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Introduction

These notes will be an introduction to jump processes and application to finance. There are many
books, articles, and thesis devoted to that subject, and we give here only some references.

The general theory of stochastic processes is presented in Dellacherie and Meyer [12, 13], He et al.
[15], Protter, version 2.1. [27].

Jacod and Shiryaev [16], Bichteler [7], Prigent [26] study processes with discontinuous path in a
semi-martingale framework.

For general jump processes with finance in view, one can consult Jeanblanc, Yor and Chesney [17],
and Shiryaev [33].

Excellent surveys papers are Bass [2, 1], Kunita [21], Runggaldier [28].

Bertoin [5, 6, 4, 3], Kyprianou [22], Sato [29, 30] contain the theory of Lévy processes. Applications
to Finance can be found in Boyarchenko and Levendorskii [9], Cont and Tankov [11], Overhaus et al.
[25], Schoutens [32].

Many thanks to all the participants to the school.
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Chapter 1

Poisson Processes

1.1 Some Particular Laws of Random Variables

We recall some important results on exponential and Poisson laws. We give only some proofs.

1.1.1 Exponential Law

Definition 1.1.1 The exponential law with parameter λ > 0 has a density fλ(x) = λe−λx11x>0 with
respect to Lebesgue measure. If X is a random variable with exponential law, its cumulative distribution
function is, for t ∈ R+, given by P(X ≤ t) = 1− e−λt.

The characteristic property of the exponential law is the lack of memory that we recall now

Proposition 1.1.1 (i) The exponential law is the unique density on R+ such that

∀t, s > 0, P(X > t + s|X > s) = P(X > t)

(ii) The exponential law is the unique density such that there exists a constant λ such that

∀t > 0, lim
s→0

s−1P(X > t + s|X > s) = λ

Proof: From definition of conditional probability

P(X > t + s|X > s) =
P(X > t + s)
P(X > s)

=
e−λ(t+s)

e−λs

and the result follows. For the converse, let G(s) = P(X > s) be the survival probability. Then, from
hypothesis G(t + s) = G(t)G(s). This implies, using that G is continuous that G(s) = eθs for some θ.
Since G is a survival probability, G(s) < 1, hence θ < 0. We leave to the reader the proof of (ii).C

The property (ii) can be written

∀t > 0, P(X ∈ dt|X > t) = λdt

We now recall some properties of the exponential law and sum of i.i.d. exponential random variables.

Proposition 1.1.2 (i) If X has an exponential law with parameter λ, then E(X) = λ−1 and Var(X) =
λ−2.
(ii) The Laplace transform E[e−µX ] of an exponential law of parameter λ is defined for µ > −λ and is
given by

φ(µ) = E[e−µX ] =
λ

λ + µ

(iii) The sum Xn of n independent exponential r.v’s of parameter λ has a Gamma law with parameters
(n, λ):

P(Xn ∈ dt) =
(λt)n−1

(n− 1)!
λe−λt 11{t>0}dt,

5



6 CHAPTER 1. POISSON PROCESSES

The cumulative distribution function is

P(Xn ≤ x) = 1− e−λx(1 +
λx

1!
+ · · ·+ (λx)n−1

(n− 1)!
)

and its Laplace transform is given, for µ > −λ by

E(e−µXn) =
(

λ

λ + µ

)n

.

(iv) The law of (X1, · · · , Xn) has density λne−λxn110<x1<···<xn

(v) The law of (X1, · · · , Xn) given Xn = x is

P(X1 ∈ dx1, · · · , Xn ∈ dxn|Xn = x) =
(n− 1)!

xn
110<x1<···<xn<xdx1 · · · dxn

Proof: The proof of (i) and (ii) is standard. The proof of (iii) is done in a recursive way and is based
on the computation of the law of a sum of two independent random variables. The proof of (iv) and
(v) follows from simple computations. See Feller [14] for details. C

Exercise 1.1.1 Let X and Y be two independent exponential random variables. Prove that

P(X − Y ∈ A|X > Y ) = P(X ∈ A)
P(X − Y ∈ A|X < Y ) = P(−Y ∈ A)

1.1.2 Poisson Law

Definition 1.1.2 A random variable X with integer values has a Poisson law with parameter θ > 0 if

P(X = k) = e−θ θk

k!
.

Proposition 1.1.3 If X has a Poisson law with parameter θ > 0, then
(i) for any s ∈ R, E[sX ] = eθ(s−1).
(ii) E[X] = θ, Var (X) = θ.
(iii) for any u ∈ R, E(eiuX) = exp(θ(eiu − 1))
(iv) for any α ∈ R, E(eαX) = exp(θ(eα − 1))

Proof: If X has a Poisson law with parameter θ > 0, for any s ∈ R,

f(s) := E[sX ] =
∞∑

k=0

e−θ θk

k!
sk = e−θ

∞∑

k=0

(sθ)k

k!
sk = e−θesθ .

Then, using the usual relation giving the expectation and the second moment in terms of the generating
function f : E(X) = f ′(0) and E(X2) = f ′′(0) + f ′(0), we obtain the assertion (ii).
The proof of assertion (iii) is left to the reader, we give only the proof of (iv):

E(eαX) =
∞∑

k=0

e−θ θk

k!
eαk = e−θ

∞∑

k=0

(eαθ)k

k!
= e−θeθeα

and the result follows. C

Conversely, if X is a r.v. such that one of the property (i), (iii), (iv) holds, then X has a Poisson law
with parameter θ. The proof follows from the characterization of a probability law by the generating
function (resp. the characteristic function, the Laplace transform)

In particular, the form of the characteristic function implies the infinitely divisible property of the
Poisson law: if X has a Poisson law, for any n there exists n i.i.d. random variables Xn

i , i = 1, · · · , n
such that X

law= Xn
1 + · · ·+ Xn

n . Indeed, for any n, the obvious equality

E(eiuX) = exp(θ(eiu − 1)) =
(
exp((θ/n)(eiu − 1))

)n

and the fact that exp((θ/n)(eiu− 1)) is the characteristic function of a Poisson law with parameter θ/n
yields the result.
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Corollary 1.1.1 If X and Y are two independent random variables, with a Poisson law of parameter
θ and µ, then X + Y has a Poisson law with parameter λ + µ.

Proof: If X and Y are two independent random variables, with a Poisson law of parameter θ and µ,
the generating function of X + Y is the product of the generating function of X and of the generating
function of Y , hence

E[sX+Y ] = eθ(s−1)eµ(s−1) = e(θ+µ)(s−1)

which gives the result. C

Exercise 1.1.2 Let X be a random variable with a Poisson law with parameter θ and (Ui)i≥1 a
sequence of i.i.d. Bernoulli random variables, with parameter p, and independent of X. Prove that
X1 =

∑X
k=1 Uk and X2 = X −X1 are independent random variables, with a Poisson law of parameters

pθ and (1− p)θ.

1.1.3 Poisson mixture model

We now assume that Λ : = (Λ1, · · · , Λn) is an Rn
+ valued random variable with cumulative distribution

function
F (λ1, · · · , λn) = P(Λ1 ≤ λ1, · · · ,Λn ≤ λn)

and that (X1, · · · , Xn) are random variables, valued in the set of non negative integers such that

P(X1 = i1, · · · , Xn = in|Λ) =
n∏

k=1

P(Xk = ik|Λ) =
n∏

k=1

e−Λk
Λk

ik!

so that, the r.v’s Xk are independent conditionally w.r.t. Λ. In particular,

P(Xk = ik|Λ) = P(Xk = ik|Λk) = e−Λk
Λk

ik!

and

P(X1 = i1, · · · , Xn = in) =
∫

Rn
+

e−(λ1+···+λn)
n∏

k=1

λik

k

ik!
F (dλ1, · · · , dλn)

Using results on Poisson law, we obtain

E(Xk|Λk) = Λk, Var(Xk|Λk) = Λk

E(XkXm) = E(E(XkXm|Λ) = E(E(Xk|Λk)E(Xm|Λm)) = E(ΛkΛm)

Then, Cov(XkXm) = Cov(ΛkΛm) and Var(Xk) = EVar(Xk|Λk) + VarE(Xk|Λk) = E(Λk) + Var(Λk)

Proposition 1.1.4 In the Poisson mixture framework, for X =
∑n

k=1 Xk

1. E(X) =
∑n

k=1 E(Λk)

2. VarX =
∑n

k=1 VarXk +
∑

k 6=m Cov(XkXm)

3. E(sX) = E(e(s−1)(Λ1+···+Λm))

See Bluhm et al. [8] and Schmock [31] application to credit risk.

1.2 Standard Poisson Processes

1.2.1 Counting processes

A counting process is a process that increases in unit steps at isolated times and is constant between
these times. Let (Tn, n ≥ 0) be a strictly increasing sequence of random variables T0 = 0 < T1 < · · · <
Tn. The (increasing and right-continuous) counting process associated with this sequence is defined as

Nt =
{

n if t ∈ [Tn, Tn+1[
+∞ otherwise
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or, equivalently
Nt =

∑

n≥1

11{Tn≤t} =
∑

n≥0

n11{Tn≤t<Tn+1}, N0 = 0 .

We shall assume that lim Tn = +∞ to avoid explosion at finite time. For t > s, the increment Nt −Ns

is the number of random times Tn that occurs between s and t.
Let F be a given filtration. Then, the counting process N is F-adapted if and only if (Tn, n ≥ 1)

are F-stopping times. We denote by FN the natural filtration of the process N .

1.2.2 Definition and first Properties of Poisson Processes

Definition 1.2.1 Let (τi)i≥1 be a sequence of i.i.d. random variable with exponential law of parameter
λ and let Tn =

∑n
i=1 τi, n ≥ 1. The associated counting process is called a Poisson process.

Proposition 1.2.1 The Poisson process has independent and stationary increments.

Proof: Let us prove that

P(Nt+s −Nt = k | FN
t ) = P(Ns = k) = e−θs (θs)k

k!

In a first step, one prove that P(Ns = k) = e−θs (θs)k

k! . From the definition of the process N , the
event Ns = k is equal to the event Tk ≤ s < Tk+1. Then

P(Ns = k) = P(Tk ≤ s < Tk+1) = P(Tk ≤ s)− P(Tk+1 ≤ s)

and the result follows from the form of the cumulative distribution function of Tk.
Let t0 = 0 < t1 < · · · < tk, and

A = P(Nt1 = n1, · · ·Ntj −Ntj−1 = nj , · · ·Ntk
−Ntk−1 = nk)

Hence, if im =
∑

j≤m nj

A = P(Ti1 ≤ t1 < Ti1+1, · · ·Tim ≤ tm < Tim+1, · · ·Tik
≤ tk < Tik+1)

The law of the vector Ti is known, however, it is more efficient to work with conditional laws.

A = P(Ti1 ≤ t1 < Ti1+1, · · ·Tim ≤ tm < Tim+1, · · · |Tik
≤ tk < Tik+1)P(Tik

≤ tk < Tik+1)

The result follows in a recursive way. See Cont and Tankov [11] for details.C

-
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Exercise 1.2.1 Let t fixed. Give the law of the r.v. TNt+1 − t.
Hint: For any s ≥ 0,

P(TNt+1 − t > s) = P(TNt+1 > t + s) = P(Nt+s = Nt) = P(Ns = 0) = e−θs

hence TNt+1 − t
law= T1 .

Theorem 1.2.1 For any stopping time T the process NT+t −NT , t ≥ 0 is independent of FN
T and has

the same law as N .

Proof: This property is the Markov property for process with independent increments (see Appendix).C

Note that, in particular, if f is a bounded Borel function, and s < t,

E(f(Nt)|FN
s ) = E(f(Nt)|Ns) = E(f(Nt −Ns + Ns)|Ns) = F (Ns)

with F (x) = E(f(Nt−s+x)). Indeed, if (X, Y ) are independent random variables E(f(X,Y )|Y ) = Ψ(Y )
with Ψ(y) = E(f(X, y)).

