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Introduction

The goal of this survey is to provide an introduction to the area of mathematical modeling of credit
risk. It is largely based on the following works by Bielecki et al. [2, 3, 4, 5] and some sections from
the monograph by Bielecki and Rutkowski [7].

Credit risk embedded in a financial transaction is the risk that at least one of the parties involved
in the transaction will suffer a financial loss due to default or decline in the creditworthiness of the
counter-party to the transaction, or perhaps of some third party. For example:

• A holder of a corporate bond bears a risk that the (market) value of the bond will decline due
to decline in credit rating of the issuer.

• A bank may suffer a loss if a bank’s debtor defaults on payment of the interest due and (or)
the principal amount of the loan.

• A party involved in a trade of a credit derivative, such as a credit default swap (CDS), may
suffer a loss if a reference credit event occurs.

• The market value of individual tranches constituting a collateralized debt obligation (CDO)
may decline as a result of changes in the correlation between the default times of the underlying
defaultable securities (i.e., of the collateral).

The most extensively studied form of credit risk is the default risk – that is, the risk that
a counterparty in a financial contract will not fulfil a contractual commitment to meet her/his
obligations stated in the contract. For this reason, the main tool in the area of credit risk modeling
is a judicious specification of the random time of default. A large part of the present text is devoted
to this issue.

Our main goal is to present the most important mathematical tools that are used for the arbitrage
valuation of defaultable claims, which are also known under the name of credit derivatives. We also
examine briefly the important issue of hedging these claims.

These notes are organized as follows:

• In Chapter 1, we provide a concise summary of the main developments within the so-called
structural approach to modeling and valuation of credit risk. We also study very briefly the
case of a random barrier.

• Chapter 2 is devoted to the study of a simple model of credit risk within the hazard function
framework. We also deal here with the issue of replication of single- and multi-name credit
derivatives in the stylized CDS market.

• Chapter 3 deals with the so-called reduced-form approach in which the main tool is the hazard
rate process. This approach is of a purely probabilistic nature and, technically speaking, it has
a lot in common with the reliability theory.

• Chapter 4 studies hedging strategies for defaultable claims under assumption that some pri-
mary defaultable assets are traded. We discuss some preliminary results in a semimartingale
set-up and we develop the PDE approach in a Markovian set-up.
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6 CHAPTER 0. INTRODUCTION

Let us mention that the proofs of most results can be found in Bielecki et al. [2, 3, 4, 5], Bielecki
and Rutkowski [7] and Jeanblanc and Rutkowski [42]. We quote some of the seminal papers; the
reader can also refer to books by Bruyère [17], Bluhm et al. [10], Bielecki and Rutkowski [7],
Cossin and Pirotte [22], Duffie and Singleton [29], Frey, McNeil and Embrechts [35], Lando [45], or
Schönbucher [59] for more information.

Finally, it should be acknowledged that several results (especially within the reduced-form ap-
proach) were obtained independently by various authors, who worked under different set of assump-
tions and/or within different set-ups. For this reason, we decided to omit detailed credentials in
most cases. We hope that our colleagues will accept our apologies for this deficiency and we stress
that this by no means signifies that any result given in what follows that is not explicitly attributed
is ours.

‘Begin at the beginning, and go on till you come to the end: then stop.’

Lewis Carroll, Alice’s Adventures in Wonderland



Chapter 1

Structural Approach

In this chapter, we present the so-called structural approach to modeling credit risk, which is also
known as the value-of-the-firm approach. This methodology refers directly to economic fundamen-
tals, such as the capital structure of a company, in order to model credit events (a default event, in
particular). As we shall see in what follows, the two major driving concepts in the structural model-
ing are: the total value of the firm’s assets and the default triggering barrier. It is worth noting that
this was historically the first approach used in this area – it goes back to the fundamental papers
by Black and Scholes [9] and Merton [53].

1.1 Basic Assumptions

We fix a finite horizon date T ∗ > 0, and we suppose that the underlying probability space (Ω,F ,P),
endowed with some (reference) filtration F = (Ft)0≤t≤T∗ , is sufficiently rich to support the following
objects:

• The short-term interest rate process r, and thus also a default-free term structure model.

• The firm’s value process V, which is interpreted as a model for the total value of the firm’s
assets.

• The barrier process v, which will be used in the specification of the default time τ .

• The promised contingent claim X representing the firm’s liabilities to be redeemed at maturity
date T ≤ T ∗.

• The process A, which models the promised dividends, i.e., the liabilities stream that is redeemed
continuously or discretely over time to the holder of a defaultable claim.

• The recovery claim X̃ representing the recovery payoff received at time T, if default occurs
prior to or at the claim’s maturity date T .

• The recovery process Z, which specifies the recovery payoff at time of default, if it occurs prior
to or at the maturity date T.

1.1.1 Defaultable Claims

Technical assumptions. We postulate that the processes V, Z, A and v are progressively measur-
able with respect to the filtration F, and that the random variables X and X̃ are FT -measurable.
In addition, A is assumed to be a process of finite variation, with A0 = 0. We assume without
mentioning that all random objects introduced above satisfy suitable integrability conditions.

7



8 CHAPTER 1. STRUCTURAL APPROACH

Probabilities P and Q. The probability P is assumed to represent the real-world (or statistical )
probability, as opposed to a martingale measure (also known as a risk-neutral probability). Any
martingale measure will be denoted by Q in what follows.

Default time. In the structural approach, the default time τ will be typically defined in terms of
the firm’s value process V and the barrier process v. We set

τ = inf { t > 0 : t ∈ T and Vt ≤ vt}
with the usual convention that the infimum over the empty set equals +∞. In main cases, the set
T is an interval [0, T ] (or [0,∞) in the case of perpetual claims). In first passage structural models,
the default time τ is usually given by the formula:

τ = inf { t > 0 : t ∈ [0, T ] and Vt ≤ v̄(t)},
where v̄ : [0, T ] → R+ is some deterministic function, termed the barrier.

Predictability of default time. Since the underlying filtration F in most structural models
is generated by a standard Brownian motion, τ will be an F-predictable stopping time (as any
stopping time with respect to a Brownian filtration): there exists a sequence of increasing stopping
times announcing the default time.

Recovery rules. If default does not occur before or at time T, the promised claim X is paid in
full at time T. Otherwise, depending on the market convention, either (1) the amount X̃ is paid
at the maturity date T, or (2) the amount Zτ is paid at time τ. In the case when default occurs
at maturity, i.e., on the event {τ = T}, we postulate that only the recovery payment X̃ is paid.
In a general setting, we consider simultaneously both kinds of recovery payoff, and thus a generic
defaultable claim is formally defined as a quintuple (X, A, X̃, Z, τ).

1.1.2 Risk-Neutral Valuation Formula

Suppose that our financial market model is arbitrage-free, in the sense that there exists a martingale
measure (risk-neutral probability) Q, meaning that price process of any tradeable security, which
pays no coupons or dividends, becomes an F-martingale under Q, when discounted by the savings
account B, given as

Bt = exp
( ∫ t

0

ru du
)
.

We introduce the jump process Ht = 1{τ≤t}, and we denote by D the process that models all cash
flows received by the owner of a defaultable claim. Let us denote

Xd(T ) = X1{τ>T} + X̃1{τ≤T}.

Definition 1.1.1 The dividend process D of a defaultable contingent claim (X, A, X̃, Z, τ), which
settles at time T, equals

Dt = Xd(T )1{t≥T} +
∫

]0,t]

(1−Hu) dAu +
∫

]0,t]

Zu dHu.

It is apparent that D is a process of finite variation, and
∫

]0,t]

(1−Hu) dAu =
∫

]0,t]

1{τ>u} dAu = Aτ−1{τ≤t} + At1{τ>t}.

Note that if default occurs at some date t, the promised dividend At−At−, which is due to be paid at
this date, is not received by the holder of a defaultable claim. Furthermore, if we set τ∧t = min {τ, t}
then ∫

]0,t]

Zu dHu = Zτ∧t1{τ≤t} = Zτ1{τ≤t}.
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Remark 1.1.1 In principle, the promised payoff X could be incorporated into the promised divi-
dends process A. However, this would be inconvenient, since in practice the recovery rules concerning
the promised dividends A and the promised claim X are different, in general. For instance, in the case
of a defaultable coupon bond, it is frequently postulated that in case of default the future coupons
are lost, but a strictly positive fraction of the face value is usually received by the bondholder.

We are in the position to define the ex-dividend price St of a defaultable claim. At any time t,
the random variable St represents the current value of all future cash flows associated with a given
defaultable claim.

Definition 1.1.2 For any date t ∈ [0, T [, the ex-dividend price of the defaultable claim (X,A, X̃, Z, τ)
is given as

St = Bt EQ
(∫

]t,T ]

B−1
u dDu

∣∣∣Ft

)
. (1.1)

In addition, we always set ST = Xd(T ). The discounted ex-dividend price S∗t , t ∈ [0, T ], satisfies

S∗t = StB
−1
t −

∫

]0,t]

B−1
u dDu, ∀ t ∈ [0, T ],

and thus it follows a supermartingale under Q if and only if the dividend process D is increasing.
The process St + Bt

∫
]0,t]

B−1
u dDu is also called the cum-dividend process.

1.1.3 Defaultable Zero-Coupon Bond

Assume that A ≡ 0, Z ≡ 0 and X = L for some positive constant L > 0. Then the value process S
represents the arbitrage price of a defaultable zero-coupon bond (also known as the corporate discount
bond) with the face value L and recovery at maturity only. In general, the price D(t, T ) of such a
bond equals

D(t, T ) = Bt EQ
(
B−1

T (L1{τ>T} + X̃1{τ≤T})
∣∣Ft

)
.

It is convenient to rewrite the last formula as follows:

D(t, T ) = LBt EQ
(
B−1

T (1{τ>T} + δ(T )1{τ≤T})
∣∣Ft

)
,

where the random variable δ(T ) = X̃/L represents the so-called recovery rate upon default. It is
natural to assume that 0 ≤ X̃ ≤ L so that δ(T ) satisfies 0 ≤ δ(T ) ≤ 1. Alternatively, we may
re-express the bond price as follows:

D(t, T ) = L
(
B(t, T )−Bt EQ

(
B−1

T w(T )1{τ≤T}
∣∣Ft

))
,

where
B(t, T ) = Bt EQ(B−1

T | Ft)

is the price of a unit default-free zero-coupon bond, and w(T ) = 1 − δ(T ) is the writedown rate
upon default. Generally speaking, the time-t value of a corporate bond depends on the joint proba-
bility distribution under Q of the three-dimensional random variable (BT , δ(T ), τ) or, equivalently,
(BT , w(T ), τ).

Example 1.1.1 Merton [53] postulates that the recovery payoff upon default (that is, when VT < L,
equals X̃ = VT , where the random variable VT is the firm’s value at maturity date T of a corporate
bond. Consequently, the random recovery rate upon default equals δ(T ) = VT /L, and the writedown
rate upon default equals w(T ) = 1− VT /L.
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Expected writedowns. For simplicity, we assume that the savings account B is non-random –
that is, the short-term rate r is deterministic. Then the price of a default-free zero-coupon bond
equals B(t, T ) = BtB

−1
T , and the price of a zero-coupon corporate bond satisfies

D(t, T ) = Lt(1− w∗(t, T )),

where Lt = LB(t, T ) is the present value of future liabilities, and w∗(t, T ) is the conditional expected
writedown rate under Q. It is given by the following equality:

w∗(t, T ) = EQ
(
w(T )1{τ≤T} | Ft

)
.

The conditional expected writedown rate upon default equals, under Q,

w∗t =
EQ

(
w(T )1{τ≤T} | Ft

)

Q{τ ≤ T | Ft} =
w∗(t, T )

p∗t
,

where p∗t = Q{τ ≤ T | Ft} is the conditional risk-neutral probability of default. Finally, let δ∗t = 1−w∗t
be the conditional expected recovery rate upon default under Q. In terms of p∗t , δ

∗
t and p∗t , we obtain

D(t, T ) = Lt(1− p∗t ) + Ltp
∗
t δ
∗
t = Lt(1− p∗t w

∗
t ).

If the random variables w(T ) and τ are conditionally independent with respect to the σ-field Ft

under Q, then we have w∗t = EQ(w(T ) | Ft).

Example 1.1.2 In practice, it is common to assume that the recovery rate is non-random. Let
the recovery rate δ(T ) be constant, specifically, δ(T ) = δ for some real number δ. In this case, the
writedown rate w(T ) = w = 1 − δ is non-random as well. Then w∗(t, T ) = wp∗t and w∗t = w for
every 0 ≤ t ≤ T. Furthermore, the price of a defaultable bond has the following representation

D(t, T ) = Lt(1− p∗t ) + δLtp
∗
t = Lt(1− wp∗t ).

We shall return to various recovery schemes later in the text.

1.2 Classic Structural Models

Classic structural models are based on the assumption that the risk-neutral dynamics of the value
process of the assets of the firm V are given by the SDE:

dVt = Vt

(
(r − κ) dt + σV dWt

)
, V0 > 0,

where κ is the constant payout (dividend) ratio, and the process W is a standard Brownian motion
under the martingale measure Q.

1.2.1 Merton’s Model

We present here the classic model due to Merton [53].

Basic assumptions. A firm has a single liability with promised terminal payoff L, interpreted as
the zero-coupon bond with maturity T and face value L > 0. The ability of the firm to redeem its
debt is determined by the total value VT of firm’s assets at time T. Default may occur at time T
only, and the default event corresponds to the event {VT < L}. Hence, the stopping time τ equals

τ = T1{VT <L} +∞1{VT≥L}.

Moreover A = 0, Z = 0, and

Xd(T ) = VT1{VT <L} + L1{VT≥L}
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so that X̃ = VT . In other words, the payoff at maturity equals

DT = min (VT , L) = L−max (L− VT , 0) = L− (L− VT )+.

The latter equality shows that the valuation of the corporate bond in Merton’s setup is equivalent
to the valuation of a European put option written on the firm’s value with strike equal to the bond’s
face value. Let D(t, T ) be the price at time t < T of the corporate bond. It is clear that the value
D(Vt) of the firm’s debt equals

D(Vt) = D(t, T ) = LB(t, T )− Pt,

where Pt is the price of a put option with strike L and expiration date T. It is apparent that the
value E(Vt) of the firm’s equity at time t equals

E(Vt) = Vte
−κ(T−t) −D(Vt) = Vte

−κ(T−t) − LB(t, T ) + Pt = Ct,

where Ct stands for the price at time t of a call option written on the firm’s assets, with strike price
L and exercise date T. To justify the last equality above, we may also observe that at time T we
have

E(VT ) = VT −D(VT ) = VT −min (VT , L) = (VT − L)+.

We conclude that the firm’s shareholders are in some sense the holders of a call option on the firm’s
assets.

Merton’s formula. Using the option-like features of a corporate bond, Merton [53] derived a
closed-form expression for its arbitrage price. Let N denote the standard Gaussian cumulative
distribution function:

N(x) =
1√
2π

∫ x

−∞
e−u2/2 du, ∀x ∈ R.

Proposition 1.2.1 For every 0 ≤ t < T the value D(t, T ) of a corporate bond equals

D(t, T ) = Vte
−κ(T−t)N

(− d+(Vt, T − t)
)

+ LB(t, T )N
(
d−(Vt, T − t)

)

where

d±(Vt, T − t) =
ln(Vt/L) +

(
r − κ± 1

2σ2
V

)
(T − t)

σV

√
T − t

.

The unique replicating strategy for a defaultable bond involves holding, at any time 0 ≤ t < T , φ1
t Vt

units of cash invested in the firm’s value and φ2
t B(t, T ) units of cash invested in default-free bonds,

where
φ1

t = e−κ(T−t)N
(− d+(Vt, T − t)

)

and

φ2
t =

D(t, T )− φ1
t Vt

B(t, T )
= LN

(
d−(Vt, T − t)

)
.

Credit spreads. For notational simplicity, we set κ = 0. Then Merton’s formula becomes:

D(t, T ) = LB(t, T )
(
ΓtN(−d) + N(d− σV

√
T − t)

)
,

where we denote Γt = Vt/LB(t, T ) and

d = d(Vt, T − t) =
ln(Vt/L) + (r + σ2

V /2)(T − t)
σV

√
T − t

.

Since LB(t, T ) represents the current value of the face value of the firm’s debt, the quantity Γt can
be seen as a proxy of the asset-to-debt ratio Vt/D(t, T ). It can be easily verified that the inequality
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D(t, T ) < LB(t, T ) is valid. This property is equivalent to the positivity of the corresponding credit
spread (see below).

Observe that in the present setup the continuously compounded yield r(t, T ) at time t on the
T -maturity Treasury zero-coupon bond is constant, and equal to the short-term rate r. Indeed, we
have

B(t, T ) = e−r(t,T )(T−t) = e−r(T−t).

Let us denote by rd(t, T ) the continuously compounded yield on the corporate bond at time t < T ,
so that

D(t, T ) = Le−rd(t,T )(T−t).

From the last equality, it follows that

rd(t, T ) = − ln D(t, T )− ln L

T − t
.

For t < T the credit spread S(t, T ) is defined as the excess return on a defaultable bond:

S(t, T ) = rd(t, T )− r(t, T ) =
1

T − t
ln

LB(t, T )
D(t, T )

.

In Merton’s model, we have

S(t, T ) = − ln
(
N(d− σV

√
T − t) + ΓtN(−d)

)

T − t
> 0.

This agrees with the well-known fact that risky bonds have an expected return in excess of the risk-
free interest rate. In other words, the yields on corporate bonds are higher than yields on Treasury
bonds with matching notional amounts. Notice, however, when t tends to T, the credit spread in
Merton’s model tends either to infinity or to 0, depending on whether VT < L or VT > L. Formally,
if we define the forward short spread at time T as

FSST = lim
t↑T

S(t, T )

then

FSST (ω) =
{

0, if ω ∈ {VT > L},
∞, if ω ∈ {VT < L}.

1.2.2 Black and Cox Model

By construction, Merton’s model does not allow for a premature default, in the sense that the default
may only occur at the maturity of the claim. Several authors put forward structural-type models in
which this restrictive and unrealistic feature is relaxed. In most of these models, the time of default
is given as the first passage time of the value process V to either a deterministic or a random barrier.
In principle, the bond’s default may thus occur at any time before or on the maturity date T. The
challenge is to appropriately specify the lower threshold v, the recovery process Z, and to explicitly
evaluate the conditional expectation that appears on the right-hand side of the risk-neutral valuation
formula

St = Bt EQ
( ∫

]t,T ]

B−1
u dDu

∣∣∣Ft

)
,

which is valid for t ∈ [0, T [. As one might easily guess, this is a non-trivial mathematical problem,
in general. In addition, the practical problem of the lack of direct observations of the value process
V largely limits the applicability of the first-passage-time models based on the value of the firm
process V .

Corporate zero-coupon bond. Black and Cox [8] extend Merton’s [53] research in several
directions, by taking into account such specific features of real-life debt contracts as: safety covenants,
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debt subordination, and restrictions on the sale of assets. Following Merton [53], they assume that
the firm’s stockholders receive continuous dividend payments, which are proportional to the current
value of firm’s assets. Specifically, they postulate that

dVt = Vt

(
(r − κ) dt + σV dWt

)
, V0 > 0,

where W is a Brownian motion (under the risk-neutral probability Q), the constant κ ≥ 0 represents
the payout ratio, and σV > 0 is the constant volatility. The short-term interest rate r is assumed to
be constant.

Safety covenants. Safety covenants provide the firm’s bondholders with the right to force the
firm to bankruptcy or reorganization if the firm is doing poorly according to a set standard. The
standard for a poor performance is set by Black and Cox in terms of a time-dependent deterministic
barrier v̄(t) = Ke−γ(T−t), t ∈ [0, T [, for some constant K > 0. As soon as the value of firm’s assets
crosses this lower threshold, the bondholders take over the firm. Otherwise, default takes place at
debt’s maturity or not depending on whether VT < L or not.

Default time. Let us set

vt =
{

v̄(t), for t < T,
L, for t = T .

The default event occurs at the first time t ∈ [0, T ] at which the firm’s value Vt falls below the level
vt, or the default event does not occur at all. The default time equals ( inf ∅ = +∞)

τ = inf { t ∈ [0, T ] : Vt ≤ vt}.

The recovery process Z and the recovery payoff X̃ are proportional to the value process: Z ≡ β2V
and X̃ = β1VT for some constants β1, β2 ∈ [0, 1]. The case examined by Black and Cox [8] corresponds
to β1 = β2 = 1.

To summarize, we consider the following model:

X = L, A ≡ 0, Z ≡ β2V, X̃ = β1VT , τ = τ̄ ∧ τ̂ ,

where the early default time τ̄ equals

τ̄ = inf { t ∈ [0, T ) : Vt ≤ v̄(t)}

and τ̂ stands for Merton’s default time: τ̂ = T1{VT <L} +∞1{VT≥L}.

Bond valuation. Similarly as in Merton’s model, it is assumed that the short term interest rate
is deterministic and equal to a positive constant r. We postulate, in addition, that v̄(t) ≤ LB(t, T )
or, more explicitly,

Ke−γ(T−t) ≤ Le−r(T−t), ∀ t ∈ [0, T ],

so that, in particular, K ≤ L. This condition ensures that the payoff to the bondholder at the
default time τ never exceeds the face value of debt, discounted at a risk-free rate.

PDE approach. Since the model for the value process V is given in terms of a Markovian diffusion,
a suitable partial differential equation can be used to characterize the value process of the corporate
bond. Let us write D(t, T ) = u(Vt, t). Then the pricing function u = u(v, t) of a defaultable bond
satisfies the following PDE:

ut(v, t) + (r − κ)vuv(v, t) +
1
2
σ2

V v2uvv(v, t)− ru(v, t) = 0

on the domain
{(v, t) ∈ R+ × R+ : 0 < t < T, v > Ke−γ(T−t)},

with the boundary condition
u(Ke−γ(T−t), t) = β2Ke−γ(T−t)
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and the terminal condition u(v, T ) = min (β1v, L).

Probabilistic approach. For any t < T the price D(t, T ) = u(Vt, t) of a defaultable bond has the
following probabilistic representation, on the event {τ > t} = {τ̄ > t}

D(t, T ) = EQ
(
Le−r(T−t)1{τ̄≥T, VT ≥L}

∣∣∣Ft

)

+ EQ
(
β1VT e−r(T−t)1{τ̄≥T, VT <L}

∣∣∣Ft

)

+ EQ
(
Kβ2e

−γ(T−τ̄)e−r(τ̄−t)1{t<τ̄<T}
∣∣∣Ft

)
.

After default – that is, on the event {τ ≤ t} = {τ̄ ≤ t}, we clearly have

D(t, T ) = β2v̄(τ)B−1(τ, T )B(t, T ) = Kβ2e
−γ(T−τ)er(t−τ).

To compute the expected values above, we observe that:

• the first two conditional expectations can be computed by using the formula for the conditional
probability Q{Vs ≥ x, τ ≥ s | Ft},

• to evaluate the third conditional expectation, it suffices employ the conditional probability law
of the first passage time of the process V to the barrier v̄(t).

Black and Cox formula. Before we state the bond valuation result due to Black and Cox [8], we
find it convenient to introduce some notation. We denote

ν = r − κ− 1
2
σ2

V ,

m = ν − γ = r − κ− γ − 1
2
σ2

V

b = mσ−2.

For the sake of brevity, in the statement of Proposition 1.2.2 we shall write σ instead of σV . As
already mentioned, the probabilistic proof of this result is based on the knowledge of the probability
law of the first passage time of the geometric (exponential) Brownian motion to an exponential
barrier.

Proposition 1.2.2 Assume that m2 +2σ2(r−γ) > 0. Prior to bond’s default, that is: on the event
{τ > t}, the price process D(t, T ) = u(Vt, t) of a defaultable bond equals

D(t, T ) = LB(t, T )
(
N

(
h1(Vt, T − t)

)− Z2bσ−2

t N
(
h2(Vt, T − t)

))

+ β1Vte
−κ(T−t)

(
N

(
h3(Vt, T − t))−N

(
h4(Vt, T − t)

))

+ β1Vte
−κ(T−t)Z2b+2

t

(
N

(
h5(Vt, T − t))−N

(
h6(Vt, T − t)

))

+ β2Vt

(
Zθ+ζ

t N
(
h7(Vt, T − t)

)
+ Zθ−ζ

t N
(
h8(Vt, T − t)

))
,

where Zt = v̄(t)/Vt, θ = b + 1, ζ = σ−2
√

m2 + 2σ2(r − γ) and

h1(Vt, T − t) =
ln (Vt/L) + ν(T − t)

σ
√

T − t
,

h2(Vt, T − t) =
ln v̄2(t)− ln(LVt) + ν(T − t)

σ
√

T − t
,

h3(Vt, T − t) =
ln (L/Vt)− (ν + σ2)(T − t)

σ
√

T − t
,

h4(Vt, T − t) =
ln (K/Vt)− (ν + σ2)(T − t)

σ
√

T − t
,
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h5(Vt, T − t) =
ln v̄2(t)− ln(LVt) + (ν + σ2)(T − t)

σ
√

T − t
,

h6(Vt, T − t) =
ln v̄2(t)− ln(KVt) + (ν + σ2)(T − t)

σ
√

T − t
,

h7(Vt, T − t) =
ln (v̄(t)/Vt) + ζσ2(T − t)

σ
√

T − t
,

h8(Vt, T − t) =
ln (v̄(t)/Vt)− ζσ2(T − t)

σ
√

T − t
.

