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Abstract In this work we present a very explicit formulas for sums of products
of q-Bernoulli and q-Euler numbers of the forms:∑

m1+···+mN=n

m1,··· ,mN≥0

(
n

m1, · · · ,mN

)
Bm1(q) · · ·BmN

(q),

and ∑
m1+···+mN=n

m1,··· ,mN≥0

(
n

m1, · · · ,mN

)
Em1(q) · · ·EmN

(q)

( N,n ≥ 1) respectively, where Bm(q) is the q-Bernoulli numbers and Em(q) is the

q-Euler numbers and

(
n

m1, · · · ,mN

)
=

n!

m1! · · ·mN !
. Our formulas involves Stirling

numbers of first Kind. From these we derived results for q-Bernoulli and q-Euler
polynomials. As application when q = 1 we recover and complete the results of
Dilcher [6]. Our method is different to Dilcher’s one.
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1. Introduction and preliminaries

Throught this paper we use the following notation: N = {0, 1, ...} set of naturals
numbers.
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Bernoulli and q-Euler numbers and polynomials, Euler’s identities.
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2 A. BAYAD AND T. KIM

1.1. Euler’s identities for Bernoulli numbers: An overview. The Bernoulli
numbers Bn are defined by the generating function

t

et − 1
=

∞∑
n=0

Bn
tn

n!
, |t| < 2π. (1)

One of the most remarkable identities for Bernoulli numbers is Euler’s well-known
nonlinear relation

n∑
j=0

(
n

j

)
BjBn−j = −nBn−1 − (n− 1)Bn (n ≥ 1). (2)

This identity has been generalized and extended in different directions, see [3-
17]. First, Eie [7] and Sitaramachandra and Davis [18] considered the sum of the
products of three for Bernoulli numbers and proved that

∑
j1+j2+j3=n
j1,j2,j3≥1

(
2n

2j1, 2j2, 2j3

)
B2j1B2j2B2j3 =

(n+ 1)(2n+ 1)B2n + n

(
n− 1

2

)
B2n−2, (3)

and ∑
j1+j2+j3+j4=n
j1,j2,j3,j4≥1

(
2n

2j1, 2j2, 2j3, 2j4

)
B2j1B2j2B2j3B2j4 =

−
(

2n+ 3

3

)
B2n −

4

3
n2(2n− 1)B2n−2. (4)

This was further extented to N = 5 by Sankaranarayan [16], to N ≥ 7 by Zhang
[19]. Recently, Dilcher [6] and Petojevic and Srivastava [15] considered the sums of
the products of N Bernoulli numbers in the form:∑

m1+···+mN=n

m1,··· ,mN≥0

(
2n

2m1, · · · , 2mN

)
B2m1 · · ·B2mN

, (5)

and ∑
m1+···+mN=n

m1,··· ,mN≥1

(
2n

2m1, · · · , 2mN

)
B2m1

· · ·B2mN
(6)

and established interesting identities. The sums (5) and (6) are different. The
Dilcher’s sums (5) include the Bernoulli number B0, Dilcher [6] p.27 remarked that
these some are equivalent if we take into account the slightly different ranges of
summation. As an application of our study we will give an easy and complete
formula for the general sums in form:∑

m1+···+mN=n

m1,··· ,mN≥0

(
n

m1, · · · ,mN

)
Bm1 · · ·BmN

, (7)

here the sums include the Bernoulli numbers B0 and B1.
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1.2. q-Bernoulli and q-Euler numbers and polynomials. Let q ∈ R, the q-
Bernoulli polynomials Bn(x|q) can be defined by the generating function

t

qet − 1
ext =

∞∑
n=0

Bn(x|q) t
n

n!
, (q = 1, |t| < 2π), (q 6= 1, |t| < |log(−q)|). (8)

The q-Bernoulli numbers Bn(q) is given by Bn(q) := Bn(0|q).
The q-Euler polynomials En(x|q) can be defined by the generating function

2

qet + 1
ext =

∞∑
n=0

En(x|q) t
n

n!
, q 6= −1, |t| < |log(−q)|. (9)

The q-Euler numbers En(q) are given by En(q) := En(0|q).
In the litterature, these numbers are usually called ”Apostol-Bernoulli” and ”Apostol-
Euler” numbers ( see [2, 3, 4, 11, 13]) respectively. These numbers generalized
Bernoulli and Euler numbers and have many interesting properties and numerous
important applications in number theory and other areas.