Theorem 1.2.2 The Poisson process with parameter λ is the unique counting process with independent
stationary increments.

Proof: Let N be a counting process with independent stationary increments and T1 = inf{t : Nt = 1}.
Let us prove that T1 has an exponential law. Using the property of independent stationary increments
of the counting process N , we obtain

P(T1 > t + s) = P(Nt+s = 0) = P(Nt+s −Nt = 0, Nt = 0)
= P(Nt+s −Nt = 0)P(Nt = 0) = P(T1 > t)P(T1 > s)

hence the result from Proposition 1.1.1. The independence and the stationarity of the sequence
T1, · · · , Tn − Tn−1 follows from the strong Markov property.

Exercise 1.2.2 Let N be a Poisson process. Then

P(T1, · · · , Tn ∈ A|Nt = n) = P(Uσ1 , · · ·Uσn ∈ A)

where (Ui, i = 1, · · · , n) are i.i.d. random variable with uniform law on [0, t] and Uσ1 < Uσ2 < · · · < Uσn

Exercise 1.2.3 [Law of Large numbers]Let N be a Poisson process with parameter λ. Prove that
limt→∞Nt = ∞ a.s. and

lim
t→∞

Nt

t
= λ a.s..

Exercise 1.2.4 Let N1, · · · , Nk be independent Poisson processes with parameter θ1, · · · , θk. Prove
that the processes Ni have no common jumps and N1 + · · · + Nk is a Poisson process with parameter
θ1 + · · ·+ θk.

1.2.3 Martingale Properties

From the independence of the increments of the Poisson process, we derive martingale properties of
various processes.

Proposition 1.2.2 Let N be a Poisson process with intensity λ.
(i) The process Mt = Nt − λt is a martingale.
(ii) The process M2

t − λt = (Nt − λt)2 − λt is a martingale.
(iii) The process M2

t −Nt is a martingale.
(iv) For any α, the process exp(αNt − λt(eα − 1)) is a martingale.
(v) For any β, the process (1 + β)Nte−λβt is a martingale.

Proof: The properties (i) (ii) and (iv) are an application of the more general following Proposition
2.2.5. Now, adding the two FN -martingales Mt and M2

t − λt proves that M2
t − Nt is a martingale.

Property (v) follows from the independence of the increments and the computation of the generating
function.C
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Definition 1.2.2 The martingale (Mt := Nt − λt, t ≥ 0) is called the compensated process of N ,
and λ is the intensity of the process N .

It follows from the martingale property of M2
t − λt that λt is the predictable variation process of

M . The process M2
t −Nt is a martingale, N is increasing and ∆Ns = (∆Ms)2. Hence, the quadratic

variation process of M is N .

Remark 1.2.1 One can think that, since Nt = Nt−, a.s. the process Nt −Nt− is null, hence is a mar-
tingale, hence the predictable variation process is Nt−. This is obviously false. Firstly, the predictable
variation is unique, up to indistinguability. The process Nt− is not equal to λt. Furthermore, the process
Nt −Nt− is not a null process, since P(∀t,Xt = Xt−) is not equal to 1.

The previous Proposition 1.2.2 admits an extension:

Proposition 1.2.3 Let N be an F-Poisson process. For each bounded Borel function h, for any β > −1,
and any bounded Borel function ϕ valued in ]− 1,∞[, the following processes are F-martingales:

exp[ln(1 + β)Nt − λβt]

exp
[ ∫ t

0
h(s)dNs − λ

∫ t

0
(eh(s) − 1)ds

]
= exp

[ ∫ t

0
h(s)dMs − λ

∫ t

0
(eh(s) − h(s)− 1)ds

]
,

exp
[ ∫ t

0
ln(1 + ϕ(s))dNs − λ

∫ t

0
ϕ(s)ds

]
= exp

[ ∫ t

0
ln(1 + ϕ(s))dMs + λ

∫ t

0
(ln(1 + ϕ(s))− ϕ(s))ds

]
,

Proof: The study of exp[ln(1 + β)Nt − λβt] = (1 + β)Nte−λβt was done in Proposition 1.2.2. In the
specific case β > −1, it can also be done setting ln(1 + β) = α in (iv) of the same Proposition. For the
other processes, proceed using Monotone class Theorem.C

We have chosen to write exp
[ ∫ t

0
h(s)dNs − λ

∫ t

0
(eh(s) − 1)ds instead of exp

[ ∫ t

0
h(s)dNs + λ

∫ t

0
(1 −

eh(s))ds to help the reader to memorize the formule: for h non-negative, the process
∫ t

0
h(s)dNs is

increasing, so we have to subtract a non negative a quantity to obtain a martingale.

Proposition 1.2.4 Let N be an F-Poisson process and H be an F-predictable bounded process, then
the following processes are martingales

(H?M)t : =
∫ t

0
HsdMs =

∫ t

0
HsdNs − λ

∫ t

0
Hsds

((H?M)t)2 − λ
∫ t

0
H2

s ds

exp
(∫ t

0
HsdNs − λ

∫ t

0
(eHs − 1)ds

)
(1.1)

Proof: In a first step, the proof is done for elementary predictable processes H

Exercise 1.2.5 Assuming that
∫ t

0
Ns−dMs is a martingale as stated in Proposition 1.2.4, prove that∫ t

0
NsdMs is not a martingale.

1.2.4 Change of Probability

Theorem 1.2.3 Let N be a Poisson process with intensity λ, and Q be the probability defined as
dQ
dP |Ft = (1 + β)Nte−λβt.
Then, the process N is a Q-Poisson process with intensity equal to (1 + β)λ.

Proof: In a first step, one note that, from Proposition 1.2.3, for β > −1, the process L defined as

Lt = (1 + β)Nte−λβt

is a strictly positive martingale with expectation equal to 1. Then, from the definition of Q, for any
sequence 0 = t1 < t2 < · · · < tn+1 = t,

EQ

(
n∏

i=1

x
Nti+1−Nti

i

)
= EP

(
e−λβt

n∏

i=1

((1 + β)xi)Nti+1−Nti

)
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The right-hand side is computed using that, under P, the process N is a Poisson process (hence with
independent increments) and is equal to

e−λβt
n∏

i=1

EP

(
((1 + β)xi)Nti+1−ti

)
= e−λβt

n∏

i=1

e−λ(ti+1−ti) eλ(ti+1−ti)(1+β)xi =
n∏

i=1

e(1+β)λ(ti+1−ti)(xi−1) .

It follows that, for any j (take all the xi’s, except the jth one, equal to 1)

EQ

(
x

Ntj+1−Ntj

j

)
= e(1+β)λ(tj+1−tj)(xj−1) ,

which establishes that, under Q, the r.v. Ntj+1 −Ntj has a Poisson law with parameter (1 + β)λ, then
that

EQ

(
n∏

i=1

x
Nti+1−Nti

i

)
=

n∏

i=1

EQ

(
x

Nti+1−Nti

i

)

which is equivalent to the independence of the increments.C

1.3 Inhomogeneous Poisson Processes

1.3.1 Definition

Instead of considering a constant intensity λ as before, now (λ(t), t ≥ 0) is an R+-valued function
satisfying Λ(t) : =

∫ t

0
λ(u)du < ∞, ∀t. An inhomogeneous Poisson process N with intensity λ is a

counting process with independent increments which satisfies for t > s

P(Nt −Ns = n) = e−Λ(s,t) (Λ(s, t))n

n!
(1.2)

where Λ(s, t) = Λ(t)− Λ(s) =
∫ t

s
λ(u)du, and Λ(t) =

∫ t

0
λ(u)du.

If (Tn, n ≥ 1) is the sequence of successive jump times associated with N , the law of Tn is:

P(Tn ≤ t) =
1
n!

∫ t

0

exp(−Λ(s)) (Λ(s))n−1 dΛ(s) .

It can easily be shown that an inhomogeneous Poisson process with deterministic intensity is an inho-
mogeneous Markov process. Moreover, E(Nt) = Λ(t), Var(Nt) = Λ(t).
An inhomogeneous Poisson process can be constructed as a deterministic changed time Poisson process:
if Ñ is a standard Poisson process with intensity 1, the process N defined as Nt = ÑΛ(t) is an inhomo-
geneous Poisson process with intensity λ. An inhomogeneous Poisson process can also be constructed
using a change of probability (see below).

1.3.2 Martingale Properties

Proposition 1.3.1 Let N be an inhomogeneous Poisson process with deterministic intensity λ and FN

its natural filtration. Define Λ(t) =
∫ t

0
λ(s)ds. The process

(Mt = Nt − Λ(t), t ≥ 0)

is an FN -martingale, and the increasing function Λ is called the (deterministic) compensator of N .

Let φ be an FN -predictable process such that E(
∫ t

0
|φs|λ(s)ds) < ∞ for every t. Then, the process

(
∫ t

0
φsdMs, t ≥ 0) is an FN -martingale. In particular,

E
(∫ t

0

φs dNs

)
= E

(∫ t

0

φsλ(s)ds

)
. (1.3)

As an immediate extension of results obtained in the constant intensity case, for any bounded FN -
predictable process H, the following processes are martingales

a) (H?M)t =
∫ t

0
HsdMs =

∫ t

0
HsdNs −

∫ t

0
λ(s)Hsds

b) ((H?M)t)2 −
∫ t

0
λ(s)H2

s ds

c) exp
(∫ t

0
HsdNs −

∫ t

0
λ(s)(eHs − 1)ds

)
.
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1.3.3 Stochastic Intensity

Let (Ω,F,P) be a filtered probability space and λ a non-negative F-adapted process such that
∫ t

0
λsds <

∞.

Definition 1.3.1 A counting process N is said to be an inhomogeneous Poisson process with stochastic
intensity λ if the process

(Mt = Nt −
∫ t

0

λsds, t ≥ 0)

is a martingale, called the compensated martingale.

1.3.4 Stochastic Calculus

In this section, M is the compensated martingale of an inhomogeneous Poisson process N with intensity
(λs, s ≥ 0). From now on, we restrict our attention to integrals of predictable processes, even if the
stochastic integrals are defined in a more general setting.

Integration by parts formula

We start with an elementary case.
Let (xt, t ≥ 0) and (yt, t ≥ 0) be two predictable processes and define two processes X and Y as

Xt = x +
∫ t

0
xsdNs and Yt = y +

∫ t

0
ysdNs. The jumps of X (resp. of Y ) occur at the same times as

the jumps of N and ∆Xs = xs∆Ns, ∆Ys = ys∆Ns. The processes X and Y are of finite variation and
are constant between two jumps. Then

XtYt = xy +
∑

s≤t

∆(XY )s = xy +
∑

s≤t

Xs−∆Ys +
∑

s≤t

Ys−∆Xs +
∑

s≤t

∆Xs ∆Ys

The first equality is obvious, the second one is easy to check. Hence, from the definition of stochastic
integrals (see Section 4.2)

XtYt = xy +
∫ t

0

Ys−dXs +
∫ t

0

Xs−dYs + [X, Y ]t

where (note that (∆Nt)2 = ∆Nt)

[X, Y ]t : =
∑

s≤t

∆Xs ∆Ys =
∑

s≤t

xsys∆Ns =
∫ t

0

xs ys dNs .

More generally, if dXt = µtdt + xtdNt with X0 = x and dYt = νtdt + ytdNt with Y0 = y, one gets

XtYt = xy +
∫ t

0

Ys−dXs +
∫ t

0

Xs−dYs + [X, Y ]t

where [X, Y ]t =
∫ t

0
xs ys dNs . In particular, if dXt = xtdMt and dYt = ytdMt, the process XtYt−[X, Y ]t

is a local martingale.

