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Abstract. The object of this paper is to introduce three new means on the basis of pro-
portions and its dual forms, study certain properties, monotonicities and new inequalities
involving them. Further, we defined weighted three new means and its dual form, its prop-
erties are stated and deduced the ten Neo-Pythagorean means, weighted Oscillatory mean,
weighted rth Oscillatory mean, also some familiar means and various other means.

1. Introduction

Quite recently, V.Lokesha and etal. [2, 8] defined the Oscillatory mean, the rth Oscillatory
mean and its dual forms, studied the properties and monotonicities and obtained inequalities
involving Power mean, Identric mean and Logarithmic mean. Further obtained the best
possible values for these inequalities. In [10], G.Toader and S.Toader explored inequalities
among Greek means. Authors obtained the relation between Greek means and various other
means in [4], this motivates us to define the three new means and its dual forms and also
their respective weighted means and its dual forms on the basis of proportions.

This article devoted to study the properties, monotonic results and new inequality of new
means. Further deduced the expressions for weighted Oscillatory mean, rth Oscillatory mean
and its dual forms, related results.

For positive numbers a and b, Logarithmic mean, Heron mean, Power mean and Identric
mean are as follows.

(1.1) L = L(a, b) =

{
a−b

ln a−ln b
, a 6= b

a , a = b

(1.2) He = He(a, b) =
a+
√
ab+ b

3

(1.3) Mr = Mr(a, b) =

{ (
ar+br

2

) 1
r , r 6= 0√

ab , r = 0

and

(1.4) I = I(a, b) =

{
e(

a ln a−b ln b
a−b −1), a 6= b

a , a = b
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All means defined above have been studied extensively by many researchers. Many re-
markable inequalities and identities have been established. For more details the interested
reader is referred to [1, 5, 6, 7, 9].

We recall some Definitions which are essential for the paper.

Definition 1.1. [8] For a,b > 0 and α ∈ (0, 1), Oscillatory mean and its dual form are as
follows;

(1.5) O(a, b;α) = αG(a, b) + (1− α)A(a, b)

(1.6) O(d)(a, b;α) = G(a, b)αA(a, b)1−α

Definition 1.2. [2] For a,b > 0 and α ∈ (0, 1), rth Oscillatory mean and its dual form are
as follows;

(1.7) O(a, b;α, r) = αMr(a, b) + (1− α)A(a, b)

(1.8) O(d)(a, b;α, r) = Mr(a, b)
αA(a, b)1−α

Definition 1.3. [10] For a,b > 0, a mean M(a, b) of a and b is defined as the function
M(a, b) : R2

+ → R+, which has the property that

(1.9) a ∧ b ≤M(a, b) ≤ a ∨ b

where a ∧ b = Min (a, b) and a ∨ b = Max (a, b)

For positive numbers a,m,b>0, then m is said to be mean of (a,b) is defined on the basis
of proportions. The following table shows ten Greek means of which four are un-named.

Sl.No. Proportion Name of Mean Notation
1 a−m

m−b = a
a

Arithmetic Mean F1 = A = a+b
2

2 a−m
m−b = m

b
= a

m
Geometric Mean F2 = G =

√
ab

3 a−m
m−b = a

b
Harmonic Mean F3 = H = 2ab

a+b

4 a−m
m−b = b

a
Contra harmonic Mean F4 = C = a2+b2

a+b

5 a−m
m−b = b

m
first kind of contra geometric Mean F5 =

a−b+
√

(a−b)2+4b2

2

6 a−m
m−b = m

a
second kind of contra geometric Mean F6 =

b−a+
√

(a−b)2+4a2

2

7 a−m
a−b = b

a
un named Mean F7 = a2−ab+b2

a

8 a−m
a−b = m

a
un named Mean F8 = a2

2a−b
9 m−b

a−b = b
a

un named Mean F9 = b(2a−b)
a

10 m−b
a−b = b

m
un named Mean F10 =

b+
√
b(4a−3b)

2

Table 1
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2. Definitions

In this section, we introduced the new means, weighted new means and their dual forms.

Let M(a, b) and N(a, b) are means of (a , b). M(a, b) and N(a, b) are any one of the well
known means or one of the ten Greek means such that M(a, b) 6= N(a, b).