Special cases. Assume that β1 = β2 = 1 and the barrier function v̄ is such that K = L. Then
necessarily γ ≥ r. It can be checked that for K = L we have D(t, T ) = D1(t, T ) + D3(t, T ) where:

D1(t, T ) = LB(t, T )
(
N

(
h1(Vt, T − t)

)− Z2â
t N

(
h2(Vt, T − t)

))

D3(t, T ) = Vt

(
Zθ+ζ

t N
(
h7(Vt, T − t)

)
+ Zθ−ζ

t N
(
h8(Vt, T − t)

))
.

• Case γ = r. If we also assume that γ = r then ζ = −σ−2ν̂, and thus

VtZ
θ+ζ
t = LB(t, T ), VtZ

θ−ζ
t = VtZ

2â+1
t = LB(t, T )Z2â

t .

It is also easy to see that in this case

h1(Vt, T − t) =
ln(Vt/L) + ν(T − t)

σ
√

T − t
= −h7(Vt, T − t),

while

h2(Vt, T − t) =
ln v̄2(t)− ln(LVt) + ν(T − t)

σ
√

T − t
= h8(Vt, T − t).

We conclude that if v̄(t) = Le−r(T−t) = LB(t, T ) then D(t, T ) = LB(t, T ). This result is quite
intuitive. A corporate bond with a safety covenant represented by the barrier function, which equals
the discounted value of the bond’s face value, is equivalent to a default-free bond with the same face
value and maturity.

• Case γ > r. For K = L and γ > r, it is natural to expect that D(t, T ) would be smaller than
LB(t, T ). It is also possible to show that when γ tends to infinity (all other parameters being fixed),
then the Black and Cox price converges to Merton’s price.

1.2.3 Further Developments

The Black and Cox first-passage-time approach was later developed by, among others: Brennan and
Schwartz [13, 14] – an analysis of convertible bonds, Nielsen et al. [55] – a random barrier and
random interest rates, Leland [47], Leland and Toft [48] – a study of an optimal capital structure,
bankruptcy costs and tax benefits, Longstaff and Schwartz [49] – a constant barrier and random
interest rates, Brigo [15].

Other stopping times. In general, one can study the bond valuation problem for the default time
given as

τ = inf { t ∈ R+ : Vt ≤ L(t)},
where L(t) is a deterministic function and V is a geometric Brownian motion. However, there exists
few explicit results.

Moraux’s model. Moraux [54] propose to model the default time as a Parisian stopping time. For
a continuous process V and a given t > 0, we introduce gb

t (V ), the last time before t at which the
process V was at level b, that is,

gb
t (V ) = sup { 0 ≤ s ≤ t : Vs = b}.
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The Parisian stopping time is the first time at which the process V is below the level b for a time
period of length greater than D, that is,

G−,b
D (V ) = inf { t ∈ R+ : (t− gb

t (V ))1{Vt<b} ≥ D}.

Clearly, this time is a stopping time. Let τ = G−,b
D (V ). In the case of Black-Scholes dynamics, it is

possible to find the joint law of (τ, Vτ )

Another default time is the first time where the process V has spend more than D time below a
level, that is, τ = inf{t ∈ R+ : AV

t > D} where AV
t =

∫ t

0
1{Vs>b} ds. The law of this time is related

to cumulative options.

Campi and Sbuelz model. Campi and Sbuelz [18] assume that the default time is given by a
first hitting time of 0 by a CEV process, and they study the difficult problem of pricing an equity
default swap. More precisely, they assume that the dynamics of the firm are

dSt = St−
(
(r − κ) dt + σSβ

t dWt − dMt

)

where W is a Brownian motion and M the compensated martingale of a Poisson process (i.e.,
Mt = Nt − λt), and they define

τ = inf { t ∈ R+ : St ≤ 0}.
In other terms, Campi and Sbuelz [18] set τ = τβ ∧ τN , where τN is the first jump of the Poisson
process and

τβ = inf { t ∈ R+ : Xt ≤ 0}
where in turn

dXt = Xt−
(
(r − κ + λ) dt + σXβ

t dWt

)
.

Using that the CEV process can be expressed in terms of a time-changed Bessel process, and results
on the hitting time of 0 for a Bessel process of dimension smaller than 2, they obtain closed from
solutions.

Zhou’s model. Zhou [61] studies the case where the dynamics of the firm is

dVt = Vt−
((

µ− λν
)
dt + σ dWt + dXt

)

where W is a Brownian motion, X a compound Poisson process, that is, Xt =
∑Nt

1 eYi − 1 where

ln Yi
law= N(a, b2) with ν = exp(a + b2/2) − 1. Note that for this choice of parameters the process

Vte
−µt is a martingale. Zhou first studies Merton’s problem in that setting. Next, he gives an

approximation for the first passage problem when the default time is τ = inf { t ∈ R+ : Vt ≤ L}.

1.2.4 Optimal Capital Structure

We consider a firm that has an interest paying bonds outstanding. We assume that it is a consol
bond, which pays continuously coupon rate c. Assume that r > 0 and the payout rate κ is equal to
zero. This condition can be given a financial interpretation as the restriction on the sale of assets,
as opposed to issuing of new equity. Equivalently, we may think about a situation in which the
stockholders will make payments to the firm to cover the interest payments. However, they have the
right to stop making payments at any time and either turn the firm over to the bondholders or pay
them a lump payment of c/r per unit of the bond’s notional amount.

Recall that we denote by E(Vt) (D(Vt), resp.) the value at time t of the firm equity (debt, resp.),
hence the total value of the firm’s assets satisfies Vt = E(Vt) + D(Vt).

Black and Cox [8] argue that there is a critical level of the value of the firm, denoted as v∗, below
which no more equity can be sold. The critical value v∗ will be chosen by stockholders, whose aim
is to minimize the value of the bonds (equivalently, to maximize the value of the equity). Let us
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observe that v∗ is nothing else than a constant default barrier in the problem under consideration;
the optimal default time τ∗ thus equals τ∗ = inf { t ∈ R+ : Vt ≤ v∗}.

To find the value of v∗, let us first fix the bankruptcy level v̄. The ODE for the pricing function
u∞ = u∞(V ) of a consol bond takes the following form (recall that σ = σV )

1
2
V 2σ2u∞V V + rV u∞V + c− ru∞ = 0,

subject to the lower boundary condition u∞(v̄) = min (v̄, c/r) and the upper boundary condition

lim
V→∞

u∞V (V ) = 0.

For the last condition, observe that when the firm’s value grows to infinity, the possibility of default
becomes meaningless, so that the value of the defaultable consol bond tends to the value c/r of the
default-free consol bond. The general solution has the following form:

u∞(V ) =
c

r
+ K1V + K2V

−α,

where α = 2r/σ2 and K1,K2 are some constants, to be determined from boundary conditions. We
find that K1 = 0, and

K2 =
{

v̄α+1 − (c/r)v̄α, if v̄ < c/r,
0, if v̄ ≥ c/r.

Hence, if v̄ < c/r then
u∞(Vt) =

c

r
+

(
v̄α+1 − c

r
v̄α

)
V −α

t

or, equivalently,

u∞(Vt) =
c

r

(
1−

(
v̄

Vt

)α)
+ v̄

(
v̄

Vt

)α

.

It is in the interest of the stockholders to select the bankruptcy level in such a way that the value
of the debt, D(Vt) = u∞(Vt), is minimized, and thus the value of firm’s equity

E(Vt) = Vt −D(Vt) = Vt − c

r
(1− q̄t)− v̄q̄t

is maximized. It is easy to check that the optimal level of the barrier does not depend on the current
value of the firm, and it equals

v∗ =
c

r

α

α + 1
=

c

r + σ2/2
.

Given the optimal strategy of the stockholders, the price process of the firm’s debt (i.e., of a consol
bond) takes the form, on the event {τ∗ > t},

D∗(Vt) =
c

r
− 1

αV α
t

(
c

r + σ2/2

)α+1

or, equivalently,
D∗(Vt) =

c

r
(1− q∗t ) + v∗q∗t ,

where

q∗t =
(

v∗

Vt

)α

=
1

V α
t

(
c

r + σ2/2

)α

.

Further developments. We end this section by mentioning that other important developments in
the area of optimal capital structure were presented in the papers by Leland [47], Leland and Toft
[48], Christensen et al. [20]. Chen and Kou [19], Dao [23], Hilberink and Rogers [38], LeCourtois and
Quittard-Pinon [46] study the same problem, but they model the firm’s value process as a diffusion
with jumps. The reason for this extension was to eliminate an undesirable feature of previously
examined models, in which short spreads tend to zero when a bond approaches maturity date.
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1.3 Stochastic Interest Rates

In this section, we assume that the underlying probability space (Ω,F ,P), endowed with the filtration
F = (Ft)t≥0, supports the short-term interest rate process r and the value process V. The dynamics
under the martingale measure Q of the firm’s value and of the price of a default-free zero-coupon
bond B(t, T ) are

dVt = Vt

(
(rt − κ(t)) dt + σ(t) dWt

)

and
dB(t, T ) = B(t, T )

(
rt dt + b(t, T ) dWt

)

respectively, where W is a d-dimensional standard Q-Brownian motion. Furthermore, κ : [0, T ] → R,
σ : [0, T ] → Rd and b(·, T ) : [0, T ] → Rd are assumed to be bounded functions. The forward value
FV (t, T ) = Vt/B(t, T ) of the firm satisfies under the forward martingale measure PT

dFV (t, T ) = −κ(t)FV (t, T ) dt + FV (t, T )
(
σ(t)− b(t, T )

)
dWT

t

where the process WT
t = Wt −

∫ t

0
b(u, T ) du, t ∈ [0, T ], is a d-dimensional Brownian motion under

PT . For any t ∈ [0, T ], we set
Fκ

V (t, T ) = FV (t, T )e−
R T

t
κ(u) du.

Then
dFκ

V (t, T ) = Fκ
V (t, T )

(
σ(t)− b(t, T )

)
dWT

t .

Furthermore, it is apparent that Fκ
V (T, T ) = FV (T, T ) = VT . We consider the following modification

of the Black and Cox approach

X = L, Zt = β2Vt, X̃ = β1VT , τ = inf { t ∈ [0, T ] : Vt < vt},

where β2, β1 ∈ [0, 1] are constants, and the barrier v is given by the formula

vt =
{

KB(t, T )e
R T

t
κ(u) du for t < T,

L for t = T,

with the constant K satisfying 0 < K ≤ L.

Let us denote, for any t ≤ T,

κ(t, T ) =
∫ T

t

κ(u) du, σ2(t, T ) =
∫ T

t

|σ(u)− b(u, T )|2 du

where | · | is the Euclidean norm in Rd. For brevity, we write Ft = Fκ
V (t, T ), and we denote

η+(t, T ) = κ(t, T ) +
1
2
σ2(t, T ), η−(t, T ) = κ(t, T )− 1

2
σ2(t, T ).

The following result extends Black and Cox valuation formula for a corporate bond to the case of
random interest rates.

Proposition 1.3.1 For any t < T, the forward price of a defaultable bond FD(t, T ) = D(t, T )/B(t, T )
equals on the set {τ > t}

L
(
N

(
ĥ1(Ft, t, T )

)− (Ft/K)e−κ(t,T )N
(
ĥ2(Ft, t, T )

))

+ β1Fte
−κ(t,T )

(
N

(
ĥ3(Ft, t, T )

)−N
(
ĥ4(Ft, t, T )

))

+ β1K
(
N

(
ĥ5(Ft, t, T )

)−N
(
ĥ6(Ft, t, T )

))

+ β2KJ+(Ft, t, T ) + β2Fte
−κ(t,T )J−(Ft, t, T ),
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where

ĥ1(Ft, t, T ) =
ln (Ft/L)− η+(t, T )

σ(t, T )
,

ĥ2(Ft, T, t) =
2 ln K − ln(LFt) + η−(t, T )

σ(t, T )
,

ĥ3(Ft, t, T ) =
ln (L/Ft) + η−(t, T )

σ(t, T )
,

ĥ4(Ft, t, T ) =
ln (K/Ft) + η−(t, T )

σ(t, T )
,

ĥ5(Ft, t, T ) =
2 ln K − ln(LFt) + η+(t, T )

σ(t, T )
,

ĥ6(Ft, t, T ) =
ln(K/Ft) + η+(t, T )

σ(t, T )
,

and for any fixed 0 ≤ t < T and Ft > 0 we set

J±(Ft, t, T ) =
∫ T

t

eκ(u,T ) dN

(
ln(K/Ft) + κ(t, T )± 1

2σ2(t, u)
σ(t, u)

)
.

In the special case when κ ≡ 0, the formula of Proposition 1.3.1 covers as a special case the
valuation result established by Briys and de Varenne [16]. In some other recent studies of first
passage time models, in which the triggering barrier is assumed to be either a constant or an
unspecified stochastic process, typically no closed-form solution for the value of a corporate debt is
available, and thus a numerical approach is required (see, for instance, Longstaff and Schwartz [49],
Nielsen et al. [55], or Saá-Requejo and Santa-Clara [58]).

1.4 Random Barrier

In the case of full information and Brownian filtration, the first hitting time of a deterministic barrier
is predictable. This is no longer the case when we deal with incomplete information (as in Duffie and
Lando [28]), or when an additional source of randomness is present. We present here a formula for
credit spreads arising in a special case of a totally inaccessible time of default. For a more detailed
study we refer to Babbs and Bielecki [1]. As we shall see, the method we use here is close to the
general method presented in Chapter 3.

We suppose here that the default barrier is a random variable η defined on the underlying
probability space (Ω,P). The default occurs at time τ where

τ = inf{t : Vt ≤ η},

where V is the value of the firm and, for simplicity, V0 = 1. Note that

{τ > t} = { inf
u≤t

Vu > η}.

We shall denote by mV
t the running minimum of V , i.e. mV

t = infu≤t Vu. With this notation,
{τ > t} = {mV

t > η}. Note that mV is a decreasing process.

1.4.1 Independent Barrier

In a first step we assume that, under the risk-neutral probability Q, a random variable η modelling
is independent of the value of the firm. We denote by Fη the cumulative distribution function of η,
i.e., Fη(z) = Q(η ≤ z). We assume that Fη is differentiable and we denote by fη its derivative.
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Lemma 1.4.1 Let Ft = Q(τ ≤ t | Ft) and Γt = − ln(1− Ft). Then

Γt = −
∫ t

0

fη(mV
u )

Fη(mV
u )

dmV
u .

Proof. If η is independent of F∞, then

Ft = Q(τ ≤ t | Ft) = Q(mV
t ≤ η | Ft) = 1− Fη(mV

t ).

The process mV is decreasing. It follows that Γt = − ln Fη(mV
t ), hence dΓt = − fη(mV

t )

Fη(mV
t )

dmV
t and

Γt = −
∫ t

0

fη(mV
u )

Fη(mV
u )

dmV
u

as expected. ¤

Example 1.4.1 Assume that η is uniformly distributed on the interval [0, 1]. Then Γt = − ln mV
t .

The computation of the expected value EQ(eΓT f(VT )) requires the knowledge of the joint law of the
pair (VT ,mV

T ).

We postulate now that the value process V is a geometric Brownian motion with a drift, that is,
we set Vt = eΨt , where Ψt = µt + σWt. It is clear that τ = inf { t ∈ R+ : Ψ∗t ≤ ψ}, where Ψ∗ is the
running minimum of the process Ψ: Ψ∗t = inf {Ψs : 0 ≤ s ≤ t}.

We choose the Brownian filtration as the reference filtration, i.e., we set F = FW . Let us denote
by G(z) the cumulative distribution function under Q of the barrier ψ. We assume that G(z) > 0 for
z < 0 and that G admits the density g with respect to the Lebesgue measure (note that g(z) = 0 for
z > 0). This means that we assume that the value process V (hence also the process Ψ) is perfectly
observed.

In addition, we postulate that the bond investor can observe the occurrence of the default time.
Thus, he can observe the process Ht = 1{τ≤t} = 1{Ψ∗t≤ψ}. We denote by H the natural filtration of
the process H. The information available to the investor is represented by the (enlarged) filtration
G = F ∨H.

We assume that the default time τ and interest rates are independent under Q. It is then is
possible to establish the following result (see Giesecke [36] or Babbs and Bielecki [1]). Note that the
process Ψ∗ is decreasing, so that the integral with respect to this process is a (pathwise) Stieltjes
integral.

Proposition 1.4.1 Under the assumptions stated above, and additionally assuming L = 1, Z ≡ 0
and X̃ = 0, we have that for every t < T

S(t, T ) = −1{τ>t}
1

T − t
lnEQ

(
e
R T

t

fη(Ψ∗u)
Fη(Ψ∗u) dΨ∗u

∣∣∣Ft

)
.

Later on, we will introduce the notion of a hazard process of a random time. For the default
time τ defined above, the F-hazard process Γ exists and is given by the formula

Γt = −
∫ t

0

fη(Ψ∗u)
Fη(Ψ∗u)

dΨ∗u.

This process is continuous, and thus the default time τ is a totally inaccessible stopping time with
respect to the filtration G.



Chapter 2

Hazard Function Approach

In this chapter, we provide a detailed analysis of the very special case of the reduced form method-
ology, when the flow of information available to an agent reduces to the observations of the random
time which models the default event. The focus is on the evaluation of conditional expectations with
respect to the filtration generated by a default time with the use of the hazard function.

2.1 The Toy Model

We begin with the simple case where a riskless asset, with deterministic interest rate (r(s); s ≥ 0)
is the only asset available in the default-free market. The price at time t of a risk-free zero-coupon
bond with maturity T equals

B(t, T ) = exp
(
−

∫ T

t

r(s) ds
)
.

Default occurs at time τ , where τ is assumed to be a positive random variable with density f ,
constructed on a probability space (Ω,G,Q). We denote by F the cumulative function of the random
varible τ defined as F (t) = Q(τ ≤ t) =

∫ t

0
f(s) ds and we assume that F (t) < 1 for any t > 0.

Otherwise, there would exists a date t0 for which F (t0) = 1, so that the default would occurs before
or at t0 with probability 1.

We emphasize that the random payoff of the form 1{T<τ} cannot be perfectly hedged with
deterministic zero-coupon bonds, which are the only tradeable primary assets in our model. To
hedge the risk, we shall later postulate that some defaultable asset is traded, e.g., a defaultable
zero-coupon bond or a credit default swap.

It is not difficult to generalize the study presented in what follows to the case where τ does not
admit a density, by dealing with the right-continuous version of the cumulative function. The case
where τ is bounded can also be studied along the same method. We leave the details to the reader.

2.1.1 Defaultable Zero-Coupon Bond with Recovery at Maturity

A defaultable zero-coupon bond (DZC in short), or a corporate zero-coupon bond, with maturity T
and the rebate (recovery) δ paid at maturity, consists of:

• The payment of one monetary unit at time T if default has not occurred before time T , i.e., if
τ > T ,

• A payment of δ monetary units, made at maturity, if τ ≤ T , where 0 < δ < 1.

21
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Value of the Defaultable Zero-Coupon Bond

The “fair value” of the defaultable zero-coupon bond is defined as the expectation of discounted
payoffs

D(δ)(0, T ) = B(0, T )EQ
(
1{T<τ} + δ1{τ≤T}

)

= B(0, T )EQ
(
1− (1− δ)1{τ≤T}

)

= B(0, T )
(
1− (1− δ)F (T )

)
. (2.1)

In fact, this quantity is a net present value and is equal to the value of the default free zero-coupon
bond minus the expected loss, computed under the historical probability. Obviously, this value is
not a hedging price.

The time-t value depends whether or not default has happened before this time. If default has
occurred before time t, the payment of δ will be made at time T , and the price of the DZC is
δB(t, T ).

If the default has not yet occurred, the holder does not know when it will occur. The value
D(δ)(t, T ) of the DZC is the conditional expectation of the discounted payoff

B(t, T )
(
1{T<τ} + δ1{τ≤T}

)

given the information available at time t. We obtain

D(δ)(t, T ) = 1{τ≤t}B(t, T )δ + 1{t<τ}D̃(δ)(t, T )

where the pre-default value D̃(δ) is defined as

D̃(δ)(t, T ) = EQ
(
B(t, T ) (1{T<τ} + δ1{τ≤T})

∣∣ t < τ
)

= B(t, T )
(
1− (1− δ)Q(τ ≤ T

∣∣ t < τ)
)

= B(t, T )
(

1− (1− δ)
Q(t < τ ≤ T )
Q(t < τ)

)

= B(t, T )
(

1− (1− δ)
F (T )− F (t)

1− F (t)

)
. (2.2)

Note that the value of the DZC is discontinuous at time τ , unless F (T ) = 1 (or δ = 1). In the case
F (T ) = 1, the default appears with probability one before maturity and the DZC is equivalent to a
payment of δ at maturity. If δ = 1, the DZC is simply a default-free zero coupon bond.

Formula (2.2) can be rewritten as follows

D(δ)(t, T ) = B(t, T )− EDLGD ×DP

where the expected discounted loss given default (EDLGD) is defined as B(t, T )(1 − δ) and the
conditional default probability (DP) is defined as follows

DP =
Q(t < τ ≤ T )
Q(t < τ)

= Q(τ ≤ T | t < τ) .

In case the payment is a function of the default time, say δ(τ), the value of this defaultable zero-
coupon is

D(δ)(0, T ) = EQ
(
B(0, T )1{T<τ} + B(0, T )δ(τ)1{τ≤T}

)

= B(0, T )
(
Q(T < τ) +

∫ T

0

δ(s)f(s) ds
)
.
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If the default has not occurred before t, the pre-default time-t value D̃(δ)(t, T ) satisfies

D̃(δ)(t, T ) = B(t, T )EQ(1{T<τ} + δ(τ)1{τ≤T}
∣∣ t < τ)

= B(t, T )
(Q(T < τ)
Q(t < τ)

+
1

Q(t < τ)

∫ T

t

δ(s)f(s) ds
)
.

To summarize, we have

D(δ)(t, T ) = 1{t<τ} D̃(δ)(t, T ) + 1{τ≤t} δ(τ) B(t, T ).

Hazard Function

Let us recall the standing assumption that F (t) < 1 for any t ∈ R+. We introduce the hazard
function Γ by setting

Γ(t) = − ln(1− F (t))

for any t ∈ R+. Since we assumed that F is differentiable, the derivative Γ′(t) = γ(t) =
f(t)

1− F (t)
,

where f(t) = F ′(t). This means that

1− F (t) = e−Γ(t) = exp
(
−

∫ t

0

γ(s) ds

)
= Q(τ > t).

The quantity γ(t) is the hazard rate. The interpretation of the hazard rate is the probability that
the default occurs in a small interval dt given that the default did not occur before time t

γ(t) = lim
h→0

1
h
Q(τ ≤ t + h | τ > t).

Note that Γ is increasing.

Then formula (2.2) reads

D̃(δ)(t, T ) = B(t, T )
(

1− F (T )
1− F (t)

+ δ
F (T )− F (t)

1− F (t)

)

= Rt,d
T + δ

(
B(t, T )−Rt,d

T

)
,

where we denote

Rt,d
T = exp

(
−

∫ T

t

(r(s) + γ(s)) ds
)
.

In particular, for δ = 0, we obtain D̃(t, T ) = Rt,d
T . Hence the spot rate has simply to be adjusted by

means of the credit spread (equal to γ) in order to evaluate DZCs with zero recovery.

The dynamics of D̃(δ) can be easily written in terms of the function γ as

dD̃(δ)(t, T ) = (r(t) + γ(t)) D̃(δ)(t, T ) dt−B(t, T )γ(t)δ(t) dt.

The dynamics of D(δ)(t, T ) will be derived in the next section.

If γ and δ are constant, the credit spread equals

1
T − t

ln
B(t, T )

D̃(δ)(t, T )
= γ − 1

T − t
ln

(
1 + δ(eγ(T−t) − 1)

)

and it converges to γ(1− δ) when t goes to T .

For any t < T , the quantity γ(t, T ) = f(t,T )
1−F (t,T ) where

F (t, T ) = Q(τ ≤ T | τ > t)
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and f(t, T ) dT = Q(τ ∈ dT | τ > t) is called the conditional hazard rate. It is easily seen that

F (t, T ) = 1− exp
(
−

∫ T

t

γ(s, T ) ds
)
.

Note, however, that in the present setting, we have that

1− F (t, T ) =
Q(τ > T )
Q(τ > t)

= exp
(
−

∫ T

t

γ(s) ds
)

and thus γ(s, T ) = γ(s).

Remark 2.1.1 In the case where τ is the first jump of an inhomogeneous Poisson process with
deterministic intensity (λ(t), t ≥ 0), we have

f(t) =
Q(τ ∈ dt)

dt
= λ(t) exp

(
−

∫ t

0

λ(s) ds

)
= λ(t)e−Λ(t)

where Λ(t) =
∫ t

0
λ(s) ds and Q(τ ≤ t) = F (t) = 1 − e−Λ(t). Hence the hazard function is equal to

the compensator of the Poisson process, that is, Γ(t) = Λ(t). Conversely, if τ is a random time with
the density f , setting Λ(t) = − ln(1 − F (t)) allows us to interpret τ as the first jump time of an
inhomogeneous Poisson process with the intensity equal to the derivative of Λ.

