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Introduction

These notes will be an introduction to jump processes and application to finance. There are many
books, articles, and thesis devoted to that subject, and we give here only some references.

The general theory of stochastic processes is presented in Dellacherie and Meyer [12, 13], He et al.
[15], Protter, version 2.1. [27].

Jacod and Shiryaev [16], Bichteler [7], Prigent [26] study processes with discontinuous path in a
semi-martingale framework.

For general jump processes with finance in view, one can consult Jeanblanc, Yor and Chesney [17],
and Shiryaev [33].

Excellent surveys papers are Bass [2, 1], Kunita [21], Runggaldier [28].
Bertoin [5, 6, 4, 3], Kyprianou [22], Sato [29, 30] contain the theory of Lévy processes. Applications
to Finance can be found in Boyarchenko and Levendorskii [9], Cont and Tankov [11], Overhaus et al.

[25], Schoutens [32].

Many thanks to all the participants to the school.






Chapter 1

Poisson Processes

1.1 Some Particular Laws of Random Variables

We recall some important results on exponential and Poisson laws. We give only some proofs.

1.1.1 Exponential Law

Definition 1.1.1 The exponential law with parameter X > 0 has a density fr(x) = Ae 1 ,~q with
respect to Lebesque measure. If X is a random variable with exponential law, its cumulative distribution
function is, for t € RY, given by P(X <t) =1—e .

The characteristic property of the exponential law is the lack of memory that we recall now
Proposition 1.1.1 (i) The exponential law is the unique density on R™ such that
Vi,s >0, P(X >t+sX >s)=PX >1)
(i) The exponential law is the unique density such that there exists a constant \ such that
vt > 0, “lggr(l)s_lIP’(X >t+s/X >s) =\
PROOF: From definition of conditional probability

P(X >t+s) e Mt+s)

PX >t+s|X >s) = PX>s) — e

and the result follows. For the converse, let G(s) = P(X > s) be the survival probability. Then, from
hypothesis G(t + s) = G(¢t)G(s). This implies, using that G is continuous that G(s) = e?* for some 6.
Since G is a survival probability, G(s) < 1, hence § < 0. We leave to the reader the proof of (ii).<

The property (ii) can be written
Vi>0, P(X €dt|X >t)=\dt
We now recall some properties of the exponential law and sum of i.i.d. exponential random variables.

Proposition 1.1.2 (i) If X has an exponential law with parameter X, then E(X) = A~ and Var(X) =
A2

(ii) The Laplace transform Ele="X] of an exponential law of parameter \ is defined for u > —\ and is
given by

o) = Bl ) = 14

(iii) The sum X, of n independent exponential r.v’s of parameter X\ has a Gamma law with parameters
(n, A):
(At)n—l

(n—1)!
5)

P(X, € dt) = e M gy dt,
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The cumulative distribution function is

and its Laplace transform is given, for u > —\ by

E(e #¥r) = (Ai,)n :

(iv) The law of (X1, -+, X,) has density \"e " ooy, <...con,
(v) The law of (X1,--+,X,) given X,, = x is
(n—1)!
P(X; €dxy, -, X, €dey| X, =2) = = Nocu, <oca, <adry - - diy,

PRrOOF: The proof of (i) and (ii) is standard. The proof of (iii) is done in a recursive way and is based
on the computation of the law of a sum of two independent random variables. The proof of (iv) and
(v) follows from simple computations. See Feller [14] for details. <

Exercise 1.1.1 Let X and Y be two independent exponential random variables. Prove that

PX-YeAX>Y) = PXeA
PX-YeAX<Y) = P(-YeAi

1.1.2 Poisson Law

Definition 1.1.2 A random variable X with integer values has a Poisson law with parameter 6 > 0 if

08"
k!
Proposition 1.1.3 If X has a Poisson law with parameter 8 > 0, then
(i) for any s € R, E[sX] = ef(s=1),
(i) E[X] =0, Var (X) = 6.
(iii) for any u € R, E(e™X) = exp(f(e™ — 1))
(iv) for any a € R, E(e®X) = exp(A(e® — 1))

P(X=k)=e"

ProOF: If X has a Poisson law with parameter § > 0, for any s € R,
TR - 709716 k_ o0 Gk — o050
f(s):=Els }—Ze Z .
k=0

Then, using the usual relation giving the expectation and the second moment in terms of the generating
function f: E(X) = f/(0) and E(X?2) = f”(0) + £/(0), we obtain the assertion (ii).
The proof of assertion (iii) is left to the reader, we give only the proof of (iv):

e ek e 0
E(eaX) _ 679 —0 Z k' 70 Ge
k=0 k=0

and the result follows. <

Conversely, if X is a r.v. such that one of the property (i), (iii), (iv) holds, then X has a Poisson law
with parameter 6. The proof follows from the characterization of a probability law by the generating
function (resp. the characteristic function, the Laplace transform)

In particular, the form of the characteristic function implies the infinitely divisible property of the
Poisson law: if X has a Poisson law, for any n there exists n i.i.d. random variables X*,i =1,---,n

such that X "%’ X7+ -+ X' Indeed, for any n, the obvious equality
E(e"¥) = exp(0(e™ — 1)) = (exp((0/n)(e™ —1)))"

and the fact that exp((8/n)(e!* — 1)) is the characteristic function of a Poisson law with parameter 6/n
yields the result.
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Corollary 1.1.1 If X and Y are two independent random variables, with a Poisson law of parameter
0 and p, then X +Y has a Poisson law with parameter \ + p.