1.3. Stirling numbers of first kind. For this subsection we refer to Chapter
V of the book [5] written by L. Comtet. The Stirling numbers of the first kind,
frequently denoted as s(n, k) or

[
n
k

]
, k, n ∈ N, 1 ≤ k ≤ n, are the coefficients in

the expansion

(x)n =

n∑
k=0

s(n, k)xk,

where (x)n is the falling factorial

(x)n = x(x− 1)(x− 2) · · · (x− n+ 1).

We give the following table of first values and recurrence relation for s(n, k):

s(1, 1) = 1, s(2, 1) = −1, s(2, 2) = 1, s(3, 1) = 2, s(3, 2) = −3, s(3, 3) = 1,

s(4, 1) = −6, s(4, 2) = 11, s(4, 3) = −6, s(4, 4) = 1,

s(5, 1) = 24, s(5, 2) = −50, s(5, 3) = 35, s(5, 4) = −10, s(5, 5) = 1.

These numbers satisfy the recurrence formula:

s(n+ 1, k) = s(n, k − 1)− ns(n, k), 1 ≤ k < n, (10)

with the following initial conditions:

s(n, 0) = 0, s(1, 1) = 1. (11)

Moreover they have the following generating function:

(1 + t)u =

∞∑
n=0

n∑
k=1

s(n, k)
tn

n!
uk. (12)

The purpose of this paper is to obtain Euler’s type explicit formulas correspond-
ing for q-Bernoulli and q-Euler numbers. Our nonlinear relations involve Stirling
numbers. We will do this in Section 2. In Section 3 we prove our main results. In
section 4 we give corresponding explicits formulas for the sums of N products of
q-Bernoulli Bn(x|q) and q-Euler polynomials En(x|q).
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2. Statement of main results

Let q ∈ R. We consider the function

Fq(t) =
1

qet + 1
.

Then we have the following important identity

Theorem 1 (Fundamental identity). For any N ≥ 1 and q ∈ R we have the
key identity

(N − 1)!FN
q =

N∑
k=1

ak(N)F (k−1)
q , (13)

where ak(N) can be given by two differents ways:

i)

ak(N) =


N !
k!

∑
l1,··· ,lk≥1

l1+···+lk=N

1

l1 · · · lk
, if N ≥ k ≥ 1,

0 otherwise.

(14)

ii) ak(N) = (−1)N+ks(N, k), s(N, k) is the Stirling number of the first kind.
Note that ak(N) are the unsigned Stirling numbers.

Remark 1. Remark that the coefficents ak(N) are independent to the choice of q.

Now, we can derive the following interesting results.

Theorem 2. For N ≥ 1 and q ∈ R\{−1}, we have∑
m1,··· ,mN≥0

m1+···+mN=n

(
n

m1, · · · ,mN

)
Em1(q) · · ·EmN

(q) = (15)

(−1)N−12N−1

(N−1)!

N−1∑
k=0

(−1)ks(N, k + 1)Ek+n(q).

(16)

Theorem 3. For N ≥ 1 and q ∈ R, we have∑
m1,··· ,mN≥0

m1+···+mN=n

(
n

m1, · · · ,mN

)
Bm1

(q) · · ·BmN
(q) = (17)


s(N,N−n)

(N−1
n )

δ1,q if n ≤ N − 1,

n
(
n−1
N−1

) N∑
k=1

(−1)k−1s(N, k)
Bn−N+k(q)

n−N + k
if n ≥ N,

where

δ1,q =

{
1 if q = 1
0 otherwise.
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Note that the identities (68) and (15) can be rewritten in terms of polylogarithms
functions. Moreover, if we replace q = 1 in Theorem 3 we obtain a complete explicit
formulation of Dilcher’s result [6].

