then, we obtain

n=3∑
k=1

1
ak

∑
t∈L/akL

∏
16j 6=k6n

DL

(
ϕj
āj

; aj
zk + t

ak
− zj

)
=(5.0.17)

n=3∑
k=1

1
ak

∑
tmod(akL)

∏
16j 6=k6n

E1

(
aj
zk + t

ak
− zj ;L

)
+

ā1

ā2ā3

ϕ2 + ϕ3

ϕ1
d2(a2z3 − a3z2;L) +

ā2

ā1ā3

ϕ1 + ϕ3

ϕ2
d2(a1z3 − a3z1;L) +

ā3

ā1ā2

ϕ1 + ϕ2

ϕ3
d2(a1z2 − a2z1;L)

+monomial terms of total degre greater than 1 in terms of ϕj , ϕ̄k, j, k = 1, 2, 3.

Now, by using the first part of Theorem 4.2.1 we obtain that coefficient, of our serie in 5.0.19,
is equal to zero. Now, the first coefficient here is zero implies that

n=3∑
k=1

1
ak

∑
tmod(akL)

∏
16j 6=k6n

E1

(
aj
zk + t

ak
− zj ;L

)
=

ā1

ā2ā3
d2(a2z3 − a3z2;L) +

ā2

ā1ā3
d2(a1z3 − a3z1;L) +

ā3

ā2ā1
d2(a2z1 − a1z2;L)

This represent the case 1 of our second theorem 4.2.2.

Case 2: We assume z1 = z2 = 0 and ajz3 6∈ ajL + a3L,∀j = 1, 2, 3. Now, we compute the
residue of z → F (z,−→Φ ,−→A ) at z = 0 is a pole of order 2 where

F (z,−→Φ ,−→A ) =
n=3∏
j=1

DL

(
ajz − zj ;

ϕj
āj

)
and −→

A = (a1, a2, a3) ,−→Φ = (ϕ1, ϕ2, ϕ3)

After mutatis mutandis, a laborious, computation we obtain

Res
(
F (z,−→Φ ,−→A )dz; z = 0

)
=(5.0.18)

DL

(
−z3;

ϕ3

ā3

)d1

(
ϕ2

ā2
;L
)

a1
+
d1

(
ϕ1

ā1
;L
)

a2

+
a3

a1a2
D′L

(
−z3;

ϕ3

ā3

)

14



Then

3∑
k=1

1
ak

′∑
t

∏
16j 6=k6n=3

DL

(
ϕj
āj

; aj
zk + t

ak
− zj

)
=

−DL

(
ϕ3

ā3
;−z3

)d1

(
ϕ2

ā2
;L
)

a1
+
d1

(
ϕ1

ā1
;L
)

a2

− a3

a1a2
D′L

(
−z3;

ϕ3

ā3

)
e

(
EL

(
z3,

ϕ3

ā3

))
where

′∑
t

=



∑
t∈L/akL
t 6=0

if 1 6 k 6 l

∑
t∈L/akL

Otherwise

Next, we use the Laurent expansion 5.0.16 of Jacobi forms to compute the product∏
16j 6=k63

DL

(
ϕj
āj

; aj
zk + t

ak
− zj

)
as a serie in terms of variables ϕ1, ϕ2 and ϕ3.
Then, the term corresponding to the part of total degre zero of

n=3∑
k=1

1
ak

′∑
t∈L/akL

∏
16j 6=k6n=3

DL

(
ϕj
āj

; aj
zk + t

ak
− zj

)
(5.0.19)

Hence, this term is exactly the qunatity

n=3∑
k=1

1
ak

∑
tmod(akL)

∏
16j 6=k6n

E1

(
aj
zk + t

ak
− zj ;L

)
− ā1

ā2ā3
d2(a2z3;L)− ā2

ā1ā3
d2(a1z3;L)

− ā2

a1ā3

ϕ3

ϕ2
d2(z3;L)− ā1

a2ā3

ϕ3

ϕ1
d2(z3;L) +

ā3

a1ā2

ϕ2

ϕ3

(
1− a1

ā1

)
G2(L) +

ā3

a2ā1

ϕ1

ϕ3

(
1− a2

ā2

)
G2(L)

Now, to compute the term corresponding to the part of total degre zero of

−DL

(
ϕ3

ā3
;−z3

)d1

(
ϕ2

ā2
;L
)

a1
+
d1

(
ϕ1

ā1
;L
)

a2

− a3

a1a2
D′L

(
−z3;

ϕ3

ā3

)
e

(
EL

(
z3,

ϕ3

ā3

))
we use Laurent expansion 5.0.16 and
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D′L (z;ϕ) = −E2(z;L)− π

a(L)
ϕ̄

ϕ
+ positive power of ϕ, ϕ̄.

and the functional equation of DL(z;ϕ). Therefore, the term corresponding to the part of total
degre zero of