2.1.2 Defaultable Zero-Coupon with Recovery at Default

By a defaultable zero-coupon bond with maturity T we mean here a security consisting of:

• The payment of one monetary unit at time T if default has not yet occurred,

• The payment of δ(τ) monetary units, where δ is a deterministic function, made at time τ if
τ ≤ T , that is, if default occurred prior to or at bond’s maturity.

Value of the Defaultable Zero-Coupon

The value of this defaultable zero-coupon bond is

D(δ)(0, T ) = EQ
(
B(0, T )1{T<τ} + B(0, τ)δ(τ)1{τ≤T}

)

= Q(T < τ)B(0, T ) +
∫ T

0

B(0, s)δ(s) dF (s)

= G(T )B(0, T )−
∫ T

0

B(0, s)δ(s) dG(s), (2.3)

where G(t) = 1−F (t) = Q(t < τ) is the survival probability. Obviously, if the default has occurred
before time t, the value of the DZC is null (this was not the case for the recovery payment made
at bond’s maturity), and D(δ)(t, T ) = 1{t<τ}D̃(δ)(t, T ) where D̃(δ)(t, T ) is a deterministic function
(the predefault price). The pre-default time-t value D̃(δ)(t, T ) satisfies

B(0, t)D̃(δ)(t, T ) = EQ
(
B(0, T )1{T<τ} + B(0, τ)δ(τ)1{τ≤T} | t < τ

)

=
Q(T < τ)
Q(t < τ)

B(0, T ) +
1

Q(t < τ)

∫ T

t

B(0, s)δ(s) dF (s).

Hence

R(t)G(t)D̃(δ)(t, T ) = G(T )B(0, T )−
∫ T

t

B(0, s)δ(s) dG(s).
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In terms of the hazard function Γ, we get

D̃(δ)(0, T ) = e−Γ(T )B(0, T ) +
∫ T

0

B(0, s)e−Γ(s)δ(s) dΓ(s). (2.4)

The time-t value D̃(δ)(t, T ) satisfies

B(0, t)e−Γ(t)D̃(δ)(t, T ) = e−Γ(T )B(0, T ) +
∫ T

t

B(0, s)e−Γ(s)δ(s) dΓ(s).

Note that the process t → D(δ)(t, T ) admits a discontinuity at time τ .

A Particular Case

If F is differentiable then the function γ = Γ′ satisfies f(t) = γ(t)e−Γ(t). Then

D̃(δ)(0, T ) = e−Γ(T )B(0, T ) +
∫ T

0

B(0, s)γ(s)e−Γ(s)δ(s) ds, (2.5)

= Rd(T ) +
∫ T

0

Rd(s)γ(s)δ(s) ds,

and

Rd(t)D̃(δ)(t, T ) = Rd(T ) +
∫ T

t

Rd(s)γ(s)δ(s) ds

with

Rd(t) = exp
(
−

∫ t

0

(r(s) + γ(s)) ds
)
.

The ‘defaultable interest rate’ is r + γ and is, as expected, greater than r (the value of a DZC with
δ = 0 is smaller than the value of a default-free zero-coupon). The dynamics of D̃(δ)(t, T ) are

dD̃(δ)(t, T ) =
(
(r(t) + γ(t))D̃(δ)(t, T )− δ(t)γ(t))

)
dt.

The dynamics of D(δ)(t, T ) include a jump at time τ (see the next section).

Fractional Recovery of Treasury Value

This case corresponds to the the following recovery δ(t) = δB(t, T ) at the moment of default. Under
this convention, we have that

D(δ)(t, T ) = 1{t<τ}

(
e−
R T

t
(r(s)+γ(s) ds + δB(t, T )

∫ T

t

γ(s)e
R s

t
γ(u) du ds

)
.

Fractional Recovery of Market Value

Let us assume here that the recovery is δ(t) = δD̃(δ)(t, T ) where δ is a constant, that is, the recovery
is δD(δ)(τ−, T ). The dynamics of D̃(δ) are

dD̃(δ)(t, T ) =
(
r(t) + γ(t)(1− δ(t))

)
D̃(δ)(t, T ) dt,

hence

D̃(δ)(t, T ) = exp

(
−

∫ T

t

r(s)ds−
∫ T

t

γ(s)(1− δ(s)) ds

)
.
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2.1.3 Implied Default Probabilities

If defaultable zero-coupon bonds with zero recovery are traded in the market at price D(δ,∗)(t, T ),
the implied survival probability is Q∗ such that

Q∗(τ > T | τ > t) =
D(δ,∗)(t, T )

B(t, T )
.

Of course, this probability may differ from the historical probability. The implied hazard rate is the
function λ(t, T ) such that

λ(t, T ) = − ∂

∂T
ln

D(δ,∗)(t, T )
B(t, T )

= γ∗(T ).

In the toy model, the implied hazard rate is not very interesting. The aim is to obtain

D̃(δ,∗)(t, T ) = B(t, T ) exp
(
−

∫ T

t

λ(t, s) ds
)
.

This approach will be useful when the pre-default price is stochastic, rather than deterministic.

2.1.4 Credit Spreads

A term structure of credit spreads associated with the zero-coupon bonds S(t, T ) is defined as

S(t, T ) = − 1
T − t

ln
D(δ,∗)(t, T )

B(t, T )
.

In our setting, on the set {τ > t}

S(t, T ) = − 1
T − t

lnQ∗(τ > T | τ > t),

whereas S(t, T ) = ∞ on the set {τ ≤ t}.

2.2 Martingale Approach

We shall now present the results of the previous section in a different form, following rather closely
Dellacherie ([24], page 122). We keep the standing assumption that F (t) < 1 for any t ∈ R+, but
we do impose any further assumptions on the c.d.f. F of τ under Q at this stage.

Definition 2.2.1 The hazard function Γ by setting

Γ(t) = − ln(1− F (t))

for any t ∈ R+.

We denote by (Ht, t ≥ 0) the right-continuous increasing process Ht = 1{t≥τ} and by (Ht) its
natural filtration. The filtration H is the smallest filtration which makes τ a stopping time. The
σ-algebra Ht is generated by the sets {τ ≤ s} for s ≤ t. The key point is that any integrable
Ht-measurable r.v. H has the form

H = h(τ)1{τ≤t} + h(t)1{t<τ}

where h is a Borel function.

We now give some elementary formula for the computation of a conditional expectation with
respect to Ht, as presented, for instance, in Brémaud [11], Dellacherie [24], or Elliott [30].

Remark 2.2.1 Note that if the cumulative distribution function F is continuous then τ is known
to be a H-totally inaccessible stopping time (see Dellacherie and Meyer [27] IV, Page 107). We will
not use this property explicitly.
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2.2.1 Key Lemma

Lemma 2.2.1 For any integrable, G-measurable r.v. X we have that

EQ(X |Hs)1{s<τ} = 1{s<τ}
EQ(X1{s<τ})
Q(s < τ)

. (2.6)

Proof. The conditional expectation EQ(X |Hs) is clearly Hs-measurable. Therefore, it can be
written in the form

EQ(X |Hs) = h(τ)1{s≥τ} + h(s)1{s<τ}

for some Borel function h. By multiplying both members by 1{s<τ}, and taking the expectation, we
obtain

EQ[1{s<τ}EQ(X |Hs)] = EQ[EQ(1{s<τ}X |Hs)] = EQ(1{s<τ}X)
= EQ(h(s)1{s<τ}) = h(s)Q(s < τ).

Hence h(s) =
EQ(X1{s<τ})
Q(s < τ)

, which yields the desired result. ¤

Corollary 2.2.1 Assume that Y is H∞-measurable, so that Y = h(τ) for some Borel measurable
function h : R+ → R. If the hazard function Γ of τ is continuous then

EQ(Y |Ht) = 1{τ≤t}h(τ) + 1{t<τ}

∫ ∞

t

h(u)eΓ(t)−Γ(u) dΓ(u). (2.7)

If τ admits the intensity function γ then

EQ(Y |Ht) = 1{τ≤t}h(τ) + 1{t<τ}

∫ ∞

t

h(u)γ(u)e−
R u

t
γ(v) dv du.

In particular, for any t ≤ s we have

Q(τ > s |Ht) = 1{t<τ}e−
R s

t
γ(v) dv

and
Q(t < τ < s |Ht) = 1{t<τ}

(
1− e−

R s
t

γ(v) dv
)
.

2.2.2 Martingales Associated with Default Time

Proposition 2.2.1 The process (Mt, t ≥ 0) defined as

Mt = Ht −
∫ τ∧t

0

dF (s)
1− F (s)

= Ht −
∫ t

0

(1−Hs−)
dF (s)

1− F (s)

is an H-martingale.

Proof. Let s < t. Then:

EQ(Ht −Hs |Hs) = 1{s<τ}EQ(1{s<τ≤t} |Hs) = 1{s<τ}
F (t)− F (s)

1− F (s)
, (2.8)

which follows from (2.6) with X = 1{τ≤t}.

On the other hand, the quantity

C
def= EQ

[∫ t

s

(1−Hu−)
dF (u)

1− F (u)

∣∣Hs

]
,
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is equal to

C =
∫ t

s

dF (u)
1− F (u)

EQ
[
1{τ>u}

∣∣Hs

]

= 1{τ>s}

∫ t

s

dF (u)
1− F (u)

(
1− F (u)− F (s)

1− F (s)

)

= 1{τ>s}

(
F (t)− F (s)

1− F (s)

)

which, in view of (2.8), proves the result. ¤
The function ∫ t

0

dF (s)
1− F (s)

= − ln(1− F (t)) = Γ(t)

is the hazard function.

From Proposition 2.2.1, we obtain the Doob-Meyer decomposition of the submartingale Ht as
Mt + Γ(t ∧ τ). The predictable process At = Γ(t ∧ τ) is called the compensator of H.

In particular, if F is differentiable, the process

Mt = Ht −
∫ τ∧t

0

γ(s) ds = Ht −
∫ t

0

γ(s)(1−Hs) ds

is a martingale, where γ(s) =
f(s)

1− F (s)
is a deterministic, non-negative function, called the intensity

of τ .

Proposition 2.2.2 Assume that F (and thus also Γ) is a continuous function. Then the process
Mt = Ht − Γ(t ∧ τ) follows a H-martingale.

We can now write the dynamics of a defaultable zero-coupon bond with recovery δ paid at hit,
assuming that M is a martingale under the risk-neutral probability.

Proposition 2.2.3 The risk-neutral dynamics of a DZC with recovery paid at hit is

dD(δ)(t, T ) =
(
r(t)D(δ)(t, T )− δ(t)γ(t)(1−Ht)

)
dt− D̃(δ)(t, T ) dMt (2.9)

where M is the risk-neutral martingale Mt = Ht −
∫ t

0
(1−Hs)γs ds.

Proof. Combining the equality

D(δ)(t, T ) = 1t<τ D̃(δ)(t, T ) = (1−Ht)D̃(δ)(t, T )

with the dynamics of D̃(δ)(t, T ), we obtain

dD(δ)(t, T ) = (1−Ht)dD̃(δ)(t, T )− D̃(δ)(t, T ) dHt

= (1−Ht)
(
(r(t) + γ(t))D̃(δ)(t, T )− δ(t)γ(t)

)
dt− D̃(δ)(t, T )) dHt

=
(
r(t)D(δ)(t, T )− δ(t)γ(t)(1−Ht)

)
dt− D̃(δ)(t, T ) dMt.

We emphasize that we work here under a risk-neutral probability. We shall see further on how
to compute the risk-neutral default intensity from historical one, using a suitable Radon-Nikodým
density process. ¤
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Proposition 2.2.4 The process Lt
def= 1{τ>t} exp

(∫ t

0
γ(s)ds

)
is an H-martingale and it satisfies

Lt = 1−
∫

]0,t]

Lu− dMu. (2.10)

In particular, for t ∈ [0, T ],

EQ(1{τ>T} |Ht) = 1{τ>t} exp

(
−

∫ T

t

γ(s)ds

)
.

Proof. Let us first show that L is an H-martingale. Since the function γ is deterministic, for t > s

EQ(Lt |Hs) = exp
(∫ t

0

γ(u)du

)
EQ(1{t<τ} |Hs).

From the equality (2.6)

EQ(1{t<τ} |Hs) = 1{τ>s}
1− F (t)
1− F (s)

= 1{τ>s} exp (−Γ(t) + Γ(s)) .

Hence

EQ(Lt |Hs) = 1{τ>s} exp
(∫ s

0

γ(u) du

)
= Ls.

To establish (2.10), it suffices to apply the integration by parts formula to the process

Lt = (1−Ht) exp
(∫ t

0

γ(s) ds

)
.

We obtain

dLt = − exp
(∫ t

0

γ(s) ds

)
dHt + γ(t) exp

(∫ t

0

γ(s) ds

)
(1−Ht) dt

= − exp
(∫ t

0

γ(s) ds

)
dMt.

An alternative method is to show that L is the exponential martingale of M , i.e., L is the unique
solution of the SDE

dLt = −Lt− dMt, L0 = 1.

This equation can be solved pathwise. ¤

Proposition 2.2.5 Assume that Γ is a continuous function. Then for any (bounded) Borel mea-
surable function h : R+ → R, the process

Mh
t = 1{τ≤t}h(τ)−

∫ t∧τ

0

h(u) dΓ(u) (2.11)

is an H-martingale.

Proof. The proof given below provides an alternative proof of Proposition 2.2.2. We wish to establish
through direct calculations the martingale property of the process Mh given by formula (2.11). To
this end, notice that formula (2.7) in Corollary 2.2.1 gives

E
(
h(τ)1{t<τ≤s} |Ht

)
= 1{t<τ}eΓ(t)

∫ s

t

h(u)e−Γ(u) dΓ(u).
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On the other hand, using the same formula, we get

J
def= E

( ∫ s∧τ

t∧τ

h(u) dΓ(u)
)

= E
(
h̃(τ)1{t<τ≤s} + h̃(s)1{τ>s} |Ht

)

where we set h̃(s) =
∫ s

t
h(u) dΓ(u). Consequently,

J = 1{t<τ}eΓ(t)
( ∫ s

t

h̃(u)e−Γ(u) dΓ(u) + e−Γ(s)h̃(s)
)
.

To conclude the proof, it is enough to observe that Fubini’s theorem yields
∫ s

t

e−Γ(u)

∫ u

t

h(v) dΓ(v) dΓ(u) + e−Γ(s)h̃(s)

=
∫ s

t

h(u)
∫ s

u

e−Γ(v) dΓ(v) dΓ(u) + e−Γ(s)

∫ s

t

h(u) dΓ(u)

=
∫ s

t

h(u)e−Γ(u) dΓ(u),

as expected. ¤

Corollary 2.2.2 Let h : R+ → R be a (bounded) Borel measurable function. Then the process

M̃h
t = exp

(
1{τ≤t}h(τ)

)−
∫ t∧τ

0

(eh(u) − 1) dΓ(u) (2.12)

is an H-martingale.

Proof. It is enough to observe that

exp
(
1{τ≤t}h(τ)

)
= 1{τ≤t}eh(τ) + 1{t≥τ} = 1{τ≤t}(eh(τ) − 1) + 1

and to apply the preceding result to eh − 1. ¤

Proposition 2.2.6 Assume that Γ is a continuous function. Let h : R+ → R be a non-negative
Borel measurable function such that the random variable h(τ) is integrable. Then the process

M̂t = (1 + 1{τ≤t}h(τ)) exp
(
−

∫ t∧τ

0

h(u) dΓ(u)
)

(2.13)

is an H-martingale.

Proof. Observe that

M̂t = exp
(
−

∫ t

0

(1−Hu)h(u) dΓ(u)
)

+ 1{τ≤t}h(τ) exp
(
−

∫ τ

0

(1−Hu)h(u) dΓ(u)
)

= exp
(
−

∫ t

0

(1−Hu)h(u) dΓ(u)
)

+
∫ t

0

h(u) exp
(
−

∫ u

0

(1−Hs)h(s) dΓ(s)
)
dHu

From Itô’s calculus,

dM̂t = exp
(
−

∫ t

0

(1−Hu)h(u) dΓ(u)
)
(−(1−Ht)h(t) dΓ(t) + h(t) dHt)

= h(t) exp
(
−

∫ t

0

(1−Hu)h(u) dΓ(u)
)
dMt.

¤
It is instructive to compare this result with the Doléans-Dade exponential of the process hM .
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Example 2.2.1 In the case where N is an inhomogeneous Poisson process with deterministic inten-
sity λ and τ is the moment of the first jump of N , let Ht = Nt∧τ . It is well known that Nt−

∫ t

0
λ(s) ds

is a martingale. Therefore, the process stopped at time τ is also a martingale, i.e., Ht−
∫ t∧τ

0
λ(s) ds

is a martingale. Furthermore, we have seen in Remark 2.1.1 that we can reduce our attention to
this case, since any random time can be viewed as the first time where an inhomogeneous Poisson
process jumps.

Exercise 2.2.1 Assume that F is only right-continuous, and let F (t−) be the left-hand side limit
of F at t. Show that the process (Mt, t ≥ 0) defined as

Mt = Ht −
∫ τ∧t

0

dF (s)
1− F (s−)

= Ht −
∫ t

0

(1−Hs−)
dF (s)

1− F (s−)

is an H-martingale.

2.2.3 Representation Theorem

The next result furnishes a suitable version of representation theorem for H-martingales.

Proposition 2.2.7 Let h be a (bounded) Borel function. Then the martingale Mh
t = EQ(h(τ) |Ht)

admits the representation

EQ(h(τ) |Ht) = EQ(h(τ))−
∫ t∧τ

0

(g(s)− h(s)) dMs,

where Mt = Ht − Γ(t ∧ τ) and

g(t) = − 1
G(t)

∫ ∞

t

h(u) dG(u) =
1

G(t)
EQ(h(τ)1τ>t). (2.14)

Note that g(t) = Mh
t on {t < τ}. In particular, any square-integrable H-martingale (Xt, t ≥ 0) can

be written as Xt = X0 +
∫ t

0
ζs dMs where (ζt, t ≥ 0) is an H-predictable process.

Proof. We give below two different proofs.
a) From Lemma 2.2.1

Mh
t = h(τ)1{τ≤t} + 1{t<τ}

EQ(h(τ)1{t<τ})
Q(t < τ)

= h(τ)1{τ≤t} + 1{t<τ}eΓ(t)EQ(h(τ)1{t<τ}).

An integration by parts leads to

eΓtEQ
(
h(τ)1{t<τ}

)
= eΓt

∫ ∞

t

h(s)dF (s) = g(t)

=
∫ ∞

0

h(s)dF (s)−
∫ t

0

eΓ(s)h(s)dF (s) +
∫ t

0

EQ(h(τ)1{s<τ})eΓ(s)dΓ(s)

Therefore, since EQ(h(τ)) =
∫∞
0

h(s)dF (s) and Mh
s = eΓ(s)EQ(h(τ)1{s<τ}) = g(s) on {s < τ}, the

following equality holds on the event {t < τ}:

eΓtEQ
(
h(τ)1{t<τ}

)
= EQ(h(τ))−

∫ t

0

eΓ(s)h(s)dF (s) +
∫ t

0

g(s)dΓ(s).
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Hence

1{t<τ}EQ(h(τ) |Ht) = 1{t<τ}

(
EQ(h(τ)) +

∫ t∧τ

0

(g(s)− h(s))
dF (s)

1− F (s)

)

= 1{t<τ}

(
EQ(h(τ))−

∫ t∧τ

0

(g(s)− h(s))(dHs − dΓ(s))
)

,

where the last equality is due to 1{t<τ}
∫ t∧τ

0
(g(s)− h(s))dHs = 0.

On the complementary set {t ≥ τ}, we have seen that EQ(h(τ) |Ht) = h(τ), whereas
∫ t∧τ

0

(g(s)− h(s))(dHs − dΓ(s)) =
∫

]0,τ ]

(g(s)− h(s))(dHs − dΓ(s))

=
∫

]0,τ [

(g(s)− h(s))(dHs − dΓ(s)) + (g(τ−)− h(τ)).

Therefore,

EQ(h(τ))−
∫ t∧τ

0

(g(s)− h(s))(dHs − dΓ(s)) = MH
τ− − (MH

τ− − h(τ)) = h(τ).

The predictable representation theorem follows immediately.

b) An alternative proof consists in computing the conditional expectation

Mh
t = EQ(h(τ) |Ht) = h(τ)1{τ<t} + 1{τ>t}e−Γ(t)

∫ ∞

t

h(u)dF (u)

=
∫ t

0

h(s) dHs + (1−Ht)e−Γ(t)

∫ ∞

t

h(u) dF (u) =
∫ t

0

h(s) dHs + (1−Ht)g(t)

and to use Itô’s formula and that dMt = dHt − γ(t)(1−Ht) dt. Using that

dF (t) = eΓ(t)dΓ(t) = eΓ(t)γ(t) dt = −dG(t)

we obtain

dMh
t = h(t) dHt + (1−Ht)h(t)γ(t)dt− g(t) dHt − (1−Ht)g(t)γ(t) dt

= (h(t)− g(t)) dHt + (1−Ht)(h(t)− g(t))γ(t) dt = (h(t)− g(t)) dMt

and thus the proof is completed. ¤

Exercise 2.2.2 Assume that the function Γ is right-continuous. Establish the following represen-
tation formula

EQ(h(τ) |Ht) = EQ(h(τ))−
∫ t∧τ

0

e∆Γ(s)(g(s)− h(s)) dMs.

2.2.4 Change of a Probability Measure

Let Q be an arbitrary probability measure on (Ω,H∞), which is absolutely continuous with respect
to P. We denote by F the c.d.f. of τ under P. Let η stand for the H∞-measurable density of Q with
respect to P

η
def=

dQ
dP

= h(τ) ≥ 0, P-a.s., (2.15)

where h : R→ R+ is a Borel measurable function satisfying

EP(h(τ)) =
∫ ∞

0

h(u) dF (u) = 1.
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We can use the general version of Girsanov’s theorem. Nevertheless, we find it preferable to
establish a simple version of this theorem in our particular setting. Of course, the probability
measure Q is equivalent to P if and only if the inequality in (2.15) is strict P-a.s. Furthermore, we
shall assume that Q(τ = 0) = 0 and Q(τ > t) > 0 for any t ∈ R+. Actually the first condition is
satisfied for any Q absolutely continuous with respect to P. For the second condition to hold, it is
sufficient and necessary to assume that for every t

Q(τ > t) = 1− F ∗(t) =
∫

]t,∞[

h(u) dF (u) > 0,

where F ∗ is the c.d.f. of τ under Q

F ∗(t) def= Q(τ ≤ t) =
∫

[0,t]

h(u) dF (u). (2.16)

Put another way, we assume that

g(t) def= eΓ(t)E
(
1{τ>t}h(τ)

)
= eΓ(t)

∫

]t,∞[

h(u) dF (u) = eΓ(t)Q(τ > t) > 0.

We assume throughout that this is the case, so that the hazard function Γ∗ of τ with respect to Q
is well defined. Our goal is to examine relationships between hazard functions Γ∗ and Γ. It is easily
seen that in general we have

Γ∗(t)
Γ(t)

=
ln

( ∫
]t,∞[

h(u) dF (u)
)

ln(1− F (t))
, (2.17)

since by definition Γ∗(t) = − ln(1− F ∗(t)).

Assume first that F is an absolutely continuous function, so that the intensity function γ of τ
under P is well defined. Recall that γ is given by the formula

γ(t) =
f(t)

1− F (t)
.

On the other hand, the c.d.f. F ∗ of τ under Q now equals

F ∗(t) def= Q(τ ≤ t) = EP(1{τ≤t}h(τ)) =
∫ t

0

h(u)f(u) du.

so that F ∗ follows an absolutely continuous function. Therefore, the intensity function γ∗ of the
random time τ under Q exists, and it is given by the formula

γ∗(t) =
h(t)f(t)
1− F ∗(t)

=
h(t)f(t)

1− ∫ t

0
h(u)f(u) du

.

To derive a more straightforward relationship between the intensities γ and γ∗, let us introduce an
auxiliary function h∗ : R+ → R, given by the formula h∗(t) = h(t)/g(t).

Notice that

γ∗(t) =
h(t)f(t)

1− ∫ t

0
h(u)f(u) du

=
h(t)f(t)∫∞

t
h(u)f(u) du

=
h(t)f(t)

e−Γ(t)g(t)
= h∗(t)

f(t)
1− F (t)

= h∗(t)γ(t).

This means also that dΓ∗(t) = h∗(t) dΓ(t). It appears that the last equality holds true if F is merely
a continuous function. Indeed, if F (and thus F ∗) is continuous, we get

dΓ∗(t) =
dF ∗(t)

1− F ∗(t)
=

d(1− e−Γ(t)g(t))
e−Γ(t)g(t)

=
g(t)dΓ(t)− dg(t)

g(t)
= h∗(t) dΓ(t).
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To summarize, if the hazard function Γ is continuous then Γ∗ is also continuous and dΓ∗(t) =
h∗(t) dΓ(t).

To understand better the origin of the function h∗, let us introduce the following non-negative
P-martingale (which is strictly positive when the probability measures Q and P are equivalent)

ηt
def=

dQ
dP |Ht

= EP(η |Ht) = EP(h(τ) |Ht), (2.18)

so that ηt = Mh
t . The general formula for ηt reads (cf. (2.2.1))

ηt = 1{τ≤t}h(τ) + 1τ>t eΓ(t)

∫

]t,∞[

h(u) dF (u) = 1{τ≤t}h(τ) + 1{τ>t}g(t).