Definition 2.1. For a > m > b > 0, choose α = a
b

or b
m

or m
a

, then α ∈ (0, 1).
In table 1, the proportion 9 motivate us to consider the following proportion as,

(2.1) α =
m−N(a, b)

M(a, b)−N(a, b)

On rearranging and replace m by R, that is

(2.2) R = R(a, b;α) = αM(a, b) + (1− α)N(a, b)

In the proportion (2.1), replace a by lna, b by lnb, m by lnm, M(a, b) by lnM(a, b) and
N(a, b) by lnN(a, b), on simplifying and replacing m by R(d), that is

(2.3) R(d) = R(d)(a, b;α) = M(a, b)αN(a, b)1−α

we call R(d)(a, b;α) is the dual form of R(a, b;α).
In table 1, the proportion 8 motivate us to consider the following proportion as,

(2.4) α =
M(a, b)−m

M(a, b)−N(a, b)

The mean S(a, b;α) and its dual S(d)(a, b;α) as below.

(2.5) S = S(a, b;α) = αN(a, b) + (1− α)M(a, b)

and

(2.6) S(d) = S(d)(a, b;α) = N(a, b)αM(a, b)1−α

Also in table 1, the proportion 6 motivate us to consider the following proportion as,

(2.7) α =
M(a, b)−m
m−N(a, b)

The mean T (a, b;α) and its dual T (d)(a, b;α) as below.

(2.8) T = T (a, b;α) =
M(a, b) + αN(a, b)

1 + α

and

(2.9) T (d) = T (d)(a, b;α) = M(a, b)
1

1+αN(a, b)
α

1+α

respectively R(a, b;α), S(a, b;α), T (a, b;α) are the three new means and their dual forms
are R(d)(a, b;α), S(d)(a, b;α), T (d)(a, b;α).

Now we define weighted means and their dual forms as follows.
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Definition 2.2. For a > m > b > 0, choose α = a
b

or b
m

or m
a

, then α ∈ (0, 1). If λ ∈ (0, 1),
then

(2.10) R = R(a, b;α, λ) =
(1− λ)αM(a, b) + (λ− (1− λ)α)N(a, b)

λ
and

(2.11) R(d) = R(d)(a, b;α, λ) = M(a, b)( 1−λ
λ

)αN(a, b)
λ−(1−λ)α

λ

(2.12) S = S(a, b;α, λ) =
(1− λ)αN(a, b) + (λ− (1− λ)α)M(a, b)

λ
and

(2.13) S(d) = S(d)(a, b;α, λ) = N(a, b)( 1−λ
λ

)αM(a, b)
λ−(1−λ)α

λ

(2.14) T = T (a, b;α, λ) =
λ

λ+ (1− λ)
M(a, b) +

(1− λ)α

λ+ (1− λ)α
N(a, b)

and

(2.15) T (d) = T (d)(a, b;α, λ) = M(a, b)
λ

λ+(1−λ)N(a, b)
(1−λ)α

λ+(1−λ)α

eqs (2.10)-(2.15) are respectively the three weighted means R(a, b;α, λ), S(a, b;α, λ),
T (a, b;α, λ) and their dual forms are R(d)(a, b;α, λ), S(d)(a, b;α, λ), T (d)(a, b;α, λ).

Remark 1: If λ = 1
2

in eqs (2.10)-(2.15) of Definition 2.2, the weighted means becomes
eqs (2.1)-(2.9).

3. Properties and Monotonic results

In this section using Definition 1.3, we verify that eqs (2.2),(2.3),(2.5),(2.6) (2.8),(2.9) and
(2.10)-(2.15)are all means.

Theorem 3.1. For a > b > 0 and α, λ ∈ (0, 1), then R(a, b;α, λ) and its dual R(d)(a, b;α, λ)
are means.

Proof. Let M(a, b) and N(a, b) are the means of (a, b) and for a > b > 0, from Definition 1.3
of mean, we have b ≤M(a, b) ≤ a and b ≤ N(a, b) ≤ a.