Itô’s Formula

For inhomogeneous Poisson processes, Itô’s formula is obvious as we now explain.
Let N be a Poisson process and f a bounded Borel function. The decomposition

f(Nt) = f(N0) +
∑

0<s≤t

[f(Ns)− f(Ns−)] (1.4)

is trivial and is the main step to obtain Itô’s formula for a Poisson process.
We can write the right-hand side of (1.4) as a stochastic integral:

∑

0<s≤t

[f(Ns)− f(Ns−)] =
∑

0<s≤t

[f(Ns− + 1)− f(Ns−)]∆Ns

=
∫ t

0

[f(Ns− + 1)− f(Ns−)]dNs ,
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hence, the canonical decomposition of f(Nt) as the sum of a martingale and an absolute continuous
adapted process is

f(Nt) = f(N0) +
∫ t

0

[f(Ns− + 1)− f(Ns−)]dMs +
∫ t

0

[f(Ns− + 1)− f(Ns−)]λsds .

More generally, let h be an adapted process and g a predictable process such that
∫ t

0
|hs|ds <

∞,
∫ t

0
|gs|λsds < ∞.

Proposition 1.3.2 Let dXt = htdt + gtdMt = (ht − gtλt)dt + gtdNt and F ∈ C1,1(R+ × R). Then

F (t,Xt) = F (0, X0) +
∫ t

0

∂tF (s,Xs)ds +
∫ t

0

∂xF (s,Xs−)(hs − gsλs)ds +
∑

s≤t

F (s,Xs)− F (s, Xs−)

= F (0, X0) +
∫ t

0

∂tF (s,Xs)ds +
∫ t

0

∂xF (s,Xs−)dXs

+
∑

s≤t

[F (s, Xs)− F (s,Xs−)− ∂xF (s,Xs−)gs∆Ns] . (1.5)

=
∫ t

0

∂tF (s,Xs)ds +
∫ t

0

∂xF (s,Xs)(hs − gsλs)ds +
∫ t

0

[F (s,Xs)− F (s,Xs−)]dNs

Proof: Indeed, between two jumps, dXt = (ht − λtgt)dt, and for Tn < s < t < Tn+1,

F (t,Xt) = F (s,Xs) +
∫ t

s

∂tF (u, Xu)du +
∫ t

s

∂xF (u, Xu)(hu − guλu)du .

At jump times, F (Tn, XTn) = F (Tn, XTn−) + ∆F (·, X)Tn .C

Remark that, in the “ds” integrals, we can write Xs− or Xs, since, for any bounded Borel function
f , ∫ t

0

f(Xs−)ds =
∫ t

0

f(Xs)ds .

Note that since dNs a.s. Ns = Ns− + 1, one has

∫ t

0

f(Ns−)dNs =
∫ t

0

f(Ns + 1)dNs .

We shall use systematically use the form
∫ t

0
f(Ns−)dNs, even if the

∫ t

0
f(Ns+1)dNs has a meaning. The

reason is that
∫ t

0
f(Ns−)dMs =

∫ t

0
f(Ns−)dNs+λ

∫ t

0
f(Ns−)ds is a martingale, whereas

∫ t

0
f(Ns+1)dMs

is not.

Exercise 1.3.1 Check that the formula (1.5) can be written as

F (t,Xt)− F (0, X0)

=
∫ t

0

∂tF (s,Xs)ds +
∫ t

0

∂xF (s,Xs)(hs − gsλ(s))ds +
∫ t

0

[F (s,Xs)− F (s,Xs−)]dNs

=
∫ t

0

∂tF (s,Xs)ds +
∫ t

0

∂xF (s,Xs−)dXs +
∫ t

0

[F (s, Xs)− F (s,Xs−)− ∂xF (s, Xs−)gs]dNs

=
∫ t

0

∂tF (s,Xs)ds +
∫ t

0

∂xF (s,Xs−)dXs +
∫ t

0

[F (s, Xs− + gs)− F (s,Xs−)− ∂xF (s,Xs−)gs]dNs

=
∫ t

0

(∂tF (s,Xs) + [F (s,Xs− + gs)− F (s,Xs−)− ∂xF (s,Xs−)gs]λ) ds

+
∫ t

0

[F (s,Xs− + gs)− F (s,Xs−)]dMs



14 CHAPTER 1. POISSON PROCESSES

1.3.5 Change of Probability

Doléans-Dade exponential

Let ϕ be a predictable process such that
∫ t

0
|ϕs|λsds < ∞. The process Z = E(ϕ?M) is the unique

solution to the SDE (called the Doléans Dade exponential)

Zt = 1 +
∫

]0,t]

Zu− ϕudMu.

Let

Xt =
∫ t

0

ϕsdMs =
∑

s≤t

ϕs∆Ns −
∫ t

0

ϕsλsds .

Then, dZt = Zt−dXt. It is easy to prove that

Zt = exp
(−

∫ t

0

ϕsλsds
) ∏

s≤t

(1 + ϕs∆Ns) = exp
(
Xt

) ∏

s≤t

(1 + ∆Xs)e−∆Xs

Indeed, for t ∈ [Tn, Tn+1[, the equation Zt = 1 +
∫
]0,t]

Zu− ϕudMu writes

dZt = Zt−ϕtdMt = −Zt−λtϕtdt ,

hence Zt = ZTn exp− ∫ t

Tn
λsϕsds. At time Tn, ZTn = ZT−n (1 + ϕTn).

In the case where ϕ > −1,

∏

s≤t

(1 + ϕs∆Ns) = e
∑

s≤t ln(1+ϕs∆Ns) = exp
∫ t

0

ln(1 + ϕs)dNs

hence

Zt = exp
( ∫ t

0

ln(1 + ϕs)dNs −
∫ t

0

ϕsλsds
)
.

Note that in Section 1.3.2, we have already obtained this kind of martingales (see c), with H = ln(1+ϕ).

Radon-Nykodỳm densities

If P and Q are equivalent probabilities, there exists a predictable process γ, with γ > −1 such that the
Radon-Nikodym density L = dQ/dP is of the form

dLt = Lt−γtdMt .

Girsanov’s theorem

Let P and Q are equivalent probabilities, with RN density L with dLt = Lt−γtdMt . Let N be a P
inhomogeneous Poisson process with intensity λ, and M its compensated martingale. Then, the process

M̃t = Mt −
∫ t

0

λsγsds

is a Q-martingale. In particular, the process N is a Q-Poisson process with (stochastic) intensity
λs(1 + γs). This gives a way to construct Poisson processes with a given intensity.

1.4 Compound Poisson process

Definition 1.4.1 Let N be a standard Poisson process with parameter λ and (Yi)i≥1, be i.i.d. random
variables, independent of the process N . The process Xt :=

∑N(t)
i=1 Yi is called a compound Poisson

process.
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We denote by F the cumulative distribution function for the Y ’s: F (y) = P(Y1 ≤ y). We shall say that
X is a (λ, F )-compound Poisson process

Theorem 1.4.1 Let X be a (λ, F )-compound Poisson process
(i) The process X has stationary and independent increments
(ii) The characteristic function of the r.v. Xt is

E[e−iuXt ] = eλt(E[e−iuY1 ]−1) = exp
(

λt

∫

R
(e−iuy − 1)F (dy)

)
.

Assume that E[eαY1 ] < ∞. Then, the Laplace transform of the r.v.is

E[eαXt ] = eλt(E[eαY1 ]−1) = exp
(

λt

∫

R
(eαy − 1)F (dy)

)
.

(iii) Assume that E(|Y1|) < ∞. Then, the process (Zt = Xt − tλE(Y1), t ≥ 0) is a martingale and in
particular, E(Xt) = λtE(Y1) = λt

∫∞
−∞ yF (dy).

(iii) If E(Y 2
1 ) < ∞, the process (Z2

t − tλE(Y 2
1 ), t ≥ 0) is a martingale and Var (Xt) = λtE(Y 2

1 ).

Proof: (i) We leave the proof to the reader.
(ii) Let us compute the characteristic function of Xt:

E(eiuXt) =
∞∑

n=0

E(11Nt=neiu
∑n

k=1 Yk) =
∞∑

n=0

P(Nt = n)(E(eiuY1))n

= exp
(
−λt + λt

∫
eiuyF (dy)

)

Properties (iii), (iv) follow from (i)

Proposition 1.4.1 The predictable process λtE(Y1) is the predictable quadratic variation of the mar-
tingale Z. The quadratic variation of Z is [Z]t =

∑Nt

n=1 Y 2
n .

Proof: Let us give the proof in the case E(Y 2) < ∞. The increasing process
∑Nt

n=1 Y 2
n is a compound

Poisson process, hence
∑Nt

n=1 Y 2
n − λtE(Y 2

1 ) is a martingale. Therefore

Z2
t − tλE(Y 2

1 )− (
Nt∑

n=1

Y 2
n − λtE(Y 2

1 )) = Z2
t −

Nt∑
n=1

Y 2
n

is a martingale. Moreover, the jumps of Z2
t are the jumps of

∑Nt

n=1 Y 2
n . C

We now denote by ν the positive measure ν(dy) = λF (dy). Using that notation, a (λ, F )-compound
Poisson process will be called a ν-compound Poisson process. Conversely, to any positive finite
measure ν on R, we can associate a cumulative distribution function setting λ = ν(R) and F (dy) =
ν(dy)/λ and construct a ν-compound Poisson process. The measure ν satisfies

ν(A) = E

(
N1∑

n=1

11Yn∈A

)
=

∫

A

ν(dx).

By application of results on processes with independent increments, we obtain that, for any α ∈ R such
that

∫∞
−∞ |eαx − 1|ν(dx) < ∞ the process

exp
(

αXt − t

∫ ∞

−∞
(eαx − 1)ν(dx)

)

is a martingale.
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1.4.1 Random Measure

Let (Yn, Tn) be a sequence of random variables, with 0 < T1 < · · · < Tn < · · ·. We now introduce the
random measure N =

∑
n δTn,Yn

on R+×R, i.e. N(ω, [0, t]×A) =
∑Nt(ω)

n=1 11Yn(ω)∈A. As usual, we shall
omit the ω, and write only N([0, t] × A) or N(dt, dx). We shall also write Nt(dx) = N([0, t], dx). We
denote by (f ∗N)t the integral

∫ t

0

∫

R
f(x)N(ds, dx) =

∫

R
f(x)Nt(dx) =

Nt∑

k=1

f(Yk) .

In particular

Xt =
∫ t

0

∫

R
xN(ds, dx)

Proposition 1.4.2 If ν(|f |) < ∞, the process

Mf
t = (f ∗N)t − tν(f) =

∫ t

0

∫

R
f(x)(N(ds, dx)− dsν(dx))

is a martingale.

Proof: Indeed, the process Zt =
∑Nt

k=1 f(Yk) is a ν̂ compound Poisson process, where ν̂, defined as

ν̂(A) = E(
N1∑

n=1

11f(Yn)∈A) =
∫

A

f(y)ν(dy)

is the image of ν by f . Hence, if E(f(Y1)) < ∞, the process Zt − tλE(f(Y1)) = Zt − t
∫

f(x)ν(dx) is a
martingale. C

Using again that Z is a compound Poisson process, it follows that the process

exp

(
Nt∑

k=1

f(Yk)− t

∫ ∞

−∞
(ef(x) − 1)ν(dx)

)
= exp

(∫ t

0

∫

R
f(x)N(ds, dx)− t

∫ ∞

−∞
(ef(x) − 1)ν(dx)

)

(1.6)
is a martingale

1.4.2 Change of Measure

Let X be a ν-compound Poisson process under P, we present some particular probability measures Q
equivalent to P such that, under Q, X is still a compound Poisson process.

Let ν̃ a positive finite measure on R absolutely continuous w.r.t. ν, and λ̃ = ν̃(R) > 0. Let

Lt = exp


t(λ− λ̃) +

∑

s≤t

ln
(

dν̃

dν

)
(∆Xs)


 .

Applying the martingale property (1.6) for f = ln
(

dν̃
dν

)
, the process L is a martingale. SetQ|Ft = LtP|Ft .

Proposition 1.4.3 Under Q, the process X is a ν̃-compound Poisson process.