Assume now that F is a continuous function. Then

ηt = 1{τ≤t}h(τ) + 1{τ>t}

∫ ∞

t

h(u)eΓ(t)−Γ(u) dΓ(u).

On the other hand, using the representation theorem, we get

Mh
t = Mh

0 +
∫

]0,t]

Mh
u−(h∗(u)− 1) dMu

where h∗(u) = h(u)/g(u). We conclude that

ηt = 1 +
∫

]0,t]

ηu−(h∗(u)− 1) dMu. (2.19)

It is thus easily seen that

ηt =
(
1 + 1{τ≤t}v(τ)) exp

(
−

∫ t∧τ

0

v(u) dΓ(u)
)
, (2.20)

where we write v(t) = h∗(t)−1. Therefore, the martingale property of the process η, which is obvious
from (2.18), is also a consequence of Proposition 2.2.6.

Remark 2.2.2 In view of (2.19), we have

ηt = Et

(∫ ·

0

(h∗(u)− 1) dMu

)
,

where E stands for the Doléans exponential. Representation (2.20) for the random variable ηt can
thus be obtained from the general formula for the Doléans exponential.

We are in the position to formulate the following result (all statements were already established
above).

Proposition 2.2.8 Let Q be any probability measure on (Ω,H∞) absolutely continuous with respect
to P, so that (2.15) holds for some function h. Assume that Q(τ > t) > 0 for every t ∈ R+. Then

dQ
dP |Ht

= Et

( ∫ ·

0

(h∗(u)− 1) dMu

)
, (2.21)

where

h∗(t) = h(t)/g(t), g(t) = eΓ(t)

∫ ∞

t

h(u) dF (u),
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and Γ∗(t) = g∗(t)Γ(t) with

g∗(t) =
ln

( ∫
]t,∞[

h(u) dF (u)
)

ln(1− F (t))
. (2.22)

If, in addition, the random time τ admits the intensity function γ under P, then the intensity function
γ∗ of τ under Q satisfies γ∗(t) = h∗(t)γ(t) a.e. on R+. More generally, if the hazard function Γ of τ
under P is continuous, then the hazard function Γ∗ of τ under Q is also continuous, and it satisfies
dΓ∗(t) = h∗(t) dΓ(t).

Corollary 2.2.3 If F is continuous then M∗
t = Ht − Γ∗(t ∧ τ) is an H-martingale under Q.

Proof. In view Proposition 2.2.2, the corollary is an immediate consequence of the continuity of Γ∗.
Alternatively, we may check directly that the product Ut = ηtM

∗
t = ηt(Ht − Γ∗(t ∧ τ)) follows a

H-martingale under P. To this end, observe that the integration by parts formula for functions of
finite variation yields

Ut =
∫

]0,t]

ηt− dM∗
t +

∫

]0,t]

M∗
t dηt

=
∫

]0,t]

ηt− dM∗
t +

∫

]0,t]

M∗
t− dηt +

∑

u≤t

∆M∗
u∆ηu

=
∫

]0,t]

ηt− dM∗
t +

∫

]0,t]

M∗
t− dηt + 1{τ≤t}(ητ − ητ−).

Using (2.19), we obtain

Ut =
∫

]0,t]

ηt− dM∗
t +

∫

]0,t]

M∗
t− dηt + ητ−1{τ≤t}(h∗(τ)− 1)

=
∫

]0,t]

ηt− d
(
Γ(t ∧ τ)− Γ∗(t ∧ τ) + 1{τ≤t}(h∗(τ)− 1)

)
+ Nt,

where the process N, which equals

Nt =
∫

]0,t]

ηt− dMt +
∫

]0,t]

M∗
t− dηt

is manifestly an H-martingale with respect to P. It remains to show that the process

N∗
t

def= Γ(t ∧ τ)− Γ∗(t ∧ τ) + 1{τ≤t}(h∗(τ)− 1)

follows an H-martingale with respect to P. By virtue of Proposition 2.2.5, the process

1{τ≤t}(h∗(τ)− 1) + Γ(t ∧ τ)−
∫ t∧τ

0

h∗(u) dΓ(u)

is an H-martingale. Therefore, to conclude the proof it is enough to notice that

∫ t∧τ

0

h∗(u) dΓ(u)− Γ∗(t ∧ τ) =
∫ t∧τ

0

(h∗(u) dΓ(u)− dΓ∗(u)) = 0,

where the last equality is a consequence of the relationship dΓ∗(t) = h∗(t) dΓ(t) established in
Proposition 2.2.8. ¤
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2.2.5 Incompleteness of the Toy Model

In order to study the completeness of the financial market, we first need to specify the class of
primary traded assets. If the market consists only of the risk-free zero-coupon bond then there
exists infinitely many equivalent martingale measures (EMMs). The discounted asset prices are
constant; hence the class Q of all EMMs is the set of all probability measures equivalent to the
historical probability. For any Q ∈ Q, we denote by FQ the cumulative distribution function of τ
under Q, i.e.,

FQ(t) = Q(τ ≤ t).

The range of prices is defined as the set of prices which do not induce arbitrage opportunities. For
a DZC with a constant rebate δ paid at maturity, the range of prices is thus equal to the set

{EQ(RT (1{T<τ} + δ1{τ<T})), Q ∈ Q}.

This set is exactly the interval ]δRT , RT [. Indeed, it is obvious that the range of prices is included
in the interval ]δRT , RT [. Now, in the set Q, one can select a sequence of probabilities Qn that
converges weakly to the Dirac measure at point 0 (resp. at point T ). The bounds are obtained as
limit cases: the default appears at time 0+ or it never occurs. Obviously, this range of arbitrage
prices is too wide for any practical purposes.

2.2.6 Risk-Neutral Probability Measures

It is usual to interpret the absence of arbitrage opportunities as the existence of an EMM. If de-
faultable zero-coupon bonds (DZCs) are traded, their prices are given by the market. Therefore, the
equivalent martingale measure Q to be used for pricing purposes is chosen by the market. Specifi-
cally, the pricing measure Q is such that, on the event {t < τ},

D(δ)(t, T ) = B(t, T )EQ
(
[1{T<τ} + δ1{t<τ≤T}]

∣∣t < τ
)
.

Therefore, we can derive the cumulative function of τ under Q from the market prices of the DZC
as shown below.

Case of Zero Recovery

If a DZC with zero recovery of maturity T is traded at some price D(δ)(t, T ) belonging to the interval
]0, B(t, T )[ then, under any risk-neutral probability Q, the process B(0, t)D(δ)(t, T ) is a martingale.
At this stage, we do not know whether the market model is complete, so we do not claim that an
EMM is unique. The following equalities thus hold

D(δ)(t, T )B(0, t) = EQ(B(0, T )1{T<τ} |Ht) = B(0, T )1{t<τ} exp
(
−

∫ T

t

λQ(s) ds
)

where λQ(s) =
dFQ(s)/ds

1− FQ(s)
. It is easily seen that if D(δ)(0, T ) belongs to the range of viable prices

]0, B(0, T )[ for any T then the function λQ is strictly positive and the converse implication holds
as well. The process λQ is the implied risk-neutral default intensity, that is, the unique Q-intensity
of τ that is consistent with the market data for DZCs. More precisely, the value of the integral∫ T

t
λQ(s) ds is known for any t as soon as there DZC bonds will all maturities are traded at time 0.

The unique risk-neutral intensity can be obtained from the prices of DZCs by differentiation with
respect to maturity

r(t) + λQ(t) = −∂T ln D(δ)(t, T ) | T=t.

Remark 2.2.3 It is important to stress that in the present set-up there is no specific relationship
between the risk-neutral default intensity and the historical one. The risk-neutral default intensity
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can be greater or smaller than the historical one. The historical default intensity can be deduced
from observation of default time whereas the risk-neutral one is obtained from the prices of traded
defaultable claims.

Fixed Recovery at Maturity

If the prices of DZCs with different maturities are known then we deduce from (2.1)

FQ(T ) =
B(0, T )−D(δ)(0, T )

B(0, T )(1− δ)

where FQ(t) = Q(τ ≤ t). Hence the probability distribution law of τ under the ‘market’ EMM is
known. However, as observed by Hull and White [39], extracting risk-neutral default probabilities
from bond prices is in practice, usually more complicated since recovery rate is usually non-zero and
most corporate bonds are coupon-bearing bonds.

Recovery at Default

In this case, the cumulative distribution function can be obtained using the derivative of the default-
able zero-coupon price with respect to the maturity. Indeed, denoting by ∂T D(δ)(0, T ) the derivative
of the value of the DZC at time 0 with respect to the maturity and assuming that G = 1 − F is
differentiable, we obtain from (2.3)

∂T D(δ)(0, T ) = g(T )B(0, T )−G(T )B(0, T )r(T )− δ(T )g(T )B(0, T ),

where g(t) = G′(t). Solving this equation leads to

Q(τ > t) = G(t) = ∆(t)
[
1 +

∫ t

0

∂T D(δ)(0, s)
1

B(0, s)(1− δ(s))
(∆(s))−1ds

]
,

where we denote ∆(t) = exp
(∫ t

0

r(u)
1− δ(u)

du

)
.

2.3 Pricing and Trading Defaultable Claims

This section gives a summary of basic results concerning the valuation and trading of generic de-
faultable claims. We start by analyzing the valuation of recovery payoffs.

2.3.1 Recovery at Maturity

Let S be the price of an asset which delivers only a recovery Zτ at time T . We know already that
the process

Mt = Ht −
∫ t

0

(1−Hs)γs ds

is an H-martingale. Recall that γ(t) = f(t)/G(t), where f is the probability density function of τ
and G(t) = Q(τ > t). Observe that

e−rtSt = EQ(Zτe−rT | Gt) = e−rT1{τ≤t}Zτ + e−rT1{τ>t}
EQ(Zτ1{t<τ<T})

G(t)

= e−rT

∫ t

0

Zu dHu + e−rT1{τ>t}S̃t
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where S̃t is the pre-default price, which is given here by the deterministic function

S̃t =
EQ(Zτ1{t<τ<T})

G(t)
=

∫ T

t
Zufu du

G(t)
.

Hence

dS̃t = f(t)

∫ T

t
Zufudu

G2(t)
dt− Ztft

G(t)
dt = S̃t

f(t)
G(t)

dt− Ztft

G(t)
dt .

It follows that

d(e−rtSt) = e−rT

(
Zt dHt + (1−Ht)

f(t)
G(t)

(
S̃t − Zt

)
dt− S̃t− dHt

)

=
(
e−rT Zt − e−rtSt−

)(
dHt − (1−Ht)γt dt

)

= e−rt
(
e−r(T−t)Zt − St−

)
dMt.

In that case, the discounted price is a martingale under the risk-neutral probability Q and the price
S does not vanish (so long as δ does not)

2.3.2 Recovery at Default

Assume now that the recovery is paid at default time. Then the price of the derivative is obviously
equal to 0 after the default time and

e−rtSt = EQ(Zτe−rτ1{t<τ≤T} | Gt) = 1{τ>t}
EQ(e−rτZτ1{t<τ<T})

G(t)
= 1{τ>t}S̃t

where the pre-default price is the deterministic function

S̃t =
1

G(t)

∫ T

t

Zue−ruf(u) du.

Consequently,

dS̃t = −Zte
−rt f(t)

G(t)
dt + f(t)

∫ T

t
Zue−ruf(u)du

(Q(τ > t)2
dt

= −Zte
−rt f(t)

G(t)
dt + S̃t

f(t)
G(t)

dt

=
f(t)
G(t)

(− Zte
−rt + S̃t

)
dt

and thus

d(e−rtSt) = (1−Ht)
f(t)
G(t)

(−Zte
−rt + S̃t) dt− S̃t dHt

= −S̃t(dHt − (1−Ht)γt dt) = (Zte
−rt − S̃t) dMt − Zte

−rt(1−Ht)γt dt

= e−rt(Zt − St−) dMt − Zte
−rt(1−Ht)γt dt.

In that case, the discounted process is not an H-martingale under the risk-neutral probability. By
contrast, the process

Ste
−rt +

∫ t

0

Zse
−rs(1−Hs)γs ds

follows an H-martingale. The recovery can be formally interpreted as a dividend process paid at the
rate Zγ up to time τ .
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2.3.3 Generic Defaultable Claims

Let us first recall the notation. A strictly positive random variable τ , defined on a probability space
(Ω,G,Q), is termed a random time. In view of its interpretation, it will be later referred to as a
default time. We introduce the jump process Ht = 1{τ≤t} associated with τ , and we denote by H
the filtration generated by this process. We assume that we are given, in addition, some auxiliary
filtration F, and we write G = H ∨ F, meaning that we have Gt = σ(Ht,Ft) for every t ∈ R+.

Definition 2.3.1 By a defaultable claim maturing at T we mean the quadruple (X, A,Z, τ), where
X is an FT -measurable random variable, A is an F-adapted process of finite variation, Z is an
F-predictable process, and τ is a random time.

The financial interpretation of the components of a defaultable claim becomes clear from the
following definition of the dividend process D, which describes all cash flows associated with a
defaultable claim over the lifespan ]0, T ], that is, after the contract was initiated at time 0. Of
course, the choice of 0 as the date of inception is arbitrary.

Definition 2.3.2 The dividend process D of a defaultable claim maturing at T equals, for every
t ∈ [0, T ],

Dt = X1{τ>T}1[T,∞[(t) +
∫

]0,t]

(1−Hu) dAu +
∫

]0,t]

Zu dHu.

The financial interpretation of the definition above justifies the following terminology: X is the
promised payoff, A represents the process of promised dividends, and the process Z, termed the
recovery process, specifies the recovery payoff at default. It is worth stressing that, according to
our convention, the cash payment (premium) at time 0 is not included in the dividend process D
associated with a defaultable claim.

When dealing with a credit default swap, it is natural to assume that the premium paid at time
0 equals zero, and the process A represents the fee (annuity) paid in instalments up to maturity
date or default, whichever comes first. For instance, if At = −κt for some constant κ > 0, then the
‘price’ of a stylized credit default swap is formally represented by this constant, referred to as the
continuously paid credit default rate.

If the other covenants of the contract are known (i.e., the payoffs X and Z are given), the
valuation of a swap is equivalent to finding the level of the rate κ that makes the swap valueless
at inception. Typically, in a credit default swap we have X = 0, and Z is determined in reference
to recovery rate of a reference credit-risky entity. In a more realistic approach, the process A is
discontinuous, with jumps occurring at the premium payment dates. In this note, we shall only deal
with a stylized CDS with a continuously paid premium.

Let us return to the general set-up. It is clear that the dividend process D follows a process of
finite variation on [0, T ]. Since

∫

]0,t]

(1−Hu) dAu =
∫

]0,t]

1{τ>u} dAu = Aτ−1{τ≤t} + At1{τ>t},

it is also apparent that if default occurs at some date t, the ‘promised dividend’ At − At− that is
due to be received or paid at this date is disregarded. If we denote τ ∧ t = min (τ, t) then we have

∫

]0,t]

Zu dHu = Zτ∧t1{τ≤t} = Zτ1{τ≤t}.

Let us stress that the process Du −Dt, u ∈ [t, T ], represents all cash flows from a defaultable claim
received by an investor who purchases it at time t. Of course, the process Du −Dt may depend on
the past behavior of the claim (e.g., through some intrinsic parameters, such as credit spreads) as
well as on the history of the market prior to t. The past dividends are not valued by the market,
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however, so that the current market value at time t of a claim (i.e., the price at which it trades at
time t) depends only on future dividends to be paid or received over the time interval ]t, T ].

Suppose that our underlying financial market model is arbitrage-free, in the sense that there
exists a spot martingale measure Q (also referred to as a risk-neutral probability), meaning that Q
is equivalent to Q on (Ω,GT ), and the price process of any tradeable security, paying no coupons or
dividends, follows a G-martingale under Q, when discounted by the savings account B, given by

Bt = exp
(∫ t

0

ru du

)
, ∀ t ∈ R+. (2.23)

2.3.4 Buy-and-Hold Strategy

We write Si, i = 1, . . . , k to denote the price processes of k primary securities in an arbitrage-free
financial model. We make the standard assumption that the processes Si, i = 1, . . . , k − 1 follow
semimartingales. In addition, we set Sk

t = Bt so that Sk represents the value process of the savings
account. The last assumption is not necessary, however. We can assume, for instance, that Sk is the
price of a T -maturity risk-free zero-coupon bond, or choose any other strictly positive price process
as as numéraire.

For the sake of convenience, we assume that Si, i = 1, . . . , k − 1 are non-dividend-paying assets,
and we introduce the discounted price processes Si∗ by setting Si∗

t = Si
t/Bt. All processes are

assumed to be given on a filtered probability space (Ω,G,Q), where Q is interpreted as the real-life
(i.e., statistical) probability measure.

Let us now assume that we have an additional traded security that pays dividends during its
lifespan, assumed to be the time interval [0, T ], according to a process of finite variation D, with
D0 = 0. Let S denote a (yet unspecified) price process of this security. In particular, we do not
postulate a priori that S follows a semimartingale. It is not necessary to interpret S as a price
process of a defaultable claim, though we have here this particular interpretation in mind.

Let a G-predictable, Rk+1-valued process φ = (φ0, φ1, . . . , φk) represent a generic trading strat-
egy, where φj

t represents the number of shares of the jth asset held at time t. We identify here S0

with S, so that S is the 0th asset. In order to derive a pricing formula for this asset, it suffices to
examine a simple trading strategy involving S, namely, the buy-and-hold strategy.

Suppose that one unit of the 0th asset was purchased at time 0, at the initial price S0, and it
was hold until time T . We assume all the proceeds from dividends are re-invested in the savings
account B. More specifically, we consider a buy-and-hold strategy ψ = (1, 0, . . . , 0, ψk), where ψk is
a G-predictable process. The associated wealth process V (ψ) equals

Vt(ψ) = St + ψk
t Bt, ∀ t ∈ [0, T ], (2.24)

so that its initial value equals V0(ψ) = S0 + ψk
0 .

Definition 2.3.3 We say that a strategy ψ = (1, 0, . . . , 0, ψk) is self-financing if

dVt(ψ) = dSt + dDt + ψk
t dBt,

or more explicitly, for every t ∈ [0, T ],

Vt(ψ)− V0(ψ) = St − S0 + Dt +
∫

]0,t]

ψk
u dBu. (2.25)

We assume from now on that the process ψk is chosen in such a way (with respect to S,D and
B) that a buy-and-hold strategy ψ is self-financing. Also, we make a standing assumption that the
random variable Y =

∫
]0,T ]

B−1
u dDu is Q-integrable.
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Lemma 2.3.1 The discounted wealth V ∗
t (ψ) = B−1

t Vt(ψ) of any self-financing buy-and-hold trading
strategy ψ satisfies, for every t ∈ [0, T ],

V ∗
t (ψ) = V ∗

0 (ψ) + S∗t − S∗0 +
∫

]0,t]

B−1
u dDu. (2.26)

Hence we have, for every t ∈ [0, T ],

V ∗
T (ψ)− V ∗

t (ψ) = S∗T − S∗t +
∫

]t,T ]

B−1
u dDu. (2.27)

Proof. We define an auxiliary process V̂ (ψ) by setting V̂t(ψ) = Vt(ψ)− St = ψk
t Bt for t ∈ [0, T ]. In

view of (2.25), we have

V̂t(ψ) = V̂0(ψ) + Dt +
∫

]0,t]

ψk
u dBu,

and so the process V̂ (ψ) follows a semimartingale. An application of Itô’s product rule yields

d
(
B−1

t V̂t(ψ)
)

= B−1
t dV̂t(ψ) + V̂t(ψ) dB−1

t

= B−1
t dDt + ψk

t B−1
t dBt + ψk

t Bt dB−1
t

= B−1
t dDt,

where we have used the obvious identity: B−1
t dBt + Bt dB−1

t = 0. Integrating the last equality, we
obtain

B−1
t

(
Vt(ψ)− St

)
= B−1

0

(
V0(ψ)− S0

)
+

∫

]0,t]

B−1
u dDu,

and this immediately yields (2.26). ¤

It is worth noting that Lemma 2.3.1 remains valid if the assumption that Sk represents the
savings account B is relaxed. It suffices to assume that the price process Sk is a numéraire, that is,
a strictly positive continuous semimartingale. For the sake of brevity, let us write Sk = β. We say
that ψ = (1, 0, . . . , 0, ψk) is self-financing it the wealth process

Vt(ψ) = St + ψk
t βt, ∀ t ∈ [0, T ],

satisfies, for every t ∈ [0, T ],

Vt(ψ)− V0(ψ) = St − S0 + Dt +
∫

]0,t]

ψk
u dβu.

Lemma 2.3.2 The relative wealth V ∗
t (ψ) = β−1

t Vt(ψ) of a self-financing trading strategy ψ satisfies,
for every t ∈ [0, T ],

V ∗
t (ψ) = V ∗

0 (ψ) + S∗t − S∗0 +
∫

]0,t]

β−1
u dDu,

where S∗ = β−1
t St.

Proof. The proof proceeds along the same lines as before, noting that β1dβ + βdβ1 + d〈β, β1〉 = 0.
¤

2.3.5 Spot Martingale Measure

Our next goal is to derive the risk-neutral valuation formula for the ex-dividend price St. To this end,
we assume that our market model is arbitrage-free, meaning that it admits a (not necessarily unique)
martingale measure Q, equivalent to Q, which is associated with the choice of B as a numéraire.
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Definition 2.3.4 We say that Q is a spot martingale measure if the discounted price Si∗ of any
non-dividend paying traded security follows a Q-martingale with respect to G.

It is well known that the discounted wealth process V ∗(φ) of any self-financing trading strat-
egy φ = (0, φ1, φ2, . . . , φk) is a local martingale under Q. In what follows, we shall only consider
admissible trading strategies, that is, strategies for which the discounted wealth process V ∗(φ) is
a martingale under Q. A market model in which only admissible trading strategies are allowed is
arbitrage-free, that is, there are no arbitrage opportunities in this model.

Following this line of arguments, we postulate that the trading strategy ψ introduced in Section
2.3.4 is also admissible, so that its discounted wealth process V ∗(ψ) follows a martingale under Q
with respect to G. This assumption is quite natural if we wish to prevent arbitrage opportunities to
appear in the extended model of the financial market. Indeed, since we postulate that S is traded, the
wealth process V (ψ) can be formally seen as an additional non-dividend paying tradeable security.

To derive a pricing formula for a defaultable claim, we make a natural assumption that the
market value at time t of the 0th security comes exclusively from the future dividends stream, that
is, from the cash flows occurring in the open interval ]t, T [. Since the lifespan of S is [0, T ], this
amounts to postulate that ST = S∗T = 0. To emphasize this property, we shall refer to S as the
ex-dividend price of the 0th asset.

Definition 2.3.5 A process S with ST = 0 is the ex-dividend price of the 0th asset if the discounted
wealth process V ∗(ψ) of any self-financing buy-and-hold strategy ψ follows a G-martingale under Q.

As a special case, we obtain the ex-dividend price a defaultable claim with maturity T .

Proposition 2.3.1 The ex-dividend price process S associated with the dividend process D satisfies,
for every t ∈ [0, T ],

St = Bt EQ
( ∫

]t,T ]

B−1
u dDu

∣∣∣Gt

)
. (2.28)

Proof. The postulated martingale property of the discounted wealth process V ∗(ψ) yields, for every
t ∈ [0, T ],

EQ
(
V ∗

T (ψ)− V ∗
t (ψ)

∣∣Gt

)
= 0.

Taking into account (2.27), we thus obtain

S∗t = EQ
(
S∗T +

∫

]t,T ]

B−1
u dDu

∣∣∣Gt

)
.

Since, by virtue of the definition of the ex-dividend price we have ST = S∗T = 0, the last formula
yields (2.28). ¤

It is not difficult to show that the ex-dividend price S satisfies, for every t ∈ [0, T ],

St = 1{t<τ}S̃t, (2.29)

where the process S̃ represents the ex-dividend pre-default price of a defaultable claim.

The cum-dividend price process S̄ associated with the dividend process D is given by the formula,
for every t ∈ [0, T ],

S̄t = BtEQ
( ∫

]0,T ]

B−1
u dDu

∣∣∣Gt

)
. (2.30)

The corresponding discounted cum-dividend price process, Ŝ
def= B−1S̄, is a G-martingale under Q.
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The savings account B can be replaced by an arbitrary numéraire β. The corresponding valuation
formula becomes, for every t ∈ [0, T ],

St = βt EQβ

(∫

]t,T ]

β−1
u dDu

∣∣∣Gt

)
, (2.31)

where Qβ is a martingale measure on (Ω,GT ) associated with a numéraire β, that is, a probability
measure on (Ω,GT ) given by the formula

dQβ

dQ
=

βT

β0BT
, Q-a.s.

2.3.6 Self-Financing Trading Strategies

Let us now examine a general trading strategy φ = (φ0, φ1, . . . , φk) with G-predictable components.
The associated wealth process V (φ) equals Vt(φ) =

∑k
i=0 φi

tS
i
t , where, as before S0 = S. A strategy

φ is said to be self-financing if Vt(φ) = V0(φ) + Gt(φ) for every t ∈ [0, T ], where the gains process
G(φ) is defined as follows:

Gt(φ) =
∫

]0,t]

φ0
u dDu +

k∑

i=0

∫

]0,t]

φi
u dSi

u.

