
International Mathematical Forum, 5, 2010, no. 22, 1067 - 1073

On the
∣∣N, pn

∣∣
k

Summability

of Factoried Fourier Series

A. Ganesh

Dept. of Mathematics, The Oxford College of Engineering
Hosur Road, Bangalore-560 068, Karnataka, India

gane speed@yahoo.co.in

G. Balasubramanian

Department of Mathematics
Govt. Arts College (Men)

Krishnagiri- 635001, TN, India

Abdelmejid Bayad
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Abstract. In this paper we deal with a main theorem on the local property
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k
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some known results.
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1. Introduction:

Let
∑

an be a given infinite series with partial sums (sn). Let (pn) be a
sequence of positive numbers such that

Pn =

n∑
ν=0

pν → ∞ as n → ∞ (P−i = p−i = 0 , i ≥ 1)(1.1)
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The sequence -to- sequence transformation

tn =
1

Pn

n∑
ν=0

pνsν(1.2)

defines the sequence (tn) of the (N, pn) means of the sequence (sn) generated
by the sequence of coefficients (pn).

The series
∑

an is said to be summable
∣∣N, pn

∣∣
k

, k ≥ 1 , if

∞∑
n=1

(
Pn

pn

)k−1

|tn − tn−1|k < ∞(1.3)

In the Special Cases:

1. If Pn = 1 for all values of n, the
∣∣N, pn

∣∣
k

summability is the same as

summability. Also, if we take k = 1 and Pn = 1
n+1

, then the summability∣∣N, pn

∣∣
k

is equivalent to the summability |R, log n, 1|.
Let θn be any sequence of positive constants. The series

∑
an is said

to be summable
∣∣N, pn, θn

∣∣
k

, k ≥ 1 if
∞∑

n=1

θk−1
n |Δσn−1|k < ∞ .

If we take θn = Pn

pn
,then

∣∣N, pn, θn

∣∣
k

summability reduces to
∣∣N, pn

∣∣
k

summability. Also, if we take θn = n and n = 1 for all values of n, then
we get the [C, 1]k Summability.

2. In the special case in which Pn = 1
n+1

and therefore Pn ≈ log n as n → ∞
, tn reduces to the familiar harmonic mean {Sn} and if it is denoted by
t′n , that the series

∑
an or the sequence {Sn} is said to be summable by

harmonic means to the sum S if t′n = S as n → ∞.
If the method of the summability (N, pn) is super imposed on Cesaro

means of order one, another method of summability (N, pn)C1 is obtained.
For Pn = 1

n+1
this method reduces tothe summability

(
N, 1

n+1

)
C1.

3. If we take θn = Pn

pn
, then the

∣∣N, pn, θn

∣∣
k

summability reduces to the∣∣N, pn

∣∣
k

summability. Also if we take θn = n and Pn = 1 for all values of
n, then we get |C, 1|k summability.

– If we take θn = n , then
∣∣N, pn, θn

∣∣
k

summability reduces to
∣∣N, pn

∣∣
k

summability.

Let f(t) be periodic function with period 2π and integrable (L) over
(−π, π) without any loss of generality we may assume that the constant
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term in the Fourier series of f(t) is zero, so that

π∫
−π

f(t)dt = 0(1.5)

and

f(t) ≈
∞∑

n=1

(an cosnt + bn sinnt) ≡
∞∑

n=1

An(1.6)

It is well known that the convergence of the Fourier series at t = x
is a local property of the generating function f (i.e. it depends only on
the behavior of f in an arbitrarily small neighbourhood of ), and hence
the summability of the Fourier series at t = x by any regular linear
summability method is also a local property of the generating function f .

2. Known results

Mohanty [4] has demonstrated that the |R, log n, 1| summability of the fac-
tored Fourier series ∑ An(t)

log(n + 1)
(2.1)

at t = x, is a local property of the generating function of f , whereas the
|C, 1| summability of this series is not. Matsumoto [3] improved this result by
replacing the series (2.1) by∑ An(t)

{log log(n + 1)}δ
, δ > 1(2.2)

Generalizing the above result by Bhatt [1] proved the following theorem.

Theorem 1. If (λn) is a convex sequence such that
∑

n−1λn is convergent,
then the summability |R, log n, 1| of the series

∑
An(t)λn log n at a point can

be ensured by a local property.

Theorem 2. Let k ≥ 1. If (λn) is a non-negative and non-increasing se-
quence such that

∑
pnλn is convergent, then the summability

∣∣N, pn

∣∣
k

of the
series

∑
An(t)pnλn at a point is a local property of the generating function f .

3. Main Results

The aim of this paper is to generalize above theorems for |N, pn|k summa-
bility methods, where k ≥ 1 and δ ≥ 0. Now we shall prove the following
theorems.
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Theorem 3. Let k ≥ 1 and 0 ≤ δ < 1. If the sequence (Sn) is bounded and
the sequence (λn) and (Pn) satisfy the following conditions.

m∑
n=1

(
Pn

pn

)δk−1

|λn|k = 0 (1) as m → ∞(1)

m∑
n=1

(
Pn

pn

)δk

|Δλn| = 0 (1) as m → ∞(2)

and
∞∑

n=ν+1

(
Pn

pn

)δk−1
1

Pn−1
= 0

{(
Pν

pν

)δk
1

Pν

}

Then the series
∑

anλn is summable
∣∣N, Pn, δ

∣∣
k

Theorem 4. Let k ≥ 1 and 0 ≤ δk ≤ 1. The summability
∣∣N, Pn, δ

∣∣
k

of the
series

∑
An(t)pnλn at a point is a local property of the generating function if

the conditions (1) and (2) are satisfied.

We need the following lemmas for the proof of our theorems.

