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Abstract

We introduce multiple homogeneous elliptic Dedekind-Rademacher sums, in
terms of special values of Jacobi forms in two variables, that generalize the ellip-
tic Dedekind-Sczech sums [19]. These sums give us an elliptic analogue to various
classical Dedekind sums introduced by Beck in [7], Berndt in [§], Dieter in [9] and
Hall-Lewis-Zagier in [11]. We prove their reciprocity laws. The second aim is to
show that our result contains an elliptic analogous to the main results of Beck in
[7], Berndt in [§], Dieter in [9] and Hall-Lewis-Zagier in [I1]. Our elliptic Dedekind
-Rademacher sums are connected to many interesting invariants.

1 Introduction

We use throughout the notation : e(z) = e2™* (z € C).

1.1 Sczech’s formula

The elliptic Dedekind-Rademacher sums that we introduce in this work are a gen-
eralization for the elliptic Dedekind-Rademacher sums studied by Sczech in his
paper [19].

Let L be a lattice in the complex plane C with {wy,w2} an Z-oriented basis of L
and with the multiplicator ring

OLr={meC|mLCL}

We define the Eisenstein series

(e)
En(z: L) := —k —s k=012, ..
Mel) = D (e al |, k=012,
w—+2z#0

(e)
where Z is the Eisenstein summation defined by

weL
(e) m=M n=N
g = lim g g , Where w = mwy + nws.
M,N—o0
welL m=—M n=—N



If a, ¢ be coprime elements in Oy, R. Sczech in [19] defined the following elliptic
Dedekind sums

11 b1 ¥ & (%)n (%)

c
keL/cL
and stated his reciprocity formula

(1.1.2) D(a,¢) + D(c,a) = 2iE(0) Im <Z+ 1 +2> cA0

ac

From this result, he construct a non trivial element in H* ( (SLQ(OK), x), (C, +))

In this paper we study the elliptic Dedekind-Rademacher sums in the general
frame of Jacobi forms ( expressed in terms of Jacobi forms). We will prove their
reciprocity law. The first aim of this paper is to show how to deduce the formula
[1.1.2] (stated in Sczech’s paper [19]) from our reciprocity theorem [2.2.1]

The second aim is to explain that our second main theorem [2.2.1] can be regarded
as an ellitpic version of the main results of Beck in [7], Berndt in [8], Dieter in [9]
and Hall-Lewis-Zagier in [I1].

The third aim is to give several interesting invariants linking different imaginary
quadratic fields. These invariants provided from our elliptic Dedekind sums.
Various elliptic Dedekind sums are the main objects of this paper.

1.2 Notations and definitions

Throughout this paper, we fix L be a lattice in the complex plane C with the
multiplicator ring O, and we fix {w;,w2} an Z-oriented basis of L. i.e

Im (“”) >0, L = Zwy + Zus.
w2

We define the R-alternating bilinear form

2o—zp 2o —zp

wiwz — Wiws 2i|wo|2Im <ﬂ>
w2

EL(Z> 30) =

which is a symplectic form on C associated to the oriented complex lattice L.
We note that Ey, :

) satistfies Exg(Az, A\p) = EL(2,¢); for all A € C*;
) Er(Lx L) C Z;

iii) Er(wi,ws) = —1 for all Z-oriented basis (w1, ws) of L;
)

1

11

iv) For z,p € C, z = aws + bw1, ¢ = cws + dwy with a,b,c,d € R, we have
Im (Zp)
E = = ad — bc.
L<27 SO) CL(L) a C
v) for two complex lattices L C A we have
Eyn=[A: L|EL

where [A : L] indicates the number of elements of A/L.
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We introduce the following Eisenstein-Kronecker series

(e)
—ZM If k=1,2.3,...

wk

(123)  dileiL) =

weL
w#0
1 If k=0

2 Main results

Now, we are going to state our main results.

2.1 Elliptic Dedekind-Rademacher-Sczech sums

We now introduce the elliptic Dedekind-Rademacher-Sczech sums, for a, b, ¢ in Oy,

1 k+z k+z
(2.14) D(a,b,clz,y,z) = - Z Eq <a P 13,L> Ey <b PR L L)
keL/cL

In particular, the sums

1 k bk
D(a,b,c) :== D (a,b,clr =0,y =0,2=0) = — Z E <a;L> E (;L>
¢ keL/cL ¢ ¢

are the Rademacher homogeneous analoguous to the elliptic Dedekind-Sczech’s
sums lb the fraction % in the left-hand Eisenstein serie E; in the sums 1’

becomes 7.
Now, we state our first main result

Theorem 2.1.1 (First main result) Let a1, a2, a3 be three elements in Op, being
pairwise coprime, z1,zs and z3 be complex numbers. Then, we have

D (al, as, (I3|Zl, 22, 23) + D (CLQ, as, a1|22, Z3, 2’1) + D (ag,al, CLQ‘Zg, 21, 22) =

ak ag

g <_ — — 51,2,3) do(ap412k+2 — Apt22k41; L) +
Ak+10k+2  Qk+10k+2

k(mod 3)

ax
Es (2 — apZig1 p42; L) -

Z (Ok+1,k+2 — 01,2,3)

a a
K(mod 3) k+10k+2

where Zj;, is a common pole of Dy, (W;ajz — zj) and Dy, (%;akz — zk>
aj Q.