Corollary 2.3.1 Let Sk = B. Then for any self-financing trading strategy φ, the discounted wealth
process V ∗(φ) = B−1

t Vt(φ) follows a martingale under Q.

Proof. Since B is a continuous process of finite variation, Itô’s product rule gives

dSi∗
t = Si

t dB−1
t + B−1

t dSi
t

for i = 0, 1, . . . , k, and so

dV ∗
t (φ) = Vt(φ) dB−1

t + B−1
t dVt(φ)

= Vt(φ) dB−1
t + B−1

t

( k∑

i=0

φi
t dSi

t + φ0
t dDt

)

=
k∑

i=0

φi
t

(
Si

t dB−1
t + B−1

t dSi
t

)
+ φ0

t B
−1
t dDt

=
k−1∑

i=1

φi
t dSi∗

t + φ0
t

(
dS∗t + B−1

t dDt

)
=

k−1∑

i=1

φi
t dSi∗

t + φ0
t dŜt,

where the auxiliary process Ŝ is given by the following expression:

Ŝt = S∗t +
∫

]0,t]

B−1
u dDu.

To conclude, it suffices to observe that in view of (2.28) the process Ŝ satisfies

Ŝt = EQ
( ∫

]0,T ]

B−1
u dDu

∣∣∣Gt

)
, (2.32)

and thus it follows a martingale under Q. ¤

It is worth noting that Ŝt, given by formula (2.32), represents the discounted cum-dividend price
at time t of the 0th asset, that is, the arbitrage price at time t of all past and future dividends
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associated with the 0th asset over its lifespan. To check this, let us consider a buy-and-hold strategy
such that ψk

0 = 0. Then, in view of (2.27), the terminal wealth at time T of this strategy equals

VT (ψ) = BT

∫

]0,T ]

B−1
u dDu. (2.33)

It is clear that VT (ψ) represents all dividends from S in the form of a single payoff at time T . The
arbitrage price πt(Ŷ ) at time t < T of a claim Ŷ = VT (ψ) equals (under the assumption that this
claim is attainable)

πt(Ŷ ) = Bt EQ
( ∫

]0,T ]

B−1
u dDu

∣∣∣Gt

)

and thus Ŝt = B−1
t πt(Ŷ ). It is clear that discounted cum-dividend price follows a martingale under

Q (under the standard integrability assumption).

Remarks 2.3.1 (i) Under the assumption of uniqueness of a spot martingale measure Q, any Q-
integrable contingent claim is attainable, and the valuation formula established above can be justified
by means of replication.
(ii) Otherwise – that is, when a martingale probability measure Q is not uniquely determined by
the model (S1, S2, . . . , Sk) – the right-hand side of (2.28) may depend on the choice of a particular
martingale probability, in general. In this case, a process defined by (2.28) for an arbitrarily chosen
spot martingale measure Q can be taken as the no-arbitrage price process of a defaultable claim. In
some cases, a market model can be completed by postulating that S is also a traded asset.

2.3.7 Martingale Properties of Prices of Defaultable Claims

In the next result, we summarize the martingale properties of prices of a generic defaultable claim.

Corollary 2.3.2 The discounted cum-dividend price Ŝt, t ∈ [0, T ], of a defaultable claim is a Q-
martingale with respect to G. The discounted ex-dividend price S∗t , t ∈ [0, T ], satisfies

S∗t = Ŝt −
∫

]0,t]

B−1
u dDu, ∀ t ∈ [0, T ],

and thus it follows a supermartingale under Q if and only if the dividend process D is increasing.

In some practical applications, the finite variation process A is interpreted as the positive pre-
mium paid in instalments by the claim-holder to the counterparty in exchange for a positive recovery
(received by the claim-holder either at maturity or at default). It is thus natural to assume that A
is a decreasing process, and all other components of the dividend process are increasing processes
(that is, we postulate that X ≥ 0, and Z ≥ 0). It is rather clear that, under these assumptions, the
discounted ex-dividend price S∗ is neither a super- or submartingale under Q, in general.

Assume now that A ≡ 0, so that the premium for a defaultable claim is paid upfront at time
0, and it is not accounted for in the dividend process D. We postulate, as before, that X ≥ 0,
and Z ≥ 0. In this case, the dividend process D is manifestly increasing, and thus the discounted
ex-dividend price S∗ is a supermartingale under Q. This feature is quite natural since the discounted
expected value of future dividends decreases when time elapses.

The final conclusion is that the martingale properties of the price of a defaultable claim depend on
the specification of a claim and conventions regarding the prices (ex-dividend price or cum-dividend
price). This point will be illustrated below by means of a detailed analysis of prices of credit default
swaps.



Chapter 3

Hazard Process Approach

In the general reduced-form approach, we deal with two kinds of information: the information from
the assets prices, denoted as F = (Ft)0≤t≤T∗ , and the information from the default time, that is,
the knowledge of the time where the default occurred in the past, if the default has indeed already
appeared. As we already know, the latter information is modeled by the filtration H generated by
the default process H.

At the intuitive level, the reference filtration F is generated by prices of some assets, or by other
economic factors (such as, e.g., interest rates). This filtration can also be a subfiltration of the
prices. The case where F is the trivial filtration is exactly what we have studied in the toy example.
Though in typical examples F is chosen to be the Brownian filtration, most theoretical results do
not rely on such a specification of the filtration F. We denote by Gt = Ft∨Ht the full filtration (also
known as the enlarged filtration).

Special attention will be paid in this chapter to the so-called hypothesis (H) , which, in the present
context, postulates the invariance of the martingale property with respect to the enlargement of F
by the observations of a default time. In order to examine the exact meaning of market completeness
in a defaultable world and to deduce the hedging strategies for credit derivatives, we shall establish
a suitable version of a representation theorem. Most results from this chapter can be found, for
instance, in survey papers by Jeanblanc and Rutkowski [42, 43].

3.1 General Case

The concepts introduced in the previous chapter will now be extended to a more general set-up,
when allowance for a larger flow of information – formally represented hereafter by some reference
filtration F – is made.

We denote by τ a non-negative random variable on a probability space (Ω,G,Q), satisfying:
Q{τ = 0} = 0 and Q{τ > t} > 0 for any t ∈ R+. We introduce a right-continuous process H
by setting Ht = 1{τ≤t} and we denote by H the associated filtration: Ht = σ(Hu : u ≤ t). Let
G = (Gt)t≥0 be an arbitrary filtration on (Ω,G,Q). All filtrations considered in what follows are
implicitly assumed to satisfy the ‘usual conditions’ of right-continuity and completeness. For each
t ∈ R+, the total information available at time t is captured by the σ-field Gt.

We shall focus on the case described in the following assumption. We assume that we are given
an auxiliary filtration F such that G = H ∨ F; that is, Gt = Ht ∨ Ft for any t ∈ R+. For the sake of
simplicity, we assume that the σ-field F0 is trivial (so that G0 is a trivial σ-field as well).

The process H is obviously G-adapted, but it is not necessarily F-adapted. In other words, the
random time τ is a G-stopping time, but it may fail to be an F-stopping time.

45
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Lemma 3.1.1 Assume that the filtration G satisfies G = H∨F. Then G ⊆ G∗, where G∗ = (G∗t ) t≥0

with
G∗t def=

{
A ∈ G : ∃B ∈ Ft, A ∩ {τ > t} = B ∩ {τ > t}}.

Proof. It is rather clear that the class G∗t is a sub-σ-field of G. Therefore, it is enough to check that
Ht ⊆ G∗t and Ft ⊆ G∗t for every t ∈ R+. Put another way, we need to verify that if either A = {τ ≤ u}
for some u ≤ t or A ∈ Ft, then there exists an event B ∈ Ft such that A ∩ {τ > t} = B ∩ {τ > t}.
In the former case we may take B = ∅, and in the latter B = A. ¤

For any t ∈ R+, we write Ft = Q{τ ≤ t | Ft}, and we denote by G the F-survival process of τ
with respect to the filtration F, given as:

Gt
def= 1− Ft = Q{τ > t | Ft}, ∀ t ∈ R+.

Notice that for any 0 ≤ t ≤ s we have {τ ≤ t} ⊆ {τ ≤ s}, and so

EQ(Fs | Ft) = EQ(Q{τ ≤ s | Fs} |Ft) = Q{τ ≤ s | Ft} ≥ Q{τ ≤ t | Ft} = Ft.

This shows that the process F (G, resp.) follows a bounded, non-negative F-submartingale (F-
supermartingale, resp.) under Q. We may thus deal with the right-continuous modification of F (of
G) with finite left-hand limits. The next definition is a rather straightforward generalization of the
concept of the hazard function (see Definition 2.2.1).

Definition 3.1.1 Assume that Ft < 1 for t ∈ R+. The F-hazard process of τ under Q, denoted by
Γ, is defined through the formula 1−Ft = e−Γt . Equivalently, Γt = − ln Gt = − ln (1−Ft) for every
t ∈ R+.

Since G0 = 1, it is clear that Γ0 = 0. For the sake of conciseness, we shall refer briefly to Γ as the
F-hazard process, rather than the F-hazard process under Q, unless there is a danger of confusion.

Throughout this chapter, we will work under the standing assumption that the inequality Ft < 1
holds for every t ∈ R+, so that the F-hazard process Γ is well defined. Hence the case when τ is an
F-stopping time (that is, the case when F = G) is not dealt with here.

3.1.1 Key Lemma

We shall first focus on the conditional expectation EQ(1{τ>t}Y | Gt), where Y is a Q-integrable
random variable. We start by the following result, which is a direct counterpart of Lemma 2.2.1.

Lemma 3.1.2 For any G-measurable, integrable random variable Y and any t ∈ R+ we have

EQ(1{τ>t}Y | Gt) = 1{τ>t}EQ(Y | Gt) = 1{τ>t}
EQ(1{τ>t}Y | Ft)
Q{τ > t | Ft} . (3.1)

In particular, for any t ≤ s

Q{t < τ ≤ s | Gt} = 1{τ>t}
Q{t < τ ≤ s | Ft}
Q{τ > t | Ft} . (3.2)

Proof. Let us denote C = {τ > t}. We need to verify that (recall that Ft ⊆ Gt)

EQ
(
1CYQ(C | Ft)

∣∣Gt

)
= EQ

(
1CEQ(1CY | Ft)

∣∣Gt

)
.

Put another way, we need to show that for any A ∈ Gt we have
∫

A

1CYQ(C | Ft) dQ =
∫

A

1CEQ(1CY | Ft) dQ.
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In view of Lemma 3.1.1, for any A ∈ Gt we have A ∩ C = B ∩ C for some event B ∈ Ft, and so
∫

A

1CYQ(C | Ft) dQ =
∫

A∩C

YQ(C | Ft) dQ =
∫

B∩C

YQ(C | Ft) dQ

=
∫

B

1CYQ(C | Ft) dQ =
∫

B

EQ(1CY | Ft)Q(C | Ft) dQ

=
∫

B

EQ(1CEQ(1CY | Ft) | Ft) dQ =
∫

B∩C

EQ(1CY | Ft) dQ

=
∫

A∩C

EQ(1CY | Ft) dQ =
∫

A

1CEQ(1CY | Ft) dQ.

This ends the proof. ¤

The following corollary is straightforward.

Corollary 3.1.1 Let Y be an GT -measurable, integrable random variable. Then

EQ(Y 1{T<τ} | Gt) = 1{τ>t}
EQ(Y 1{τ>T} | Ft)
EQ(1{τ>t} | Ft)

= 1{τ>t}eΓtEQ(Y e−ΓT | Ft). (3.3)

Lemma 3.1.3 Let h be an F-predictable process. Then

EQ(hτ1{τ<T} | Gt) = hτ1{τ≤t} + 1{τ>t}eΓtEQ
( ∫ T

t

hu dFu

∣∣∣Ft

)
(3.4)

We are not interested in G-predictable processes, mainly because any G-predictable process is
equal, on the event {t ≤ τ}, to an F-predictable process. As we shall see, this elementary result will
allow us to compute the value of credit derivatives, as soon as some elementary defaultable assets
are priced by the market.

3.1.2 Martingales

Proposition 3.1.1 (i) The process Lt = (1−Ht)eΓ(t) is a G-martingale.
(ii) If X is an F-martingale then XL is a G-martingale.
(iii) If the process Γ is increasing and continuous, then the process Mt = Ht − Γ(t ∧ τ) is a G-
martingale.

Proof. (i) From Lemma 3.1.2, for any t > s,

EQ(Lt | Gs) = EQ(1{τ>t}eΓt | Gs) = 1{τ>s}eΓsEQ(1{τ>t}eΓt | Fs) = 1{τ>s}eΓs = Ls

since
EQ(1{τ>t}eΓt |Fs) = EQ(EQ(1{τ>t} | Ft)eΓt |Fs) = 1.

(ii) From Lemma 3.1.2,

EQ(LtXt | Gs) = EQ(1{τ>t}LtXt | Gs)

= 1{τ>s}eΓsEQ(1{τ>t}e−ΓtXt | Fs)

= 1{τ>s}eΓsEQ(EQ(1{τ>t} | Ft)e−ΓtXt | Fs)
= LsXs.

(iii) From integration by parts formula (H is a finite variation process, and Γ an increasing continuous
process):

dLt = (1−Ht)eΓtdΓt − eΓtdHt
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and the process Mt = Ht − Γ(t ∧ τ) can be written

Mt ≡
∫

]0,t]

dHu −
∫

]0,t]

(1−Hu)dΓu = −
∫

]0,t]

e−ΓudLu

and is a G-local martingale since L is G-martingale. It should be noted that, if Γ is not increasing,
the differential of eΓ is more complicated. ¤

3.1.3 Interpretation of the Intensity

The submartingale property of F implies, from the Doob-Meyer decomposition, that F = Z + A
where Z is a F-martingale and A a F-predictable increasing process.

Lemma 3.1.4 We have

EQ(hτ1{τ<T} | Gt) = hτ1{τ<t} + 1{τ>t}eΓt EQ
(∫ T

t

hu dAu

∣∣∣Ft

)
.

In this general setting, the process Γ is not with finite variation. Hence, part (iii) in Proposition
3.1.1 does not yield the Doob-Meyer decomposition of H. We shall assume, for simplicity, that F is
continuous.

Proposition 3.1.2 Assume that F is a continuous process. Then the process

Mt = Ht −
∫ t∧τ

0

dAu

1− Fu
, ∀ t ∈ R+,

is a G-martingale.

Proof. Let s < t. We give the proof in two steps, using the Doob-Meyer decomposition F = Z + A
of F .
First step. We shall prove that

EQ(Ht | Gs) = Hs + 1{s<τ}
1

1− Fs
EQ(At −As | Fs)

Indeed,

EQ(Ht | Gs) = 1−Q(t < τ | Gs) = 1− 1{s<τ}
1

1− Fs
EQ(1− Ft | Fs)

= 1− 1{s<τ}
1

1− Fs
EQ(1− Zt −At | Fs)

= 1− 1{s<τ}
1

1− Fs
(1− Zs −As − EQ(At −As | Fs)

= 1− 1{s<τ}
1

1− Fs
(1− Fs − EQ(At −As | Fs)

= 1{τ≤s} + 1{s<τ}
1

1− Fs
EQ(At −As | Fs)

Second step. Let us

Λt =
∫ t

0

(1−Hs)
dAs

1− Fs
.

We shall prove that

EQ(Λt∧τ | Gs) = Λs∧τ + 1{s<τ}
1

1− Fs
EQ(At −As | Fs).
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From the key lemma, we obtain

EQ(Λt∧τ | Gs) = Λs∧τ1{τ≤s} + 1{s<τ}
1

1− Fs
EQ

(∫ ∞

s

Λt∧u dFu | Fs

)

= Λs∧τ1{τ≤s} + 1{s<τ}
1

1− Fs
EQ

(∫ t

s

Λu dFu +
∫ ∞

t

Λt dFu | Fs

)

= Λs∧τ1{τ≤s} + 1{s<τ}
1

1− Fs
EQ

(∫ t

s

Λu dFu + Λt(1− Ft) | Fs

)
.

Using the integration by parts formula and the fact that Λ is of bounded variation and continuous,
we obtain

d(λt(1− Ft)) = −Λt dFt + (1− Ft)dΛt = −Λt dFt + dAt.

Hence
∫ t

s

Λu dFu + Λt(1−Ft) = −Λt(1−Ft) + Λs(1−Fs) + At−As + Λt(1−Ft) = Λs(1−Fs) + At−As.

It follows that

EQ(Λt∧τ | Gs) = Λs∧τ1{τ≤s} + 1{s<τ}
1

1− Fs
EQ (Λs(1− Fs) + At −As | Fs)

= Λs∧τ + 1{s<τ}
1

1− Fs
EQ (At −As | Fs) .

This completes the proof. ¤
Let us assume that A is absolutely continuous with respect to the Lebesgue measure and let

us denote by a its derivative. We have proved the existence of a F-adapted process γ, called the
intensity, such that the process

Ht −
∫ t∧τ

0

γu du = Ht −
∫ t

0

(1−Hu)γu du

is a G-martingale. More precisely, γt = at

1−Ft
for t ∈ R+.

Lemma 3.1.5 The intensity process γ satisfies

γt = lim
h→0

1
h

Q(t < τ < t + h | Ft)
Q(t < τ | Ft)

.

Proof. The martingale property of M implies that

EQ(1{t<τ<t+h} | Gt)−
∫ t+h

t

EQ((1−Hs)λs | Gt) ds = 0.

It follows that, by the projection on Ft,

Q(t < τ < t + h | Ft) =
∫ t+h

t

λsQ(s < τ | Ft) ds.

¤

3.1.4 Reduction of the Reference Filtration

Suppose from now on that F̃t ⊂ Ft and define G̃t = F̃t ∨Ht. The associated hazard process is given
by Γ̃t = − ln(G̃t) with G̃t = Q(t < τ | F̃t) = EQ(Gt | F̃t). Then the key lemma implies that

EQ(1{τ>t}Y | G̃t) = 1{τ>t}e
eΓt EQ(1{τ>t}Y | F̃t).
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If Y is a F̃T -measurable variable, then

EQ(1{τ>T}Y | G̃t) = 1{τ>t}e
eΓt EQ(G̃T Y | F̃t).

From the equality
EQ(1{τ>T}Y | G̃t) = EQ(EQ(1{τ>T}Y | Gt) | G̃t),

we deduce that

EQ(1{τ>T}Y |G̃t) = EQ
(
eΓt1{τ>t}EQ(GT Y |Ft) | G̃t

)

= 1{τ>t}e
eΓtEQ

(
1{τ>t}eΓtEQ(GT Y |Ft)

∣∣ F̃t

)
.

From the uniqueness of the pre-default F-adapted value, we obtain, for any t,

EQ(G̃T Y |F̃t) = EQ
(
1{τ>t}eΓtEQ(GT Y |Ft)

∣∣ F̃t

)
.

As a check, a simple computation shows

EQ
(
1{τ>t}EQ(GT Y |Ft)eΓt

∣∣ F̃t

)
= EQ

(
EQ(1{τ>t}|Ft)eΓtEQ(GT Y |Ft)

∣∣ F̃t

)

= EQ
(
EQ(GT Y |Ft) | F̃t

)
= EQ(GT Y |F̃t)

= EQ
(
EQ(GT |F̃T )Y |F̃t

)
= EQ(G̃T Y |F̃t)

since Y we assumed that is F̃T -measurable.

Let F = Z + A be the Doob-Meyer decomposition of the submartingale F with respect to F and
let us assume that A is differentiable with respect to t, that is, At =

∫ t

0
as ds. Then the process

Ãt = EQ(At|F̃t) is a submartingale with respect to F̃ with the Doob-Meyer decomposition Ã = z̃+α̃.
Hence. setting Z̃t = EQ(Zt|F̃t), the submartingale

F̃t = Q(t ≥ τ | F̃t) = EQ(Ft | F̃t)

admits the Doob-Meyer decomposition F̃ = Z̃ + z̃ + α̃. The next lemma provide a link between α̃
and a.

Lemma 3.1.6 The compensator of F̃ equals

α̃t =
∫ t

0

EQ(as | F̃s) ds.

Proof. Let us show that the process

MF
t = EQ(Ft | F̃t)−

∫ t

0

EQ(as | F̃s) ds

is an F̃-martingale. Clearly, it is integrable and F̃-adapted. Moreover,

EQ(MF
T | F̃t) = EQ

(
EQ(FT | F̃T )−

∫ T

0

EQ(as | F̃s) ds
∣∣∣ F̃t

)

= EQ(FT | F̃t)− EQ
(∫ t

0

EQ(as | F̃s) ds
∣∣∣ F̃t

)
− EQ

(∫ T

t

EQ(as | F̃s) ds
∣∣∣ F̃t

)

= Z̃t + EQ
(∫ t

0

as ds
∣∣∣ F̃t

)
+ EQ

(∫ T

t

as ds
∣∣∣ F̃t

)
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−EQ
(∫ t

0

EQ(as | F̃s) ds
∣∣∣ F̃t

)
− EQ

(∫ T

t

EQ(as | F̃s) ds
∣∣∣ F̃t

)

= MF
t + EQ

(∫ T

t

fs ds
∣∣∣ F̃t

)
− EQ

(∫ T

t

EQ(fs | F̃s) ds
∣∣∣ F̃t

)

= MF
t +

∫ T

t

EQ(fs | F̃t) ds−
∫ T

t

EQ
(
EQ(fs | F̃s)

∣∣∣ F̃t

)
ds

= MF
t +

∫ T

t

EQ(as | F̃t) ds−
∫ T

t

EQ(as | F̃t) ds = MF
t .

Hence the process (
F̃t −

∫ t

0

EQ(as | F̃s) ds, t ≥ 0
)

is a F̃-martingale and the process
∫ .

0
EQ(as | F̃s) ds is predictable. The uniqueness of the Doob-Meyer

decomposition implies that

α̃t =
∫ t

0

EQ(as | F̃s) ds,

as required. ¤

Remark 3.1.1 It follows that

Ht −
∫ t∧τ

0

f̃s

1− F̃s

ds

is a G̃-martingale and that the F̃-intensity of τ is equal to EQ(as | F̃s)/G̃s, and not, as one might
have expected, to EQ(as/Gs | F̃s). Note that even if the hypothesis (H) holds between F̃ and F,
this proof cannot be simplified, since the process F̃t is increasing but not F̃-predictable (there is no
reason for F̃ to admit an intensity).

This result can also be proved directly thanks to the following result, due to Brémaud [11]:

Ht −
∫ t∧τ

0

λs ds

is a G-martingale and thus

Ht −
∫ t∧τ

0

EQ(λs | G̃s) ds

is a G̃-martingale. Note that
∫ t∧τ

0

EQ(λs | G̃s) ds =
∫ t

0

1{s≤τ}EQ(λs | G̃s) ds =
∫ t

0

EQ(1{s≤τ}λs | G̃s) ds

and

EQ(1{s≤τ}λs | G̃s) =
1{s≤τ}

G̃s

EQ(1{s≤τ}λs | F̃s)

=
1{s≤τ}

G̃s

EQ(Gsλs | F̃s) =
1{s≤τ}

G̃s

EQ(as | F̃s).

We thus conclude that

Ht −
∫ t∧τ

0

EQ(as | F̃s)

G̃s

ds

is a G̃-martingale, which is the desired result.
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3.1.5 Enlargement of Filtration

We may work directly with the filtration G, provided that the decomposition of any F-martingale in
this filtration is known up to time τ . For example, if B is an F-Brownian motion, its decomposition
in the G filtration up to time τ is

Bt∧τ = βt∧τ +
∫ t∧τ

0

d〈B, G〉s
Gs−

,

where (βt∧τ , t ≥ 0) is a continuous G-martingale with the increasing process t ∧ τ . If the dynamics
of an asset S are given by

dSt = St

(
rt dt + σt dBt

)

in a default-free framework, where B is a Brownian motion, then its dynamics are

dSt = St

(
rt dt + σt

d〈B,G〉t
Gt−

+ σt dβt

)

in the default filtration, if we restrict our attention to time before default. Therefore, the default
will act as a change of drift term on the prices.

3.2 Hypothesis (H)

In a general setting, F martingales do not remains G-martingales. We study here a specific case.

3.2.1 Equivalent Formulations

We shall now examine the hypothesis (H) which reads:

(H) Every F-local martingale is a G-local martingale.

This hypothesis implies, for instance, that any F-Brownian motion remains a Brownian motion
in the enlarged filtration G. It was studied by Brémaud and Yor [12], Mazziotto and Szpirglas [51],
and for financial purpose by Kusuoka [44]. This can be written in any of the equivalent forms (see,
e.g., Dellacherie and Meyer [25]).