Proof: First we find the law of the r.v. Xt under Q. From the definition of Q

EQ(eiuXt) = EP (eiuXt exp

(
t(λ− λ̂) +

Nt∑

k=1

f(Yk)

)

=
∞∑

n=0

e−λt (λt)n

n!
et(λ−λ̂)

(
EP (eiuY1+f(Y1))

)n

=
∞∑

n=0

e−λt (λt)n

n!
et(λ−λ̂)

(
EP (

dν̂

dν
(Y1)eiuY1)

)n

=
∞∑

n=0

(λt)n

n!
e−tλ̂

(
1
λ

∫
eiuydν̂(y)

)n

= exp t

∫
(eiuy − 1)dν̂(y)
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It remains to check that X is with independent and stationary increments under Q. By Bayes formula,
for t > s

EQ(eiu(Xt−Xs)|Fs) =
1
Ls
EP (Lte

iu(Xt−Xs)|Fs)

= exp
(

(t− s)
∫

(eiux − 1)ν̃(dx)
)

.

C
We can also write this theorem in terms of the random measure N. Let

Lt = exp
(∫

R
f(x)Nt(dx)− t

∫ ∞

−∞
(ef(x) − 1)ν(dx)

)

= exp
(∫ t

0

∫

R
f(x)N(ds, dx)− t

∫ ∞

−∞
(ef(x) − 1)ν(dx)

)

be a martingale. Define dQ|Ft
= LtdP|Ft

. Then
∫ t

0

∫

R
(N(ds, dx)− ds ef(x)ν(dx))

is a Q-martingale.

1.5 A Specific Example: Processes with a single jump

Processes with a single jump are of great interest in Credit risk. We give some examples and we state
some easy rules of computation. The reader can refer to the lecture of M. Rutkowski in this volume for
more informations.

1.5.1 Elementary example

Let N be a Poisson process with deterministic intensity λ and Ht = Nt∧T1 . The process Mt : =
Nt −

∫ t

0
λ(s)ds being a martingale, the stopped process Md

t = Ht −
∫ t∧T1

0
λ(s)ds is a martingale. The

quadratic variation process of Md is equal to Ht.

1.5.2 Cox Processes

Let F be a given filtration and λ an F-adapted non-negative process. Let Θ be a random variable,
independent of F with an unit exponential law. We define

τ = inf{t :
∫ t

0

λsds > Θ}

Then {τ > t} : = {∫ t

0
λsds < Θ}, hence

P(τ > t) = P(
∫ t

0

λsds < Θ) = E
(

exp
(
−

∫ t

0

λsds

))

(We have used that if X and Y are independent r.v.’s, then P(X < Y ) = E(Φ(X)) with Φ(x) = P(x <
Y ).

We also obtain

P(τ > t|Ft) = P(
∫ t

0

λsds < Θ|Ft) = exp
(
−

∫ t

0

λsds

)

(we use that if Y is independent of G and if X is G measurable, P(X < Y |G) = Ψ(X) with Ψ(x) =
P(x < Y ).

Proposition 1.5.1 11τ≤t −
∫ t∧τ

0
λsds is a Ft ∨ σ(τ ∧ t) martingale.

Proof: See Rutkowski’s lecture.C
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1.5.3 Quadratic variation

In the so-called intensity approach in a credit risk setting, one works under the following hypothesis:
there exists a non-negative process λ such that

Mt = Ht −
∫ t∧τ

0

λsds = Ht − Λt∧τ = Ht −
∫ t

0

(1−Hs)λsds

is a martingale. The quadratic variation process of M is H: indeed

M2
t −Ht = Ht − 2HtΛt∧τ + Λ2

t∧τ −Ht

= Λt∧τ (Λt∧τ − 2Ht) := Xt

Now, if Zt = Λt∧τ , then dZt = (1 −Ht)λtdt. Integration by parts formula leads to, using that Z is a
bounded variation continuous process

dXt = (Zt − 2Ht)dZt + Zt(dZt − 2dHt) = −2Zt(dHt − dZt)− 2HtdZt

= −2Zt(dHt − dZt) = −2ZtdMt

since
HtdZt = Ht(1−Ht)λtdt = 0 .

Hence, X is a martingale, and ∆Ht = ∆M2
t .



Chapter 2

Lévy Processes

2.1 Infinitely Divisible Random Variables

2.1.1 Definition

A random variable X taking values in R is infinitely divisible if its characteristic function µ̂ satisfies

∀u, µ̂(u) := E(eiuX) = (µ̂n(u))n

where µ̂n is a characteristic function.
In other terms, a random variable X is infinitely divisible if, for any n, X has the same law as

∑n
i=1 Xi,n

where Xi,n, i = 1, · · ·n are i.i.d. random variables.

Example 2.1.1 A Gaussian variable and a Poisson variable are examples of infinitely divisible random
variables. Indeed, for a Gaussian variable

µ̂(u) = exp(ium− 1
2
σ2u2) =

(
exp(iu

m

n
− 1

2
σ2

n
u2)

)n

= (µ̂n(u))n

where µ̂n(u) = exp(ium
n − 1

2
σ2

n u2) is the c.f. of a N (m
n , σ2

n ) r.v.
Cauchy laws and Gamma laws are also infinitely divisible (see below).

Definition 2.1.1 A Lévy measure is a positive measure ν on R \ {0} such that
∫

R\{0}
min(1, ‖x‖2)ν(dx) < ∞ .

In what follows, we shall assume that ν does not charge the set {0}, so that we shall write
∫
R f(x)ν(dx)

instead of
∫
R\{0} f(x)ν(dx) for suitable functions f .

Proposition 2.1.1 (Lévy-Khintchine representation.)
If X is an infinitely divisible random variable with characteristic function µ̃, there exists a triple
(m,σ2, ν) where m ∈ R and ν is a Lévy measure such that

µ̂(u) = exp
(

ium− 1
2
σ2u2 +

∫

R
(eiux − 1− iux11{|x|≤1})ν(dx)

)
.

Note that the integral
∫
R(e

iux − 1 − iux11{|x|≤1})ν(dx) converges, due to the assumptions on ν. If the
integral

∫ |x|11{|x|≤1}ν(dx) converges,

µ̂(u) = exp
(

ium0 − 1
2
σ2u2 +

∫

R
(eiux − 1)ν(dx)

)

with m0 = m− ∫
x11{|x|≤1}ν(dx). In that case, we shall say that the LK representation is written in a

reduced form

19
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Example 2.1.2 a) Gaussian law. The characteristic triple of the Gaussian lawN (m,σ2) is (m,σ, 0).
b) Poisson law The characteristic triple of a Poisson law of parameter λ is (0, 0, λδ1(dx)).
c) Cauchy law. The standard Cauchy law has the characteristic function

exp(−c|u|) = exp
(

c

π

∫ ∞

−∞
(eiux − 1)x−2dx

)
.

Its reduced form characteristic triple is (0, 0, π−1x−2dx).
d) Gamma law. The Gamma law Γ(a, ν) has the characteristic function

(1− iu/ν)−a = exp
(

a

∫ ∞

0

(eiux − 1)e−νx dx

x

)
.

Its reduced form characteristic triple is (0, 0, 11{x>0} ax−1e−νxdx).

2.1.2 Stable Random Variables

A random variable is stable if for any a > 0, there exist b > 0 and c ∈ R such that [µ̂(u)]a = µ̂(bu) eicu .
A stable r.v. is infinitely divisible.

Proposition 2.1.2 The characteristic function of a stable law can be written

µ̂(u) =





exp(ibu− 1
2σ2u2), forα = 2

exp (−γ|u|α[1− iβ sgn(u) tan(πα/2)]) , forα 6= 1, 6= 2
exp (γ|u|(1− iβv ln |u|)) , α = 1

,

where β ∈ [−1, 1]. For α 6= 2, the Lévy measure of a stable law is absolutely continuous with respect to
the Lebesgue measure, with density

ν(dx) =
{

c+x−α−1dx if x > 0
c−|x|−α−1dx if x < 0 .

Here c± are non-negative real numbers, such that β = (c+ − c−)/(c+ + c−).
More precisely,

c+ =
1
2
(1 + β)

αγ

Γ(1− α) cos(απ/2)
,

c− =
1
2
(1− β)

αγ

Γ(1− α) cos(απ/2)
.

Example 2.1.3 A Gaussian variable is stable with α = 2. The Cauchy law is stable with α = 1.

2.2 Definition and Main Properties of Lévy Processes

2.2.1 Definition

An real-valued process X such that X0 = 0 is a Lévy process if
a- for every s, t, 0 ≤ s ≤ t < ∞, the r.v. Xt −Xs is independent of FX

s

b- for every s, t the r.v’s Xt+s −Xt and Xs have the same law.
c- X is continuous in probability, i.e., P (|Xt −Xs| > ε) → 0 when s → t for every ε > 0.

Brownian motion, Poisson process and compound Poisson processes are examples of Lévy processes.

2.2.2 Poisson Point Process, Lévy Measure

For every Borel set Λ ∈ R, such that 0 /∈ Λ̄, where Λ̄ is the closure of Λ, we define

NΛ
t =

∑

0<s≤t

11Λ(∆Xs),

to be the number of jumps before time t which take values in Λ.
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Definition 2.2.1 The σ-additive measure ν defined on R \ {0} by

ν(Λ) = E(NΛ
1 )

is called the Lévy measure of the process X.

• If ν(R \ {0}) < ∞, the process X has a finite number of jumps in any finite time interval. In finance,
when ν(R \ {0}) < ∞, one refers to finite activity.

• If ν(R \ {0}) = ∞, the process corresponds to infinite activity.

Proposition 2.2.1 Let Λ be a Borel set and assume ν(Λ) < ∞.
a) The process NΛ defined as

NΛ
t =

∑

0<s≤t

11Λ(∆Xs)

is a standard Poisson process with constant intensity ν(Λ).
b) Let Γ be another Borel set with ν(Γ) < ∞. The processes NΛ and NΓ are independent if ν(Γ∩Λ) = 0,
in particular if Λ and Γ are disjoint.

The map Λ → NΛ
t (ω) defines a σ-finite measure on Rd denoted by Nt(ω, dx). Let Λ be a Borel set

of R with 0 /∈ Λ̄, and f a Borel function defined on Λ. We have
∫

Λ

f(x)Nt(ω, dx) =
∑

0<s≤t

f(∆Xs(ω))11Λ(∆Xs(ω)) .

As usual, we shall omit the ω and write Nt(dx) for Nt(ω, dx). The process
∫
Λ

f(x)Nt(dx) is a Lévy
process.
If f11Λ ∈ L1(dν), then

E
(∫

Λ

f(x)Nt(dx)
)

= t

∫

Λ

f(x)ν(dx)

and, if f11Λ ∈ L1(dν) ∩ L2(dν),

E

[(∫

Λ

f(x)Nt(dx)− t

∫

Λ

f(x)ν(dx)
)2

]
= t

∫

Λ

f2(x)ν(dx)

If f is bounded and vanishes in a neighborhood of 0,

E(
∑

0<s≤t

f(∆Xs)) = t

∫

R
f(x)ν(dx) ,

and, for any bounded predictable process H

E


∑

s≤t

Hsf(∆Xs)


 = E

[∫ t

0

dsHs

∫

R
f(x)dν(x)

]
.

More generally, if H is a predictable function (i.e. H : Ω × R+ × Rd → R is P × B measurable) such
that E

[∫ t

0
ds

∫
dν(x)|Hs(·, x)|

]
< ∞, then

E


∑

s≤t

Hs(·,∆Xs)


 = E

[∫ t

0

ds

∫
dν(x)Hs(·, x)

]
.