1 if ajz — agz; € L
5j’k - { ’
0 Otherwise
1 ifajzk—aijGL,V1§j7ék<3
0123 = {
0 Otherwise
k=  Qk(mod 3)s Wk = Ok(mod 3)> *k = Zk(mod 3)
Zekt1 =  Zi(mod 3)k+1(mod 3)» Ok k+1 = Ok(mod 3),k+1(mod 3> V¢ kK € N.



Corollary 2.1.2 (R. Sczech [19])
For any a1, as, as three elements in Or, being pairwise coprime and z1, za, 23 complex
numbers such that:

ajzk—aijGL, V1<j#k<3

Then, we have

D (a1, a2,a3|z21, 22, 23) + D (a2, a3, a1|22, 23, 21) + D (a3, a1, az|23, 21, 22) =
a a [0
—dg(O;L)I( L=y 5)

a2as3 aijas ai1az

where I(z) =z — 2

The result of this corollary is an homogenization of the main Theorem
of Sczech in [19]. Precisely, for any a1, ag, as three elements in O, being pairwise
coprime and z; = z3 = 23 = 0 we obtain

D(ay,a2,a3) + D(az,as,a1) + D(as,a1,a2) = 2iE2(0; L) Im( I >

aza3z  aiaz  aia
This reciprocity formula is not implied by Sczech’s (|1.1.2]).

Corollary 2.1.3 Let aq, a9, as be three elements in Oy, pairwise coprime and z1, z2, 23
complex numbers such that:

iz — ARzj €L, Vlgj;ék<3
Then, we have

D (ay,a2,a3|z1, 22, 23) + D (a2, as, a1|z2, 23, 21) + D (a3, a1, as|z3, 21, 22) =
3

ag
E —————do(ht12k4+2 — Apy22k+15 L)
oy k+10k42
Corollary 2.1.4 Assume that
a1zo —aszy € L and a1z3 — aszy,as2z3 — azzs & L.
Then, we have

D (a1, a2, a3|z1, 22, 23) + D (ag, as, a1|22, 23, 21) + D (as, a1, az|z3, 21, 22) =

Ak as

E ————do (k12642 — Qky22k+15 L) + Es (23 —agZa3; L) .
Af41Ak+2 aiaz

k(mod 3)

Corollary 2.1.5 Assume that
a1z9 — a9z1,a123 —asz1 € L and aszs — azzs & L.
Then, we have
D (al, as, CL3’21, Z9, 2’3) + D (CLQ, as, aﬂzz, Z3, 21) + D (ag, ai, a2|23, Z1, ZQ) =

a a a
> L day(ar1zerr — appazrrs L) + —— B (23 — asZag; L) + —— By (20 — apZy 33 L)
i Q41042 a1a2 a1ag
(mod 3)
Remark 2.1.6
The results of corollary[2.1.3, corollary[2.1.3,corollary(2.1.4) and corollary[2.1.5

are completely independent and together represents a complete reciprocity law for
our shifted elliptic Dedekind-Rademacher-Sczech sums.



2.2 Multiple elliptic Dedekind-Rademacher sums

We state a higher version of the theorem in terms of Jacobi forms.
More precisely, our theorem can be derived from the following generalized
Dedekind reciprocity law in terms of Jacobi forms Dy (z;¢) which is defined in the
next section B

For Kk =1,...,n we consider the sets
zE+ 1t - i
Sk = <(teL/alL: K is a simple pole of z — HDL (ij;ajz—zJ)
af =1 aj
zr+t - i
M, = teL/aiL : K is a multiple pole of z — H Dy, (cpj; a;z — zj>
af a;

j=1

We introduce the multiple elliptic Dedekind-Rademacher sums

d(ak;ala"'a vk‘ CLn’Zk,Zl, - 2 Zn|(;0k3,9017 ,(ﬁka"'a@n) =

! m(?&f@jt -)

teSk 1<j#k<n

We state now, our reciprocity formula concerning our multiple elliptic Dedekind-
Rademacher sums

Theorem 2.2.1 (Second main result) Let n € N, n > 3, a1,...,a, be el-
ements in Op, z1,...,zn complex numbers and 1, ..., on complex variables such
n

that Z pj = 0. We obtain the following reciprocity laws
j=1

n

Zd(ak;al, oy Oy ooy A | 2165 215 wovy Zhey ooy 20| PR3 Py ooy Py ooy ) =
k=1

_ZZRes HDL< sajz zj),z:zka:t

k=1 te My,

We state the following special cases of our theorem [2.2.]]