Lemma 3.2.1 Assume that G = F∨H, where F is an arbitrary filtration and H is generated by the
process Ht = 1{τ≤t}. Then the following conditions are equivalent to the hypothesis (H) .
(i) For any t, h ∈ R+, we have

Q(τ ≤ t | Ft) = Q(τ ≤ t | Ft+h). (3.5)

(i′) For any t ∈ R+, we have
Q(τ ≤ t | Ft) = Q(τ ≤ t | F∞). (3.6)

(ii) For any t ∈ R+, the σ-fields F∞ and Gt are conditionally independent given Ft under Q, that
is,

EQ(ξ η | Ft) = EQ(ξ | Ft)EQ(η | Ft)

for any bounded, F∞-measurable random variable ξ and bounded, Gt-measurable random variable η.
(iii) For any t ∈ R+, and any u ≥ t the σ-fields Fu and Gt are conditionally independent given Ft.
(iv) For any t ∈ R+ and any bounded, F∞-measurable random variable ξ: EQ(ξ | Gt) = EQ(ξ | Ft).
(v) For any t ∈ R+, and any bounded, Gt-measurable random variable η: EQ(η | Ft) = EQ(η | F∞).
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Proof. If the hypothesis (H) holds then (3.6) is valid as well. If (3.6) holds, the the fact that Ht is
generated by the sets {τ ≤ s}, s ≤ t proves that F∞ and Ht are conditionally independent given Ft.
The desired property now follows. This result can be also found in [26]. The equivalence between
(3.6) and (3.5) is left to the reader.

Using the monotone class theorem, it can be shown that conditions (i) and (i′) are equivalent.
The proof of equivalence of conditions (i′)–(v) can be found, for instance, in Section 6.1.1 of Bielecki
and Rutkowski [7] (for related results, see Elliott et al. [31]). Hence we shall only show that
condition (iv) and the hypothesis (H) are equivalent.

Assume first that the hypothesis (H) holds. Consider any bounded, F∞-measurable random
variable ξ. Let Mt = EQ(ξ | Ft) be the martingale associated with ξ. Of course, M is a local
martingale with respect to F. Then the hypothesis (H) implies that M is also a local martingale
with respect to G, and thus a G-martingale, since M is bounded (recall that any bounded local
martingale is a martingale). We conclude that Mt = EQ(ξ | Gt) and thus (iv) holds.

Suppose now that (iv) holds. First, we note that the standard truncation argument shows that
the boundedness of ξ in (iv) can be replaced by the assumption that ξ is Q-integrable. Hence, any
F-martingale M is an G-martingale, since M is clearly G-adapted and we have, for every t ≤ s,

Mt = EQ(Ms | Ft) = EQ(Ms | Gt),

where the second equality follows from (iv). Suppose now that M is an F-local martingale. Then
there exists an increasing sequence of F-stopping times τn such that limn→∞ τn = ∞, for any n the
stopped process Mτn follows a uniformly integrable F-martingale. Hence Mτn is also a uniformly
integrable G-martingale, and this means that M is a G-local martingale. ¤

Remarks 3.2.1 (i) Equality (3.6) appears in several papers on default risk, typically without any
reference to the hypothesis (H). For example, in Madan and Unal [50], the main theorem follows
from the fact that (3.6) holds (see the proof of B9 in the appendix of [50]). This is also the case for
Wong’s model [60].
(ii) If τ is F∞-measurable and (3.6) holds then τ is an F-stopping time. If τ is an F-stopping time
then equality (3.5) holds. If F is the Brownian filtration, then τ is predictable and Λ = H.
(iii) Though condition (H) does not necessarily hold true, in general, it is satisfied when τ is con-
structed through the so-called canonical approach (or for Cox processes). This hypothesis is quite
natural under the historical probability and it is stable under some changes of a probability measure.
However, Kusuoka [44] provides an example where (H) holds under the historical probability, but
it fails hold after an equivalent change of a probability measure. This counter-example is linked to
modeling of dependent defaults.
(iv) Hypothesis (H) holds, in particular, if τ is independent from F∞ (see Greenfield [37]).
(v) If hypothesis (H) holds then from the condition

Q(τ ≤ t | Ft) = Q(τ ≤ t | F∞), ∀ t ∈ R+,

we deduce easily that F is an increasing process.

Comments 3.2.1 See Elliott et al. [31] for more comments. The property that F is increasing is
equivalent to the fact that any F-martingale stopped at time τ is a G martingale. Nikeghbali and
Yor [56] proved that this is equivalent to EQ(Mτ ) = M0 for any bounded F-martingale M . The
hypothesis (H) was also studied by Florens and Fougere [34], who coined the term noncausality.

Proposition 3.2.1 Assume that the hypothesis (H) holds. If X is an F-martingale then the processes
XL and [L,X] are G-local martingales.

Proof. We have seen in Proposition 3.1.1 that the process XL is a G-martingale. Since [L,X] =
LX − ∫

L− dX − ∫
X− dL and X is an F-martingale (and thus also a G-martingale), the process

[L,X] is manifestly a G-martingale as the sum of three G-martingales. ¤
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3.2.2 Canonical Construction of a Default Time

We shall now briefly describe the most commonly used construction of a default time associated
with a given hazard process Γ. It should be stressed that the random time obtained through this
particular method – which will be called the canonical construction in what follows – has certain
specific features that are not necessarily shared by all random times with a given F-hazard process
Γ. We assume that we are given an F-adapted, right-continuous, increasing process Γ defined on
a filtered probability space (Ω,F,Q). As usual, we assume that Γ0 = 0 and Γ∞ = +∞. In many
instances, Γ is given by the equality

Γt =
∫ t

0

γu du, ∀ t ∈ R+,

for some non-negative, F-progressively measurable intensity process γ.

To construct a random time τ , we shall postulate that the underlying probability space (Ω,F,Q)
is sufficiently rich to support a random variable ξ, which is uniformly distributed on the interval
[0, 1] and independent of the filtration F under Q. In this version of the canonical construction, Γ
represents the F-hazard process of τ under Q.

We define the random time τ : Ω → R+ by setting

τ = inf { t ∈ R+ : e−Γt ≤ ξ } = inf { t ∈ R+ : Γt ≥ η }, (3.7)

where the random variable η = − ln ξ has a unit exponential law under Q. It is not difficult to find
the process Ft = Q(τ ≤ t | Ft). Indeed, since clearly {τ > t} = {ξ < e−Γt} and the random variable
Γt is F∞-measurable, we obtain

Q(τ > t | F∞) = Q(ξ < e−Γt | F∞) = Q(ξ < e−x)x=Γt = e−Γt . (3.8)

Consequently, we have

1− Ft = Q(τ > t | Ft) = EQ
(
Q(τ > t | F∞) | Ft

)
= e−Γt , (3.9)

and thus F is an F-adapted, right-continuous, increasing process. It is also clear that the process Γ
represents the F-hazard process of τ under Q. As an immediate consequence of (3.8) and (3.9), we
obtain the following property of the canonical construction of the default time (cf. (3.6))

Q(τ ≤ t | F∞) = Q(τ ≤ t | Ft), ∀ t ∈ R+. (3.10)

To summarize, we have that

Q(τ ≤ t | F∞) = Q(τ ≤ t | Fu) = Q(τ ≤ t | Ft) = e−Γt (3.11)

for any two dates 0 ≤ t ≤ u.

3.2.3 Stochastic Barrier

Suppose that
Q(τ ≤ t | Ft) = Q(τ ≤ t | F∞) = 1− e−Γt

where Γ is a continuous, strictly increasing, F-adapted process. Our goal is to show that there
exists a random variable Θ, independent of F∞, with the exponential law of parameter 1, such that
τ = inf {t ≥ 0 : Γt > Θ}. Let us set Θ def= Γτ . Then

{t < Θ} = {t < Γτ} = {Ct < τ},
where C is the right inverse of Γ, so that ΓCt = t. Therefore,

Q(Θ > u | F∞) = e−ΓCu = e−u.

We have thus established the required properties, namely, the probability distribution of Θ and its
independence of the σ-field F∞. Furthermore, τ = inf{t : Γt > Γτ} = inf{t : Γt > Θ}.
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3.2.4 Change of a Probability Measure

Kusuoka [44] shows, by means of a counter-example, that the hypothesis (H) is not invariant with
respect to an equivalent change of the underlying probability measure, in general. It is worth noting
that his counter-example is based on two filtrations, H1 and H2, generated by the two random times
τ1 and τ2, and he chooses H1 to play the role of the reference filtration F. We shall argue that in
the case where F is generated by a Brownian motion, the above-mentioned invariance property is
valid under mild technical assumptions.

Girsanov’s Theorem

From Proposition 3.1.2 we know that the process Mt = Ht − Γt∧τ is a G-martingale. We fix T > 0.
For a probability measure Q equivalent to P on (Ω,GT ) we introduce the G-martingale ηt, t ≤ T,
by setting

ηt
def=

dQ
dP |Gt

= EP(X | Gt), P-a.s., (3.12)

where X is a GT -measurable integrable random variable, such that P(X > 0) = 1.

The Radon-Nikodým density process η admits the following representation

ηt = 1 +
∫ t

0

ξu dWu +
∫

]0,t]

ζu dMu

where ξ and ζ are G-predictable stochastic processes. Since η is a strictly positive process, we get

ηt = 1 +
∫

]0,t]

ηu−
(
βu dWu + κu dMu

)
(3.13)

where β and κ are G-predictable processes, with κ > −1.

Proposition 3.2.2 Let Q be a probability measure on (Ω,GT ) equivalent to P. If the Radon-Nikodým
density of Q with respect to P is given by (3.12) with η satisfying (3.13), then the process

W ∗
t = Wt −

∫ t

0

βu du, ∀ t ∈ [0, T ], (3.14)

follows a Brownian motion with respect to G under Q, and the process

M∗
t

def= Mt −
∫

]0,t∧τ ]

κu dΓu = Ht −
∫

]0,t∧τ ]

(1 + κu) dΓu, ∀ t ∈ [0, T ], (3.15)

is a G-martingale orthogonal to W ∗.

Proof. Notice first that for t ≤ T we have

d(ηtW
∗
t ) = W ∗

t dηt + ηt− dW ∗
t + d[W ∗, η]t

= W ∗
t dηt + ηt− dWt − ηt−βt dt + ηt−βt d[W,W ]t

= W ∗
t dηt + ηt− dWt.

This shows that W ∗ is a G-martingale under Q. Since the quadratic variation of W ∗ under Q equals
[W ∗,W ∗]t = t and W ∗ is continuous, by virtue of Lévy’s theorem it is clear that W ∗ follows a
Brownian motion under Q. Similarly, for t ≤ T

d(ηtM
∗
t ) = M∗

t dηt + ηt− dM∗
t + d[M∗, η]t

= M∗
t dηt + ηt− dMt − ηt−κt dΓt∧τ + ηt−κt dHt

= M∗
t dηt + ηt−(1 + κt) dMt.

We conclude that M∗ is a G-martingale under Q. To conclude it is enough to observe that W ∗ is a
continuous process and M∗ follows a process of finite variation. ¤
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Corollary 3.2.1 Let Y be a G-martingale with respect to Q. Then Y admits the following decom-
position

Yt = Y0 +
∫ t

0

ξ∗u dW ∗
u +

∫

]0,t]

ζ∗u dM∗
u , (3.16)

where ξ∗ and ζ∗ are G-predictable stochastic processes.

Proof. Consider the process Ỹ given by the formula

Ỹt =
∫

]0,t]

η−1
u− d(ηuYu)−

∫

]0,t]

η−1
u−Yu− dηu.

It is clear that Ỹ is a G-martingale under P. Notice also that Itô’s formula yields

η−1
u− d(ηuYu) = dYu + η−1

u−Yu− dηu + η−1
u− d[Y, η]u,

and thus
Yt = Y0 + Ỹt −

∫

]0,t]

η−1
u− d[Y, η]u. (3.17)

From the predictable representation theorem, we know that

Ỹt = Y0 +
∫ t

0

ξ̃u dWu +
∫

]0,t]

ζ̃u dMu (3.18)

for some G-predictable processes ξ̃ and ζ̃. Therefore

dYt = ξ̃t dWt + ζ̃t dMt − η−1
t− d[Y, η]t

= ξ̃t dW ∗
t + ζ̃t(1 + κt)−1 dM∗

t

since (3.13) combined with (3.17)-(3.18) yield

η−1
t− d[Y, η]t = ξ̃tβt dt + ζ̃tκt(1 + κt)−1 dHt.

To derive the last equality we observe, in particular, that in view of (3.17) we have (we take into
account continuity of Γ)

∆[Y, η]t = ηt−ζ̃tκt dHt − κt∆[Y, η]t.

We conclude that Y satisfies (3.16) with ξ∗ = ξ̃ and ζ∗ = ζ̃(1 + κ)−1. ¤

Preliminary Lemma

Let us first examine a general set-up in which G = F ∨ H, where F is an arbitrary filtration and H
is generated by the default process H. We say that Q is locally equivalent to P if Q is equivalent to
P on (Ω,Gt) for every t ∈ R+. Then there exists the Radon-Nikodým density process η such that

dQ | Gt = ηt dP | Gt , ∀ t ∈ R+. (3.19)

Part (i) in the next lemma is well known (see Jamshidian [40]). We assume that the hypothesis (H)
holds under P.

Lemma 3.2.2 (i) Let Q be a probability measure equivalent to P on (Ω,Gt) for every t ∈ R+, with
the associated Radon-Nikodým density process η. If the density process η is F-adapted then we have
Q(τ ≤ t | Ft) = P(τ ≤ t | Ft) for every t ∈ R+. Hence, the hypothesis (H) is also valid under Q
and the F-intensities of τ under Q and under P coincide.
(ii) Assume that Q is equivalent to P on (Ω,G) and dQ = η∞ dP, so that ηt = EP(η∞ | Gt). Then
the hypothesis (H) is valid under Q whenever we have, for every t ∈ R+,

EP(η∞Ht | F∞)
EP(η∞ | F∞)

=
EP(ηtHt | F∞)
EP(ηt | F∞)

. (3.20)
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Proof. To prove (i), assume that the density process η is F-adapted. We have for each t ≤ s ∈ R+

Q(τ ≤ t | Ft) =
EP(ηt1{τ≤t} | Ft)
EP(ηt | Ft)

= P(τ ≤ t | Ft) = P(τ ≤ t | Fs) = Q(τ ≤ t | Fs),

where the last equality follows by another application of the Bayes formula. The assertion now
follows from part (i) in Lemma 3.2.1.

To prove part (ii), it suffices to establish the equality

F̂t
def= Q(τ ≤ t | Ft) = Q(τ ≤ t | F∞), ∀ t ∈ R+. (3.21)

Note that since the random variables ηt1{τ≤t} and ηt are P-integrable and Gt-measurable, using
the Bayes formula, part (v) in Lemma 3.2.1, and assumed equality (3.20), we obtain the following
chain of equalities

Q(τ ≤ t | Ft) =
EP(ηt1{τ≤t} | Ft)
EP(ηt | Ft)

=
EP(ηt1{τ≤t} | F∞)
EP(ηt | F∞)

=
EP(η∞1{τ≤t} | F∞)
EP(η∞ | F∞)

= Q(τ ≤ t | F∞).

We conclude that the hypothesis (H) holds under Q if and only if (3.20) is valid. ¤

Unfortunately, straightforward verification of condition (3.20) is rather cumbersome. For this
reason, we shall provide alternative sufficient conditions for the preservation of the hypothesis (H)
under a locally equivalent probability measure.

Case of the Brownian Filtration

Let W be a Brownian motion under P and F its natural filtration. Since we work under the hypothesis
(H), the process W is also a G-martingale, where G = F∨H. Hence, W is a Brownian motion with
respect to G under P. Our goal is to show that the hypothesis (H) is still valid under Q ∈ Q for a
large class Q of (locally) equivalent probability measures on (Ω,G).

Let Q be an arbitrary probability measure locally equivalent to P on (Ω,G). Kusuoka [44] (see also
Section 5.2.2 in Bielecki and Rutkowski [7]) proved that, under the hypothesis (H), any G-martingale
under P can be represented as the sum of stochastic integrals with respect to the Brownian motion
W and the jump martingale M . In our set-up, Kusuoka’s representation theorem implies that there
exist G-predictable processes θ and ζ > −1, such that the Radon-Nikodým density η of Q with
respect to P satisfies the following SDE

dηt = ηt−
(
θt dWt + ζt dMt

)
(3.22)

with the initial value η0 = 1. More explicitly, the process η equals

ηt = Et

(∫ ·

0

θu dWu

)
Et

(∫ ·

0

ζu dMu

)
= η

(1)
t η

(2)
t , (3.23)

where we write

η
(1)
t = Et

(∫ ·

0

θu dWu

)
= exp

(∫ t

0

θu dWu − 1
2

∫ t

0

θ2
u du

)
, (3.24)

and

η
(2)
t = Et

(∫ ·

0

ζu dMu

)
= exp

(∫ t

0

ln(1 + ζu) dHu −
∫ t∧τ

0

ζuγu du

)
. (3.25)

Moreover, by virtue of a suitable version of Girsanov’s theorem, the following processes Ŵ and M̂
are G-martingales under Q

Ŵt = Wt −
∫ t

0

θu du, M̂t = Mt −
∫ t

0

1{u<τ}γuζu du. (3.26)
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Proposition 3.2.3 Assume that the hypothesis (H) holds under P. Let Q be a probability measure
locally equivalent to P with the associated Radon-Nikodým density process η given by formula (3.23).
If the process θ is F-adapted then the hypothesis (H) is valid under Q and the F-intensity of τ

under Q equals γ̂t = (1 + ζ̃t)γt, where ζ̃ is the unique F-predictable process such that the equality
ζ̃t1{t≤τ} = ζt1{t≤τ} holds for every t ∈ R+.

Proof. Let P̃ be the probability measure locally equivalent to P on (Ω,G), given by

dP̃ | Gt
= Et

(∫ ·

0

ζu dMu

)
dP | Gt

= η
(2)
t dP | Gt

. (3.27)

We claim that the hypothesis (H) holds under P̃. From Girsanov’s theorem, the process W follows
a Brownian motion under P̃ with respect to both F and G. Moreover, from the predictable repre-
sentation property of W under P̃, we deduce that any F-local martingale L under P̃ can be written
as a stochastic integral with respect to W . Specifically, there exists an F-predictable process ξ such
that

Lt = L0 +
∫ t

0

ξu dWu.

This shows that L is also a G-local martingale, and thus the hypothesis (H) holds under P̃. Since

dQ | Gt = Et

(∫ ·

0

θu dWu

)
dP̃ | Gt ,

by virtue of part (i) in Lemma 3.2.2, the hypothesis (H) is valid under Q as well. The last claim in
the statement of the lemma can be deduced from the fact that the hypothesis (H) holds under Q
and, by Girsanov’s theorem, the process

M̂t = Mt −
∫ t

0

1{u<τ}γuζu du = Ht −
∫ t

0

1{u<τ}(1 + ζ̃u)γu du

is a Q-martingale. ¤

We claim that the equality P̃ = P holds on the filtration F. Indeed, we have dP̃ |Ft = η̃t dP |Ft ,
where we write η̃t = EP(η(2)

t | Ft), and

EP(η(2)
t | Ft) = EP

(
Et

(∫ ·

0

ζu dMu

) ∣∣∣F∞
)

= 1, ∀ t ∈ R+, (3.28)

where the first equality follows from part (v) in Lemma 3.2.1.

To establish the second equality in (3.28), we first note that since the process M is stopped at τ ,
we may assume, without loss of generality, that ζ = ζ̃ where the process ζ̃ is F-predictable. More-
over,the conditional cumulative distribution function of τ given F∞ has the form 1− exp(−Γt(ω)).
Hence, for arbitrarily selected sample paths of processes ζ and Γ, the claimed equality can be seen
as a consequence of the martingale property of the Doléans exponential.

Formally, it can be proved by following elementary calculations, where the first equality is a
consequence of (3.25)),

EP
(
Et

(∫ ·

0

ζ̃u dMu

) ∣∣∣F∞
)

= EP
((

1 + 1{t≥τ}ζ̃τ

)
exp

(
−

∫ t∧τ

0

ζ̃uγu du
) ∣∣∣F∞

)

= EP
(∫ ∞

0

(
1 + 1{t≥u}ζ̃u

)
exp

(
−

∫ t∧u

0

ζ̃vγv dv
)
γue−

R u
0 γv dvdu

∣∣∣F∞
)

= EP
(∫ t

0

(
1 + ζ̃u

)
γu exp

(
−

∫ u

0

(1 + ζ̃v)γv dv
)
du

∣∣∣F∞
)
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+ exp
(
−

∫ t

0

ζ̃vγv dv
)
EP

(∫ ∞

t

γue−
R u
0 γv dvdu

∣∣∣F∞
)

=
∫ t

0

(
1 + ζ̃u

)
γu exp

(
−

∫ u

0

(1 + ζ̃v)γv dv
)
du

+ exp
(
−

∫ t

0

ζ̃vγv dv
) ∫ ∞

t

γue−
R u
0 γv dvdu

= 1− exp
(
−

∫ t

0

(1 + ζ̃v)γv dv
)

+ exp
(
−

∫ t

0

ζ̃vγv dv
)

exp
(
−

∫ t

0

γv dv
)

= 1,

where the second last equality follows by an application of the chain rule.

Extension to Orthogonal Martingales

Equality (3.28) suggests that Proposition 3.2.3 can be extended to the case of arbitrary orthogonal
local martingales. Such a generalization is convenient, if we wish to cover the situation considered
in Kusuoka’s counterexample.

Let N be a local martingale under P with respect to the filtration F. It is also aG-local martingale,
since we maintain the assumption that the hypothesis (H) holds under P. Let Q be an arbitrary
probability measure locally equivalent to P on (Ω,G). We assume that the Radon-Nikodým density
process η of Q with respect to P equals

dηt = ηt−
(
θt dNt + ζt dMt

)
(3.29)

for some G-predictable processes θ and ζ > −1 (the properties of the process θ depend, of course,
on the choice of the local martingale N). The next result covers the case where N and M are
orthogonal G-local martingales under P, so that the product MN follows a G-local martingale.

Proposition 3.2.4 Assume that the following conditions hold:
(a) N and M are orthogonal G-local martingales under P,
(b) N has the predictable representation property under P with respect to F, in the sense that any
F-local martingale L under P can be written as

Lt = L0 +
∫ t

0

ξu dNu, ∀ t ∈ R+,

for some F-predictable process ξ,
(c) P̃ is a probability measure on (Ω,G) such that (3.27) holds.
Then we have:
(i) the hypothesis (H) is valid under P̃,
(ii) if the process θ is F-adapted then the hypothesis (H) is valid under Q.

The proof of the proposition hinges on the following simple lemma.

Lemma 3.2.3 Under the assumptions of Proposition 3.2.4, we have:
(i) N is a G-local martingale under P̃,
(ii) N has the predictable representation property for F-local martingales under P̃.

Proof. In view of (c), we have dP̃ | Gt = η
(2)
t dP | Gt , where the density process η(2) is given by (3.25),

so that dη
(2)
t = η

(2)
t− ζt dMt. From the assumed orthogonality of N and M , it follows that N and η(2)

are orthogonal G-local martingales under P, and thus Nη(2) is a G-local martingale under P as well.
This means that N is a G-local martingale under P̃, so that (i) holds.
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To establish part (ii) in the lemma, we first define the auxiliary process η̃ by setting η̃t =
EP(η(2)

t | Ft). Then manifestly dP̃ |Ft
= η̃t dP |Ft

, and thus in order to show that any F-local martin-
gale under P̃ follows an F-local martingale under P, it suffices to check that η̃t = 1 for every t ∈ R+,
so that P̃ = P on F. To this end, we note that

EP(η(2)
t | Ft) = EP

(
Et

(∫ ·

0

ζu dMu

) ∣∣∣F∞
)

= 1, ∀ t ∈ R+,

where the first equality follows from part (v) in Lemma 3.2.1, and the second one can established
similarly as the second equality in (3.28).

We are in a position to prove (ii). Let L be an F-local martingale under P̃. Then it follows also
an F-local martingale under P and thus, by virtue of (b), it admits an integral representation with
respect to N under P and P̃. This shows that N has the predictable representation property with
respect to F under P̃. ¤

We now proceed to the proof of Proposition 3.2.4.

Proof of Proposition 3.2.4. We shall argue along the similar lines as in the proof of Proposition
3.2.3. To prove (i), note that by part (ii) in Lemma 3.2.3 we know that any F-local martingale
under P̃ admits the integral representation with respect to N . But, by part (i) in Lemma 3.2.3, N

is a G-local martingale under P̃. We conclude that L is a G-local martingale under P̃, and thus the
hypothesis (H) is valid under P̃. Assertion (ii) now follows from part (i) in Lemma 3.2.2. ¤

Remark 3.2.1 It should be stressed that Proposition 3.2.4 is not directly employed in what follows.
We decided to present it here, since it sheds some light on specific technical problems arising in the
context of modeling dependent default times through an equivalent change of a probability measure
(see Kusuoka [44]).

Example 3.2.1 Kusuoka [44] presents a counter-example based on the two independent random
times τ1 and τ2 given on some probability space (Ω,G,P). We write M i

t = Hi
t−

∫ t∧τi

0
γi(u) du, where

Hi
t = 1{t≥τi} and γi is the deterministic intensity function of τi under P. Let us set dQ | Gt = ηt dP | Gt ,

where ηt = η
(1)
t η

(2)
t and, for i = 1, 2 and every t ∈ R+,

η
(i)
t = 1 +

∫ t

0

η
(i)
u−ζ(i)

u dM i
u = Et

(∫ ·

0

ζ(i)
u dM i

u

)

for some G-predictable processes ζ(i), i = 1, 2, where G = H1 ∨ H2. We set F = H1 and H = H2.
Manifestly, the hypothesis (H) holds under P. Moreover, in view of Proposition 3.2.4, it is still valid
under the equivalent probability measure P̃ given by

dP̃ | Gt = Et

(∫ ·

0

ζ(2)
u dM2

u

)
dP | Gt .