Let X be a Lévy process with jumps bounded by 1. Then, E(|Xt|n) < ∞ for any n = 1, 2,. The process
Zt = Xt − E(Xt) is a martingale with decomposition Zt = Zc

t + Zd
t where Zc is a martingale with

continuous path (in fact a Brownian motion up to a multiplicative constant) and Zd
t =

∫
xNt(dx) −

tν(dx)
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Proposition 2.2.2 (Lévy-Itô’s decomposition.) If X is a Lévy process, it can be decomposed into

Xt = αt + σBt +
∫

|x|<1

x (Nt(dx)− tν(dx)) +
∫

|x|≥1

xNt(dx)

Proposition 2.2.3 (Exponential formula.)
Let X be a Lévy process and ν its Lévy measure. For all t and all Borel function f defined on

R+ × Rd such that
∫ t

0
ds

∫
R |1− ef(s,x)|ν(dx) < ∞, one has

E


exp


∑

s≤t

f(s, ∆Xs)11{∆Xs 6=0}





 = exp

(∫ t

0

ds

∫
(ef(s,x) − 1)ν(dx)

)
.

Warning 1 The above property does not extend to predictable functions.

2.2.3 Lévy-Khintchine Representation

If X is a Lévy process, then, for any t, the r.v. Xt is infinitely divisible.

Proposition 2.2.4 Let X be a Lévy process. There exists m,σ ∈ R, a Lévy measure ν such that for
u ∈ R

E(exp(iuX1)) = exp
(

ium− 1
2
σ2u2 +

∫

R
(eiux − 1− iux11|x|≤1)ν(dx)

)
(2.1)

It can be proved that the Lévy measure is indeed the one defined in Definition (2.2.1)

Definition 2.2.2 The complex valued continuous function Φ such that

E [exp(iuX1)] = exp(−Φ(u))

is called the characteristic exponent (sometimes the Lévy exponent) of the Lévy process X.
If E

[
eλX1

]
< ∞ for any λ > 0, the function Ψ defined on [0,∞[, such that

E [exp(λX1)] = exp(Ψ(λ))

is called the Laplace exponent of the Lévy process X.
It follows that, if Ψ(λ) exists,

E [exp(iuXt)] = exp(−tΦ(u)), E [exp(λXt)] = exp(tΨ(λ))

and

Ψ(λ) = −Φ(−iλ) .

From LK formula, the characteristic exponent and the Laplace exponent can be computed as follows:

Φ(u) = −ium +
1
2
σ2u2 −

∫
(eiux − 1− iux11|x|≤1)ν(dx)

Ψ(λ) = λm +
1
2
σ2λ2 +

∫
(eλx − 1− λx11|x|≤1)ν(dx) .

• If σ = 0 and ν(R) < ∞, the process X is a compound Poisson process with “drift”.
• If σ = 0, ν(R) = ∞ and

∫
|x|≤1

|x|ν(dx) < ∞, the paths of X are of bounded variation on any finite
time interval.
• If σ = 0, ν(R) = ∞ and

∫
|x|≤1

|x|ν(dx) = ∞, the paths of X are no longer of bounded variation on
any finite time interval.
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2.2.4 Martingales

Proposition 2.2.5 Let X be a Lévy process.
(i) If E(|Xt|) < ∞, then the process Xt − E(Xt) is a martingale.
(ii) For any u, the process Zt(u) : = eiuXt

E(eiuXt )
is a martingale.

(iii) If E(eλXt) < ∞ , the process eλXt

E(eλXt )
is a martingale

Proof: (i)From independence properties E(Xt −Xs|Ft) = E(Xt −Xs).
(ii) Using independence of the increments,

E(Zt(u)|Fs) =
eiuXs

E(eiuXt)
E(eiu(Xt−Xs)) = eiuXs

E(eiu(Xt−Xs))
E(eiu(Xt−Xs))E(eiuXs)

= Zs(u)

and the result follows.

2.2.5 Itô’s formula

Let X be a Lévy process with decomposition

dXt = αdt + σdBt +
∫

|x|<1

x (N(dt, dx)− ν(dx)dt) +
∫

|x|≥1

xN(dt, dx)

Let Yt = f(t, Xt) where f is a C1,2 function. Then, Y is a semi-martingale

dYt = ∂tf(t,Xt)dt + ∂fx(t, Xt) (αdt + σdBt) +
1
2
σ2∂xxf(t,Xt) dt

+
∫

|x|<1

(f(t, Xt− + x)− f(t,Xt−)− x∂xf(t,Xt−)) ν(dx)dt

+
∫

|x|<1

(f(t, Xt− + x)− f(t,Xt−)) (N(dt, dx)− ν(dx)dt)

+
∫

|x|≥1

(f(t, Xt− + x)− f(t,Xt−))N(dt, dx)

Comments 2.2.1 As a consequence of the semi-martingale property, if F is a C2 function , then, the
series ∑

s≤t

|F (∆Xs)− F (0)− F ′(0)∆Xs|

converges.

2.2.6 Representation Theorem

Proposition 2.2.6 Let X be a Lévy process and FX its natural filtration. Let M be a locally square
integrable martingale with M0 = m. Then, there exists a family (ϕ,ψ) of predictable processes such that

∫ t

0

|ϕs|2ds < ∞, a.s.,
∫ t

0

∫

R
|ψs(x)|2ds ν(dx) < ∞, a.s.

and

Mt = m +
∫ t

0

ϕsdWs +
∫ t

0

∫

R
ψs(x)(N(ds, dx)− ds ν(dx)) .

2.3 Change of measure

2.3.1 Esscher transform

Assume that E(eλXt) < ∞. The process Lt = eλXt

E(eλXt )
is then a strictly positive martingale with

expectation equal to 1. We define a probability Q, equivalent to P by the formula

Q|Ft =
eλXt

E(eλXt)
P |Ft . (2.2)
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This particular choice of measure transformation, (called an Esscher transform) preserves the Lévy pro-
cess property, as we prove now.

Proposition 2.3.1 Let X be a P -Lévy process with parameters (m,σ, ν). Let λ be such that E(eλXt) <
∞ and suppose Q is defined by (2.2). Then X is a Lévy process under Q, and if the Lévy-Khintchine
decomposition of X under P is (2.1), then the Lévy-Khintchine decomposition of X under Q is

EQ(exp(iuX1)) = exp
(

ium(λ) − 1
2
σ2u2 +

∫

R
(eiux − 1− iux11|x|≤1)ν(λ)(dx)

)

with

m(λ) = m + σ2λ +
∫

|x|≤1

x(eλx − 1)ν(dx)

ν(λ)(dx) = eλxν(dx) .

Proof: The characteristic exponent of X under Q is obtained from

e−tΦ(λ)(u) = EQ(eiuXt) =
EP (ei(u−iλ)Xt)
EP (eλXt)

= e−tΦ(u−iλ)etΦ(−iλ)

hence,
Φ(λ)(u) = Φ(u− iλ)− Φ(−iλ) .

If E(e(λ+γ)X1) < ∞, the Laplace exponent of X under Q is obtained from

etΨ(λ)(γ) = EQ(eγXt) =
EP (e(γ+λ)Xt)
EP (eλXt)

hence, Ψ(λ)(γ) = Ψ(γ + λ)−Ψ(λ) .

2.3.2 General case

More generally, any density (Lt, t ≥ 0) which is a positive martingale can be used to define an equivalent
change of probability. From representation martingales property, any martingale can be written as

dLt = ϕ̃tdWt +
∫

R
ψ̃t(x)[N(dt, dx)− dtν(dx)] .

From the strict positivity of L, there exists ϕ,ψ such that ϕ̃t = Lt−ϕt, ψ̃t = Lt−(eψ(t,x)− 1), hence the
process L satisfies

dLt = Lt−

(
ϕtdWt +

∫
(eψ(t,x) − 1)[N(dt, dx)− dtν(dx)]

)
(2.3)

Proposition 2.3.2 Let Q|Ft = Lt P |Ft where L is defined in (2.3). With respect to Q,

(i) Wϕ
t

def
= Wt −

∫ t

0
ϕsds is a Brownian motion

(ii) The process N is compensated by eψ(s,x)dsν(dx) meaning that for any Borel function h such
that ∫ T

0

∫

R
|h(s, x)|eψ(s,x)dsν(dx) < ∞ ,

the process ∫ t

0

∫

R
h(s, x)

(
N(ds, dx)− eψ(s,x)dsν(dx)

)

is a local martingale.

In this general setting the Lévy property is lost
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2.4 Exponential Lévy Processes as Stock Price Processes

In a Black and Scholes model, prices can be written as an exponential of a drifted Brownian motion, or
as a Doléans-Dade martingale of a drifted Brownian motion. We prove here that this property extends
to Lévy processes.

Proposition 2.4.1 Let X be a (m,σ2, ν) Lévy process.

(i) Let St = eXt be the ordinary exponential of the process X. The stochastic logarithm of S (i.e., the
process Y which satisfies St = E(Y )t) is a Lévy process and is given by

Yt = L(S)t = Xt +
1
2
σ2t−

∑

0<s≤t

(
1 + ∆Xs − e∆Xs

)
.

The Lévy characteristics of Y are

mY = m +
1
2
σ2 +

∫ (
(ex − 1)11{|ex−1|≤1} − x11{|x|≤1}

)
ν(dx)

σ2
Y = σ2

νY (A) = ν({x : ex − 1 ∈ A}) =
∫

11A(ex − 1) ν(dx) .

(ii) Let Zt = E(X)t the Doléans-Dade exponential of X. If Z > 0, the ordinary logarithm of Z is a
Lévy process L given by

Lt = ln(Zt) = Xt − 1
2
σ2t +

∑

0<s≤t

(ln(1 + ∆Xs)−∆Xs) .

Its Lévy characteristics are

mL = m− 1
2
σ2 +

∫ (
ln(1 + x)11{| ln(1+x)|≤1} − x11{|x|≤1}

)
ν(dx)

σ2
L = σ2

νL(A) = ν({x : ln(1 + x) ∈ A}) =
∫

11A(ln(1 + x)) ν(dx)

Proof: We only prove part (i) and leave part (ii) to the reader. Note that the series
∑

0<s≤t(1+∆Xs−
e∆Xs) is absolutely convergent by the result stated in Comment 2.2.1.
The process Yt = Xt+ 1

2σ2t−∑
0<s≤t

(
1 + ∆Xs − e∆Xs

)
is a Lévy process, σ2

Y = σ2, and ∆Yt = e∆Xt−1.
Using the equality

∑

s≤t

(
1 + ∆Xs − e∆Xs

)
=

∫ t

0

∫

R
(1 + x− ex)N(ds, dx)

we obtain that the Lévy-Itô decomposition of Y is (where mY is defined in Proposition 2.4.1)

Yt = mt + σBt +
∫ t

0

∫

{|x|<1}
xÑ(ds, dx) +

∫ t

0

∫

{|x|>1}
xN(ds, dx)

+
1
2
σ2t−

∫ t

0

∫
(1 + x− ex)N(ds, dx)

= mY t + σBt +
∫ t

0

∫
(ex − 1)11{|ex−1|<1}Ñ(ds, dx)

+
∫ t

0

∫
(ex − 1)11{|ex−1|>1}N(ds, dx)

= mY t + σBt +
∫ t

0

∫
y11{|y|<1}ÑY (ds, dy) +

∫ t

0

∫
y11{|y|>1}NY (ds, dy) .

The result follows.C
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2.4.1 Option pricing with Esscher Transform

Let St = S0e
rt+Xt where X is a Lévy process under the historical probability P .

Proposition 2.4.2 We assume that E(eαX1) < ∞ on some open interval (a, b) with b−a > 1 and that
there exists a real number θ such that Ψ(θ) = Ψ(θ + 1). The process e−rtSt = S0e

Xt is a martingale
under the probability Q defined as Q|Ft

= ZtP |Ft
where Zt = eθXt

E(eθXt )

Proof: The process X is a Q-Lévy process, hence eXt/EQ(eXt) is a Q- martingale. Now,

EQ(eXt) = EP (e(θ+1)Xt)
1

E(eθXt)
= eΨ(θ+1) t 1

eΨ(θ) t
= 1

The martingale property follows.C

Exercise 2.4.1 Check that, if St = S0e
µt+σBt , the previous Proposition gives the well know result of

change of probability in a Black Scholes model.