Corollary 2.2.2 (Explicit formula 1)
Letn e N, n >3, ¢1,..., on complex variables with sum zero and ay,...,a, be
elements in Oy, z1,..., 2z, compler numbers such that

ajzp —arz; € L, V1<j#k<

Then we have Sy, = L/axL and

n
Zd a5 a1, ..., a k an|2k,21,..., Zn|<Pka<Pla ,7g0vk,,,_,gpn) =0
k=1



Corollary 2.2.3 (Explicit formula 2)
Letn €N, n >3, ai,...,a, be elements in Or, and @1, ..., pn, complex variables
with sum zero. Then for z; = --- = z, = 0 we have Sy = L/apL\{0} and

n
E d(ak, A1y .eey dk) ey A |23 Ry ey kau ceey Zn|S0k7 P1ly ey sﬁkv ceey 9077,) -
k=1

— Z a™ =t am T, <W;L> ool <%;L>
a an

MY yeney mn=>0
mi+...+mp=n—1

In the section {4 of this paper we give the complete proofs of our results mainly
theorem [2.1.1] and theorem Besides, we show how to deduce the Sczech’s
formula from theorem

2.3 Some invariants connected to our multiple elliptic
Dedekind-Rademacher sums

In this section the complex lattice L will be O which is the ring of integers of the
imaginary quadratic number field K.

Now, our main results in the previous subsection produced some applications in the
following areas: Eisenstein Cohomology of the groups SLy(Of), are connected to
special values of Hecke L-functions at s = 1 associated to some quadratic forms, also
related to quadratic residue Legendre symbols to elliptic Dedekind sums. Finally
we precise the result on the problem of the density of elliptic Dedekind sums. These
applications which we will recall here are already well known. Indeed, there are ob-
tained by H. Ito in [16, 18] and R. Sczech in [19]. In particular, they study only the
simplest form of our elliptic Dedekind sums and they obtain the following theorems.

Let K = Q,Q(v/D), D negative integer.

Put
Dianas)i=— 3 B (a—L)B (L1
ay,as) == a—:; ;
1, 02 a 1 10,2’ 1 a27

2 tmod (a2 L)

Let A= “3> in SLy(Ok ).
a4

a2
We define an elliptic analogous to Rademacher function

az

E>(0)I (“—3) Otherwise

a4

Ey(0)I (9t ) _ D(ay,a If a 0
oA 2()( ) (a1,a2) 2 #

In 1984 R. Sczech in his paper [19] proved the following result

Theorem 2.3.1 (R. Sczech [19]) @ is a group morphism: (SLx(Ok), x) — (C,+) Non
trivial iff K # Q,Q(v/—1),Q(v/—3).

Then, we obtain a cocycle in H!(SLy(Og),C) which is represented a non trivial
Eisenstein cohomology class of SLa(Ok).



For A = <Zl ZS) in SLy(Ok) with a1 + ag # 0, £1, +2.
2 a4

Then the equation asX? + (ag —a1)X — ag = 0 has two distincts solutions a, a’ in
C. We define the quadratic form

Q(m,n) ;= (ma +n)(ma’ +n)

it satisfies

Q((m.m)4) = Q(m,n)
Then A operates on the complex lattice Ok
Define the Hecke L-function
PR
Q(m,n) 3
L(s,A) = ———= R —.
(87 ) (Z) Q(m7n)’ e<8> > 2

In 1987 H. Ito proved the result [16]

Theorem 2.3.2 (H. Ito [16] ) Let e = asa+ ay. Then
D(A) = sgn (logle|) .(a — a').L(1, A)

This result can be interpreted as a periods of some differential forms on the upper
half space which consists of all quaternion numbers. The relation between these
periods and special values of L-functions has already been observed by Harder
[12, 13, 14].

Now, we set W(A) = \/%g:)(o)’ K = Q(vD), D negative integer.

In 1990 H. Ito proved in [I7] the following result

Theorem 2.3.3 (H. Ito [17] ) There exists explicit group morphism
X : (8L2(Ok), x) = (Z/8Z, +)

such that
V(A) = x(A)mod(80k)

This homomorphism describes the eighth roots of unity which occur in the trans-
formation formula of certain theta series. x(A) is a class of Z/8Z. For more details
we refer to R. Sczech [20]. Then we get cohomology class in H* (I'(8),Z/27Z).

In 2004 H. Ito again proved the following result [18§]
Theorem 2.3.4 (H. Ito [18] ) If K is euclidian # Q,Q(v/—1),Q(v/—3). Then

the set
{(al, D(ah@)) : @ € K}
az’ \/DEy(0)) a2
s dense in the space C x R.

This result is an elliptic analogue to the main result of Hickerson in [I5]. However,
ar D(a1,a2)
a2’ \/DE5(0)
We note also, that the treatement of Ito does not work in non-Euclidian case. It

will be interesting to solve these questions.

this result does not mean that points < ) distribute uniformly.
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3 Eisenstein-Kronecker numbers d,,(y, L)

3.1 An overview on the Jacobi form Dy(z, )

Our references for this subsection are [2] 3, [4] [5] [6].
For 7 € H = {z € C: Im(z) > 0} the upper half plane, we consider the following
Jacobi’s Theta function

6r() = e (500 + 5P+ (nt )+ )

neL

Or by Jacobi Triple product formula

o0

(3.1.5) 0r(2) = iqy"® (e(2/2) — e(=2/2)) [[ (1 = a7) (1 = gPe(2)) (1 = qfe(—2))

n=1

We shall use the following notation

@ = P17 + P2, (p1,p2) € RE,Vp € C,

because {7,1} is an R-basis of C.
Now, for each complex lattice L , we fix {w1,w2} an Z-oriented basis of L .
We associate to L a Jacobi form of two variables

