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Abstract. The purpose of this paper is to give some new identities for the Bernoulli, the

Euler and the Genocchi numbers and polynomials.

1. Introduction

The second Author in [2] he consider the equations of the fermionic p-adic invariant inte-
gral on Zp for even d ∈ Z+. From those equations, he derive the following interesting and
valuable identities for the Euler, the Genocchi and the Bernoulli numbers and polynomials.
For d ∈ Z+, with d ≡ 0 (mod 2), he obtain the identities
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2 EULER NUMBERS AND POLYNOMIALS

where Gn,χ(x) and En,χ(x) are the Genocchi and Euler polynomials associated to Dirichlet
character χ with conductor d given by
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and for any a, b ∈ Z∗+ we have
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where Tk,χ(n) =
∑n
l=0(−1)n−1χ(l)lk.

For more details on the definitions of various polynomials cited here see [1–9].
The main purpose of this paper is to extend all these results (1), (2), (3), (4) and (5)

to arbitrary d ( even or odd). Our approach here is based on the theory of generating
functions.

2. Identities of the Bernoulli, the Euler
and the Genocchi numbers and polynomials

We have the following theorems.

Theorem 1. For n ∈ Z+, we have
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Then, we have to consider the following two cases
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where Bj(0) = Bj(0) if j 6= 1 and B1(0) = 0.
Proof of theorem 1: We consider the exponential generating function of the left hand

side of (1)

(2)

∑
n≥0

(
d−1∑
l=0

(−1)l−1Bn+1

(
l

d

))
tn

n!
=
d−1∑
l=0

(−1)l−1

∑
n≥0

Bn+1

(
l

d

)
tn

n!


=

t

et − 1

d−1∑
l=0

(−1)l−1e
lt
d

=
t

e
t
d + 1

.
(−1)det − 1
et − 1

=
1

e
t
d + 1

(
(−1)d

tet

et − 1
− t

et − 1

)
It is easy to see that

(3)
1

e
t
d + 1

=
1
2

∑
n≥0

En(0)
dn

tn

n!

and

(4)
(−1)dtet − t

et − 1
=
∑
n≥0

(
(−1)dBn(1)−Bn(0)

) tn
n!

Now, from the equalities (2), (3) and (4) we obtain
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Thus, we obtain our theorem 1.

Theorem 2. For d, n ∈ Z+, we have
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Proof of theorem 2: We use the difference formula for Bernoulli polynomials
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Now, for the rest of the theorem 2, we use the result of theorem 1.

Theorem 3.
Let d and n ∈ Z+. We have
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Proof of theorem 3: We consider the exponential generating function of the left hand
side of (5)
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Theorem 4. Let χ a Dirichlet character with conductor d ∈ Z+, we have
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Now, by camparing the coefficients of the left and right hand side of this equality (9) we
obtain the theorem 4.

For the next result we define the alternating sums
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By (11) and (12), we have
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By comparing the coefficients on the both sides of (13) and (14), we obtain the theorem
5.
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