(3.1) b(1− λ)α ≤ (1− λ)αM(a, b) ≤ (1− λ)αa

and

(3.2) b(λ− (1− λ)α) ≤ (λ− (1− λ)α)N(a, b) ≤ (λ− (1− λ)α)a

From eqs (3.1) and (3.2), we obtain

(3.3) b ≤ [(1− λ)αM(a, b) + (λ− (1− λ)α)N(a, b)]

λ
≤ a

This proves that,

(3.4) b ≤ R(a, b;α, λ) ≤ a



NEW MEANS AND ITS PROPERTIES 5

Thus we verified from Definition 1.3 of mean that R(a, b;α, λ) is a mean.
Again, for duals we have with usual meaning

(3.5) b
α(1−λ)

λ ≤M(a, b)
α(1−λ)

λ ≤ a
α(1−λ)

λ

and

(3.6) b
λ−(1−λ)α

λ ≤ N(a, b)
λ−(1−λ)α

λ ≤ a
λ−(1−λ)α

λ

From eqs (3.5) and (3.6), we obtain

(3.7) b ≤M(a, b)
α(1−λ)

λ N(a, b)
λ−(1−λ)α

λ ≤ a

This proves that,

(3.8) b ≤ R(d)(a, b;α, λ) ≤ a

Thus we verified from Definition 1.3 of mean that R(d)(a, b;α, λ) is a mean. �

We have observed the following;

Note 1: Similarly, we can verify R(a, b;α), R(d)(a, b;α), S(a, b;α), T (a, b;α), S(a, b;α, λ),
T (a, b;α, λ) and their duals S(d)(a, b;α), T (d)(a, b;α), S(d)(a, b;α, λ), T (d)(a, b;α, λ) are means.

Now we state the following characteristic properties of the means R(a, b;α) and its dual
R(d)(a, b;α, λ). All these properties are also holds for the means S(a, b;α), T (a, b;α), S(a, b;α, λ),
T (a, b;α, λ) and their dual forms S(d)(a, b;α), T (d)(a, b;α), S(d)(a, b;α, λ), T (d)(a, b;α, λ).

Proposition 3.1. For a > b > 0 and α, λ ∈ (0, 1), we have

(1) If M(a, b) and N(a, b) are symmetric, then
R(a, b;α, λ)=R(b, a;α, λ) and R(d)(a, b;α, λ)=R(d)(b, a;α, λ).

(2) If M(a, b) and N(a, b) are homogeneous, then
R(at, bt;α, λ)=tR(a, b;α, λ) and R(d)(at, bt;α, λ)=tR(d)(a, b;α, λ), if t > 0.

(3) R(a, b;α, λ)=R(d)(a, b;α, λ) ⇔ a = b.

(4) R(a, b; 1
2
, 1

2
)=M(a,b)+N(a,b)

2
.

(5) R(a, b;α, 1
2
)=R(a, b;α) and R(d)(a, b;α, 1

2
)=R(d)(a, b;α).

(6) R(d)(a, b; 1
2
, 1

2
)=[M(a, b)N(a, b)]1/2.

(7) min{a, b}≤ R(d)(a, b;α, λ) ≤ R(a, b;α, λ) ≤max{a, b}.

Note 2: Some Identities

(1) R(a, b;α) + S(a, b;α)=M(a, b) +N(a, b)=2A(M,N).
(2) R(d)(a, b;α).S(d)(a, b;α)=M(a, b)N(a, b)=G2(M,N).
(3) R(a, b;α) + S(a, b;α) + 2T (a, b;α)=2M(a, b) +N(a, b)=4A(M,N).
(4) For α = 1

2
, R(a, b;α)R(d)(a, b;α) + S(a, b;α)S(d)(a, b;α)=2G(M,N)A(M,N).

(5) For α = 1
2
,R(d)(a, b;α).T (d)(a, b;α) + S(d)(a, b;α).T (d)(a, b;α)=(MN)

5
6 .{M 1

3 +N
1
3}.

(6) For α = 1
2
,R(d)(a, b;α).T (d)(a, b;α).S(d)(a, b;α).T (d)(a, b;α)=(MN)

5
3 .
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Theorem 3.2. For a > b > 0 and α, λ ∈ (0, 1), then

(3.9) R(d)(a, b;α, λ) ≤ R(a, b;α, λ)

and equality holds when a = b.

Proof. The proof of the Theorem 3.2 is obvious from well known power mean inequality. �

Theorem 3.3. For a > b > 0 and α, λ ∈ (0, 1), then R(d)(a, b;α, λ) and R(a, b;α, λ) are
monotonically increasing with α, if M(a, b) > N(a, b) and monotonically decreasing with α,
if M(a, b) < N(a, b), for all λ.