It is clear that P̃ = P on F, since

EP(η(2)
t | Ft) = EP

(
Et

(∫ ·

0

ζ(2)
u dM2

u

) ∣∣∣H1
t

)
= 1, ∀ t ∈ R+.

However, the hypothesis (H) is not necessarily valid under Q if the process ζ(1) fails to be F-
adapted. In Kusuoka’s counter-example, the process ζ(1) was chosen to be explicitly dependent
on both random times, and it was shown that the hypothesis (H) does not hold under Q. For an
alternative approach to Kusuoka’s example, through an absolutely continuous change of a probability
measure, the interested reader may consult Collin-Dufresne et al. [21].
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3.3 Kusuoka’s Representation Theorem

Kusuoka [44] established the following representation theorem.

Theorem 3.1 Assume that the hypothesis (H) holds. Then any G-square integrable martingale
admits a representation as the sum of a stochastic integral with respect to the Brownian motion and
a stochastic integral with respect to the discontinuous martingale M associated with τ .

We assume, for simplicity, that F is continuous and Ft < 1 for every t ∈ R+. Since the hypothesis
(H) holds, F is an increasing process. Then

dFt = e−ΓtdΓt

and
d(eΓt) = eΓtdΓt = eΓt

dFt

1− Ft
. (3.30)

Proposition 3.3.1 Suppose that hypothesis (H) holds under Q and that any F-martingale is con-
tinuous. Then the martingale Mh

t = EQ(hτ | Gt), where h is an F-predictable process such that
EQ(hτ ) < ∞, admits the following decomposition in the sum of a continuous martingale and a
discontinuous martingale

Mh
t = mh

0 +
∫ t∧τ

0

eΓudmh
u +

∫

]0,t∧τ ]

(hu − Ju) dMu, (3.31)

where mh is the continuous F-martingale

mh
t = EQ

( ∫ ∞

0

hudFu | Ft

)
,

J is the process

Jt = eΓt

(
mh

t −
∫ t

0

hudFu

)

and M is the discontinuous G-martingale Mt = Ht − Γt∧τ where dΓu =
dFu

1− Fu
.

Proof. We know that

Mh
t = EQ(hτ | Gt) = 1{τ≤t}hτ + 1{τ>t}eΓt EQ

( ∫ ∞

t

hu dFu

∣∣∣Ft

)
(3.32)

= 1{τ≤t}hτ + 1{τ>t}eΓt

(
mh

t −
∫ t

0

hu dFu

)
.

We will now sketch two different proofs of (3.31).

First proof. Noting that Γ is an increasing process and mh a continuous martingale, and using the
integration by parts formula, we deduce that

dJt = eΓt dmh
t +

(
mh

t −
∫ t

0

hu dFu

)
γte

Γt dt− eΓtht dFt

= eΓt dmh
t + Jtγte

Γt dt− eΓtht dFt.

Therefore, from (3.30)

dJt = eΓt dmh
t + (Jt − ht)

dFt

1− Ft
,
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or, in an integrated form,

Jt = m0 +
∫ t

0

eΓu dmh
u +

∫ t

0

(Ju − hu) dΓu.

Note that Ju = Mh
u for u < τ . Therefore, on the event {t < τ},

Mh
t = mh

0 +
∫ t∧τ

0

eΓu dmh
u +

∫ t∧τ

0

(Ju − hu) dΓu.

From (3.32), the jump of Mh at time τ is hτ − Jτ = hτ −Mh
τ−. Then (3.31) follows.

Second proof. The equality (3.32) can be re-written as

Mh
t =

∫ t

0

hu dHu + 1{τ>t}eΓt

(
mh

t −
∫ t

0

hu dFu

)
.

Hence the result can be obtained by the integration by parts formula. ¤

Remark 3.3.1 Since the hypothesis (H) holds and Γ is F-adapted, the processes (mt, t ≥ 0) and
(
∫ t∧τ

0
eΓudmu, t ≥ 0) are also G-martingales.



Chapter 4

Hedging of Defaultable Claims

In this chapter, we shall study hedging strategies for credit derivatives under assumption that some
primary defaultable (as well as non-defaultable) assets are traded, and thus they can be used in
replication of non-traded contingent claims. We follow here the papers by Bielecki et al. [5, 4].

4.1 Semimartingale Model with a Common Default

In what follows, we fix a finite horizon date T > 0. For the purpose of this chapter, it is enough to
formally define a generic defaultable claim through the following definition.

Definition 4.1.1 A defaultable claim with maturity date T is represented by a triplet (X, Z, τ),
where:
(i) the default time τ specifies the random time of default, and thus also the default events {τ ≤ t}
for every t ∈ [0, T ],
(ii) the promised payoff X ∈ FT represents the random payoff received by the owner of the claim
at time T, provided that there was no default prior to or at time T ; the actual payoff at time T
associated with X thus equals X1{T<τ},
(iii) the F-adapted recovery process Z specifies the recovery payoff Zτ received by the owner of a
claim at time of default (or at maturity), provided that the default occurred prior to or at maturity
date T .

In practice, hedging of a credit derivative after default time is usually of minor interest. Also, in
a model with a single default time, hedging after default reduces to replication of a non-defaultable
claim. It is thus natural to define the replication of a defaultable claim in the following way.

Definition 4.1.2 We say that a self-financing strategy φ replicates a defaultable claim (X, Z, τ) if
its wealth process V (φ) satisfies VT (φ)1{T<τ} = X1{T<τ} and Vτ (φ)1{T≥τ} = Zτ1{T≥τ}.

When dealing with replicating strategies, in the sense of Definition 4.1.2, we will always assume,
without loss of generality, that the components of the process φ are F-predictable processes.

4.1.1 Dynamics of Asset Prices

We assume that we are given a probability space (Ω,G,P) endowed with a (possibly multi-dimensional)
standard Brownian motion W and a random time τ admitting an F-intensity γ under P, where F is
the filtration generated by W . In addition, we assume that τ satisfies (3.6), so that the hypothesis
(H) is valid under P for filtrations F and G = F∨H. Since the default time admits an F-intensity, it
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is not an F-stopping time. Indeed, any stopping time with respect to a Brownian filtration is known
to be predictable.

We interpret τ as the common default time for all defaultable assets in our model. For simplicity,
we assume that only three primary assets are traded in the market, and the dynamics under the
historical probability P of their prices are, for i = 1, 2, 3 and t ∈ [0, T ],

dY i
t = Y i

t−
(
µi,t dt + σi,t dWt + κi,t dMt

)
, (4.1)

where Mt = Ht −
∫ t

0
(1−Hs)γs ds is a martingale, or equivalently,

dY i
t = Y i

t−
(
(µi,t − κi,tγt1{t<τ}) dt + σi,t dWt + κi,t dHt

)
. (4.2)

The processes (µi, σi, κi) = (µi,t, σi,t, κi,t, t ≥ 0), i = 1, 2, 3, are assumed to be G-adapted, where
G = F ∨ H. In addition, we assume that κi ≥ −1 for any i = 1, 2, 3, so that Y i are nonnegative
processes, and they are strictly positive prior to τ . Note that, in the case of constant coefficients we
have that

Y i
t = Y i

0 eµiteσiWt−σ2
i t/2e−κiγi(t∧τ)(1 + κi)Ht .

According to Definition 4.1.2, replication refers to the behavior of the wealth process V (φ) on
the random interval [[0, τ ∧T ]] only. Hence, for the purpose of replication of defaultable claims of the
form (X, Z, τ), it is sufficient to consider prices of primary assets stopped at τ ∧T . This implies that
instead of dealing with G-adapted coefficients in (4.1), it suffices to focus on F-adapted coefficients
of stopped price processes. However, for the sake of completeness, we shall also deal with T -maturity
claims of the form Y = G(Y 1

T , Y 2
T , Y 3

T , HT ) (see Section 4.3 below).

Pre-Default Values

As will become clear in what follows, when dealing with defaultable claims of the form (X,Z, τ), we
will be mainly concerned with the so-called pre-default prices. The pre-default price Ỹ i of the ith
asset is an F-adapted, continuous process, given by the equation, for i = 1, 2, 3 and t ∈ [0, T ],

dỸ i
t = Ỹ i

t

(
(µi,t − κi,tγt) dt + σi,t dWt

)
(4.3)

with Ỹ i
0 = Y i

0 . Put another way, Ỹ i is the unique F-predictable process such that Ỹ i
t 1{t≤τ} =

Y i
t 1{t≤τ} for t ∈ R+. When dealing with the pre-default prices, we may and do assume, without

loss of generality, that the processes µi, σi and κi are F-predictable.

It is worth stressing that the historically observed drift coefficient equals µi,t − κi,tγt, rather
than µi,t. The drift coefficient denoted by µi,t is already credit-risk adjusted in the sense of our
model, and it is not directly observed. This convention was chosen here for the sake of simplicity of
notation. It also lends itself to the following intuitive interpretation: if φi is the number of units of
the ith asset held in our portfolio at time t then the gains/losses from trades in this asset, prior to
default time, can be represented by the differential

φi
t dỸ i

t = φi
tỸ

i
t

(
µi,t dt + σi,t dWt

)− φi
tỸ

i
t κi,tγt dt.

The last term may be here separated, and formally treated as an effect of continuously paid dividends
at the dividend rate κi,tγt. However, this interpretation may be misleading, since this quantity is
not directly observed. In fact, the mere estimation of the drift coefficient in dynamics (4.3) is not
practical.

Still, if this formal interpretation is adopted, it is sometimes possible make use of the standard
results concerning the valuation of derivatives of dividend-paying assets. It is, of course, a delicate
issue how to separate in practice both components of the drift coefficient. We shall argue below
that although the dividend-based approach is formally correct, a more pertinent and simpler way of
dealing with hedging relies on the assumption that only the effective drift µi,t− κi,tγt is observable.
In practical approach to hedging, the values of drift coefficients in dynamics of asset prices play no
essential role, so that they are considered as market observables.
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Market Observables

To summarize, we assume throughout that the market observables are: the pre-default market prices
of primary assets, their volatilities and correlations, as well as the jump coefficients κi,t (the financial
interpretation of jump coefficients is examined in the next subsection). To summarize we postulate
that under the statistical probability P we have

dY i
t = Y i

t−
(
µ̃i,t dt + σi,t dWt + κi,t dHt

)
(4.4)

where the drift terms µ̃i,t are not observable, but we can observe the volatilities σi,t (and thus the
assets correlations), and we have an a priori assessment of jump coefficients κi,t. In this general
set-up, the most natural assumption is that the dimension of a driving Brownian motion W equals
the number of tradable assets. However, for the sake of simplicity of presentation, we shall frequently
assume that W is one-dimensional. One of our goals will be to derive closed-form solutions for repli-
cating strategies for derivative securities in terms of market observables only (whenever replication
of a given claim is actually feasible). To achieve this goal, we shall combine a general theory of
hedging defaultable claims within a continuous semimartingale set-up, with a judicious specification
of particular models with deterministic volatilities and correlations.

Recovery Schemes

It is clear that the sample paths of price processes Y i are continuous, except for a possible discon-
tinuity at time τ . Specifically, we have that

∆Y i
τ := Y i

τ − Y i
τ− = κi,τY i

τ−,

so that Y i
τ = Y i

τ−(1 + κi,τ ) = Ỹ i
τ−(1 + κi,τ ).

A primary asset Y i is termed a default-free asset (defaultable asset, respectively) if κi = 0 (κi 6= 0,
respectively). In the special case when κi = −1, we say that a defaultable asset Y i is subject to a
total default, since its price drops to zero at time τ and stays there forever. Such an asset ceases to
exist after default, in the sense that it is no longer traded after default. This feature makes the case
of a total default quite different from other cases, as we shall see in our study below.

In market practice, it is common for a credit derivative to deliver a positive recovery (for instance,
a protection payment) in case of default. Formally, the value of this recovery at default is determined
as the value of some underlying process, that is, it is equal to the value at time τ of some F-adapted
recovery process Z.

For example, the process Z can be equal to δ, where δ is a constant, or to g(t, δYt) where g is a
deterministic function and (Yt, t ≥ 0) is the price process of some default-free asset. Typically, the
recovery is paid at default time, but it may also happen that it is postponed to the maturity date.

Let us observe that the case where a defaultable asset Y i pays a pre-determined recovery at
default is covered by our set-up defined in (4.1). For instance, the case of a constant recovery payoff
δi ≥ 0 at default time τ corresponds to the process κi,t = δi(Y i

t−)−1 − 1. Under this convention, the
price Y i is governed under P by the SDE

dY i
t = Y i

t−
(
µi,t dt + σi,t dWt + (δi(Y i

t−)−1 − 1) dMt

)
. (4.5)

If the recovery is proportional to the pre-default value Y i
τ−, and is paid at default time τ (this scheme

is known as the fractional recovery of market value), we have κi,t = δi − 1 and

dY i
t = Y i

t−
(
µi,t dt + σi,t dWt + (δi − 1) dMt

)
. (4.6)
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4.2 Martingale Approach to Valuation and Hedging

Our goal is to derive quasi-explicit conditions for replicating strategies for a defaultable claim in a
fairly general set-up introduced in Section 4.1.1. In this section, we only deal with trading strategies
based on the reference filtration F, and the underlying price processes (that is, prices of default-free
assets and pre-default values of defaultable assets) are assumed to be continuous.

To simplify the presentation, we make a standing assumption that all coefficient processes are
such that the SDEs appearing below admit unique strong solutions, and all stochastic exponentials
(used as Radon-Nikodým derivatives) are true martingales under respective probabilities.

4.2.1 Defaultable Asset with Total Default

In this section, we shall examine in some detail a particular model where the two assets, Y 1 and Y 2,
are default-free and satisfy

dY i
t = Y i

t

(
µi,t dt + σi,t dWt

)
, i = 1, 2,

where W is a one-dimensional Brownian motion. The third asset is a defaultable asset with total
default, so that

dY 3
t = Y 3

t−
(
µ3,t dt + σ3,t dWt − dMt

)
.

Since we will be interested in replicating strategies in the sense of Definition 4.1.2, we may and do
assume, without loss of generality, that the coefficients µi,t, σi,t, i = 1, 2, are F-predictable, rather
than G-predictable. Recall that, in general, there exist F-predictable processes µ̃3 and σ̃3 such that

µ̃3,t1{t≤τ} = µ3,t1{t≤τ}, σ̃3,t1{t≤τ} = σ3,t1{t≤τ}. (4.7)

We assume throughout that Y i
0 > 0 for every i, so that the price processes Y 1, Y 2 are strictly

positive, and the process Y 3 is nonnegative, and has strictly positive pre-default value.

Default-Free Market

It is natural to postulate that the default-free market with the two traded assets, Y 1 and Y 2,
is arbitrage-free. More precisely, we choose Y 1 as a numéraire, and we require that there exists a
probability measure P1, equivalent to P on (Ω,FT ), and such that the process Y 2,1 is a P1-martingale.
The dynamics of processes (Y 1)−1 and Y 2,1 are

d(Y 1
t )−1 = (Y 1

t )−1
(
(σ2

1,t − µ1,t) dt− σ1,t dWt

)
, (4.8)

and
dY 2,1

t = Y 2,1
t

(
(µ2,t − µ1,t + σ1,t(σ1,t − σ2,t)) dt + (σ2,t − σ1,t) dWt

)
,

respectively. Hence, the necessary condition for the existence of an EMM P1 is the inclusion A ⊆ B,
where A = {(t, ω) ∈ [0, T ]×Ω : σ1,t(ω) = σ2,t(ω)} and B = {(t, ω) ∈ [0, T ]×Ω : µ1,t(ω) = µ2,t(ω)}.
The necessary and sufficient condition for the existence and uniqueness of an EMM P1 reads

EP
{
ET

(∫ ·

0

θu dWu

)}
= 1 (4.9)

where the process θ is given by the formula (by convention, 0/0 = 0)

θt = σ1,t − µ1,t − µ2,t

σ1,t − σ2,t
, ∀ t ∈ [0, T ]. (4.10)

Note that in the case of constant coefficients, if σ1 = σ2 then the model is arbitrage-free only in the
trivial case when µ2 = µ1.
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Remark 4.2.1 Since the martingale measure P1 is unique, the default-free model (Y 1, Y 2) is com-
plete. However, this is not a necessary assumption and thus it can be relaxed. As we shall see
in what follows, it is typically more natural to assume that the driving Brownian motion W is
multi-dimensional.

Arbitrage-Free Property

Let us now consider also a defaultable asset Y 3. Our goal is now to find a martingale measure Q1 (if
it exists) for relative prices Y 2,1 and Y 3,1. Recall that we postulate that the hypothesis (H) holds
under P for filtrations F and G = F ∨H. The dynamics of Y 3,1 under P are

dY 3,1
t = Y 3,1

t−
{(

µ3,t − µ1,t + σ1,t(σ1,t − σ3,t)
)
dt + (σ3,t − σ1,t) dWt − dMt

}
.

Let Q1 be any probability measure equivalent to P on (Ω,GT ), and let η be the associated
Radon-Nikodým density process, so that

dQ1 | Gt
= ηt dP | Gt

, (4.11)

where the process η satisfies
dηt = ηt−(θt dWt + ζt dMt) (4.12)

for some G-predictable processes θ and ζ, and η is a G-martingale under P.

From Girsanov’s theorem, the processes Ŵ and M̂ , given by

Ŵt = Wt −
∫ t

0

θu du, M̂t = Mt −
∫ t

0

1{u<τ}γuζu du, (4.13)

are G-martingales under Q1. To ensure that Y 2,1 is a Q1-martingale, we postulate that (4.9) and
(4.10) are valid. Consequently, for the process Y 3,1 to be a Q1-martingale, it is necessary and
sufficient that ζ satisfies

γtζt = µ3,t − µ1,t − µ1,t − µ2,t

σ1,t − σ2,t
(σ3,t − σ1,t).

To ensure that Q1 is a probability measure equivalent to P, we require that ζt > −1. The unique
martingale measure Q1 is then given by the formula (4.11) where η solves (4.12), so that

ηt = Et

(∫ ·

0

θu dWu

)
Et

(∫ ·

0

ζu dMu

)
.

We are in a position to formulate the following result.

Proposition 4.2.1 Assume that the process θ given by (4.10) satisfies (4.9), and

ζt =
1
γt

(
µ3,t − µ1,t − µ1,t − µ2,t

σ1,t − σ2,t
(σ3,t − σ1,t)

)
> −1. (4.14)

Then the model M = (Y 1, Y 2, Y 3; Φ) is arbitrage-free and complete. The dynamics of relative prices
under the unique martingale measure Q1 are

dY 2,1
t = Y 2,1

t (σ2,t − σ1,t) dŴt,

dY 3,1
t = Y 3,1

t−
(
(σ3,t − σ1,t) dŴt − dM̂t

)
.

Since the coefficients µi,t, σi,t, i = 1, 2, are F-adapted, the process Ŵ is an F-martingale (hence,
a Brownian motion) under Q1. Hence, by virtue of Proposition 3.2.3, the hypothesis (H) holds under
Q1, and the F-intensity of default under Q1 equals

γ̂t = γt(1 + ζt) = γt +
(

µ3,t − µ1,t − µ1,t − µ2,t

σ1,t − σ2,t
(σ3,t − σ1,t)

)
.



68 CHAPTER 4. HEDGING OF DEFAULTABLE CLAIMS

Example 4.2.1 We present an example where the condition (4.14) does not hold, and thus arbitrage
opportunities arise. Assume the coefficients are constant and satisfy: µ1 = µ2 = σ1 = 0, µ3 < −γ
for a constant default intensity γ > 0. Then

Y 3
t = 1{t<τ}Y 3

0 exp
(

σ3Wt − 1
2
σ2

3t + (µ3 + γ)t
)
≤ Y 3

0 exp
(

σ3Wt − 1
2
σ2

3t

)
= Vt(φ),

where V (φ) represents the wealth of a self-financing strategy (φ1, φ2, 0) with φ2 = σ3
σ2

. Hence, the
arbitrage strategy would be to sell the asset Y 3, and to follow the strategy φ.

Remark 4.2.2 Let us stress once again, that the existence of an EMM is a necessary condition for
viability of a financial model, but the uniqueness of an EMM is not always a convenient condition
to impose on a model. In fact, when constructing a model, we should be mostly concerned with
its flexibility and ability to reflect the pertinent risk factors, rather than with its mathematical
completeness. In the present context, it is natural to postulate that the dimension of the underlying
Brownian motion equals the number of tradeable risky assets. In addition, each particular model
should be tailored to provide intuitive and handy solutions for a predetermined family of contingent
claims that will be priced and hedged within its framework.

4.2.2 Two Defaultable Assets with Total Default

Assume now that we have only two assets and both are defaultable assets with total default. Then
we have, for i = 1, 2,

dY i
t = Y i

t−
(
µi,t dt + σi,t dWt − dMt

)
, (4.15)

where W is a one-dimensional Brownian motion. Hence

Y 1
t = 1{t<τ}Ỹ 1

t , Y 2
t = 1{t<τ}Ỹ 2

t ,

with the pre-default prices governed by the SDEs

dỸ i
t = Ỹ i

t

(
(µi,t + γt) dt + σi,t dWt

)
. (4.16)

4.3 PDE Approach to Valuation and Hedging

In the remaining part of this chapter, in which we follow Bielecki et al. [4] (see also Rutkowski and
Yousiph [57]), we will with a Markovian set-up. We assume that trading occurs on the time interval
[0, T ] and our goal is to replicate a contingent claim of the form

Y = 1{T≥τ}g1(Y 1
T , Y 2

T , Y 3
T ) + 1{T<τ}g0(Y 1

T , Y 2
T , Y 3

T ) = G(Y 1
T , Y 2

T , Y 3
T ,HT ),

which settles at time T . We do not need to assume here that the coefficients in dynamics of
primary assets are F-predictable. Since our goal is to develop the PDE approach, it will be essential,
however, to postulate a Markovian character of a model. For the sake of simplicity, we assume that
the coefficients are constant, so that

dY i
t = Y i

t−
(
µi dt + σi dWt + κi dMt

)
, i = 1, 2, 3.

The assumption of constancy of coefficients is rarely, if ever, satisfied in practically relevant models of
credit risk. It is thus important to note that it was postulated here mainly for the sake of notational
convenience, and the general results established in this section can be easily extended to a non-
homogeneous Markov case in which µi,t = µi(t, Y 1

t−, Y 2
t−, Y 3

t−,Ht−), σi,t = σi(t, Y 1
t−, Y 2

t−, Y 3
t−, Ht−),

etc.
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4.3.1 Defaultable Asset with Total Default

We first assume that Y 1 and Y 2 are default-free, so that κ1 = κ2 = 0, and the third asset is subject
to total default, i.e. κ3 = −1,

dY 3
t = Y 3

t−
(
µ3 dt + σ3 dWt − dMt

)
.

We work throughout under the assumptions of Proposition 4.2.1. This means that any Q1-integrable
contingent claim Y = G(Y 1

T , Y 2
T , Y 3

T ;HT ) is attainable, and its arbitrage price equals

πt(Y ) = Y 1
t EQ1(Y (Y 1

T )−1 | Gt), ∀ t ∈ [0, T ]. (4.17)

The following auxiliary result is thus rather obvious.

Lemma 4.3.1 The process (Y 1, Y 2, Y 3,H) has the Markov property with respect to the filtration G
under the martingale measure Q1. For any attainable claim Y = G(Y 1

T , Y 2
T , Y 3

T ; HT ) there exists a
function v : [0, T ]× R3 × {0, 1} → R such that πt(Y ) = v(t, Y 1

t , Y 2
t , Y 3

t ;Ht).

We find it convenient to introduce the pre-default pricing function v(· ; 0) = v(t, y1, y2, y3; 0) and
the post-default pricing function v(· ; 1) = v(t, y1, y2, y3; 1). In fact, since Y 3

t = 0 if Ht = 1, it suffices
to study the post-default function v(t, y1, y2; 1) = v(t, y1, y2, 0; 1). Also, we write

αi = µi − σi
µ1 − µ2

σ1 − σ2
, b = (µ3 − µ1)(σ1 − σ2)− (µ1 − µ3)(σ1 − σ3).

Let γ > 0 be the constant default intensity under P, and let ζ > −1 be given by formula (4.14).

Proposition 4.3.1 Assume that the functions v(· ; 0) and v(· ; 1) belong to the class C1,2([0, T ] ×
R3

+,R). Then v(t, y1, y2, y3; 0) satisfies the PDE

∂tv(· ; 0) +
2∑

i=1

αiyi∂iv(· ; 0) + (α3 + ζ)y3∂3v(· ; 0) +
1
2

3∑

i,j=1

σiσjyiyj∂ijv(· ; 0)

− α1v(· ; 0) +
(

γ − b

σ1 − σ2

) [
v(t, y1, y2; 1)− v(t, y1, y2, y3; 0)

]
= 0

subject to the terminal condition v(T, y1, y2, y3; 0) = G(y1, y2, y3; 0), and v(t, y1, y2; 1) satisfies the
PDE

∂tv(· ; 1) +
2∑

i=1

αiyi∂iv(· ; 1) +
1
2

2∑

i,j=1

σiσjyiyj∂ijv(· ; 1)− α1v(· ; 1) = 0

subject to the terminal condition v(T, y1, y2; 1) = G(y1, y2, 0; 1).