Corollary 4 ([6]). For N,n ≥ 1, we have∑
m1,··· ,mN≥0

m1+···+mN=n

(
n

m1, · · · ,mN

)
Bm1

· · ·BmN
=


s(N,N−n)

(N−1
n )

if n ≤ N − 1,

n
(
n−1
N−1

) N∑
k=1

(−1)k−1s(N, k)
Bn−N+k

n−N + k
if n ≥ N.

(18)

Remark that Dilcher’s results are obtained under the assumption n ≥ N , see [6]
p.32. Our method is fundamentally different from that used by Dilcher.
More general, in section 4 we derive from our Theorem 1 Euler’s type identities for
q-Bernoulli and q-Euler polynomials. Taking q = 1 we obtain an easy and complete
polynomial version of Dilcher’s results [6] about Euler’s type sums for the classical
Bernoulli and Euler polynomials.

3. Proofs of main results

Proof of Theorem 1:
It’s easy to see that the function Fq(t) = 1

qet+1 satisfies the following differential
equation

F 2
q = Fq + F ′q. (19)

By the derivative of (19), we have

2FqF
′
q = F ′′q + F ′q, F

′
q = F 2

q − Fq

Implies that 2Fq(F 2
q −Fq) = F ′′q +F ′q and 2F 3

q = F ”
q +F ′q + 2F 2

q . From (19) we get

2!F 3
q = 2Fq + 3F ′q + F ”

q . (20)

Continuing this process, we can set

(N − 1)!FN
q =

N∑
k=1

ak(N)F (k−1)
q , N ≥ 1. (21)

Thus, using derivation we get

N !FN−1
q F ′q =

N∑
k=1

ak(N)F (k)
q . (22)

and by equation 19 we have

N !FN−1
q F ′q = N !FN−1

q (F 2
q − Fq) = N !FN+1

q −N !FN
q . (23)
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By equations (21) and (24), we get

N !FN+1
q = N(N − 1)!FN

q +

N∑
k=1

ak(N)F (k)
q (24)

= N

N∑
k=1

ak(N)F (k−1)
q +

N∑
k=1

ak(N)F (k)
q . (25)

Since (21), we see that

N !FN+1
q =

N+1∑
k=1

ak(N + 1)F (k)
q . (26)

By (21) and (24), we get

N+1∑
k=1

ak(N + 1)F (k)
q = N

N∑
k=1

ak(N)F (k−1)
q +

N∑
k=1

ak(N)F (k)
q

= Na1(N)Fq + aN (N)FN
q +

N∑
k=2

(Nak(N) + ak(N))F (k)
q .

By comparing coefficients on the both sides of the above equation, we see that

a1(N + 1) = Na1(N), aN+1(N + 1) = aN (N + 1) = a2(2) = a1(1) = 1,

then we obtain

(1)

a1(N) = (N − 1)!, aN (N) = 1, N ≥ 1. (27)

(2) 2 ≤ k ≤ N , we have

ak+1(N + 1) = Nak+1(N) + ak(N). (28)

(3) ak(N) = 0 if k > N, k < 1.