Proof. We recall eqs (2.10)and (2.11)

(3.10) R(a, b;α, λ) =
(1− λ)αM(a, b) + (λ− (1− λ)α)N(a, b)

λ

and

(3.11) R(d)(a, b;α, λ) = M(a, b)( 1−λ
λ

)αN(a, b)
λ−(1−λ)α

λ

This result can be verified by the studying the sign of the partial derivatives of the corre-
sponding means, in case of R(a, b;α, λ) we have

(3.12)
∂R(a, b;α, λ)

∂α
=

1− λ
λ
{M(a, b)−N(a, b)}

it is positive if and only if M(a, b)−N(a, b) > 0 and in case of R(d)(a, b;α, λ) we have,

(3.13)
∂R(d)(a, b;α, λ)

∂α
=

1− λ
λ
{lnM(a, b)− lnN(a, b)}

it is positive if and only if lnM(a, b)− lnN(a, b) > 0, that is equivalently we say M(a, b)−
N(a, b) > 0. This completes the proof of Theorem 3.3. �

Theorem 3.4. For a > b > 0 and α, λ ∈ (0, 1), then R(d)(a, b;α, λ) and R(a, b;α, λ) are
monotonically increasing with λ, if M(a, b) < N(a, b) and monotonically decreasing with λ,
if M(a, b) > N(a, b), for all α.

Proof. This result can be verified by the studying the sign of the partial derivatives of the
corresponding means (2.10)and (2.11), in case of R(a, b;α, λ) we have

(3.14)
∂R(a, b;α, λ)

∂λ
=

α

λ2
{N(a, b)−M(a, b)}

it is positive if and only if N(a, b)−M(a, b) > 0 and in case of R(d)(a, b;α, λ) we have,

(3.15)
∂R(d)(a, b;α, λ)

∂λ
=

α

λ2
{lnN(a, b)− lnM(a, b)}

it is positive if and only if lnN(a, b)− lnM(a, b) > 0, that is equivalently N(a, b)−M(a, b)
> 0. This completes the proof of Theorem 3.4. �



NEW MEANS AND ITS PROPERTIES 7

Note 3: For the mean S(a, b;α, λ) and its dual S(d)(a, b;α) are monotonically increasing
with α, if M(a, b) < N(a, b) and monotonically decreasing with α, if M(a, b) > N(a, b), for
all λ.

Note 4: For the mean S(a, b;α, λ) and its dual S(d)(a, b;α) are monotonically increasing
with λ, if M(a, b) > N(a, b) and monotonically decreasing with λ, if M(a, b) < N(a, b), for
all α.

Theorem 3.5. For a > b > 0 and α ∈ (0, 1), then T (d)(a, b;α, λ) and T (a, b;α, λ) are
monotonically increasing with α, if M(a, b) < N(a, b) and monotonically decreasing with α,
if M(a, b) > N(a, b), for fixed λ.

Proof. We recall eqs (2.14)and (2.15)

(3.16) T (a, b;α, λ) =
λ

λ+ (1− λ)
M(a, b) +

(1− λ)α

λ+ (1− λ)α
N(a, b)

and

(3.17) T (d)(a, b;α, λ) = M(a, b)
λ

λ+(1−λ)N(a, b)
(1−λ)α

λ+(1−λ)α

The result can be verified by the study of the sign of the partial derivatives of the corre-
sponding means, in case of R(a, b;α, λ) we have

(3.18)
∂T (a, b;α, λ)

∂α
=

λ(1− λ)

(λ+ (1− λ)α)2
{N(a, b)−M(a, b)}

it is positive if and only if N(a, b)−M(a, b) > 0 and in case of R(d)(a, b;α, λ) we have,

(3.19)
∂T (d)(a, b;α, λ)

∂α
=

λ(1− λ)

(λ+ (1− λ)α)2
{lnN(a, b)− lnM(a, b)}

it is positive if and only if lnN(a, b)− lnM(a, b) > 0, equivalently we say N(a, b)−M(a, b)
> 0. This completes the proof of Theorem 3.5. �

Theorem 3.6. For a > b > 0 and α ∈ (0, 1), then T (d)(a, b;α, λ) and T (a, b;α, λ) are
monotonically increasing with λ, if M(a, b) > N(a, b) and monotonically decreasing with λ,
if M(a, b) < N(a, b), for fixed α.