Hence, the value of a contingent claim h(ST ) can be obtained, assuming that the emm chosen by the
market is Q as

Vt = e−r(T−t)EQ(h(ST )|Ft) = e−r(T−t) 1
E(eθXt)

EP (h(yer(T−t)+XT−teθXT−t)
∣∣
y=St

Note that the dynamics of S are

dSt = St−

(
rdt + σdWt +

∫

R
(ex − 1)ÑX(dt, dx)

)

2.4.2 A Differential Equation for Option Pricing

Let St = S0e
rt+Xt where X is a (m,σ2, ν)-Lévy process under the risk-neutral probability Q. Assume

that
V (t, S) = e−r(T−t)EQ(H(ST )|St = S)

belongs to C1,2. Then

rV =
1
2
σ2∂SSV + ∂tV + rS∂SV +

∫
(V (t, Sey)− V (t, S)− S(ey − 1)∂SV (t, S)) ν(dy) .

Introducing the change of variables τ = T − t, x = ln(S/K) + rτ , and the function h(x) = H(exK)/K,
then u(τ, x) = er(T−t)V (t, S)/K = EQ(h(x + Xτ )) satisfies

∂τu = m∂xu +
1
2
σ2∂xxu +

∫ (
u(τ, x + y)− u(τ, x)− y11|y|<1∂xu(τ, x)

)
ν(dy) .

2.4.3 Put-call Symmetry

Let us study a financial market with a riskless asset with constant interest rate r and dividend yield
δ, and a price process St = S0e

Xt where X is a Lévy process such that e−(r−δ)tSt is a martingale. In
terms of characteristic exponent, this condition means that ψ(1) = r − δ, and the characteristic triple
of X is such that

m = r − δ − σ2/2−
∫

(ey − 1− y11{|y|≤1})ν(dy) .

Then, the following symmetry between call and put prices holds:

CE(S0,K, r, δ, T, ψ) = PE(K, S0, δ, r, T, ψ̃) .
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2.5 Subordinators

A Lévy process which takes values in [0,∞[ (i.e. with increasing paths) is a subordinator. In this case,
the parameters in the Lévy-Khintchine decomposition are m ≥ 0, σ = 0 and the Lévy measure ν is a
measure on ]0,∞[ with

∫
]0,∞[

(1 ∧ x)ν(dx) < ∞. The Laplace exponent can be expressed as

Φ(u) = δu +
∫

]0,∞[

(1− e−ux)ν(dx)

where δ ≥ 0.

Definition 2.5.1 Let Z be a subordinator and X an independent Lévy process. The process X̃t = XZt

is a Lévy process, called subordinated Lévy process.

Example 2.5.1 Compound Poisson process. A compound Poisson process with Yk ≥ 0 is a sub-
ordinator.

Example 2.5.2 Gamma process. The Gamma process is an increasing Lévy process, hence a sub-
ordinator, with one sided Lévy measure

1
x

exp(−x

γ
)11x>0 .

Example 2.5.3 Let W be a BM, and

Tr = inf{t ≥ 0 : Wt ≥ r} .

The process (Tr, r ≥ 0) is a stable (1/2) subordinator, its Lévy measure is 1√
2π x3/2 11x>0dx. Let B be a

BM independent of W . The process BTt is a Cauchy process, its Lévy measure is dx/(πx2).

Proposition 2.5.1 (Changes of Lévy characteristics under subordination.) Let X be a (mX , σX , νX)
Lévy process and Z be a subordinator with drift β and Lévy measure νZ , independent of X.The process
X̃t = XZt is a Lévy process with characteristic exponent

Φ(u) = iãu +
1
2
Ã(u)−

∫

R
(eiux − 1− iux11|x|≤1)ν̃(dx)

with

ã = βaX +
∫

R+

∫

R
νZ(ds)11|x|≤1xP (Xs ∈ dx)

Ã = βAX

ν̃(dx) = βνXdx +
∫

R+
νZ(ds)P (Xs ∈ dx) .

Example 2.5.4 Normal Inverse Gaussian. The NIG Lévy process is a subordinated process with
Lévy measure δα

π
eβx

|x| K1(α|x|)dx.

2.6 Examples of Lévy Processes

2.6.1 Variance-Gamma Model

The variance Gamma process is a Lévy process where Xt has a Variance Gamma law VG(σ, ν, θ). Its
characteristic function is

E(exp(iuXt)) =
(

1− iuθν +
1
2
σ2νu2

)−t/ν

.

The Variance Gamma process can be characterized as a time changed BM with drift as follows: let W
be a BM, γ(t) a G(1/ν, 1/ν) process. Then

Xt = θγ(t) + σWγ(t)
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is a VG(σ, ν, θ) process. The variance Gamma process is a finite variation process. Hence it is the
difference of two increasing processes. Madan et al. [24, 23] showed that it is the difference of two
independent Gamma processes

Xt = G(t; µ1, γ1)−G(t; µ2, γ2) .

Indeed, the characteristic function can be factorized

E(exp(iuXt)) =
(

1− iu

ν1

)−t/γ (
1 +

iu

ν2

)−t/γ

with

ν−1
1 =

1
2

(
θν +

√
θ2ν2 + 2νσ2

)

ν−1
2 =

1
2

(
θν −

√
θ2ν2 + 2νσ2

)

The Lévy density of X is

1
γ

1
|x| exp(−ν1|x|) for x < 0

1
γ

1
x

exp(−ν2x) for x > 0 .

The density of X1 is

2e
θx
σ2

γ1/γ
√

2πσΓ(1/2)

(
x2

θ2 + 2σ2/γ

) 1
2γ− 1

4

K 1
γ− 1

2
(

1
σ2

√
x2(θ2 + 2σ2/γ))

where Kα is the modified Bessel function.
Stock prices driven by a Variance-Gamma process have dynamics

St = S0 exp
(

rt + X(t;σ, ν, θ) +
t

ν
ln(1− θν − σ2ν

2
)
)

From E(eXt) = exp
(
− t

ν ln(1− θν − σ2ν
2 )

)
, we get that Ste

−rt is a martingale. The parameters ν and
θ give control on skewness and kurtosis. See Madan et al. for more comments.

The CGMY model, introduced by Carr et al. [10] is an extension of the Variance-Gamma model.
The Lévy density is { C

xY +1 e−Mx x > 0
C

|x|Y +1 eGx x < 0

with C > 0,M ≥ 0, G ≥ 0 and Y < 2, Y /∈ Z.
If Y < 0, there is a finite number of jumps in any finite interval, if not, the process has infinite activity.
If Y ∈ [1, 2[, the process is with infinite variation.

2.6.2 Double Exponential Model

The Model

A particular Lévy model is the double exponential jumps model, introduced by Kou [18] and Kou and
Wang [19, 20]. In this model

Xt = µt + σWt +
Nt∑

i=1

Yi ,

where W is a Brownian motion independent of N and
∑Nt

i=1 Yi is a compound Poisson process. The
r.v’s Yi are i.i.d., independent of N and W and the density of the law of Y1 is

f(x) = pη1e
−η1x11{x>0} + (1− p)η2e

η2x11{x<0} .

The Lévy measure of X is ν(dx) = λf(x)dx.
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Here, ηi are positive real numbers, and p ∈ [0, 1]. With probability p (resp. (1− p)), the jump size
is positive (resp. negative) with exponential law with parameter η1 (resp η2).

It is easy to prove that

E(Y1) =
p

η1
− 1− p

η2
, var (Y1) =

p

η2
1

+
1− p

η2
2

+ p(1− p)
(

1
η1

+
1
η2

)2

and that, for η1 > 1, E(eY1) = p η1
η1−1 + (1− p) η2

1+η2
. Moreover

E(eiuXt) = exp
(

t

{
−1

2
σ2u2 + ibu + λ

(
pη1

η1 − iu
+

(1− p)η2

η2 + iu
− 1

)})
,

where b = µ + λE(Y111|Y1|≤1) = µ + λp
(

1−e−η1

η1
− e−η1

)
− λ(1 − p)

(
1−e−η2

η2
− e−η2

)
. The Laplace

exponent of X, i.e., the function Ψ such that E(eβXt) = exp(Ψ(β)t) is defined for −η2 < β < η1 as

Ψ(β) = βµ +
1
2
β2σ2 + λ(

pη1

η1 − β
+

(1− p)η2

β + η2
− 1) .

Change of probability

Let St = S0e
rt+Xt where Xt = (µ − 1

2σ2)t + σWt +
∑Nt

i=1 Yi. Then, setting Vi = eYi , using an Escher
transform, the process Ste

−rt will be a Q martingale with Q|Ft = LtdP|Ft and Lt = eαXt

E(eαXt )
, for α such

that Ψ(α) = Ψ(α+1). Under Q, the Lévy measure of X is ν̂(dx) = eαxν(dx) = eαxλf(x)dx = λ̂f̂(x)dx
where, after some standard computations

f̂(x) =
(
p̂ η̂1e

−η̂1x11{x>0} + (1− p̂)η̂2e
η̂2x11{x<0}

)
.

η̂1 = η1 − α , η̂2 = η2 + α

λ̂ = λ

(
pη1

η1 − α
+

(1− p)η2

η2 + α

)

p̂ = pη1
η2 + α

αpη1 + η2(η1 − α + αpη1)

In particular, the process X is a double exponential process under Q.

Hitting times

Proposition 2.6.1 For any x > 0

P(τb ≤ t, Xτb
− b ≥ x) = e−η1x P(τb ≤ t, Xτb

− b ≥ 0)

Proof:
The infinitesimal generator of X is

Lf =
1
2
σ2∂xxf + µ∂xf + λ

∫

R
(f(x + y)− f(x))ν(dx)

Let Tx = inf{t : Xt ≥ x}. Then Kou and Wang [19] establish that, for r > 0 and x > 0,

E(e−rTx) =
η1 − β1

η1

β2

β2 − β1
e−xβ1 +

β2 − η1

η1

β1

β2 − β1
e−xβ2

E(e−rTx11XTx−x>y) = eη1y η1 − β1

η1

β2 − η1

β2 − β1

(
e−xβ1 − e−xβ2

)

E(eθXTx−rTx) = eθx

(
η1 − β1

β2 − β1

β2 − θ

η1 − θ
e−xβ1 + (

β2 − η1

β2 − β1

β1 − θ

η1 − θ
e−xβ2

)

where 0 < β1 < η1 < β2 are roots of G(β) = r. The method is based on finding an explicit solution of
Lu = ru where L is the infinitesimal generator of the process X.
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Chapter 3

Mixed Processes

3.1 Definition

A mixed process is a process X with dynamics

Xt = X0 +
∫ t

0

as ds +
∫ t

0

σsdWs +
∫ t

0

ϕsdMs ,

where W is a standard Brownian motion and M is the compensated martingale of an inhomogeneous
Poisson process N , i.e., Mt = Nt−

∫ t

0
λsds. Here the processes W and M are independent and adapted

with respect to a filtration F. The coefficients a, σ, ϕ are assumed to be F-predictable processes,
satisfying integrability conditions, i.e.,

∫ t

0

|as|ds < ∞,

∫ t

0

σ2
sds < ∞,

∫ t

0

ϕ2
sλsds < ∞,

∫ t

0

|ϕs|λsds < ∞ .

The process X is a special semi-martingale, its continuous martingale part is Xc
t =

∫ t

0
σsdWs. The

jump times of the process X are those of N , the jump of X is ∆Xt = Xt −Xt− = ϕt∆Nt.
The predictable bracket of X is

〈X〉t =
∫ t

0

σ2
sds +

∫ t

0

λsϕ
2
sds

The quadratic variation process is [X]t =
∫ t

0
σ2

sds +
∫ t

0
ϕ2

sdNs. If X and Y be two mixed processes

dXt = atdt + σtdWt + ϕtdMt ,

dYt = ãtdt + σ̃tdWt + ϕ̃tdMt .

then, the covariation process is d[X, Y ]t = σtσ̃tdt + ϕtϕ̃tdNt and the predictable bracket is d〈X, Y 〉t =
(σtσ̃t + λϕtϕ̃t)dt.