Lemma 5. If λn is a non-negative and non-increasing sequence such that∑
pnλn is convergent, where pn is sequence of positive numbers such that Pn →

∞ as n → ∞, then Pnλn = 0 (1) as n → ∞ and
∑

PnΔλn < ∞ .

Proof: Since (λn) is non-increasing, we have that

Pmλm = λm

m∑
n=0

pn = 0 (1)
m∑

n=0

pnλn = 0 (1) as m → ∞

Applying the Abel transform to the sum
m∑

n=0

pnλn , we get that

m∑
n=0

PnΔλn =
m∑

n=0

pnλn − Pmλm+1

since λn ≥ λn+1 , n we obtain

m∑
n=0

PnΔλn ≤ Pmλm +
m∑

n=0

pnλn = 0 (1) + 0 (1) = 0 (1) as m → ∞

Lemma 6. Let k ≥ 1 and sn = 0 (1). If (λn) is a non-negative and non-

increasing sequence such that
m∑

n=0

pnλn is convergent, where (pn) is a sequence

of positive numbers such that pn → ∞ as n → ∞, then the series
∑

anPnλn

is summable
∣∣N, pn

∣∣
k

.
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Proof: Let (Tn) be the sequence of
(
N, pn

)
means of the series

∑
anPnλn

. Then, by definition,

Tn =
1

Pn

n∑
ν=0

pν

ν∑
r=0

arλrPr =
1

Pn

n∑
ν=0

(Pn − Pν−1) aνλνPν

Then , for n ≥ 1 , we have

Tn − Tn−1 = Pn
PnPn−1

n−1�

ν=1

PνPνsνΔλν − Pn
PnPn−1

n−1�

ν=1

PνPνsνλν − Pn
PnPn−1

n−1�

ν=1

PνPν+1sνλν+1 + snpnλn

= Tn,1 + Tn,2 + Tn,3 + Tn,4 say.

By Minkowskis inequality for k > 1 , to complete the proof of lemma 6, it
is sufficient to show that

∞∑
n=1

(
Pn

pn

)k−1

|Tn,r|k < ∞ r = 1, 2, 3, 4(3.1)

Now, applying Holders inequality with indices k and k′ , where 1
k

+ 1
k′ = 1

and k > 1 ,we get

m+1∑
n=2

(
Pn

pn

)k−1

|Tn,r|k ≤
m+1∑
n=2

Pn

PnPn−1

{
n−1∑
ν=1

|sν |k PνPνΔλν

} {
1

Pn−1

n−1∑
ν=1

PνPνΔλν

}k−1

Since

n−1∑
ν=1

PνPνΔλν ≤ Pn−1

n−1∑
ν=1

PνΔλν

It follows by lemma 5 that

1

Pn−1

n−1∑
ν=1

PνPνΔλν ≤
n−1∑
ν=1

PνΔλν = 0 (1) as n → ∞

Therefore

m+1∑
n=2

(
Pn

pn

)k−1

|Tn,1|k = 0 (1)
m+1∑
n=2

Pn

PnPn−1

{
n−1∑
ν=1

|sν |k PνPνΔλν

}

= 0 (1)
m∑

ν=1

|sν |k PνPνΔλν

m+1∑
n=ν+1

Pn

PnPn−1

= 0 (1)
m∑

ν=1

PνΔλν = 0 (1) as m → ∞
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by virtue of the hypotheses of theorem 2 and lemma 5. Again

m+1∑
n=2

(
Pn

pn

)k−1

|Tn,2|k = 0 (1)
m+1∑
n=2

Pn

PnPn−1

{
n−1∑
ν=1

|sν |k pν(Pνλν)
k

}{
1

Pn−1

n−1∑
ν=1

Pν

}k−1

= 0 (1)
m+1∑
n=2

Pn

PnPn−1

{
n−1∑
ν=1

|sν |k pν(Pνλν)
k

}

= 0 (1)
m∑

n=1

|sν |k (Pνλν)
kpν

{
m+1∑

n=ν+1

Pn

PnPn−1

}

= 0 (1)
m∑

n=1

|sν |k (Pνλν)
k pν

Pν

= 0 (1)
m∑

n=1

|sν |k (Pνλν)
k−1pνλν

= 0 (1)
m∑

n=1

pνλν = 0 (1) as m → ∞

the fact that Pν < Pν+1 , similarly we have that

m+1∑
n=2

(
Pn

pn

)k−1

|Tn,3|k = 0 (1)

m∑
ν=1

pν+1λν+1 = 0 (1) as m → ∞

Finally, we have that

m+1∑
n=2

(
Pn

pn

)k−1

|Tn,4|k =
m∑

n=1

|sn|k (Pnλn)k−1pnλn

= 0 (1)
m∑

n=1

pnλn = 0 (1) as m → ∞

by virtue of the hypotheses of the theorem and lemma 5. Therefore, we get
that

m+1∑
n=2

(
Pn

pn

)k−1

|Tn,r|k = 0 (1) as m → ∞ , r = 1, 2, 3, 4

This completes the proof of lemma 6.
In the particular case if we take pn = 1 for all values of n in Lemma 3.3,

then we get the following corollary.

Corollary 7. Let k ≥ 1 and sn = 0 (1). If (λn) is a non-negative and non-
increasing sequence such that

∑
λn is convergent, then the series

∑
nanλn is

summable |C, 1|k .

Proof of theorem 2:Since the behavior of the Fourier series, as far as
convergence is concerned, for a particular value of x depends on the behavior
of the function in the immediate neighbourhood of this point only, hence the
truth of theorem 2 is a consequence of lemma 6. If we take pn = 1 for all values
of n in this theorem, then we get a new local property result conserning the
|C, 1|k summability.
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