/ 2+
(3.1.6) Dy () = wlf <52<m> 0,(0)0, (232)

where 7 = L.
wa

We quote from [2, [3, [4] [5], 6] the following fondamental properties of Dy (z;¢):
Theorem 3.1.1 (Properties of Dy (z;¢))

i) Dy, is meromorphic in the first variable z, and only real analytic on the second
variable .

it) ( Periodicity of Dr(z;¢)): Vp€ L

{ Dp(z;¢+p) = Dr(z; 9)
Dp(z+ p;p) = e(EL(p, »))DL(z; 9)

i11) (Functional Equation): Dy (z; ) satisfies Dy (z;¢)e(—EL(z,¢)) = Dr(p; 2).

iv) The Laurent expansion of the Jacobi form Dy (z,¢) is given by

Dr(zip) =Y dm(p;L)2™ ', Vz,peC\L
m2=20
1 1
do(p;L) =1,di(p;L) = Er(p; L), da(p; L) = iEl(%L)Q = 291(p)

where pr,(p) is the Weierstrass pr,-function

weL\{0}



v) ( Distribution Formula for Dy (z;¢)) :
For L, A complex lattices such that : L C A, [A : L] = 1. We have for all

vV z,0 € C\A
> Dr(lzp+1t) = DAz 9),
teA/L
and
S° Dulizt) = (= A) — iz, L),
TeA/L\{0}
where

1 1 1 z
L)=- 42
¢z L) 2t Z [z—w+w+w2

In the next section we study the properties of d,,(y; L) coefficents of Laurent
expansion of Dy (z, ) in the first variable z.

3.2 Properties of the Eisenstein-Kronecker numbers d,, (¢, L)

In the following we precise the most important properties of Eisenstein-Kronecker
numbers d,, (¢, L)

Theorem 3.2.1 (properties of d,,(y, L))

i) (Homogeneity and symmetry) For each m € N*, d,,, (¢, L;) is homogenous
of degre —m 1i.e

dm (A, A\L) = X\™""d,, (¢, L), VA € C\{0}.
In particular,
dn(=¢; L) = (=1)" (3 L)
i1) (Periodicity ):
dm(p + p; L) = dm(p; L),Yp € L

iti) (Modularity): We let dp (o, T) := dm(p, Ly) where Ly = Z1 + Z,7 € H.
dm (o, 7) is a modular form for SLy(Z), with index 0 and weight m i.e

e ar+b\ m ‘ a b
dm <c7'+d’c7'+d>_(m—+d) dm(57), v<c d>€SL2(Z)'

iv) Elliptic Raabe Formula
For L, A complex lattices such that : L C A. Then, we have for all m > 1

> dm(p+ L) =[A: L' "dp(p; A), Vi € C\A
teA/L
and
Z dp(@+1;L) = Ep(0; L) — [A : L' ™™E,,(0; A), Vo€ A
teA/L\{0}
Proof:

This theorem is a direct consequence of the theorem The idea
consists in extracting the coefficients of Laurent series of the Jacobi forms in the
statement of the previous theorem



4 Proofs of main results

4.1 Proof of Theorem 2.2.1]

To prove the Theorem we start with some preliminaries results.
We consider the function

®, H Dy, <aj — Zj; (’_D]>
]
Where

Z:(al...,an),gz(gpl,...,gon)

21, ..., Zp are complex numbers and 1, ..., ¢, complex variables with sum zero. Now,
we have the following interesting properties of F'

Proposition 4.1.1 The function
F:z— F(z,@,z)

i) F is a meromorphic, with poles only at

t
Z:Zk+ k=1,...,n, teL
ag

it) F is periodic with periods the lattice L i.e

F(z4p, @, A)=F(z,®,4),Vpe L
i)

n n
(o) (£(2)
jl_[1 j& J a — Jaj

J

iv) For allt € Sy we have

t
H DL <SOJ Zk+ _ZJ> =

k1<itk<n Ok

e Z (Zj7 ?) Res (F(z, 3,X)dz;z = Z’;—jt)
j=1

J

Proof :

From the theorem [3.1.1] we know that the Jacobi form Dy, is meromorphic in the
first variable z, and only real analytic on the second variable . Then the function
F' is meromorphic. Now, from the Triple Jacobi formula and the definition
of the Jacobi form Dy (z; p) we obtain that the poles of z — F(z, P, X) are
exactly the elements

2+t

z= Jk=1,....n,VtelL
a

10



We deduce the property i).
The property ii) can be obtained by using the periodicity equation of the Jacobi
form D (z;¢). Indeed,

Dr(z +p, ) = e(EL(p,¢)) DL(z, ¢)

and thanks to the equality Z w; = 0, then we obtain for all p € L
i=1

n
Rt p BT = (S (wn ) re T

i=1
= e (EL (MZ%)) F(z,®,A)
=1

—

= F(z,g, A), thanks to: ngi =0.
i=1

The property iii) can be obtained by using the functional equation of the Jacobi
form Dy (z;¢). Indeed,

Di(z¢) = e(EL(2,¢))DL(p; 2)

Then

n n
HDL (ajz—zj;zj]) = HDL (,a]z—z])e(EL <ajz—zj;?)>
j=1 7 j=1 J

J
n

n
= e —Z zj,g]' HDL ?;ajz—zj
(I] j=1 (Z]

j=1

Hence, we have the property iii).