Remark 3.1.1 One can extend this definition to the case where M is the compensated martingale of a
compound Poisson process. However, in that case, one has to introduce the random measure associated
with the compound process.

3.2 Itô’s Formula

3.2.1 One Dimensional Case

Let F be a C1,2 function, and
dXt = atdt + σtdWt + ϕtdMt .

Then,

F (t,Xt) = F (0, X0) +
∫ t

0

∂sF (s,Xs) ds +
∫ t

0

∂xF (s,Xs−)dXs

+
1
2

∫ t

0

∂xxF (s, Xs)σ2
s ds +

∑

s≤t

[F (s,Xs)− F (s,Xs−)− ∂xF (s,Xs−)∆Xs] . (3.1)

31



32 CHAPTER 3. MIXED PROCESSES

This formula can be written in different forms. An important form is the following, where the canonical
decomposition of the semi-martingale Y is given

F (t, Xt)− F (0, X0) =
∫ t

0

∂xF (s,Xs)σsdWs +
∫ t

0

[F (s, Xs− + ϕs)− F (s, Xs−)] dMs

+
∫ t

0

[
(∂tF + as∂xF +

1
2
σ2

s∂xxF )(s,Xs) + λs[F (s,Xs + ϕs)− F (s,Xs)− ∂xF (s, Xs)ϕs]
]

ds .

In the particular case of deterministic t coefficients a, σ, ϕ and λ, it follows that if F solves the
following IPDE

∂tF (t, x) + a(t)∂xF (t, x) +
1
2
σ2(t)∂xxF (t, x)

+ λ(t)[F (t, x + ϕ(t))− F (t, x)− ∂xF (t, x)ϕ(t)] = 0, dt a.s.

the process F (t,Xt) is a local martingale

3.3 Predictable Representation Theorem

Let Z be a square integrable F-martingale. There exist two predictable processes (ψ, γ) such that
Z = z + ψ ·W + γ ·M , with

∫ t

0

ψ2
sds < ∞ ,

∫ t

0

γ2
sλ(s)ds < ∞, a.s.

3.4 Change of probability

3.4.1 Exponential Martingales

Let γ and ψ be two predictable processes. The solution of

dLt = Lt−(ψtdWt + γtdMt)

is the strictly positive exponential local martingale

Lt = L0

∏

s≤t

(1 + γs∆Ns) e−
∫ t
0 γsλ(s)ds exp

(∫ t

0

ψsdWs − 1
2

∫ t

0

ψ2
sds

)

If γt > −1, the process L is sticly positive and can be written as

Lt = L0 exp
(∫ t

0

ln(1 + γs)dNs −
∫ t

0

λ(s)γsds +
∫ t

0

ψsdWs − 1
2

∫ t

0

ψ2
sds

)
.

3.4.2 Girsanov’s Theorem

If P and Q are equivalent probabilities, there exist two predictable processes ψ and γ, with γ > −1
such that the Radon-Nikodym density L is of the form

dLt = Lt−(ψtdWt + γtdMt) .

Then, the processes

W̃t = Wt −
∫ t

0

ψsds, M̃t = Mt −
∫ t

0

λ(s)γsds

are Q-martingales. The process W̃ is a Q-Brownian motion. Note that W̃ and M̃ can fail to be
independent.
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3.5 Hitting Times

Here, N is a standard Poisson process, with compensated martingale M . Let

dXt = adt + σdWt + ϕdMt, X0 = 0 .

Let us denote by T`(X), the first passage time of the process X at level `, for ` > 0 as T`(X) = inf{t ≥
0 : Xt ≥ `}.

The process Zt = exp(kXt − tg(k)) where

g(k) = ak +
1
2
σ2k(k − 1) + λ((1 + ϕ)k − 1− kϕ) . (3.2)

is a martingale When there are no positive jumps, i.e., ϕ < 0, XT`
= `, hence

E[exp(−g(k)T`)] = exp(−k`) .

Inverting the Lévy exponent g(k) we obtain

E(exp(−uT`)) = exp(−g−1(u) `),

where g−1(u) is the positive root of g(k) = u.

If the jump size is positive there is a non zero probability that XT`
is strictly greater than `. In this

case, we introduce the so-called overshoot K(`)

K(`) = XT`
− ` . (3.3)

The difficulty is to obtain the law of the overshoot.

3.6 Mixed Processes in Finance

The dynamics of the price are supposed to be given by

dSt = St−(btdt + σtdWt + φtdMt) (3.4)

or in closed form

St = S0 exp
(∫ t

0

bsds

)
E(φ?M)t E(σ?W )t .

In order that the price remains positive, one assumes that φt > −1.

3.6.1 Symmetry Formula

We now restrict our attention to the case of constant coefficients r, δ, σ, φ, λ) , and we establish the
symmetry formula, which gives the price of an European Call in terms of the price of an European Put.
We assume that, under Q,

dSt = St−((r − δ)dt + σdWt + φdMt)

where δ is a dividend (or, in case of currency, the foreign interest rate). In that case, the process
Zt = Ste

(δ−r)t/S0 is a strictly positive Q-martingale with expectation equal to 1. Here Mt = Nt − λt
is a Q-martingale. We can write

E(e−rt(K − St)+) = E
(

e−δtZt(
KS0

St
− S0)+

)
= Ê

(
e−δt(

KS0

St
− S0)+

)
,

where dQ̂|Ft = ZtdQ|Ft . The process Ŝ = 1/S follows

dŜt = Ŝt−((δ − r)dt− σdŴt − φ

1 + φ
dM̂t)

where Ŵt = Wt − σt is a Q̂-BM and M̂t = Nt − λ(1 + φ)t is a Q̂-martingale. Hence, denoting by CE

(resp. PE) the price of a European call (resp. put)

PE(x,K, r, δ; σ, φ, λ) = CE(K,x, δ, r; σ,− φ

1 + φ
, λ(1 + φ)) .
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3.6.2 Incompleteness

A market in which a riskless asset and a risky asset, with a mixed process dynamics is incomplete. We
determine here the set of e.m.m. and we determine the range of prices for a European call. We denote
by R(t) = exp− ∫ t

0
r(s)ds the discount factor, where the interest rate r is assumed to be deterministic.

Assume that
d(RS)t = R(t)St−([b(t)− r(t)]dt + σ(t)dWt + φ(t)dMt) (3.5)

The set of probability measures equivalent to P is the set of measures Pψ,γ such that dP ψ,γ

dP

∣∣∣
Ft

= Lψ,γ
t

where Lψ,γ
t

def
= Lψ,W

t Lγ,M
t





Lψ,W
t = E(ψ?W )t = exp

[∫ t

0
ψsdWs − 1

2

∫ t

0
ψ2

sds
]

Lγ,M
t = E(γ?M)t = exp

[∫ t

0
ln(1 + γs)dNs −

∫ t

0
λ(s)γsds

]
.

In order that Pψ,γ is an e.m.m., one has to impose conditions on the parameters such that the discounted
price process SR is a Pψ,γ-martingale, or that Lψ,γSR is a P martingale. Some Itô calculus yields to
the relation

b(t)− r(t) + σ(t)ψt + λ(t)φ(t)γt = 0 , dP ⊗ dtp.s. (3.6)

We study now the range of viable prices associated with a European call option, that is, the interval
] infγ∈Γ V γ

t , supγ∈Γ V γ
t [, for V γ

t = e−r(T−t)Eψ,γ((ST −K)+|Ft).
We denote by BS the Black-Scholes function, that is, the function such that

R(t)BS(x, t) = E(R(T )(XT −K)+ |Xt = x) , BS(x, T ) = (x−K)+

when
dXt = Xt(r(t)dt + σ(t) dWt) . (3.7)

Proposition 3.6.1 Let P γ ∈ Q. Then, the associated viable price is bounded below by the Black-Scholes
function, evaluated at the underlying asset value, and bounded above by the underlying asset value, i.e.,

R(t)BS(St, t) ≤ Eγ(R(T ) (ST −K)+|Ft) ≤ R(t)St

The range of viable prices V γ
t = R(T )

R(t) E
γ((ST −K)+|Ft) is exactly the interval ]BS(St, t), St[.

3.7 Other models

3.7.1 Affine Jump Diffusion Models

dSt = µ(St)dt + σ(St)dWt + dXt

where X is a (λ, ν) compound Poisson process. The infinitesimal generator of S is

Lf = ∂tf + µ(x)∂xf +
1
2
Tr(∂xxfσσT ) + λ

∫
(f(x + z, t)− f(x, t))dν(z)

for f ∈ C2
b .

Proposition 3.7.1 Suppose that µ(x) = µ0 + µ1x ; σ2(x) = σ0 + σ1x are affine functions, and that∫
ezyν(dy) < ∞, ∀z. Then, for any affine function ψ(x) = ψ0 + ψ1x, there exist two functions α and β

such that

E(eθST exp

(
−

∫ T

t

ψ(Ss)ds

)
|Ft) = eα(t)+β(t)St .
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3.7.2 Mixed Processes involving Compound Poisson Processes

Proposition 3.7.2 Let W be a Brownian motion and X be a (λ, F ) compound Poisson process inde-
pendent of W . Let

dSt = St−(µdt + σdWt + dXt) .

The process (Ste
−rt, t ≥ 0) is a martingale if and only if µ + λE(Y1) = r.

3.7.3 General Jump-Diffusion Processes

Let W be a Brownian motion and p(ds, dz) a marked point process. Let Ft = σ(Ws, p([0, s], A), A ∈
E ; s ≤ t). The solution of

dSt = St−(µtdt + σtdWt +
∫

R
ϕ(t, x)p(dt, dx))

can be written in an exponential form as

St = S0 exp
(∫ t

0

[
µs − 1

2
σ2

s

]
ds +

∫ t

0

σsdWs

) Nt∏
n=1

(1 + ϕ(Tn, Zn))

where Nt = p((0, t],R) is the total number of jumps.

3.8 Lévy-Itô processes

One can consider the more general class of Lévy-Itô processes

dXt = atdt + σtdWt +
∫

11{|x|<1}γt(x)Ñ(dt, dx) +
∫

11{|x|≥1}γt(x)N(dt, dx) ,

. These processes are semi-martingales.
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Chapter 4

Appendix

4.1 Processes and Filtrations

A continuous time process is a family of random variables (Xt, t ≥ 0), defined on a probability space
(Ω,F ,P). The process is said to be measurable if the map

(Ω× R+,F ⊗ B) → R
(ω, t) → Xt(ω)

is measurable. In all this text we say process for continuous time measurable process.
If a filtration F = (Ft, t ≥ 0) is given, the process X is said to be F-adapted if, for any t, the r.v.

Xt is Ft-mesurable. The natural filtration of a (measurable) process is the filtration FX defined as
FX

t = σ(Xs, s ≤ t).
A process Y is said to be a modification of X if, for any t, P(Xt = Yt) = 1. A process is continuous,
(resp. continuous on right (càd), continuous on right with limits on left (càdlàg1)) if the map t → Xt(ω)
is continuous a.s. (resp. continuous on right, continuous on right with limits on left). If X is càdlàg,
one denotes by Xt− = lims↑t Xs the left limit of X and by ∆Xt = Xt −Xt− the jump of X at time t.
A filtration F satisfies the usual hypotheses if F0 contains all the negligeable sets (i.e., all the sets A

such that there exists Ai, i = 1, 2; Ai ∈ F∞, A1 ⊆ A ⊆ A2, P(A2 \A1) = 0) and is right-continuous, i.e.,
Ft = ∩s>tFs. If a process X is continuous on right, its natural filtration is continuous on right. In the
following, we shall assume that the filtrations satisfy the usual hypothesis (i.e., if it is not the case, we
complete the filtration and take its right-continuous regularization).