−DL

(
−z3;

ϕ3

ā3

)d1

(
ϕ2

ā2
;L
)

a1
+
d1

(
ϕ1

ā1
;L
)

a2

− a3

a1a2
D′L

(
−z3;

ϕ3

ā3

)
e

(
EL

(
z3,

ϕ3

ā3

))

is exactly equal to

− ā2

a1ā3

ϕ3

ϕ2
d2(z3;L)− ā1

a2ā3

ϕ3

ϕ1
d2(z3;L) +

ā3

a1ā2

ϕ2

ϕ3
G2(L) +

ā3

a2ā1

ϕ1

ϕ3
G2(L) +

a3

a2a1
E2(z3;L)

Finally, we apply our theorem 4.2.1, we obtain

n=3∑
k=1

1
ak

∑
tmod(akL)

∏
16j 6=k6n

E1

(
aj
zk + t

ak
− zj ;L

)
=

=
ā1

ā2ā3
d2(a2z3;L) +

ā2

ā1ā3
d2(a1z3;L)− ā3

ā2ā1
G2(L)− a3

a1a2
E2(z3;L).

This proves the second case of our theorem 4.2.2.

Case 3: we assume z1 = z2 = z3 = 0
Now, we compute the residue of z → F (z,−→Φ ,−→A ) at z = 0 is a pole of order 3 where again

F (z,−→Φ ,−→A ) =
n=3∏
j=1

DL

(
ajz;

ϕj
āj

)
and −→

A = (a1, a2, a3) ,−→Φ = (ϕ1, ϕ2, ϕ3)

Our computation of this residue is

Res
(
F (z,−→Φ ,−→A )dz; z = 0

)
=(5.0.20)

a3

a1a2
d2

(
ϕ3

ā3
;L
)

+
a2

a1a3
d2

(
ϕ2

ā2
;L
)

+
a1

a1a3
d2

(
ϕ1

ā1
;L
)

+

1
a1
d1

(
ϕ2

ā2
;L
)
d1

(
ϕ3

ā3
;L
)

+
1
a2
d1

(
ϕ1

ā1
;L
)
d1

(
ϕ3

ā3
;L
)

+
1
a3
d1

(
ϕ2

ā2
;L
)
d1

(
ϕ1

ā1
;L
)
.
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Again, by using the following expansions near zero

d1(z, L) =
1
z
−G2(L)z − π

a(L)
z̄ +O(z2).

and

d2(z, L) = −G2(L)− π

a(L)
z̄

z
+
πG2(L)
a(L)

z̄z + o(z).

We obtain, the part of total degre zero ( in terms of ϕ1, ϕ2, ϕ3 and ϕ̄1, ϕ̄2, ϕ̄3) for the following
quantity

−Res

n=3∏
j=1

DL

(
ajz;

ϕj
āj

)(5.0.21)

is equal to

G2(L)
(

a1

a2a3
+

a2

a1a3
+

a3

a1a2

)
+

π

a(L)

(
ā3

a1a2

ϕ̄3

ϕ3
+

ā2

a1a3

ϕ̄2

ϕ2
+

ā1

a2a3

ϕ̄1

ϕ1

)
+

G2(L)
(

ā2

a1ā3

ϕ3

ϕ2
+

ā3

a1ā2

ϕ2

ϕ3
+

ā1

a2ā3

ϕ3

ϕ1
+

ā3

a2ā1

ϕ1

ϕ3
+

ā1

a3ā2

ϕ2

ϕ1
+

ā2

a3ā1

ϕ1

ϕ2

)
+

π

a(L)

(
ā2

a1a3

ϕ̄3

ϕ2
+

ā3

a1a2

ϕ̄2

ϕ3
+

ā1

a2a3

ϕ̄3

ϕ1
+

ā3

a2a1

ϕ̄1

ϕ3
+

ā1

a3a2

ϕ̄2

ϕ1
+

ā2

a3a1

ϕ̄1

ϕ2

)
Now using that

ϕ1 + ϕ2 + ϕ3 = 0

we obtain that the part of total degre zero term of

−Res

n=3∏
j=1

DL

(
ajz;

ϕj
āj

)(5.0.22)

is exactly

G2(L)
(

a1

a2a3
+

a2

a1a3
+

a3

a1a2
+

ā2

a1ā3

ϕ3

ϕ2
+

ā3

a1ā2

ϕ2

ϕ3
+

ā1

a2ā3

ϕ3

ϕ1
+

ā3

a2ā1

ϕ1

ϕ3
+

ā1

a3ā2

ϕ2

ϕ1
+

ā2

a3ā1

ϕ1

ϕ2

)
To finish our computation, we use again the Laurent expansion 5.0.16 of the Jacobi form