We prove property iv). We compute the residu of the function F at the pole

z= Z’“H which is of order 1 ( i.e simple pole). Then

Res (F(z,a,Z)dz;z: Zka—:t> = e _Z<Zj’§j> Res I:IDL <g;ajz—zj> dz;z =

— . —Zn:<zj,%> I1 DL<_J, a

k1<tk<n

Thus we obtain our desired property iv). [

Now, we are going to prove the theorem [2.2.1]
By applying the Liouville’s residue theorem to the elliptic function £ we obtain

Z Z Res <F(z,6>,—A>)dz;z:Zk+t> =0
a

k=1 tEL/akL

11

2+t
ag

)




That implies

n n

zn: Z Res (F(z,a,Z})dz;z = Zka:t> = _Z,Z Res HDL (ajz—zj,?> 2 = Zka:t

k=1 ZES;C

By using property iv) of proposition we obtain

Bas (st ) £ e ([ )

k= 1 tESk 1<j#k<n k=1teM,

Hence, we deduce

Zd(ak;alv'--a an|zk721a"'7 Zn|g0ka90la' '7%5]6)"'79071) =

*ZZRGS HDL< zj>;z:zka:t

k=1teM,

Thus, we obtain our desired theorem [2.2.110]
Proof : We prove corollaries
For the corollary we have to assume that
zj + 1 ozt tr
7] af

gL, VitjtreL 1<j#k<n

which is equivalent to
ajzp —arzj € L, V1I<j#k<n

This implies that S, = L/axL, My =0, V k=1,...,n. Then, from theorem m
we obtain

Yo Y I n(Ee ) -

—1 % teLjaL 1<j#k<n

It is the corollary 2.2.2]
Now, to prove the corollary [2.2.3] we have to assume thathat 21 = ... = z, = 0.

Then, Sy = L/apL\{0}, M, = {0}, Vk=1,...,n. and z = 0 is a unique pole of F
with order n. Hence

> d(ag; ar, ooy s oy 205 21,00y Zs oeos 20O P1s ey By Pm) =

Z Z H Dy, <90J Zka:t ) = —Res ﬁDL (?;%Z) ;2=0
j=1 J

= tEL/akL\{O} 1<y#k<n
Now to compute this residue, we use the Laurent expansion of Jacobi forms

Dy (aj ) > dm, <%.’L> af

mj 20

12



Hence
n .
HDL (?;@z) 12=0
j=1 J

This completes the proof of the corollary O

Il
S
—3
|
Q
S 3
3
L
QL
E
/7~
S8
~
N~
SH
3
3
7N
S
h
N~

4.2 Proof of Theorem 2.1.1}

For the proof of the theorem [2.1.1| we consider four different cases

(4.2.7) ajzy —apz; €L, V1< j#k <
(4.2.8) ajzp —arz; € L, V1< j#k<
(4.2.9) a1ze —asz1 € L and a123 — asz1,a223 —asze € L.
(4.2.10) a1zo — ag71,a123 —azz1 € L and asz3 — agze & L.

Case 1: We assume that
ajzr —arz; € ajL +arl, V1<j#k<
From the Laurent expansion of Jacobi form Dy, (z;¢) we have

t a; t t i
Dy, <% ajzk+ k _Zj> = ai+d1 (ajm —zj;L) + ds (ajzk+ k —Zj;L> @—i—..., for j =1,2,3.
a; af ©j ag ag a;

we use this expansion to express the product

2k —I—tk
1 o (“” % )

1<j#k<3

as a serie in terms of variables (1,9 and ¢s3. To do that, let ji,j2 such that :
{j1,72,k} = {1,2,3}. Then we obtain

2+t a;, Q; a; zr +t a; 2z +t
H DL (90] i k Zj) =192 + idl <an 7ka k - ZjQ;L> + £dl <(Ij1 7ka k — Zjl;L>
k j k

1<j#£k<3 Ak Pi1Pj2 P Do
t t t
+ H dl ( 2k + Uk zj;L> + a]l ‘P]2d < 2k + 1k _ ZjQ;L) + an (led ( 2+t . Zj1§L>
1<j#k< Ajy Pj1 ag ajy Pjy a

+ (summation of monomials terms of total degree greater than 1 in terms of ¢;,, cpj2>

Thus, by using the elliptic Raabe formulas and the homogeneity property for
d'(gp; L), j =1,2, we obtain

Pj Zk + tg a1a2as3 a;
Z H DL ( J. . Z]> = (pk _|_ idl (anZk _ akzjz; L)
tkeL/akL 1<j£k<3 k P1P2$3 Y

; 1 2k + tg
D32 41 (aj,zn — apzjy; L) + — § | | dy | aj —zj; L
+ 1 (aj, 2 — akzj; L) + 1| aj o 25

