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Abstract 

We introduce Hecke operators on the space of complex polynomials. We study 
their properties. We deduce that the generalized Bernoulli-Euler polynomials are 
eigenpolynomials for our Hecke operators. From this study, we obtain a new 
approach to the theory of Bernoulli and Euler polynomials. 

1. Introduction and Main Results 

Euler [1] defined the Bernoulli and Euler polynomials 
( ) ( )( )xExB ,.,resp  by 
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Raabe [5] discovered their multiplication theorem 
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Now, we fix the following notations. 

Let { } NNa ξ=∈ ∗ ,0\:, NN  be a primitive root of unity of order N. 

We consider the functions CN →χ :, Na  defined by 
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We define on the space [ ]xC  the following operators 
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It is easy to see, these are -C linear operators acting on the space of 

polynomials [ ]xC  and preserve degrees. We call them, respectively, 

“partial” and “total Hecke” operators on [ ].xC  

In this paper, we establish the interesting arithmetical properties of our 
Hecke operators NaT ,χ  and .NT  
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Our main results are: 

Theorem 1. Let ∗∈ NNa,  such that ( ).mod1 Na ≡  Then, 

(1) there exists unique sequence of monic polynomials ( ) N∈nNnP ,  in 

( ) [ ],xNξQ  with nP Nn =,deg  such that 

( ) ( ) ( ).,,, xPaxPT Nn
n

NnNa
−

χ =  (1.7) 

(2) (Eigenpolynomials): Polynomials ( )xP Nn,  are eigenfunctions for 

the operators NT  with eigenvalues ( ),1, NnN n −ζ−  that is, 

( ) ( ) ( ),1, ,, xPNnNxPT Nn
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 is the Hurwitz zeta function. 

(3) (Generating functions): Generating functions of ( )xP Nn,  are 
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The polynomials ( ),, xP Nn  we call them generalized Bernoulli-Euler 

polynomials. 

Our Theorem 1 implies: 

Corollary 2. For ,2,1=N  we obtain 

(1) ( ) ( ) ( ) ( ),, 2,1, xExPxBxP nnnn ==  

(2) Raabe formulae 1.3 and 1.4. 

The identity 1.7 is a Raabe formula for the generalized Bernoulli-
Euler polynomials ., NnP  
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We now briefly review the content of the individual sections of our 
paper.  

Section 2 contains various properties of our partial Hecke operators 
., NaTχ  In Section 3, we show the Theorem 1. 

Historical remark. It is well-known that the Hecke’s operators 
theory is developed on the space of modular and cusps forms, see [2, 6]. In 
some sense, our paper can be viewed as an extension of this Hecke’s 
operators theory to the space of complex polynomials. 

2. Hecke Operators and their Properties 

For this section, we fix the following notations. 

Given NNa ξ∈ ∗,, N  is a primitive root of unity of order N. Let 

:, Naχ  CZ →  given by 
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We consider the -C linear operator, acting on the complex space of 
polynomials [ ]xC  as follows 

[ ] [ ]xxT Na CC →χ :,  

( ) ( ) ( ) ( ) .,
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Our purpose is to give all monic polynomials satisfying the functional 
equation 

( ) ( ) ( ) ( ) [ ],, xxPxPaxPT n
a C∈= −

χ  for any  ( ).mod1 Na ≡   (2.2) 

Now, we have the following key lemma. 

Lemma 1 (Hecke operators NaT ,χ ). For any ∗∈ NNa,  such that 

( ),mod1 Na ≡  we have the properties 
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(i) NaT ,χ  preserves the degree in [ ].xC  

(ii) We have 
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where ( ) ( ) .,
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(iii) For any ,∗∈ Nm  let ( )m
m xxx ,,,,1 2 K=β  be the canonical 

-C basis of 

[ ] { ( ) [ ] ( ) }.:: mxPofdegreexxPxm ≤∈= CC  

Then, the matrix ( )Nam T ,χβM  corresponding to the operator NaT ,χ  

(restricted to [ ]xmC ) in the basis mβ  is given by 
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(iv) Let ,1, ≥ba  such that ( ),mod1 Nba ≡≡  then 
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.,,,, NaNbNbNa TTTT χχχχ =  

Then, there are polynomials NnP ,  with degree n in x satisfying the 

functional equation (2.2). Furthermore, for a given integer n, there is only 
one monic polynomial NnP ,  of degree n satisfying (2.2). 

Proof of Lemma 1. If there exist any ( ) N∈nNnP ,  such that (2.2) 

holds, then (i) is obvious since ( ) .1,
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and therefore (ii) is satisfied. 

If we write operator NaT ,χ  for the canonical basis ( ,,,,1 2 Kxxm =β  

) ,, ∗∈ Nmxm  then from (ii), ( )Nam T ,χβM  is given by (2.3). 

For ,1=a  the operator NaT ,χ  is diagonal and for all ma β≥ M,2  

( )NaT ,χ  is a diagonalizable matrix and has 1+m  distinct eigenvalues 

.,,,, 00
2

0
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0 SaSaSaS m−−− K  Then, we know that there exist any 

( ) N∈nNnP ,  such that (2.2) holds. 

Since ( )Nam T ,χβM  is a diagonalizable matrix for all ,1≥a  there 

exist mβ
~  is a -C basis of [ ]xmC  such that 
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is a diagonal matrix. 

Thanks to linear algebra, it is well-known that: two nn ×  
diagonalizable matrices A and B ( )Cin  are simultaneously diagonalizable 
(i.e., diagonal in the same basis), if and only if .BAAB =  In fact, the 
linear operators NaT ,χ  and NbT ,χ  are diagonal in the canonical basis of 

[ ],xC  then are simultaneously diagonalizable, if and only if 
=χχ NbNa TT ,,  .,, NaNb TT χχ  

Now, to prove the existence of ( ) N∈nNnP ,  in [ ],xC  we must show that 
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( ) ( ) ( ).,,,, PTTPTPT NbNaNbaNab χχχχ ===  

Therefore, for fixed ,∗∈ NN  we deduce the existence of polynomials 
[ ]xP Nn C∈,  with degree n such that 
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Finally, we must now to observe the uniqueness of ( ) ., N∈nNnP  
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Identifying the coefficients of dx  on both sides, we have ,00 AaA n−=  

but this contradicts our stipulations that ,,00 ndA <≠  and .2≥a  

Hence, it follows (iv). 

Therefore, we obtain our Lemma 1. 

3. Proofs of Main Results 
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and we write ,1 kNa +=  
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Let us expand the function ( )txFN ,  in powers of x and t and collect the 
coefficients as a polynomial ( )xNn,Ψ  of degree n in x: 
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and for ( ),mod1 Na ≡  we write ,,1 Z∈+= kkNa  it follows that 
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If, instead, we replace in (3.2) x by ax and t by ,a
t  we obtain 
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Identifying the coefficients of !n
tn

 in (3.3) and (3.4), we conclude that 

( )xNn,Ψ  satisfies the functional equation (2.2) 
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Since ( )xNn,Ψ  is monic, by Theorem 1, we have ( ) ( )xPx NnNn ,, =Ψ  and 

3.1 is proved. ■ 
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