DL(z;ϕ). Hence, we obtain the part of total term of degre zero of

n∑
k=1

1
ak

′∑
t

∏
16j 6=k6n

DL

(
ϕj
āj

; aj
zk + t

ak
− zj

)
(5.0.23)
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it’s correspond to the following quantity

n∑
k=1

1
ak

∑
t∈L/akL\{0̄}

∏
16j 6=k6n

d1

(
aj

t

ak
;L
)

+

G2(L)
(

ā2

a1ā3

ϕ3

ϕ2
+

ā3

a1ā2

ϕ2

ϕ3
+

ā1

a2ā3

ϕ3

ϕ1
+

ā3

a2ā1

ϕ1

ϕ3
+

ā1

a3ā2

ϕ2

ϕ1
+

ā2

a3ā1

ϕ1

ϕ2

)

−G2(L)
(

ā2

ā1ā3

ϕ3

ϕ2
+

ā3

ā1ā2

ϕ2

ϕ3
+

ā1

ā2ā3

ϕ3

ϕ1
+

ā3

ā2ā1

ϕ1

ϕ3
+

ā1

ā3ā2

ϕ2

ϕ1
+

ā2

ā3ā1

ϕ1

ϕ2

)
Finally, we now by theorem 4.2.1, that the quantities 5.0.22 and 5.0.22 are the same. Then,
there parts of total degre zero are also the same. The above compuation implies that

n=3∑
k=1

1
ak

∑
tmod(akL)

∏
16j 6=k6n

E1

(
aj

t

ak
;L
)

=

G2(L)
(

a1

a2a3
+

a2

a1a3
+

a3

a1a2
− ā1

ā2ā3
− ā2

ā1ā3
− ā3

ā1ā2

)
Thus we obtain our theorem 4.2.2. �

6 Applications and questions

In this section we give some known applications of Dedekind elliptic sums and we precise some
open questions related to them.

6.1 Applications

The following applications concerns only the case when n = 2 ( the number of elements a1, ..., an).
Our references for this section are [17, 19, 23]. In fact, in these papers [17, 19, 23] H. Ito and R.
Sczech studied a simplest form of our elliptic Dedekind sums and give some intersting applica-
tions.

Let K = Q,Q(
√
D), D negative integer.

Put

D(a1, a2) :=
1
a2

∑
tmod(a2L)

E1

(
a1

t

a2
;L
)
E1

(
t

a2
;L
)

Let A =
(
a1 a3

a2 a4

)
in SL2(OK) We define the function

Φ : A 7→
{
E2(0)a1+a4

a2
−D(a1, a2) If a2 6= 0

E2(0)a3
a4

Otherwise
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In 1984 R. Sczech in his paper [23] proved the following result

Theorem 6.1.1 (Eisenstein Cohomology) Φ is a group morphism: (SL2(OK),×)→ (C,+).
Non trivial iff K 6= Q,Q(

√
−1),Q(

√
−3).

Then, we obtain a cocycle in H1(SL2(OK),C) it represented Eisenstein cohomology class of

SL2(OK) For A =
(
a1 a3

a2 a4

)
in SL2(OK) with a1 + a4 6= 0,±1,±2. Then a2X

2 + (a4− a1)X −

a2 = 0 has two distincts solutions α, α′ in C. We define the quadratic form

Q(m,n) = (mα+ n)(mα′ + n)

satisfies
Q((m,n)A) = Q(m,n)

Then A operates on L = OK Define the Hecke L-function

L(s,A) =
′∑

(m,n)

Q(m,n)
Q(m,n)

,Re(s) >
3
2
.

In 1987 H. Ito proved the result [17]

Theorem 6.1.2 (Values of Hecke L-function) Let ε = a3α+ a4. Then

Φ(A) = sgn (log|ε|) .(α− α′).L(1, A)

Now, we set Ψ(A) = Φ(A)√
DE2(0)

In 1990 H. Ito proved in [18] the following result

Theorem 6.1.3 (Quadratic residues symbols) There exists explicit group morphism

χ : (SL2(OK),×)→ (Z/8Z,+)

such that
Ψ(A) = χ(A)mod(8OK)

Then we get cohomology class in H1 (Γ(8),Z/2Z).

In 2004 H. Ito again proved the following result [19]

Theorem 6.1.4 (Density of elliptic Dedekind sums) If K is euclidian 6= Q,Q(
√
−1),Q(

√
−3).

Then the set {(
a1

a2
,
D(a1, a2)√
DE2(0)

)
:
a1

a2
∈ K

}
is dense in the space C× R.
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6.2 Open questions.

The following questions are not solved yet:

i) Find the similar theorems as 6.1.1, 6.1.2, 6.1.3 and 6.1.4 for multiple elliptic Dedekind
sums?

ii) Similar question for the classical multiple Dedekind sums ?

iii) Generalized these results to quantum modular forms?

iv) Give geometric or topological interpretation of these results?
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