; a
©js K el jan L 1<) k<3

aj, ¢; aj, ©;
Y ¥ . Y ¥ .
da (aj,zr — arzjy; L) + —=dy (aj, 2z, — arzj; L)+
Qi Qj, Pj QkGj; P,

+

(summation of monomial terms of total degree greater than 1 in terms of ¢;,, g0j2>
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The function da(p; L) is an even function, then

3 — — —_
1 "2 Zk +tk a1a20as
>— > 1 DL( > zj>: (01 + @2+ 03) +
k=1 "% 3, €L Ja L 1<j k<3 L1203

a a
(?1 (d1 (agz3 — agze; L) + dy (a3ze — agzs; L)) + 872 (d1 (a12z3 — agz1; L) + dy (a3z1 — a123; L) )—I—
1 2
as 1 Zk + tk
7(d1 (a221 —alzg;L) +d1 (ale —CL22:1;L)> + CT Z H dl —Zj;L
¥3 K theL/ap L 1<G#k<3
aip w2+ ¢3 . az 1+ @3 , az 1+ 2 ,
—— ———dy(agz3 — agze; L) + —— ———dz(a123 — azz1; L) + —— —=da(a122 — azz1; L)
aa3 Q1 aijaz P2 aijaz @3

+ (summation of monomial terms of total degree greater than 1 in terms of 1, @2, 903)

Now, we use that the sum ¢ 4+ 2 + ¢3 = 0 and d;(p; L) is odd function , we
deduce that

3
(4.2.11) Zi Z H DL<<PJ Zk+tk Zj>:

k=1 theLl/ap L 1<j#k<3

3 —
1 t

E - E H dq ( Zk Tt 1t zj;L> — _ai da(agzz — azze; L)
a a2a3

k=1 F 3 el jan L 1<i k<3
a2 as
I— dz(alzg — CL321;L) — dg(agzl — ale;L) +
aias aza1

(summation of monomials terms of total degree greater than 1 in terms of 1, o, @3)

Now we know, according to the theorem that

L i 2+t
D DN | A C e R

k=1 " tyeL/ap L 1<j#k<3

Then the coefficients, of our serie in |4.2.11} are all equal to zero. Now, the first
coefficient here is zero implies that

= t
Yo XL (et o) -
treL/ax L 1<j#k<n
al

a2 as
dy(agzs — asze; L) + ——da(a123 — agzy; L) + ——dy(agz) — ay29; L)
Q203 aias a20a1

Then, we obtain our theorem in this case 1.
Case 2: We assume that
ajzy —arz; € L, V1< j#k<

We have the following elementary lemma ( because the aj,a9,as are pairewise
coprime) :

14



Lemma 4.2.1
ajz —agzj €L, V1< #k<3 (21,22,23) € C(al,ag,ag) + I3
Then, there exists (t],t),t;) € L? such that

Zl—i-t/l o 22+t/2 B Zg—l—té

a1 az ag

n=3
Hence, the function z — F(z, P, Z)) = H Dy, (ajz — 2j; S0J> has a triple pole at
j=1 !

o 214+t
Z123 = a K — —
Now, we compute the residue of z — F(z, ®, A) at z = Zj 23, where A =
—
(a17a2aa3) 5 ¢ = (@13@27@3)-
We have

n=3
(4.2.12) Res (F(z, P, A)dz; 2 = Zng,) = Res H Dy, <ajz; @) z2=0| =
Qs
=1 !

=, (*_03;L> + —2d, <‘f2;L> + —dy (?%L>+
a1a9 as ajas a9 ajas al

1 1 1

—ds <9”2 L) d <9”‘°’ L) +—di (“ﬁ’%L) d (“?;L) + —dy (i”;L) & (i”m) .

al a9 as a9 al as as a9 al
Now, by using the following expansions near zero

Z+0(2%).

di(z, L) = % — Ey(0; L)z — a(TrL)
and

Tz WEQ(O;L)ZZ ol
aDz " am ok

dy(z,L) = ~E(0; L) —

We obtain, the part of monomials of total degree zero ( in terms of ¢1, @2, 3 and
o1, P2, p3) for the following quantity

n=3
(4.2.13) — Res H Dy, <ajz; ?)
=1 !

is equal to

a a a ™ a D: a D a D
E»(0; L) LR B 2 S 3 @4_ 2 ﬂ—i— 1 #1 +
asas  aias = a1as a(L) \a1a2 p3  aras p2  agas i

a1a3 Y2 Q102 Y3  a20q3 Y1 G201 Y3 a3d2 Y1 G301 P2

a a a a a a
EQ(O;L)<2()03+ 3@_1_ 1903+ 3@_{_ 1@+ 2<P1>+

15



m az 3 az 2 ai Q3 as ¥1 a1 P2 az P1
— —_—t -+ —+ — + —
a(L) \aiaz 2 araz 3 a2a3 Q1 aza1 @3 azaz P G301 P2

