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1 Introduction

The aim of this exposition is to generalize poly-Bernoulli numbers and Arakawa-Kaneko zeta functions that are
introduced and studied in [1], [2], [5]. Our work is a continuation of the previous work [3], which introduces and
discusses poly-Bernoulli polynomials and generalized Arakawa-Kaneko zeta functions. It should be noted that [4]
and [6] treat the topics relevant to our results.

2 Generalized poly-Bernoulli polynomials

Throughout this report, let x be a Dirichlet character with conductor f = f,. The generalized Bernoulli numbers
By € Q(x(1), x(2), ...) associated to x (m = 0,1,...) are defined by the generating function
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The main interest of these numbers is that they give the values at negative integers of Dirichlet L-series: if

L(s,x) = &VZ) (Re(s) > 1) is the L-series attached to , then we have the formula
"
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The main purpose of this section is to introduce and investigate the generalized poly-Bernoulli polynomials and
numbers. These polynomials include the generalized Bernoulli polynomials and numbers and the poly-Bernoulli
polynomials and numbers. Let us briefly review poly-Bernoulli polynomials ([3]). For an integer k£ € Z, put
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which is the k-th polylogarithm if & > 1, and a rational function if £ < 0. One knows that Li; (z) = —log(1 — z).
The formal power series Lix(z) can be used to define poly-Bernoulli polynomials. The polynomials Bﬁlk) (x)
(n=0,1,2,...)are said to be poly-Bernoulli polynomials if they satisfy
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It should be noted that the definition of poly-Bernoulli polynomials by Coppo-Candelpergher [4] is different from
ours. For any n > 0, we have
(—)"B{Y (—2) = Bu(a),

where B,,(z) are the classical Bernoulli polynomials given by
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Using a Dirichlet character, we generalize poly-Bernoulli polynomials and numbers as follows. Let k& € Z. For

a Dirichlet character x modulo f, we define generalized poly-Bernoulli polynomials Bﬁf}c(x) associated to x by
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In particular, we put B,(Lk,)( = B,S;(O) We call them generalized poly-Bernoulli numbers associated to x.

The following two identities hold:
B{\) (%) = Bn ().

If xo is the trivial Dirichlet character, then

B, (z) = B (),

n,X0

where B,, , () are the generalized Bernoulli polynomials associated to the Dirichlet character x defined by
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We state some identities. Let k£ be a given any integer. The generalized poly-Bernoulli polynomials can be
expressed in terms of poly-Bernoulli polynomials:

Theorem 2.1 For any n > 0,

In particular,

An explicit formula for By, (k) x(z) is given as follows:
Theorem 2.2 (Explicit formula) For anyn > 0,
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The generalized poly-Bernoulli polynomials satisfy the following difference identity:
Theorem 2.3 (Difference formula) For any n > 0,
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We provide recurrence formulae of two types.

Theorem 2.4 (Recurrence formula 1) For anyn > 0,

B = 3 i (1) $5 L ()

m=0 1=0
Theorem 2.5 (Recurrence formula 2) We have
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For m,n > 0, we define the following symmetrized Bernoulli polynomial of two variables:
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Theorem 2.6 (Symmetric formula) For m,n > 0, we have
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As a corollary, we have the duality property for C,({Xm) (x):
Theorem 2.7 (Duality) For m,n > 0,
C’r(lfxm) (z,y) = Cy(nf;)(y, x).
We deduce a closed formula from Theorem 1.6.

Theorem 2.8 (Closed formula) For m,n > 0,
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where

is the Stirling number of the second kind.

3 Arakawa-Kaneko L-functions

Firstly, we overview Arakawa-Kaneko zeta functions (cf. [3], [4].) Let k € Z. The Arakawa-Kaneko zeta function
Zy(s, x) is by definition the Laplace-Mellin integral

. 1 > le(l B eit) —xtys—1
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It is defined for Re(s) > Oand > 0 if kK > 1, and for Re(s) > Oand x > |k| + 1if k < 0. If © = 1, then
Z1.(s, z) reduces to the original Arakawa-Kaneko zeta function introduced in [1]. The function s — Zj (s, x) has
analytic continuation to an entire function on the whole complex s-plane and has

Zi(—n,z) = (~1)"B{P (~x),

for all non-negative integers n and « > 0. Here B,(lk) (z) (n =0,1,2,...) are the poly-Bernoulli polynomials. In
addition, this zeta function can be rewritten to have an explicit formula as follows. For k € Z,
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Note that for kK = 1 we have
Zi(s,x) = sC(s+1,x),

where ((s, x) is the Hurwitz zeta function.



We next introduce Arakawa-Kaneko L-functions. For k € Z, the L-series attached to x are given by
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the Laplace-Mellin integral. It is defined for Re(s) > 0 and z > 0if k¥ > 1, and for Re(s) > O and = > |k| + 1
if k < 0. The L-series Ly (s, z, x) are called the Arakawa-Kaneko L-functions. It is easy to see that the Arakawa-
Kaneko L-functions include the Arakawa-Kaneko and Hurwitz zeta functions. To be exact, for the trivial Dirichlet
character x,

Li(s,x,x0) = Z (s, x) .
If furthermore k£ = 1, then we have
Li(s,x,x0) = sC(s+ 1, ).
We state the fundamental properties of Lg(s, x, x).

Theorem 3.1 For k € Z, we have

Li(s,z,x) = f”Zx ( ;a+1).

Theorem 3.2 (Interpolation formula) The function s — Ly (s, x, Xx) has analytic continuation to an entire func-
tion on the whole complex s-plane and for any positive integer n, we have

Furthermore Ly(s, x, ) satisfies the functional equation
0 Li( ) Lip(s+1 )
—Li(s,x = —sLk(s T, X).
oz kNS, Ty X k » Ly X

As an immediate consequence of these theorems and an explicit formula for Z (s, ), we get an explicit formula
for L (s, z, x) as follows. For k € Z,
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Theorem 3.3 (Difference identity) The Arakawa-Kaneko L-functions satisfy the following difference identity
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Theorem 3.4 (Raabe’s identity) For s € C with s # 1 we have
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We remark that combining Theorem 3.2 and Theorem 3.4, we deduce Raabe’s type formulae for generalized poly-
Bernoulli polynomials, Arakawa-Kaneko and Hurwitz zeta functions.
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