Let us consider the function for variables t, u as follows:

f(t, u) =
∑

N,k≥1

ak(N)
tN

N !
uk−1 =

∑
N≥1

1≤k≤N

ak(N)
tN

N !
uk−1, |t| < 1. (29)

Then from the recurrence equation (28) we can write

∑
N,k≥1

ak+1(N + 1)
tN

N !
uk−1 =

∑
N,k≥1

Nak+1(N)
tN

N !
uk−1 +

∑
N,k≥1

ak(N)
tN

N !
uk−1(30)

=
∑

N,k≥1

Nak+1(N)
tN

N !
uk−1 + f(t, u). (31)
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For
∑

N,k≥1

Nak+1(N)
tN

N !
uk−1, we have

∑
N,k≥1

Nak+1(N)
tN

N !
uk−1 =

1

u

∑
N,k≥1

Nak+1(N)
tN

N !
uk

=
1

u

∑
N≥1

2≤k≤N+1

Nak(N)
tN

N !
uk−1

=
1

u

∑
N≥1

2≤k≤N+1

ak(N)
tN

(N − 1)!
uk−1

=
1

u

∑
N≥1

 ∑
1≤k≤N+1

ak(N)
tN

(N − 1)!
uk−1 − a1(N)

tN

(N − 1)!


=

1

u

∑
N≥1

∑
1≤k≤N+1

ak(N)
tN

(N − 1)!
uk−1 −

∑
N≥1

tN

 .

We obtain

∑
N,k≥1

Nak+1(N)
tN

N !
uk−1 =

1

u

∑
N≥1

∑
1≤k≤N+1

ak(N)
tN

(N − 1)!
uk−1 − t

1− t


=

t

u

(
f ′(t, u)− 1

1− t

)
. (32)

By (30) and (32), we get

∑
N,k≥1

ak+1(N + 1)
tN

N !
uk−1 = f(t, u) +

t

u

(
f ′(t, u)− 1

1− t

)
. (33)

For the left sides of (33), we have

∑
N,k≥1

ak+1(N + 1)
tN

N !
uk−1 =

∑
N≥1

1≤k≤N

ak+1(N + 1)
tN

N !
uk−1 (34)

=
∑
N≥2

1≤k≤N−1

ak+1(N)
tN−1

(N − 1)!
uk−1

=
∑
N≥2

2≤k≤N

ak(N)
tN−1

(N − 1)!
uk−2
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=
1

u

∑
N≥2

2≤k≤N

ak(N)
tN−1

(N − 1)!
uk−1

=
1

u

∑
N≥2

 ∑
2≤k≤N

ak(N)
tN−1

(N − 1)!
uk−1 − a1(N)

tN−1

(N − 1)!


=

1

u

∑
N≥2

∑
2≤k≤N

ak(N)
tN−1

(N − 1)!
uk−1 − t

1− t


=

1

u

∑
N≥1

∑
2≤k≤N

ak(N)
tN−1

(N − 1)!
uk−1 − a1(1)− t

1− t


=

1

u

∑
N≥1

∑
2≤k≤N

ak(N)
tN−1

(N − 1)!
uk−1 − 1

1− t


=

1

u

(
f ′(t, u)− 1

1− t

)
. (35)

By (33) and (34) we get

f(t, u) +
t

u

(
f ′(t, u)− 1

1− t

)
=

1

u

(
f ′(t, u)− 1

1− t

)
(36)

It’s implies that

f(t, u) +
t− 1

u
f ′(t, u) = − 1

u
. (37)

To solve (37), we first consider the solution of homogeous differential equation:

(1) Step 1: The equation

f(t, u) +
t− 1

u
f ′(t, u) = 0 (38)

is equivalent to

f(t, u) = e−u log(1−t)λ(u). (39)

(2) Step 2: Variation of constant λ(u) = λ(t, u).

f ′(t, u) = λ′(t, u)e−u log(1−t) + λ(t, u)e−u log(1−t) u

1− t
. (40)

We multiply by t−1
u on both sides of (39), we see that

t− 1

u
f ′(t, u)f(t, u) = λ′(t, u)

t− 1

u
e−u log(1−t) − f(t, u). (41)

From (41) we have

t− 1

u
f ′(t, u)f(t, u) + f(t, u) = λ′(t, u)

t− 1

u
e−u log(1−t). (42)

Therefore, by (37) and (41), we get

λ′(t, u) =
e−u log(1−t)

1− t
= (1− t)u−1, (43)
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From the above equality we obtain

λ(t, u) = − (1− t)u

u
+ C(u). (44)

By (37) and (44), we see that

f(t, u) = e−u log(1−t)
[
− (1− t)u

u
+ C(u)

]
. (45)

In (45), let t = 0. Then

0 = f(0, u) =

[
− 1

u
+ C(u)

]
, (46)

hence C(u) = 1
u . So

f(t, u) =
(1− t)−u − 1

u
=
e−u log(1−t) − 1

u
. (47)

By (47), we get

f(t, u) =
e−u log(1−t) − 1

u
(48)

=
1

u

∑
n≥1

un

n!
(− log(1− t))n

=
∑
n≥1

un−1

n!

∑
l≥1

tl

l

n

.

We observe that∑
l≥1

tl

l

n

=
∑
N≥n

( ∑
l1+···+ln=N

1

ll
· · · 1

ln

)
tN . (49)

By (48) and (49), we get

f(t, u) =
∑
n≥1

un−1

n!

∑
N≥n

( ∑
l1+···+ln=N

1

ll
· · · 1

ln

)
tN

 . (50)

Hence,w e derive

f(t, u) =
∑
k≥1

uk−1

k!

∑
n≥k

( ∑
l1+···+lk=N

1

ll
· · · 1

lk

)
tN . (51)

By comparing the coefficients of on the both sides of (29) and (51), we get our
desired equality (14).
On other hand, we set b(k,N) = (−1)k+Nak(N). From the recurrence relation (28),
we deduce that

b(k + 1, N + 1) = b(k,N)−Nb(k + 1, N), 0 ≤ k ≤ N, (52)

b(n, n) = 1, n ≥ 0, b(k,N) = 0, k > N.

Recall that The Stirling numbers of the first kind satisfy the same recurrence rela-
tion (10) and (11). Then

s(N + 1, k + 1) = s(N, k − 1)−Ns(N, k), 0 ≤ k ≤ N, (53)
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with the following initial conditions:

s(N, 0) = 0, N ≥ 1, s(1, 1) = 1. (54)

Therefore, for any N, k intgers, we have

b(k,N) = s(N, k).

This yields the formula ak(N) = (−1)k+Ns(N, k). Thus completes the proof of our
Theorem 1. �

Proof of Theorem 2:
From the Theorem 1, we obtain

(N − 1)!(2Fq)N = 2N−1
N∑

k=1

ak(N)(2Fq)(k−1), N ≥ 1,

and by the definition (9) we get

(N − 1)!
∑
n≥0

 ∑
m1,··· ,mN≥0

m1+···+mN=n

(
n

m1, · · · ,mN

)
Em1

(q) · · ·EmN
(q)

 tn =

2N−1
∑
n≥0

(
(−1)N−1

(N − 1)!

N−1∑
k=0

(−1)ks(N, k + 1)Ek+n(q)

)
tn. (55)

This yields our theorem. �
Proof of Theorem 3:
Writting

FB(t) =
t

qet − 1
= −tF−q(t), where Fq(t) =

1

qet − 1
. (56)

Then by using the equation (13), we get

(N − 1)!FN
B (t) = (−1)N−1

N∑
k=1

ak(N) (−F−q)
(k−1)

(t)tN . (57)

By (8), we have

−F−q(t) =
B0(q)

t
+

∞∑
n=0

Bn+1(q)

(n+ 1)!
tn, (58)

where B0(q) = δ1,q.

(−F−q)
(k−1)

(t) =
B0(q)(−1)k−1(k − 1)!

tk
+

∞∑
n=0

Bn+k(q)

n!(n+ k)
tn. (59)

Hence

(−F−q)
(k−1)

(t)tN = B0(q)(−1)k−1(k − 1)!tN−k +

∞∑
n=0

Bn+k(q)

n!(n+ k)
tN+n, (60)
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Now, using relations (57), (58), (59) and (61) we obtain the equation

(N − 1)FN
B (t) = B0(q)

N−1∑
n=0

aN−n(N)(−1)n(N − n− 1)!tn + (61)

∑
n≥N

(
(−1)N−1

N∑
k=1

ak(N)Bn−N+k

(n−N)!(n−N + k)

)
tn.

This give us our theorem. �

4. q-Bernoulli and q-Euler polynomials

Let x1, · · · , xN variables and y = x1 + · · ·+ xN .

Theorem 5. For N ≥ 1 and q ∈ R\{−1}. Then we have∑
m1,··· ,mN≥0

m1+···+mN=n

(
n

m1, · · · ,mN

)
Em1

(x1|q) · · ·EmN
((xN |q) = (62)

(−1)N−12N−1

(N−1)!

N−1∑
k=0

(−1)ks(N, k + 1)

 k∑
j=0

(
k

j

)
(−1)jyjEk−j+n(y|q)

 .

Proof of Theorem 5:
Put

FE(t, xi) =
2

qet + 1
exit = 2Fq(t)exit.

Multiplying by 2Nex1t · · · exN t both sides of the fondamental identity (13) we obtain

(N − 1)!FE(t, x1) · · ·FE(t, xN ) (63)

= 2N−1
N∑

k=1

ak(N) (2Fq(t))
(k−1)

eyt

= 2N−1
N∑

k=1

ak(N)
(
FE(t, y)e−yt

)(k−1)
eyt

= 2N−1
N∑

k=1

ak(N)

k−1∑
j=0

(
k − 1

j

)
F

(k−1−j)
E (t, y)(−1)jyje−yteyt

= 2N−1
N∑

k=1

ak(N)

k−1∑
j=0

(
k − 1

j

)
F

(k−1−j)
E (t, y)(−1)jyj

= 2N−1
N∑

k=1

ak(N)

k−1∑
j=0

(
k − 1

j

)
(−1)jyjF

(k−1−j)
E (t, y).

On other hand, we have

F
(k−1−j)
E (t, y) =

∑
n≥0

Ek−j−1+n(y|q)
n!

tn. (64)
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By substituting the formula (64) in the equation (63), we obtain

FE(t, x1) · · ·FE(t, xN ) (65)

=
2N−1

(N − 1)!

∑
n≥0

 N∑
k=1

ak(N)

k−1∑
j=0

(
k − 1

j

)
(−1)jyj

Ek−j−1+n(y|q)
n!

 tn

=
2N−1

(N − 1)!

∑
n≥0

N−1∑
k=0

ak+1(N)

k∑
j=0

(
k

j

)
(−1)jyj

Ek−j+n(y|q)
n!

 tn

=
2N−1

(N − 1)!

∑
n≥0

N−1∑
k=0

(−1)k+1+Ns(N, k + 1)

k∑
j=0

(
k

j

)
(−1)jyj

Ek−j+n(y|q)
n!

 tn.

Indeed, from the formula

FE(t, y) =
∑
n≥0

En(y|q)
n!

tn, (66)

we get

FE(t, x1) · · ·FE(t, xN )

=
∑
n≥0

 ∑
m1,··· ,mN≥0

m1+···+mN=n

Em1
(x1|q)
m1!

· · · EmN
(xN |q)
mN !

 tn. (67)

Then by comparing the coefficients of tn, in the right of sides in the equations (65)
and (67) we get our theorem. �

Theorem 6. For N ≥ 1 and q ∈ R. Let y = x1 + · · ·+ xN . Then we have∑
m1,··· ,mN≥0

m1+···+mN=n

(
n

m1, · · · ,mN

)
Bm1(x1|q) · · ·BmN

(xN |q) = (68)



δ1,q
n!

(N−1)!

N∑
k=N−n

s(N, k)
(k − 1)!

(n−N + k)!
yn−N+k if n ≤ N − 1,

δ1,q
n!

(N−1)!

N∑
k=1

s(N, k)
(k − 1)!

(n−N + k)!
yn−N+k +

n!
(N−1)!

N∑
k=1

(−1)k−1s(N, k)

n−N∑
m=0

Bm+k(q)yn−m−N

m!(n−m−N)!(m+ k)
if n ≥ N,

Proof of Theorem 6:
Set

FB(t, xi) =
t

qet − 1
exit = −tF−q(t)exit.
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Multiplying by (−t)Nex1t · · · exN t both sides of the fondamental identity (13) we
obtain

(N − 1)!FB(t, x1) · · ·FB(t, xN )

= (−1)N−1
N∑

k=1

ak(N) (−F−q(t))
(k−1)

tNeyt

= (−1)N−1
N∑

k=1

ak(N)

∑
n≥0

Bn(q)

n!
tn−1

(k−1)

tNeyt

= (−1)N−1
N∑

k=1

ak(N)

B0(q)

t
+
∑
n≥0

Bn+1(q)

(n+ 1)!
tn

(k−1)

tNeyt

= (−1)N−1
N∑

k=1

ak(N)

B0(q)(−1)k−1(k − 1)!

tk
+
∑

n≥k−1

Bn+1(q)

(n+ 1)!

n!

(n− k + 1)!
tn−k+1

 tNeyt

= (−1)N−1
N∑

k=1

ak(N)

B0(q)(−1)k−1(k − 1)!tN−k +
∑

n≥k−1

Bn+1(q)

(n+ 1)!

n!

(n− k + 1)!
tN+n−k+1

 eyt

Then we can write

(N − 1)!FB(t, x1) · · ·FB(t, xN )

= (−1)N−1
N∑

k=1

ak(N)

B0(q)(−1)k−1(k − 1)!tN−k +
∑
n≥0

Bn+k(q)

(n+ k)!

(n+ k − 1)!

n!
tN+n

 eyt

= (−1)N−1
N∑

k=1

ak(N)

B0(q)(−1)k−1(k − 1)!tN−k +
∑
n≥0

Bn+k(q)

n!(n+ k)
tN+n

 eyt

= (−1)N−1B0(q)

N∑
k=1

ak(N)(−1)k−1(k − 1)!tN−keyt + (−1)N−1
N∑

k=1

ak(N)

∑
n≥0

Bn+k(q)

n!(n+ k)
tN+neyt

 .

On other hand, we have

tN−keyt =
∑
n≥0

yn

n!
tn+N−k

=
∑

n≥N−k

yn−N+k

(n−N + k)!
tn (69)

∑
m≥0

Bm+k(q)

m!(m+ k)
tN+meyt =

∑
m≥0

Bm+k(q)

m!(m+ k)

∑
l≥0

yl

l!
tl+m+N

=
∑
m≥0

Bm+k(q)

m!(m+ k)

∑
n≥m+N

yn−m−N

(n−m−N)!
tn

=
∑
n≥N

(
n−N∑
m=0

Bm+k(q)

m!(m+ k)

yn−m−N

(n−m−N)!

)
tn. (70)
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Finally from (69) and (70), we obtain the following formula

(N − 1)!FB(t, x1) · · ·FB(t, xN ) (71)

=

N−1∑
n=0

(
(−1)N−1B0(q)

N∑
k=N−n

ak(N)
(−1)k−1(k − 1)!yn−N+k

(n−N + k)!

)
tn

+
∑
n≥N

(
(−1)N−1B0(q)

N∑
k=1

ak(N)
(−1)k−1(k − 1)!yn−N+k

(n−N + k)!

)
tn

+
∑
n≥N

(
(−1)N−1

N∑
k=1

ak(N)

N−n∑
m=0

Bm+k(q)yn−m−N

m!(n−m−N)!(m+ k)

)
tn

The equalities (69),(69), (70) and (71) give us our theorem.�
One can get an easy complete version of Dilcher’s results [6] by replacing q = 1 in
the above theorems.
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