Let us now to use that
o1 +p2+p3=0

we obtain that the part of monomials of total degree zero, of

n=3
Pj
4.2.14 —R D P2y =
( ) es || L<a]z, &j>

J=1

is exactly

+ + +—I" 4 - - +— -
a2a3 aias a1az a1a3 P2 aiag Y3 a2a3 ®1 a2a1 Y3 azaz Y1 azal 2

B (0; L)( aq as as as 3 as 2 a1 3 as 1 a1 ﬂ—i— as g01>

To finish our computation, we use the Laurent expansion of the Jacobi form
Dr(z;¢). In fact,

t a; t t i
Dy, (soj ajﬂ zj> ] + di (ajzk+ zj;L> + do (ajzk—i_ zj;L> @ + .., for j=1,2,3.
a; a ©;j ay, a a;

Hence, we obtain the part of monomials of total degree zero

(4.2.15) Z Z 11 DL<% zkc;rt_zj>

t 1<j#k<n

it’s correspond to the following quantity

S > L a(wgr)

—1 * teL/ap L\{0} 1<j£k<n

- + +

a a a a a a
(O;L)< %@—F 3 P2 1 ¥3 3 P1 fﬂ%— 2901>
a1a3 Y2 a1a2 P3 a2a3 P1 a2a1 Y3 aszaz Y1 aszay P2

a a a a a a
—EQ(O;L)<_? Ly B2, s, B, N, 901)
aiasz Y2 aiaz Y3  a20a3 Y1 a2a1 Y3 a3a2 1 aszal ¥2

Finally, we now by theorem that the quantities|4.2.14)and |4.2.14) are the same.
Then, there parts of total degre zero are also the same. The above compuation
implies that

,;1 > I a(wiir)-

tmod(ap L) 1<j#k<n

aq as as ap as as
E5(0; L) + + -
a2as3 ajas ajaz a2as3 ajas ajaz

16



Thus, we deduce our desired result in this case 2.
Case 3: We assume that

a1z0 —agz1 € L and a123 — azz1,a223 — agze € L.

t t
We have aj1z9 —agz1 € L < 3t),th € L : % = % Thanks to ajz3 —
v .
aszi, 023 — asze & L, we have Zip = % is a unique pole of order 2 of the

function F'(z, <I> A H Dy, (aj — 2j; (€j> and all the other poles of F' are
aj

simple.

Let us to compute the residue of z — F(z, 3, X) at Z12 = zl;tl'

From the Laurent expansion of Jacobi forms

Dy, <a12; (_m) , Dp, <a22; 8_02>
al a9

and the Taylor expansion of Dy, (CLgZ + a3zl — 23; %) at z = 0, we obtain

(4.2.16) Res (F(Z, T, A)dz 2 = Zl,2> =

Res <DL <alz > Dy, <a2z; (_p2> Dy, (agz +azZ12 — 23; = ) dz;z = O>
ai as as

d1(¢2,L) dl(%l;L>
Dy, <G3Z1,2 — 23; %> o + “ 3 D) (CL3Z1,2 — 23; %>
as al az aaz as

Then

3 ! di [ £2; L dy (&L
> Z g et () a5
- DL (?;aj k k — Z]> = —DL ( 3 a3Z12 — Zg) + -

as
3

aj 7 aj aj a9

- B p <a3Z1,2 — 23; 303) e <—EL <<G3ZL2 — 23 %>>>
aiaz a3 s

where
> ifk=1,2
/ TheL/ax L\{t, }
b Z For k=3
ikeL/akL
We use Laurent expansion of Jacobi forms Dy, (a ;ay Z’“a:tk zj):

t a; t t j
DL (SO] ajZk+ k—Z]):CLJ—f'dl <6szk+k—2’j;L)+d2 (ajZk—i_ k—zj;L>s_0]+..., fOI“j:1,2,3
a; ag ©j ag ag a;
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to compute the product

t
H DL <(P] 2k+ k —Zj>

a
1<j#k<3 k

as a serie in terms of variables 1, @2 and 3.
Then, the term corresponding to part of total degree zero of

(4.2.17) z_: Z II o (% 0 2 —%)
. a;

a
7. 1<j£k<n=3 k

Hence, this term is exactly the quantity

zE+1 a a
Z Z H d1< Tk Zj;L> — L dy(aszs — agzo; L) — ———da(arz3 — azz1; L)

T 1<j#k<n azas ayag
a a
- 02 v Zdy(a3Zyg — 233 L) — — ¢3d2(a321 2 — 23; L)
ai1as p2 a20a3 Y1
T <1 - ) Ba(0;L) + B #1 <1 - ) Bs(0; L)
aijaz Y3 ay aza1 Y3 az

From the Laurent expansion of Dy, (z; ) we obtain

Lemma 4.2.2
D) (z;9)e(—EL(2,0)) = —Fs(2; L) — %f + ( serie in terms of p, @ with power greather than 1>.
a ¥

Now, the term corresponding to the part of total degree zero of

+ —
a a2

= Dy, <a321,2 — 23; S_O?’> e <_EL <<G3Z1,2 — 23; %)))
a1a2 as as

is exactly equal to

, d(2L) (L)
—-Dy, ( ja3lio — 23

@ ¢3d2(a321 9 —23;L) — Y ¢
ai1as p2 a2a3 1

9 2 p0,1) + -2 S01EQ(0 L)+ —Eg(agzw — 23 L)
a1a2 p3 azay ¢

—dy(azZi2 — z3; L)

Finally, we apply our theorem [2.2.1 we obtain

=1 +t
Yo M m(een)-

TneL/apL 1<j#k<n
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a a
=1 da(agz3 — azza; L) + %dz(alzg —azz;; L) +

as

a
—— dQ(O; L) + 73E2(G3Z172 — Z3; L)

aza3 a a3 Q201 a1a3

This proves the third case of our theorem [2.1.1
Case 4: We assume that

a1z9 — asz1,a123 —aszy € L and aszs —agze € L.