Proof. For simplicity, we write Ct = πt(Y ). Let us define

∆v(t, y1, y2, y3) = v(t, y1, y2; 1)− v(t, y1, y2, y3; 0).

Then the jump ∆Ct = Ct − Ct− can be represented as follows:

∆Ct = 1{τ=t}
(
v(t, Y 1

t , Y 2
t ; 1)− v(t, Y 1

t , Y 2
t , Y 3

t−; 0)
)

= 1{τ=t}∆v(t, Y 1
t , Y 2

t , Y 3
t−).

We write ∂i to denote the partial derivative with respect to the variable yi, and we typically omit
the variables (t, Y 1

t−, Y 2
t−, Y 3

t−,Ht−) in expressions ∂tv, ∂iv, ∆v, etc. We shall also make use of the
fact that for any Borel measurable function g we have

∫ t

0

g(u, Y 2
u , Y 3

u−) du =
∫ t

0

g(u, Y 2
u , Y 3

u ) du
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since Y 3
u and Y 3

u− differ only for at most one value of u (for each ω). Let ξt = 1{t<τ}γ. An application
of Itô’s formula yields

dCt = ∂tv dt +
3∑

i=1

∂iv dY i
t +

1
2

3∑

i,j=1

σiσjY
i
t−Y j

t−∂ijv dt

+
(
∆v + Y 3

t−∂3v
)

dHt

= ∂tv dt +
3∑

i=1

∂iv dY i
t +

1
2

3∑

i,j=1

σiσjY
i
t−Y j

t−∂ijv dt

+
(
∆v + Y 3

t−∂3v
)(

dMt + ξt dt
)
,

and this in turn implies that

dCt = ∂tv dt +
3∑

i=1

Y i
t−∂iv

(
µi dt + σi dWt

)
+

1
2

3∑

i,j=1

σiσjY
i
t−Y j

t−∂ijv dt

+ ∆v dMt +
(
∆v + Y 3

t−∂3v
)
ξt dt

=



∂tv +

3∑

i=1

µiY
i
t−∂iv +

1
2

3∑

i,j=1

σiσjY
i
t−Y j

t−∂ijv +
(
∆v + Y 3

t−∂3v
)
ξt



 dt

+
( 3∑

i=1

σiY
i
t−∂iv

)
dWt + ∆v dMt.

We now use the integration by parts formula together with (4.8) to derive dynamics of the relative
price Ĉt = Ct(Y 1

t )−1. We find that

dĈt = Ĉt−
(
(−µ1 + σ2

1) dt− σ1 dWt

)

+ (Y 1
t−)−1



∂tv +

3∑

i=1

µiY
i
t−∂iv +

1
2

3∑

i,j=1

σiσjY
i
t−Y j

t−∂ijv +
(
∆v + Y 3

t−∂3v
)
ξt



 dt

+ (Y 1
t−)−1

3∑

i=1

σiY
i
t−∂iv dWt + (Y 1

t−)−1∆v dMt − (Y 1
t−)−1σ1

3∑

i=1

σiY
i
t−∂iv dt.

Hence, using (4.13), we obtain

dĈt = Ĉt−
(− µ1 + σ2

1

)
dt + Ĉt−

(
− σ1 dŴt − σ1θ dt

)

+ (Y 1
t−)−1



∂tv +

3∑

i=1

µiY
i
t−∂iv +

1
2

3∑

i,j=1

σiσjY
i
t−Y j

t−∂ijv +
(
∆v + Y 3

t−∂3v
)
ξt



 dt

+ (Y 1
t−)−1

3∑

i=1

σiY
i
t−∂iv dŴt + (Y 1

t−)−1
3∑

i=1

σiY
i
t−θ∂iv dt

+ (Y 1
t−)−1∆v dM̂t + (Y 1

t−)−1ζξt∆v dt− (Y 1
t−)−1σ1

3∑

i=1

σiY i
t−∂iv dt.

This means that the process Ĉ admits the following decomposition under Q1

dĈt = Ĉt−
(− µ1 + σ2

1 − σ1θ
)
dt
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+ (Y 1
t−)−1



∂tv +

3∑

i=1

µiY
i
t−∂iv +

1
2

3∑

i,j=1

σiσjY
i
t−Y j

t−∂ijv +
(
∆v + Y 3

t−∂3v
)
ξt



 dt

+ (Y 1
t−)−1

3∑

i=1

σiY
i
t−θ∂iv dt + (Y 1

t−)−1ζξt∆v dt

− (Y 1
t−)−1σ1

3∑

i=1

σiY
i
t−∂iv dt + a Q1-martingale.

From (4.17), it follows that the process Ĉ is a martingale under Q1. Therefore, the continuous finite
variation part in the above decomposition necessarily vanishes, and thus we get

0 = Ct−(Y 1
t−)−1

(− µ1 + σ2
1 − σ1θ

)

+ (Y 1
t−)−1



∂tv +

3∑

i=1

µiY
i
t−∂iv +

1
2

3∑

i,j=1

σiσjY
i
t−Y j

t−∂ijv +
(
∆v + Y 3

t−∂3v
)
ξt





+ (Y 1
t−)−1

3∑

i=1

σiY
i
t−θ∂iv + (Y 1

t−)−1ζξt∆v − (Y 1
t−)−1σ1

3∑

i=1

σiY
i
t−∂iv.

Consequently, we have that

0 = Ct−
(− µ1 + σ2

1 − σ1θ
)

+ ∂tv +
3∑

i=1

µiY
i
t−∂iv +

1
2

3∑

i,j=1

σiσjY
i
t−Y j

t−∂ijv +
(
∆v + Y 3

t−∂3v
)
ξt

+
3∑

i=1

σiY
i
t−θ∂iv + ζξt∆v − σ1

3∑

i=1

σiY
i
t−∂iv.

Finally, we conclude that

∂tv +
2∑

i=1

αiY
i
t−∂iv + (α3 + ξt) Y 3

t−∂3v +
1
2

3∑

i,j=1

σiσjY
i
t−Y j

t−∂ijv

− α1Ct− + (1 + ζ)ξt∆v = 0.

Recall that ξt = 1{t<τ}γ. It is thus clear that the pricing functions v(·, 0) and v(·; 1) satisfy the
PDEs given in the statement of the proposition. ¤

The next result deals with a replicating strategy for Y .

Proposition 4.3.2 The replicating strategy φ for the claim Y is given by formulae

φ3
t Y

3
t− = −∆v(t, Y 1

t , Y 2
t , Y 3

t−) = v(t, Y 1
t , Y 2

t , Y 3
t−; 0)− v(t, Y 1

t , Y 2
t ; 1),

φ2
t Y

2
t (σ2 − σ1) = −(σ1 − σ3)∆v − σ1v +

3∑

i=1

Y i
t−σi∂iv,

φ1
t Y

1
t = v − φ2

t Y
2
t − φ3

t Y
3
t .

Proof. As a by-product of our computations, we obtain

dĈt = −(Y 1
t )−1σ1v dŴt + (Y 1

t )−1
3∑

i=1

σiY
i
t−∂iv dŴt + (Y 1

t )−1∆v dM̂t.
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The self-financing strategy that replicates Y is determined by two components φ2, φ3 and the fol-
lowing relationship:

dĈt = φ2
t dY 2,1

t + φ3
t dY 3,1

t = φ2
t Y

2,1
t (σ2 − σ1) dŴt + φ3

t Y
3,1
t−

(
(σ3 − σ1) dŴt − dM̂t

)
.

By identification, we obtain φ3
t Y

3,1
t− = (Y 1

t )−1∆v and

φ2
t Y

2
t (σ2 − σ1)− (σ3 − σ1)∆v = −σ1Ct +

3∑

i=1

Y i
t−σi∂iv.

This yields the claimed formulae. ¤

Corollary 4.3.1 In the case of a total default claim, the hedging strategy satisfies the balance con-
dition.

Proof. A total default corresponds to the assumption that G(y1, y2, y3, 1) = 0. We now have
v(t, y1, y2; 1) = 0, and thus φ3

t Y
3
t− = v(t, Y 1

t , Y 2
t , Y 3

t−; 0) for every t ∈ [0, T ]. Hence, the equality
φ1

t Y
1
t + φ2

t Y
2
t = 0 holds for every t ∈ [0, T ]. The last equality is the balance condition for Z = 0.

Recall that it ensures that the wealth of a replicating portfolio jumps to zero at default time. ¤

Hedging with the Savings Account

Let us now study the particular case where Y 1 is the savings account, i.e.,

dY 1
t = rY 1

t dt, Y 1
0 = 1,

which corresponds to µ1 = r and σ1 = 0. Let us write r̂ = r + γ̂, where

γ̂ = γ(1 + ζ) = γ + µ3 − r +
σ3

σ2
(r − µ2)

stands for the intensity of default under Q1. The quantity r̂ has a natural interpretation as the risk-
neutral credit-risk adjusted short-term interest rate. Straightforward calculations yield the following
corollary to Proposition 4.3.1.

Corollary 4.3.2 Assume that σ2 6= 0 and

dY 1
t = rY 1

t dt,

dY 2
t = Y 2

t

(
µ2 dt + σ2 dWt

)
,

dY 3
t = Y 3

t−
(
µ3 dt + σ3 dWt − dMt

)
.

Then the function v(· ; 0) satisfies

∂tv(t, y2, y3; 0) + ry2∂2v(t, y2, y3; 0) + r̂y3∂3v(t, y2, y3; 0)− r̂v(t, y2, y3; 0)

+
1
2

3∑

i,j=2

σiσjyiyj∂ijv(t, y2, y3; 0) + γ̂v(t, y2; 1) = 0

with v(T, y2, y3; 0) = G(y2, y3; 0), and the function v(· ; 1) satisfies

∂tv(t, y2; 1) + ry2∂2v(t, y2; 1) +
1
2
σ2

2y2
2∂22v(t, y2; 1)− rv(t, y2; 1) = 0

with v(T, y2; 1) = G(y2, 0; 1).
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In the special case of a survival claim, the function v(· ; 1) vanishes identically, and thus the
following result can be easily established.

Corollary 4.3.3 The pre-default pricing function v(· ; 0) of a survival claim Y = 1{T<τ}G(Y 2
T , Y 3

T )
is a solution of the following PDE:

∂tv(t, y2, y3; 0) + ry2∂2v(t, y2, y3; 0) + r̂y3∂3v(t, y2, y3; 0)

+
1
2

3∑

i,j=2

σiσjyiyj∂ijv(t, y2, y3; 0)− r̂v(t, y2, y3; 0) = 0

with the terminal condition v(T, y2, y3; 0) = G(y2, y3). The components φ2 and φ3 of the replicating
strategy satisfy

φ2
t σ2Y

2
t =

3∑

i=2

σiY
i
t−∂iv(t, Y 2

t , Y 3
t−; 0) + σ3v(t, Y 2

t , Y 3
t−; 0),

φ3
t Y

3
t− = v(t, Y 2

t , Y 3
t−; 0).

Example 4.3.1 Consider a survival claim Y = 1{T<τ}g(Y 2
T ), that is, a vulnerable claim with

default-free underlying asset. Its pre-default pricing function v(· ; 0) does not depend on y3, and
satisfies the PDE (y stands here for y2 and σ for σ2)

∂tv(t, y; 0) + ry∂2v(t, y; 0) +
1
2
σ2y2∂22v(t, y; 0)− r̂v(t, y; 0) = 0 (4.18)

with the terminal condition v(T, y; 0) = 1{t<τ}g(y). The solution to (4.18) is

v(t, y) = e(br−r)(t−T ) vr,g,2(t, y) = ebγ(t−T ) vr,g,2(t, y),

where the function vr,g,2 is the Black-Scholes price of g(YT ) in a Black-Scholes model for Yt with
interest rate r and volatility σ2.

4.3.2 Defaultable Asset with Non-Zero Recovery

We now assume that
dY 3

t = Y 3
t−(µ3 dt + σ3 dWt + κ3 dMt)

with κ3 > −1 and κ3 6= 0. We assume that Y 3
0 > 0, so that Y 3

t > 0 for every t ∈ R+. We shall
briefly describe the same steps as in the case of a defaultable asset with total default.

Pricing PDE and Replicating Strategy

We are in a position to derive the pricing PDEs. For the sake of simplicity, we assume that Y 1 is
the savings account, so that Proposition 4.3.3 is a counterpart of Corollary 4.3.2. For the proof of
Proposition 4.3.3, the interested reader is referred to Bielecki et al. [4].

Proposition 4.3.3 Let σ2 6= 0 and let Y 1, Y 2, Y 3 satisfy

dY 1
t = rY 1

t dt,

dY 2
t = Y 2

t

(
µ2 dt + σ2 dWt

)
,

dY 3
t = Y 3

t−
(
µ3 dt + σ3 dWt + κ3 dMt

)
.
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Assume, in addition, that σ2(r − µ3) = σ3(r − µ2) and κ3 6= 0, κ3 > −1. Then the price of a
contingent claim Y = G(Y 2

T , Y 3
T ,HT ) can be represented as πt(Y ) = v(t, Y 2

t , Y 3
t , Ht), where the

pricing functions v(· ; 0) and v(· ; 1) satisfy the following PDEs

∂tv(t, y2, y3; 0) + ry2∂2v(t, y2, y3; 0) + y3 (r − κ3γ) ∂3v(t, y2, y3; 0)− rv(t, y2, y3; 0)

+
1
2

3∑

i,j=2

σiσjyiyj∂ijv(t, y2, y3; 0) + γ
(
v(t, y2, y3(1 + κ3); 1)− v(t, y2, y3; 0)

)
= 0

and

∂tv(t, y2, y3; 1) + ry2∂2v(t, y2, y3; 1) + ry3∂3v(t, y2, y3; 1)− rv(t, y2, y3; 1)

+
1
2

3∑

i,j=2

σiσjyiyj∂ijv(t, y2, y3; 1) = 0

subject to the terminal conditions

v(T, y2, y3; 0) = G(y2, y3; 0), v(T, y2, y3; 1) = G(y2, y3; 1).

The replicating strategy φ equals

φ2
t =

1
σ2Y 2

t

3∑

i=2

σiyi∂iv(t, Y 2
t , Y 3

t−,Ht−)

− σ3

σ2κ3Y 2
t

(
v(t, Y 2

t , Y 3
t−(1 + κ3); 1)− v(t, Y 2

t , Y 3
t−; 0)

)
,

φ3
t =

1
κ3Y 3

t−

(
v(t, Y 2

t , Y 3
t−(1 + κ3); 1)− v(t, Y 2

t , Y 3
t−; 0)

)
,

and φ1
t is given by φ1

t Y
1
t + φ2

t Y
2
t + φ3

t Y
3
t = Ct.

Hedging of a Survival Claim

We shall illustrate Proposition 4.3.3 by means of examples. First, consider a survival claim of the
form

Y = G(Y 2
T , Y 3

T ,HT ) = 1{T<τ}g(Y 3
T ).

Then the post-default pricing function vg(· ; 1) vanishes identically, and the pre-default pricing func-
tion vg(· ; 0) solves the PDE

∂tv
g(· ; 0) + ry2∂2v

g(· ; 0) + y3 (r − κ3γ) ∂3v
g(· ; 0)

+
1
2

3∑

i,j=2

σiσjyiyj∂ijv
g(· ; 0)− (r + γ)vg(· ; 0) = 0

with the terminal condition vg(T, y2, y3; 0) = g(y3). Denote α = r − κ3γ and β = γ(1 + κ3).

It is not difficult to check that vg(t, y2, y3; 0) = eβ(T−t)vα,g,3(t, y3) is a solution of the above
equation, where the function w(t, y) = vα,g,3(t, y) is the solution of the standard Black-Scholes PDE
equation

∂tw + yα∂yw +
1
2
σ2

3y2∂yyw − αw = 0

with the terminal condition w(T, y) = g(y), that is, the price of the contingent claim g(YT ) in the
Black-Scholes framework with the interest rate α and the volatility parameter equal to σ3.

Let Ct be the current value of the contingent claim Y , so that

Ct = 1{t<τ}eβ(T−t)vα,g,3(t, Y 3
t ).
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The hedging strategy of the survival claim is, on the event {t < τ},

φ3
t Y

3
t = − 1

κ3
e−β(T−t)vα,g,3(t, Y 3

t ) = − 1
κ3

Ct,

φ2
t Y

2
t =

σ3

σ2

(
Y 3

t e−β(T−t)∂yvα,g,3(t, Y 3
t )− φ3

t Y
3
t

)
.

Hedging of a Recovery Payoff

As another illustration of Proposition 4.3.3, we shall now consider the contingent claim G(Y 2
T , Y 3

T ,HT ) =
1{T≥τ}g(Y 2

T ), that is, we assume that recovery is paid at maturity and equals g(Y 2
T ). Let vg be the

pricing function of this claim. The post-default pricing function vg(· ; 1) does not depend on y3.
Indeed, the equation (we write here y2 = y)

∂tv
g(· ; 1) + ry∂yvg(· ; 1) +

1
2
σ2

2y2∂yyvg(· ; 1)− rvg(· ; 1) = 0,

with vg(T, y; 1) = g(y), admits a unique solution vr,g,2, which is the price of g(YT ) in the Black-
Scholes model with interest rate r and volatility σ2.

Prior to default, the price of the claim can be found by solving the following PDE

∂tv
g(·; 0) + ry2∂2v

g(·; 0) + y3 (r − κ3γ) ∂3v
g(·; 0)

+
1
2

3∑

i,j=2

σiσjyiyj∂ijv
g(·; 0)− (r + γ)vg(·; 0) = −γvg(t, y2; 1)

with vg(T, y2, y3; 0) = 0. It is not difficult to check that

vg(t, y2, y3; 0) = (1− eγ(t−T ))vr,g,2(t, y2).

The reader can compare this result with the one of Example 4.3.1. e now assume that

dY 3
t = Y 3

t−(µ3 dt + σ3 dWt + κ3 dMt)

with κ3 > −1 and κ3 6= 0. We assume that Y 3
0 > 0, so that Y 3

t > 0 for every t ∈ R+. We shall
briefly describe the same steps as in the case of a defaultable asset with total default.

Arbitrage-Free Property

As usual, we need first to impose specific constraints on model coefficients, so that the model is
arbitrage-free. Indeed, an EMM Q1 exists if there exists a pair (θ, ζ) such that

θt(σi − σ1) + ζtξt
κi − κ1

1 + κ1
= µ1 − µi + σ1(σi − σ1) + ξt(κi − κ1)

κ1

1 + κ1
, i = 2, 3.

To ensure the existence of a solution (θ, ζ) on the set τ < t, we impose the condition

σ1 − µ1 − µ2

σ1 − σ2
= σ1 − µ1 − µ3

σ1 − σ3
,

that is,
µ1(σ3 − σ2) + µ2(σ1 − σ3) + µ3(σ2 − σ1) = 0.

Now, on the event τ ≥ t, we have to solve the two equations

θt(σ2 − σ1) = µ1 − µ2 + σ1(σ2 − σ1),
θt(σ3 − σ1) + ζtγκ3 = µ1 − µ3 + σ1(σ3 − σ1).

If, in addition, (σ2 − σ1)κ3 6= 0, we obtain the unique solution

θ = σ1 − µ1 − µ2

σ1 − σ2
= σ1 − µ1 − µ3

σ1 − σ3
,

ζ = 0 > −1,

so that the martingale measure Q1 exists and is unique.
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4.3.3 Two Defaultable Assets with Total Default

We shall now assume that we have only two assets, and both are defaultable assets with total default.
We shall briefly outline the analysis of this case, leaving the details and the study of other relevant
cases to the reader. We postulate that

dY i
t = Y i

t−
(
µi dt + σi dWt − dMt

)
, i = 1, 2, (4.19)

so that
Y 1

t = 1{t<τ}Ỹ 1
t , Y 2

t = 1{t<τ}Ỹ 2
t ,

with the pre-default prices governed by the SDEs

dỸ i
t = Ỹ i

t

(
(µi + γ) dt + σi dWt

)
, i = 1, 2.

In the case where the promised payoff X is path-independent, so that

X1{T<τ} = G(Y 1
T , Y 2

T )1{T<τ} = G(Ỹ 1
T , Ỹ 2

T )1{T<τ}

for some function G, it is possible to use the PDE approach in order to value and replicate survival
claims prior to default (needless to say that the valuation and hedging after default are trivial here).

We know already from the martingale approach that hedging of a survival claim X1{T<τ} is
formally equivalent to replicating the promised payoff X using the pre-default values of tradeable
assets

dỸ i
t = Ỹ i

t

(
(µi + γ) dt + σi dWt

)
, i = 1, 2.

We need not to worry here about the balance condition, since in case of default the wealth of the
portfolio will drop to zero, as it should in view of the equality Z = 0.

We shall find the pre-default pricing function v(t, y1, y2), which is required to satisfy the terminal
condition v(T, y1, y2) = G(y1, y2), as well as the hedging strategy (φ1, φ2). The replicating strategy
φ is such that for the pre-default value C̃ of our claim we have C̃t := v(t, Ỹ 1

t , Ỹ 2
t ) = φ1

t Ỹ
1
t + φ2

t Ỹ
2
t ,

and
dC̃t = φ1

t dỸ 1
t + φ2

t dỸ 2
t . (4.20)

Proposition 4.3.4 Assume that σ1 6= σ2. Then the pre-default pricing function v satisfies the PDE

∂tv + y1

(
µ1 + γ − σ1

µ2 − µ1

σ2 − σ1

)
∂1v + y2

(
µ2 + γ − σ2

µ2 − µ1

σ2 − σ1

)
∂2v

+
1
2

(
y2
1σ2

1∂11v + y2
2σ2

2∂22v + 2y1y2σ1σ2∂12v
)

=
(

µ1 + γ − σ1
µ2 − µ1

σ2 − σ1

)
v

with the terminal condition v(T, y1, y2) = G(y1, y2).

Proof. We shall merely sketch the proof. By applying Itô’s formula to v(t, Ỹ 1
t , Ỹ 2

t ), and comparing
the diffusion terms in (4.20) and in the Itô differential dv(t, Ỹ 1

t , Ỹ 2
t ), we find that

y1σ1∂1v + y2σ2∂2v = φ1y1σ1 + φ2y2σ2, (4.21)

where φi = φi(t, y1, y2). Since φ1y1 = v(t, y1, y2)− φ2y2, we deduce from (4.21) that

y1σ1∂1v + y2σ2∂2v = vσ1 + φ2y2(σ2 − σ1),

and thus

φ2y2 =
y1σ1∂1v + y2σ2∂2v − vσ1

σ2 − σ1
.
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On the other hand, by identification of drift terms in (4.21), we obtain

∂tv + y1(µ1 + γ)∂1v + y2(µ2 + γ)∂2v

+
1
2

(
y2
1σ2

1∂11v + y2
2σ2

2∂22v + 2y1y2σ1σ2∂12v
)

= φ1y1(µ1 + γ) + φ2y2(µ2 + γ).

Upon elimination of φ1 and φ2, we arrive at the stated PDE. ¤
Recall that the historically observed drift terms are µ̂i = µi + γ, rather than µi. The pricing

PDE can thus be simplified as follows:

∂tv + y1

(
µ̂1 − σ1

µ̂2 − µ̂1

σ2 − σ1

)
∂1v + y2

(
µ̂2 − σ2

µ̂2 − µ̂1

σ2 − σ1

)
∂2v

+
1
2

(
y2
1σ2

1∂11v + y2
2σ2

2∂22v + 2y1y2σ1σ2∂12v
)

= v

(
µ̂1 − σ1

µ̂2 − µ̂1

σ2 − σ1

)
.

The pre-default pricing function v depends on the market observables (drift coefficients, volatilities,
and pre-default prices), but not on the (deterministic) default intensity.

To make one more simplifying step, we make an additional assumption about the payoff function.
Suppose, in addition, that the payoff function is such that G(y1, y2) = y1g(y2/y1) for some function
g : R+ → R (or equivalently, G(y1, y2) = y2h(y1/y2) for some function h : R+ → R). Then we
may focus on relative pre-default prices Ĉt = C̃t(Ỹ 1

t )−1 and Ỹ 2,1 = Ỹ 2
t (Ỹ 1

t )−1. The corresponding
pre-default pricing function v̂(t, z), such that Ĉt = v̂(t, Y 2,1

t ) will satisfy the PDE

∂tv̂ +
1
2
(σ2 − σ1)2z2∂zz v̂ = 0

with terminal condition v̂(T, z) = g(z). If the price processes Y 1 and Y 2 in (4.15) are driven by the
correlated Brownian motions W and Ŵ with the constant instantaneous correlation coefficient ρ,
then the PDE becomes

∂tv̂ +
1
2
(σ2

2 + σ2
1 − 2ρσ1σ2)z2∂zz v̂ = 0.

Consequently, the pre-default price C̃t = Ỹ 1
t v̂(t, Ỹ 2,1

t ) will not depend directly on the drift coefficients
µ̂1 and µ̂2, and thus, in principle, we should be able to derive an expression the price of the claim in
terms of market observables: the prices of the underlying assets, their volatilities and the correlation
coefficient. Put another way, neither the default intensity nor the drift coefficients of the underlying
assets appear as independent parameters in the pre-default pricing function.
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[58] J. Saá-Requejo and P. Santa-Clara. Bond pricing with default risk. Working paper, 1999.
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