Proof. This result can be verified by the studying the sign of the partial derivatives of the
corresponding means (2.14)and (2.15), in case of R(a, b;α, λ) we have

(3.20)
∂T (a, b;α, λ)

∂λ
=

α

(λ+ (1− λ)α)2
{M(a, b)−N(a, b)}

it is positive if and only if M(a, b)−N(a, b) > 0 and in case of R(d)(a, b;α, λ) we have,

(3.21)
∂T (d)(a, b;α, λ)

∂λ
=

α

(λ+ (1− λ)α)2
{lnM(a, b)− lnN(a, b)}

it is positive if and only if lnM(a, b)− lnN(a, b) > 0, equivalently we say M(a, b)−N(a, b)
> 0. This completes the proof of Theorem 3.6. �
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Note 5: As α→∞, T (d)(a, b;α, λ) = N(a, b) = T (a, b;α, λ).

4. New inequality

In this section, we sharpened the old inequality and established the general inequality.

In [10], authors stated and established the inequalities among Greek means such as,

(4.1) F3(a, b) ≤ F2(a, b) ≤ F1(a, b) ≤ F6(a, b) ≤ F5(a, b) ≤ F4(a, b)

I n view of the above inequality, we have by selecting F3(a, b)= min {M(a, b), N(a, b)} and
F4(a, b)= max {M(a, b), N(a, b)}, then the following inequality holds for a,b > 0, α ∈ (0, 1).

(4.2) F3(a, b) ≤ R(d)(a, b;α) ≤ R(a, b, α) ≤ F4(a, b)

Example 1: If α = 1
2
, in the eqn (4.2) we have the following inequality.

(4.3) AH ≤ GM2 ≤
G2 +M2

2
≤ AC.

Theorem 4.1. For a,b > 0, α1,α2 ∈ (0, 1) and βi is a scalar so that α2 ≤ 1−βi
2
≤ α1, Then

(4.4) R(d)(a, b;α1) ≤ Fi(a, b; βi) ≤ R(a, b;α2)

Further more, α2=1−βi
2

= α1is the best possible for Theorem 4.1. where i=1,2,5 & 6.

Proof. Recall eqs (2.2) and (2.3), R(a, b;α) = αM(a, b) + (1 − α)N(a, b) and its dual
R(d)(a, b;α) = M(a, b)αN(a, b)1−α.

Let F3(a, b)= M(a, b) and F4(a, b)= N(a, b), by applying Taylor’s theorem and setting
a = x = t+ 1 and b = 1 in (2.2)and(2.3), we have

(4.5) R(a, b;α2) = 1 +
t

2
+

1− α2

8
t2 + ...

(4.6) R(a, b;α1) = 1 +
t

2
+

1− α1

8
t2 + ...

and for arbitrary mean Fi(a, b; βi), we have

(4.7) Fi(a, b; βi) = 1 +
t

2
+
βi
8
t2 + ...

with simple manipulation, 1−α1

8
≤ βi

8
≤ 1−α2

8
is holds for some βi.

on rearranging, α2 ≤ 1−βi
2
≤ α1

Further more α2 = 1−βi
2

= α1 is the best possible for Theorem 4.1. �

The following table gives the best possible value of βi.
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Sl.No. 1 2 3 4 5 6
Mean Fi F3 F2 F1 F5 F6 F4

Value of βi -2 -1 0 1 1 2

Table 2

5. Some Deductions and Inequalities

In this section, we deduced the well known means. In [10], the authors defined weighted
Greek means using the proportions, with this motivation and by using the proportion (2.1),
we establishing the expressions for weighted Oscillatory mean, weighted rth Oscillatory mean
and its dual forms.

Let N(a, b)=A(a, b)=F1(a, b) and M(a, b)=Mr(a, b)=F2(a, b), then eqs (2.10) and (2.11)
of Definition 2.1 as;

(5.1) R = R(a, b;α, λ) =
(1− λ)αMr(a, b) + (λ− (1− λ)α)A(a, b)

λ
and

(5.2) R(d) = R(d)(a, b;α, λ) = Mr(a, b)
( 1−λ
λ

)αA(a, b)
λ−(1−λ)α

λ

are respectively called weighted rth Oscillatory mean and its dual, are denoted byOλ(a, b;α, r)
andOd

λ(a, b;α, r).
when r = 0, Mr(a, b) = G(a, b). Then the equations (5.1) and (5.2) takes in the form;

(5.3) R = R(a, b;α, λ) =
(1− λ)αG(a, b) + (λ− (1− λ)α)A(a, b)

λ
and

(5.4) R(d) = R(d)(a, b;α, λ) = G(a, b)( 1−λ
λ

)αA(a, b)
λ−(1−λ)α

λ

are respectively called weighted Oscillatory mean and its dual, these are denoted byOλ(a, b;α)
and Od

λ(a, b;α).

According to equations (5.1)-(5.4), the following characteristic properties for weighted rth

oscillatory mean Oλ(a, b;α, r) and its dual Od
λ(a, b;α, r) are highlighted. Further when r=0,

the characteristic properties are true for weighted oscillatory mean Oλ(a, b;α) and its dual

O
(d)
λ (a, b;α).

Proposition 5.1. Let α, λ ∈ (0, 1) and r ∈ [0, 1]. Then

(1) Oλ(a, b;α, r)=Oλ(b, a;α, r) and O
(d)
λ (a, b;α, r)=O

(d)
λ (b, a;α, r).

(2) Oλ(at, bt;α, r)=tOλ(a, b;α, r) and O
(d)
λ (at, bt;α, r)=tO

(d)
λ (a, b;α, r), t > 0.

(3) Oλ(a, b;α, r)=O
(d)
λ (a, b;α, r)=a ⇔ a = b.

(4) Oλ(a, b; 0, r)=O
(d)
λ (a, b; 0, r)=A(a, b).

(5) Oλ(a, b; 0, 0)=O
(d)
λ (a, b; 0, 0)=A(a, b).

(6) Oλ(a, b;α, 0)=Oλ(a, b;α) and O
(d)
λ (a, b;α, 0)=O

(d)
λ (a, b;α).

(7) Oλ(a, b; 1, 1)=O
(d)
λ (a, b; 1, 1)=A(a, b)

(8) O1/2(a, b;α, r)=O(a, b;α, r) and O
(d)
1/2(a, b;α, r)=O(d)(a, b;α, r).
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(9) O1/2(a, b;α, 0)=O(a, b;α) and O
(d)
1/2(a, b;α, 0)=O(d)(a, b;α).

(10) O1/2(a, b;
1
3
, 0)=He(a, b).

The proof of the following propositions are verified easily for details see[8, 2].

Proposition 5.2. For α, λ ∈ (0, 1) and r ∈ (0, 1). Then Oλ(a, b;α) and O
(d)
λ (b, a;α) both

are monotonically decreasing with respect to α, ifb>a>0.

Proposition 5.3. For α, λ ∈ (0, 1) and r ∈ (0, 1), then

(5.5) O
(d)
λ (a, b;α) ≤ Oλ(a, b;α)

with the equality holds if and only if a=b or α =1or0.

Proposition 5.4. For a,b > 0, α1,α2 ∈ (0, 1) and r is a fixed number so that α1 ≤ 1− r ≤
α2, then

(5.6) O(d)(a, b;α2) ≤Mr(a, b) ≤ O(a, b;α1)

Further more, α1 = 1− r = α2 is the best possible for Proposition 5.4.

Proposition 5.5. For a,b > 0, α1,α2 ∈ (0, 1) so that α1 ≤ 2
3
≤ α2, then

(5.7) O(d)(a, b;α2) ≤ L(a, b) ≤ O(a, b;α1)

Further more, α1 = 2
3

= α2 is the best possible for Proposition 5.5.

Proposition 5.6. For a,b > 0, α1,α2 ∈ (0, 1) so that α1 ≤ 1
3
≤ α2, then

(5.8) O(d)(a, b;α2) ≤ I(a, b) ≤ O(a, b;α1)

Further more, α1 = 1
3

= α2 is the best possible for Proposition 5.6.

Proposition 5.7. For a,b > 0, α1,α2,λ ∈ (0, 1) and r is a fixed number, so that α1 ≤ λ
1−λ

(1− r) ≤ α2, then

(5.9) O
(d)
λ (a, b;α2) ≤Mr(a, b) ≤ Oλ(a, b;α1)

Further more, α1 = λ
1−λ (1− r) = α2 is the best possible for Proposition 5.7.

Proposition 5.8. For a,b > 0 and α1,α2,λ ∈ (0, 1), so that α1 ≤ λ
1−λ

2
3
≤ α2, then

(5.10) O
(d)
λ (a, b;α2) ≤ L(a, b) ≤ Oλ(a, b;α1)

Further more, α1 = λ
1−λ

2
3

= α2 is the best possible for Proposition 5.8.