In the present case 4 the proof is similar to the case 3. For that reason we omit

it. For instance, it is enough to add the term for the contribution coming from the
- —

second double pole Z; 5 of F(z, ®, A), which is

a2

E2 (2’2 — CLQZLg; L) .
aias

Thus we obtain our theorem 2. 1.11 O

References

[1] M. Asano, A generalization of the reciprocity law of multiple Dedekind sums,
Ann. Instit. Fourier, Vol. 57 no. 2 (2007), 361-377.

[2] A. Bayad, Sommes de Dedekind elliptiques et formes de Jacobi, Ann. Instit.
Fourier, Vol. 51, Fasc. 1, 2001, 29-42.

[3] A. Bayad, Sommes elliptiques multiples d’Apostol-Dedekind-Zagier, C.R.A.S
Paris, Ser. I 339, fascicule 7, Série I, 2004, 457-462.

[4] A. Bayad, Applications auz sommes elliptiques multiples d’Apostol-Dedekind-
Zagier, C.R.A.S Paris, Ser. I 339, fascicule 8, Série I, 2004, 529-532.

[5] A.Bayad, Jacobi forms in two variables: Multiple elliptic Dedekind sums, The
Kummer-von Staudt Clausen Congruences for elliptic Bernoulli functions and
values of Hecke L-functions, Submitted for publication.

[6] A. Bayad, G. Robert, Note sur une forme de Jacobi méromorphe, C.R.A.S
Paris, 325,1997, 455-460.

[7] M. BECK, Dedekind cotangent sums, Acta Arithmetica 109, no. 2 (2003),
109-130.

[8] B. C. BERNDT, Reciprocity theorems for Dedekind sums and generalizations,
Adv. in Math. 23, no. 3 (1977), 285-316.

[9] U. DIETER, Cotangent sums, a further generalization of Dedekind sums,
J. Number Th. 18 (1984), 289-305.

[10] S. Egami, An elliptic analogue of multiple Dedekind sums, Compositio
Math. 99 (1995), 99-103.

[11] R. R. HarL, J. C. WILSON, D. ZAGIER, Reciprocity formulae for general
Dedekind-Rademacher sums, Acta Arith. 73, no. 4 (1995), 389-396.

[12] G. Harder, Periods Integrals of Cohomology Classes which are represented by
Eisenstein Series, Proc. Bombay Colloquium, Berlin-Heidelberg-New York,
(1979).

19



[13] G. Harder, Periods Integrals of FEisenstein Cohomology Classes which are
special values of some L-functions, Number theory related to Fermat’s last
theorem, 103-142. In Koblitz, N. (ed.) Boston-Basel-Stuttgart: Birkhauser,
(1982).

[14] G. Harder, On the Cohomology of SL(2,0); Lie groups and their representa-
tions, ed. by I.M Gelfand, A.Hlger, London, (1979), 139-150.

[15] D.Hickerson, Continued fractions and density results for Dedekind sums, J.
reine und angew Math. 290, ( 1977), 113-116.

[16] H. Ito, A function on the upper half space which is analogous to the imaginary
part of logn(z), J. reine angew. Math. 373, (1986), 148 — 165.

[17] H. Ito, Dedekind sums and quadratic residues symbols, Nagoya Math. J, Vol.
118, (1990), 35 — 43.

[18] H. Ito, A density result for elliptic Dedekind sums, Acta. arith. 112, (2004),
199 — 2008.

[19] R.Sczech, Dedekindsummen mit elliptischen Funktionen, Invent.math, 76,
(1984), 523-551.

[20] R.Sczech, Dedekind sums and power residue symbols, Compositio. Math, 59,
(1986), 89-112.

(A. Bayad) Département de mathématiques, Université d’Evry Val d’Essone,
Bd. F. Mitterrand, 91025 Evry Cedex, Francejabayad@maths.univ-evry.fr

20


mailto:Abdelmejid Bayad <abayad@maths.univ-evry.fr>

	Introduction
	Sczech's formula
	Notations and definitions

	 Main results
	Elliptic Dedekind-Rademacher-Sczech sums
	Multiple elliptic Dedekind-Rademacher sums
	Some invariants connected to our multiple elliptic Dedekind-Rademacher sums

	Eisenstein-Kronecker numbers dm(,L)
	An overview on the Jacobi form DL(z,)
	Properties of the Eisenstein-Kronecker numbers dm(,L) 

	Proofs of main results 
	Proof of Theorem 2.2.1
	Proof of Theorem 2.1.1:


