Higher dimensional Dedekind sums in finite fields
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Abstract. We introduce Dedekind sums of new type defined over finite fields.
These are similar to higher dimensional Dedekind sums of Zagier. The main result
is the reciprocity law for them.
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1 Introduction

Letc > 0, a be relatively prime rational integers. The classical Dedekind sums is defined as
c—1
1 wk Tka
=— E t{— |cot [ — ).
s(a,c) 4Ck:lco <C>co ( . )

It satisfies a famous relation called tieeiprocity law i.e., for relatively prime positive integers

a, ¢,
B a?+c?+1— 3ac
s(a,c) + s(c,a) = e
We refer to Rademacher-Grosswald [6] for its proofs. One knows a higher generalization for
Dedekind sums due to Zagier [7]. Lete a positive integer, and, . . . , a,, integers prime to

p. We assume that is odd. Zagier defines a higher dimensional Dedekind sum as follows:

d(a An1;p) = (_1)(71_1)/21 icot (7T/€CL1) cot (Wkanl)
1y« Un—1, . » ‘

1 p p




For pairwise coprime positive integets, . .., a,_1 (n 0odd), this sum satisfies the reciprocity
law

= lo(a, ..., ay

Zd(al, N ,aj_l,aj+1, N ,an;aj) =1- g,

- al P an

7j=1
wherel,,(aq, ..., a,) is the polynomial iru, . . ., a,, defined as the coefficient 6f in the power
series expansion of

- a;t - L 5, Loy 2 6
”——” 14+ —at? — —a*t*+ —a%6 — ... ).
L tanh(a;t) - ( 3% 4579 045"

j:l ]:1

It should be noted that Beck [1] generalized Zagier’s higher dimensional Dedekind sum.
It is known thatr cot 7z has the following expression:

1 [ 1 1
tmz = — . 1
meot mz z+;(z—n+z+n> (1)

In finite fields, we have periodic functions that have analogous expressions to (1). From this
point of view, in [3], [4] and [5], we introduced Dedekind sums in finite fields, and established
reciprocity laws for them. These sums are like Apostol-Dedekind sums defined by

c—1
k— [(ka
sp(a,c) = Z EBn <?> ;

k=1

where B,,(r) denotes thexth Bernoulli function. In [4], we posed a question: can we define
higher dimensional Dedekind sums defined over finite fields as Zagier did in [7]?

The goal of our paper is to introduce new kinds of Dedekind sums defined over finite fields.
Our Dedekind sums are similar to higher dimensional Dedekind sums. As the main theorem,
we establish the reciprocity law for them.

Notation.
)~ = the sum over non-vanishing elements

/
H = the product over non-vanishing elements

2 Lattices

We recall some facts about lattices and periodic polynomials. We refer to Gekeler [2] for details.
For K = F,, the finite field withg elements K denotes a fixed algebraic closurelof Let A

be a subset id{. We callA alattice if it is a linear I -subspace ik of finite dimension. For

such a lattice\, define the product

en(z) = ZH/ (1 — ;) :

The mape, : K — K satisfies the following properties:
e ¢, IS K-linear andA-periodic.
e If dimg A = r, thene, (z) has the form



whereay(A) = 1, a,.(A) # 0.
e ¢, (z) has simple zeros at the points®fand no other zeros.
e dey(z)/dz = €/ (z) = 1. Hence we have

1 :eﬁx(z)zz 1
2=\

ea(z)  ea(2)

For a positive integet,

Eu(A) =3 A
AEA
is called theEisenstein series of weightfor A. We use the conventiofy(A) = —1. The

functionz/e, (z) has the following expression as a formal series:

il 3 El(A)"
k=0

enlz) &

3 Higher dimensional Dedekind sums

Let A be a lattice. We introduce Dedekind sums forLet K'(A) denote the field generated by
A over K and assume > 2. We pick upay, . ..,a, € K \ {0} satisfying

%gKM)Hi#n

Definition 3.1 We define

1 ! a\\ an_ A\ "
salay, ... an_1;a,) = (—1)”_1—2 ea (L) -~-6A( al ) .

4 4
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Remark 3.2 In casen = 2, ¢ = 2, our Dedekind sum coincides with one of Dedekind sums
defined in [4], [5].

The Dedekind sum, (a4, . . ., a,_1; a,) has similar properties to those of Zagier’s Dedekind
sum. More precisely we have:

Proposition 3.3 (i) sx(as, ..., a,—1;a,) only depends on; + a, K,

(i) sa(as,...,an—1;a,)is symmetric in the — 1 argumentsiy, ..., a,_1,

(iii) sa(Cay,...,an_1;a,) = Ctsplar, ..., an_1;0a,) forany¢ € K\ {0},

(iv) sa(Ca1, ..., Can_1;a,) = sa(ay,...,an_1;a,) forany¢ € K\ {0},

(v) The Dedekind sury (ay, . . ., a,_1; a,) isrational i.e.,sy(aq, . .., an_1;a,) € K(A)(aq, ..., a,).

Proof. The proof of the properties (i)—(iv) is trivial, so that we omit it.
Now we prove the rationality of the sum (a4, .. ., a,_1; a,): we recall from Section 2 that
if dimgx A = r, thene,(2) has the form

en(z) = Z a;(N)z7.

It is easy to see that the coefficientgA), 0 < i < r, are elements of(A). Therefore, for
any0 < i < r we havee, (—3) € K(A)(ai, a,). This yields the property

a,
a

salar, ...y an_1;a,) € K(A)(ay,...a,).



Remark 3.4 We present an easy case here. This example will be much more developed in
section 4. Let\ = K = F,, n = 2, ¢ = 2. Suppose € Fp.. \ F,. Then! is a primitive

aq aq
element off > and ¢l — o = o+ at € F,\ {0}. Therefore

1
sk(ai;as) = —F——
(-7

as ag

€ Fq(ag) N Fq(al, CLQ).

But if we take a primitive element, of F« anda;, = ta, with ¢ a primitive element of 2, it

is obvious to see that,(as) N Fy(ai,a2) = Fy(ar,a2) = F. This example shows us that,
in general, for the definition field of the Dedekind sum(ay,...,a,_1;a,) we must take
K(A)(ay, ...a,).

Remark 3.5 As is well known, Zagier’s Dedekind sudiiay, . . ., a,_1; p) satisfies
d(zay,...,za,_1;p) =d(ay,...,an_1;p)

for any integerr prime top. In our situation, if we suppos&A C A, thatis,A is a finite field,
then

sa(zay, ..., xa,_1;a,) = sa(a1, ..., an_1;a)

foranyxz € A\ {0}. Moreover,s,(ay, ..., a,_1;a,) only depends on; + a, A.
We now state the reciprocity law for our Dedekind sums.
Theorem 3.6 For ay, .. .,a, € K \ {0} such that

g K(A) 0 iA

J
holds, we have

n ail “ e ai’ﬂ
. _ 1 n
E salan, .., @i1, Qg -y G Q) = E —FE,(A) - Ei (D).
- . - a---Qap
i=1 i1+ Fin=n—1
01 5eeeyin >0

4 Example

Let A be a fixed lattice. Firstly, we give the value of the sum of Dedekind sums for small

1 1
sa(ag;ag) + sp(ag;ar) = — (— + —> Ei(A),
aq a9
sa(ar, ag; as) + sa(ar, as; az) + sa(az, as; ar)
_ai+a3+ a%EQ(A) _map + agaz + aza
a10a20a3 10203
sa(ar, az, as; as) + sa(ar, az, aq; ag) + spar, as, aq; az) + sa(aqz, ag, aq; aq)
3 3 3 3
_a1+a2—|—a3+a4E3(A)
1020304
alas + ajaz + atas + a1a3 + a3as + a3ay

Ei (M)

Ey(A)Ey(A)

A1G20304
2 2 2 2 2 2
ai1a3 + aga3 + azaq + araj + asay + a3a4E
1
1020304
10263 + A10264 + Q10304 + Q20304
1020304

(A)Ea(A)

Ei(A)?.




We next consider the special case= K =F,. Thenek(z) = z — 2%. Since

Z o
E { Zk(q—1)7
k=0

ex(z)

E,(K)is —1 (resp.0) if ¢ — 1 dividesn — 1 (resp. otherwise). One can see

n

CrATT(E %) e
1(::-5)

si(ar, ... ap_1;a,) = T \an  an
0 (¢—1 jfn—1)
Case 14 = 2.
(a1302) + siclazs ) = — + ~
sklag;a sklag;a) = — + —,
KU1, 42 K\W2 1 a as

ai + a3 + a3 + ajas + agas + aza;
sk(ai, ag;as) + sk (ar, as;az) + sk (az, as;ar) = ;
a1a20a3

sk (a1, az, as;aq) + sk (ar, az, as; as3) + sx(ar, as, as; az) + sk (az, as, as; ar)

1
3 3 3 3 2 2 2 2 2 2 2
= — (al + a3 + a3 + ay + ajas + ajaz + ajas + a1a; + axas + azas + aiaz
1020304

+axa3 + ajas + ara] + axai + azai + a1a2as + a1a2a4 + a1a3as + azazay) -
Case 24 = 3.

sk(a1;az) + si(az;a1) =0,
a? + a? + a?
sk(ai, ag;as) + sk (ar, as;az) + sk (az, as;ar) = -1z 3 37
a1a2as3

sk (a1, az, a3;a4) + Sk (ay, asz, as; as) + si(ay, ag, aqs; az) + si(az, as, as; ar) = 0.

Case3¢>3,q>n>2.

n
E SA<a17"'7ai717ai+17"'7an;ai):O'
=1

3

—1 _
™ - al!

Ay -+ Qp

ZSA(CM, ey A1, Qg 1, -y Oy ai) = (_1)q

=1

5 Proof of Theorem 3.6

Let us consider the rational functioR(z) = ej(a;2)™! - ea(anz)™'. By assumption on
ai,...,an, we havea; 'A Na;'A = {0} if i # j. This implies that"(z) has a simple pole at

any nonzero element ¢f) o, ' A. For any nonzero elemente A, we have

i=1
)—1

Res./q, (F(2)dz) = Res,q, (ea(a;z) 'dz) [ ] ea (“J’5

a
J#i t



Sinceey (a;2)™t = ai_l Z(z — )\/ai)_l,

AEA
Res,,, (en(a;iz) 'dz) = 1/a;.

Hence

Resy ., (F(2)dz) = — [[ ea (W) -

To compute the left hand side of Theorem 3.6, we make use of Residue Theorem. It should
be noted that thoughy (z) is A-periodic, eacle, (a;2) is not. From thisF'(z) is not A-periodic.
Our rational functiorn¥'(z) has the form

where
G(z) = eala12) - - -exlanz),

which is a polynomial ire with degree equal to#A (> 1). To obtain our desired theorem 3.6
we need the following elementary lemma.

Lemma 5.1 LetG(z) be a polynomial, over a field, of degree> 1, and R the set of all roots

of G(z). Then we have
1
E Res, (G(z)dz) =0.

a€R

Proof of lemmaThe partial fraction decomposition 0f G(z) can be expressed as

1 ord(a) C o n
CERPIP T
aeR n=1

Then for anyu € R, we have Res1/G(z)) = C,1. In other hand, it is easy to see tHat=(z)
can be rewritten as follows

1 (Z Caa

Zm—l
~ \uer ) a polynomial in z with degree less tham — 1
G(z) G(2) G(2)

wherem is the degree of the polynomiél(z). Hence,

1= (Z Ca,1> 2z™! + a polynomial in z with degree less tham — 1.

a€ER

But the degreen of the polynomialG(z) is > 1, thus we can easily by identification obtain
that) ~ Cy1 = 0. O

a€ER



n

The set of all poles of'(z) is U a; 'A. By the above Lemma, we have
i=1

(1)t Z sa(ar, .oy @1, Qi - . G a;) + Reg(F(2)dz)
i=1

= i Z/Reﬁ/ai(F(Z)dz) + Reg(F(z)dz) = 0.

i=1 A€eA

Since

Hence 1y
Res(F(2)dz) = (=1 Z all --alr By (N) -+ Ej, (M).

a . e a
1 ™ et =n—1

This completes the proof.

6 Concluding remark

Finally, we would like to make the following remark.

The classical Dedekind sudtay, .. .,a,_1;p) can be defined for any integer> 2. How-
ever, forn even the sum is zero, so thatis assumed to be odd in general. The same thing
holds in our setting, that is to says (a4, . . ., a,—1; a,) can be defined for any integer> 2. If
CharF, # 2 and2|n, then our sum is equal to zero because

(_1)717151&(&1’ ¢ o an) = 8A<a17 P ¢ o an)

by Proposition 3.3 (ii), (iii), (iv). Moreover, it may be possible to impose the condition about
according ta\. For instance, as seen in Sectios#(ay,...,a,_1;a,) is zero ifg — 1 isnot a
factor ofn — 1. Hence we can impose the assumption that1 dividesn — 1.
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