4.2 Integration w.r.t. a Finite Variation Process

4.2.1 Some Definitions

An increasing process is a process (At, t ≥ 0) such that A0 = 0, As ≤ At a.s., for s < t. The process is
said to be integrable if E(A∞) < ∞. Increasing processes admit a right-continuous modification with
limit on left (we shall always take this version).

Any increasing process can be written as At = Ac
t +Ad

t where Ac is an increasing continuous process
and Ad is an increasing pure jump process, i.e., Ad

t =
∑

s≤t ∆As. The summation
∑

s≤t ∆As is in fact
a summation over a denumerable number of times s, i.e., the times where A admits a jump.

Finite variation processes are the difference between two increasing process. We consider always
their right-continuous modification with limit on left.

4.2.2 Stieltjes Integral

Let U be a càdlàg process with bounded variation (i.e., the difference between two increasing processes).
The Stieltjes integral

∫∞
0

θsdUs is defined for elementary processes θ of the form θs = ϑa11]a,b](s),

1we use the french acronym for continu à droite, pourvu de limites à gauche

37



38 CHAPTER 4. APPENDIX

with ϑa a r.v. as
∫∞
0

θsdUs = ϑa (U(b)−U(a)) and for θ such that
∫∞
0
|θs||dU(s)| < ∞ by linearity and

passage to the limit. (Hence, the integral is defined path-by-path.) Then, one defines the integral

∫ t

0

θsdUs =
∫

]0,t]

θsdUs =
∫ ∞

0

11{]0,t]}θsdUs .

Note that if U has a jump at time t0, then (Θt : =
∫ t

0
θsdUs, t ≥ 0) has also a jump at time t0 given as

∆Θt0 = Θt0 −Θt−0
= θt0∆Ut0 .

4.2.3 Integration by Parts

If U and V are two finite variation processes, Stieltjes’ integration by parts formula can be written as
follows

UtVt = U0V0 +
∫

]0,t]

VsdUs +
∫

]0,t]

Us−dVs (4.1)

= U0V0 +
∫

]0,t]

Vs−dUs +
∫

]0,t]

Us−dVs +
∑

s≤t

∆Us ∆Vs .

The summation
∑

s≤t ∆Us ∆Vs is in fact a summation over a denumerable number of times s, i.e., the
times where U and V admit a common jump. As a partial check, one can verify that the jumps of the left-
hand side, i.e., UtVt−Ut−Vt− , are equal to the jumps of the right hand side Vt−∆Ut+Ut−∆Vt+∆Ut ∆Vt.

4.2.4 Chain Rule

Let F ∈ C1 and A a finite variation process. Then,

F (At) = F (A0) +
∫ t

0

F ′(As−)dAs +
∑

s≤t

(F (As)− F (As−)− F ′(As−))∆As

or,

F (At) = F (A0) +
∫ t

0

F ′(As−)dAc
s +

∑

s≤t

F (As)− F (As−)

where Ac is the continuous part of A.

4.2.5 Exponential Process

Proposition 4.2.1 Let A be a given finite variation process. The unique solution of dZt = Zt−dAt, Z0 =
1 is

Zt = exp(Ac
t)

∏

s≤t

(1 + ∆As)

This process is non-negative iff ∆As ≥ −1.

Proof: It suffices to solve the SDE between two jumps (i.e., dZt = Zt−dAc
t) , and to take care about

the jumps. From definition, the solution satisfies ∆Zt = Zt−∆At, i.e., Zt = Zt−(1 + ∆At). C

4.3 General Theory of Stochastic Processes

Let (Ω,F,P) be a filtered probability space. The process X is indistinguishable from Y if {ω :
Xt(ω) = Yt(ω), ∀t} is a mesurable set and P (Xt = Yt, ∀t) = 1. If X and Y are modifications of each
other and are a.s. continuous, they are indistinguishable.
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4.3.1 Stopping Times

A random variable τ , valued in R+ ∪ {+∞} is an F-stopping time if, for any t,

{τ ≤ t} ∈ Ft

When no confusion is possible, we shall say only stopping time. If F ⊆ G, any F-stopping time is a
G-stopping time.
If τ is an F-stopping time, the σ-algebra Fτ of events prior to τ is defined as:

Fτ = {A ∈ F∞ : A ∩ {τ ≤ t} ∈ Ft, ∀t}.
The σ-algebra Fτ− of the events strictly prior to τ is the smallest σ-algebra which contains F0 and all
the sets of the form A ∩ {t < τ} for A ∈ Ft, t > 0.

Proposition 4.3.1 Any stopping time τ is a decreasing limit of stopping times τn where τn are valued
in a denumerable set

Proof: Write τn =
∑∞

k=0
k+1
2n 11 k

2n≤τ< k+1
2n

+ (+∞)11τ=+∞ C

Proposition 4.3.2 If X is a càd process, and τ an FX-stopping time, then Xτ is Fτ measurable.

An important example of stopping time is the following: if A is a closed set, and X is a continuous
process, then DA = inf{t ≥ 0 : Xt ∈ A} is an F-stopping time. (We recall that inf ∅ = +∞.) The
predictable σ-algebra P is the σ-algebra on Ω × R+ generated generated by the stochastic intervals
]]S, T ]] where S and T are two F-stopping times such that S ≤ T . It is also generated by the F-adapted
càg (or continuous) processes. A process is said to be predictable if it is measurable with respect to
the predictable σ-field. If X is a càdlàg process, then (Xt−, t ≥ 0) is a predictable process.

Definition 4.3.1 A stopping time T is predictable if there exists an increasing sequence (Tn) of
stopping times such that almost surely

i) limn Tn = T

ii) Tn < T for every n on the set {T > 0}.
A stopping time T is totally inaccessible if P(T = S < ∞) = 0 for any predictable stopping time S.
An equivalent definition is: for any increasing sequence of stopping times Tn, P({lim Tn = T} ∩A) = 0
where A = ∩{Tn < T}.

4.3.2 Local Martingales and Semi-martingales

Local martingale

Definition 4.3.2 An adapted, right-continuous process M is an F-local martingale if there exists a
sequence of stopping times (Tn) such that

(i) The sequence Tn is increasing and limn Tn = ∞, a.s.

(ii) For every n, the stopped process MTn11{Tn>0} is an F-martingale.

A sequence of stopping times such that (i) holds is called a localizing or reducing sequence.

Semi-martingale
An F-semi-martingale is a càdlàg process X which can be written as Xt = X0 + Mt + At where M
is an F-local martingale with value 0 at time 0 and where A is an F-adapted càdlàg process with finite
variation. In general, this decomposition is not unique (see the Poisson process), and it is necessary
to add some conditions on the finite variation process to get the uniqueness.

Definition 4.3.3 A special semi-martingale is a semi-martingale with a predictable finite variation
part. Such a decomposition X = X0 + M + A with A predictable, is unique. Call it the canonical
decomposition of X, if it exists.

The martingale part of the semi martingale X can be written as a sum of a continuous martingale and
a discontinuous martingale: X = M c + Md + A. The continuous martingale M is often called the
continuous martingale part of X and is denoted by Xc (This notation is the one in use, one should
avoid the confusion with the continuous part of X)

A continuous semi-martingale is a special semi-martingale, and A is continuous
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4.3.3 Covariation of Local Martingales

•Continuous Local martingales: Let X be a continuous local martingale. The predictable quadratic
variation process of X is the continuous increasing process 〈X〉 such that X2−〈X〉 is a local martingale.
Let X and Y be two continuous local martingales. The predictable covariation process is the continuous
finite variation process 〈X, Y 〉 such that XY − 〈X,Y 〉 is a local martingale. Note that 〈X〉 = 〈X, X〉
and

〈X + Y 〉 = 〈X〉+ 〈Y 〉+ 2〈X,Y 〉 .

In the particular case where Xt = x +
∫ t

0
xsdWs and Yt = y +

∫ t

0
ysdWs, where W is a BM and x, y

two adapted processes such that
∫ t

0
x2

sds < ∞,
∫ t

0
y2

sds < ∞, then 〈X, Y 〉t =
∫ t

0
xsysds.

• General local martingales: Let X and Y be two local martingales.
The covariation process is the finite variation process [X,Y ] such that

XY − [X, Y ] is a local martingale
∆[X, Y ]t = ∆Xt∆Yt

The process [X] = [X,X] is non-decreasing. If the martingales X and Y are continuous, [X, Y ] =
〈X,Y 〉. This covariation process is the limit in probability of

∑p(n)
i=1 (Xti+1 − Xti)(Yti+1 − Yti), for

0 < t1 < · · · < tp(n) ≤ t when supi≤p(n)(ti − ti−1) goes to 0.
If X and Y are continuous, 〈X, Y 〉 = [X, Y ].
If P and Q are equivalent probability measures, the quadratic covariation process [X,Y ] under P and
under Q are the same. The covariation [X,Y ] of both processes X and Y can be also defined by
polarisation

[X + Y ] = [X] + [Y ] + 2[X, Y ]

Let us recall that, if W is a Brownian motion 〈W 〉t = [W ]t = t. If M is the compensated martingale of
a Poisson process, [M ] = N .

The predictable covariation process is the continuous finite variation process 〈X,Y 〉 such that XY −
〈X,Y 〉 is a local martingale. The existence of such a process may fail for discontinuous martingales.

4.3.4 Covariation of Semi-martingales

If X and Y are semi-martingales and if Xc , Y c are their continuous martingale parts, their quadratic
covariation is

[X, Y ]t = 〈Xc, Y c〉t +
∑

s≤t

(∆Xs)(∆Ys) .

The integration by parts formula is

d(XtYt) = Xt−dYt + Yt−dXt + d[X, Y ]t

4.4 Change of probability

4.4.1 Doléans-Dade exponential

If X is a semi-martingale, then the process Z = E(X) is the unique solution to the SDE (called the
Doléans Dade exponential)

Zt = 1 +
∫

]0,t]

Zu− dXu.

It is known that

Et(X) = exp
(
Xt −X0 − 1

2
〈Xc〉t

) ∏

u≤t

(1 + ∆Xu)e−∆Xu ,

where Xc is the continuous martingale component of X.
If X is a local martingale, Z is also a local martingale.



4.5. PROCESSES WITH STATIONARY AND INDEPENDENT INCREMENTS 41

4.4.2 Girsanov’s Theorem

Theorem 4.4.1 Let X be a local martingale with respect to P and Q|Ft = Lt P|Ft . Then,

Xt −
∫ t

0

d[X, L]s
Ls

is a Q-local martingale.

Proof: In a first step, one notes that a process Z is a Q-local martingale iff LZ is a P-local martingale.
Then, the proof relies on stochastic calculus.C

4.5 Processes with Stationary and Independent Increments

4.5.1 Definition

Let X be a càdlàg process. We denote by FX its natural filtration. The process is said to have

• Independent increments if, for any pair (s, t) of positive numbers Xt+s −Xt is independent of FX
t

• Stationary increments if for any pair (s, t) of positive numbers, Xt+s −Xt
law= Xs

4.5.2 Strong Markov Property

Theorem 4.5.1 Let X be a process with stationary and independent increments. For any FX-stopping
time τ , the process Y defined on the set τ < ∞ as Yt = Xt+τ −Xτ has the same law as the process X
and is independent of Fτ .

Proof: Let us set ϕ(t;u) = E(eiuXt). Let us assume that the stopping time τ is bounded and let
A ∈ Fτ . Then, applying several time the optional sampling theorem

E


11A exp
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∏
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in Kyoto. In honour of Kiyosi Itô, Advance studies in Pure mathematics, Proceedings Kyoto
Conference, pages 209–233. 2002.

[22] A.E. Kyprianou. Introductory Lectures on Fluctuations of Lévy Processes with Applications.
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