Proposition 5.9. For a,b > 0 and α1,α2,λ ∈ (0, 1), so that α1 ≤ λ
1−λ

1
3
≤ α2, then

(5.11) O
(d)
λ (a, b;α2) ≤ I(a, b) ≤ Oλ(a, b;α1)

Further more, α1 = λ
1−λ

1
3

= α2 is the best possible for Proposition 5.9.

Finally, we deduce the ten Neo Pythagorean means(Greek means) and other familiar means
and new means are given in the following tables 3-6.

For M(a, b) = a and N(a, b) = b, we have
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Sl.No. α ∈ (0, 1) M(a, b) N(a, b) R(d)(a, b;α)=m R(a, b;α)=m

1 b
a

a b a
b
a b1−

b
a F9(a, b)

2 b
m

a b a
b
m b1−

b
m F10(a, b)

3 m
a

a b a
m
a b1−

m
a a

Table 3

Sl.No. α ∈ (0, 1) M(a, b) N(a, b) S(d)(a, b;α)=m S(a, b;α)=m

1 b
a

a b b
b
aa1− b

a F7(a, b)

2 b
m

a b b
b
ma1− b

m
a+
√
a2+4(b2−ab)

2

3 m
a

a b b
m
a a1−m

a F8(a, b)

Table 4

Sl.No. α ∈ (0, 1) M(a, b) N(a, b) T (d)(a, b;α)=m T (a, b;α)=m

1 b
a

a b a
a
a+b b

b
a+b F4(a, b)

2 b
m

a b a
b

b+m b
m
b+m F5(a, b)

3 m
a

a b a
b
a+b b

a
a+b F6(a, b)

Table 5

Sl.No. α ≥ 1 M(a, b) N(a, b) T (d)(a, b;α)=m T (a, b;α)=m

1 a
a

= b
b

= m
m

= 1 a b a
1
2 b

1
2 F1(a, b)

2 m
b
, a
m

a b a
b

b+m b
m
b+m , a

m
a+m b

a
a+m F2(a, b)

3 a
b

a b a
b
a+b b

a
a+b F3(a, b)

Table 6

By studying the particular values of M(a, b) and N(a, b), we notice out of 24 means, five
means having extreme values(max or min), three means are transcendental means the mean
values are evaluated by numerical methods namely Newton-Raphson method and others
have usual mean values which are given in the following tables 7-10.

Sl.No. α ∈ (0, 1) M(a, b) N(a, b) R(d)(a, b;α)=m R(a, b;α)=m

1 1
2

a = 2 b = 1 a
b
a b1−

b
a = 1.4142 F9(a, b)=1.5

2 1
m

a = 2 b = 1 a
b
m b1−

b
m = 1.55965 F10(a, b)=1.618

3 m
2

a = 2 b = 1 a
m
a b1−

m
a = 2 a = 2

Table 7

Sl.No. α ∈ (0, 1) M(a, b) N(a, b) S(d)(a, b;α)=m S(a, b;α)=m

1 1
2

a = 2 b = 1 b
b
aa1− b

a = 1.4142 F7(a, b)=1.5

2 1
m

a = 2 b = 1 b
b
ma1− b

m = 1
a+
√
a2+4(b2−ab)

2
= 1

3 m
2

a = 2 b = 1 b
m
a a1−m

a 1.3333 F8(a, b) = 1

Table 8
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Sl.No. α ∈ (0, 1) M(a, b) N(a, b) T (d)(a, b;α)=m T (a, b;α)=m

1 1
2

a = 2 b = 1 a
a
a+b b

b
a+b = 1.5874 F4(a, b) = 1.6666

2 1
m

a = 2 b = 1 a
b

b+m b
m
b+m = 1.3438 F5(a, b) = 1.618

3 m
2

a = 2 b = 1 a
b
a+b b

a
a+b = 1.2599 F6(a, b) = 1.4365

Table 9

Sl.No. α ≥ 1 M(a, b) N(a, b) T (d)(a, b;α)=m T (a, b;α)=m

1 2
2

= 1
1

= m
m

= 1 a = 2 b = 1 a
1
2 b

1
2 = 1.4142 F1(a, b) = 1.5

2 m
1
, 2
m

a = 2 b = 1 a
b

b+m b
m
b+m , a

m
a+m b

a
a+m = 1.3438 F2(a, b) = 1.4142

3 2
1

a = 2 b = 1 a
b
a+b b

a
a+b = 1.2599 F3(a, b) = 1.3333

Table 10

From Tables 7-10, it is easy to analyze the deviation of mean values of various means
with each other.
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