PRrROOF: If X and Y are two independent random variables, with a Poisson law of parameter 6 and p,
the generating function of X 4 Y is the product of the generating function of X and of the generating

function of Y, hence
]E[SX+Y] — (=1 oul(s=1) _ (0+p)(s—1)

which gives the result. <

Exercise 1.1.2 Let X be a random variable with a Poisson law with parameter 6 and (U;);>1 a
sequence of i.i.d. Bernoulli random variables, with parameter p, and independent of X. Prove that
X, = Ekle Ui and X5 = X — X are independent random variables, with a Poisson law of parameters
pf and (1 — p)é.

1.1.3 Poisson mixture model

We now assume that A := (Ay,---,A,) is an R’} valued random variable with cumulative distribution
function

F()‘la"'a)\n) :P(Al S A17"'7A1’L S A’n,)
and that (Xi,---, X,,) are random variables, valued in the set of non negative integers such that

n

. A
P(Xy =iy, X —zn|A:H Xk—zk|A:H Ak,’“

so that, the r.v’s Xy are independent conditionally w.r.t. A. In particular,

A
P(Xk = Zk|A) = ]P)(Xk = Zk|Ak) = e_Akﬁ

and
A
P(Xlzil,---7Xn=in)=/ e‘“l*'““")H ZEF(dAr, -+, dAy)

+ k=1 i!
Using results on Poisson law, we obtain
E(Xk|Ar) = Ag, Var(Xg|Ag) = Ay
E(XpXm) = E(E(XpXnlA)=EEX:|AR)E(Xm|An)) = E(ArAn)

Then, Cov(X;Xp,) = Cov(AxA,,) and Var(Xy) = EVar(Xg|Ag) + VarE(Xg|Ar) = E(Ag) + Var(Ay)
Proposition 1.1.4 In the Poisson mizture framework, for X =Y 7'_| Xj
E(X) = > k-1 E(Ax)
2. VarX =370 VarXy + 37, ,, Cov(Xi X,)
5. E(s%) = E(el=D (40

See Bluhm et al. [8] and Schmock [31] application to credit risk.

1.2 Standard Poisson Processes

1.2.1 Counting processes

A counting process is a process that increases in unit steps at isolated times and is constant between
these times. Let (7,,n > 0) be a strictly increasing sequence of random variables Tpo =0 < T} < -+ <
T,,. The (increasing and right-continuous) counting process associated with this sequence is defined as

N e T
t7 1 400 otherwise
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or, equivalently
N, = Z Ty, <y = Znﬂ{Tn§t<Tn+1}7 Ny =0.

n>1 n>0

We shall assume that lim 7T;,, = +oc to avoid explosion at finite time. For ¢t > s, the increment N; — N,
is the number of random times T,, that occurs between s and ¢.

Let F be a given filtration. Then, the counting process N is F-adapted if and only if (7,,,n > 1)
are F-stopping times. We denote by FV the natural filtration of the process N.

1.2.2 Definition and first Properties of Poisson Processes

Definition 1.2.1 Let (1;);>1 be a sequence of i.i.d. random variable with exponential law of parameter
A and let T, = Z?:l Ti, n > 1. The associated counting process is called a Poisson process.

Proposition 1.2.1 The Poisson process has independent and stationary increments.

PRrROOF: Let us prove that

fs)k
P(Nt+S_Nt:k|]:t]V) = P(Ng:k-) — efes(k')

In a first step, one prove that P(N, = k) = e~ % (Glf!)k.

event Ny = k is equal to the event T, < s < Ty41. Then

From the definition of the process IV, the

IP(NS = k’) = P(Tk <s< Tk+1) = ]P(Tk < S) — P(Tk+1 < 8)

and the result follows from the form of the cumulative distribution function of T}.
Let to =0 <ty <--- <tg, and

A=P(Ny, =n1, -+ Ny, = Ny, =ny,--- Ny, — Ny, = ng)

Hence, if im = 3., 0y
A=PT;, <t1 <Tyq1, T, <tm <Ti 41, iy, <t <Tipy1)

The law of the vector T; is known, however, it is more efficient to work with conditional laws.

A=P(T;, <t1 <Tiy11,Ti,, <tm <Ti 41, |Tiy, <t <Tipp1)P(T5, <t <Tipy1)

The result follows in a recursive way. See Cont and Tankov [11] for details.<

B
5}  —

S — [

T1 T2 T3 T4 t T5 TG
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Exercise 1.2.1 Let ¢ fixed. Give the law of the r.v. Tn,41 —t.
HinT: For any s > 0,

P(Tn, 41—t >5) = P(Tn,41 >t+5) = P(Nyys=N;) = P(N,=0) = e %

law

hence T,+1 —t = 1.

Theorem 1.2.1 For any stopping time T the process Ny — Np,t > 0 is independent of FXN and has
the same law as N.

PROOF: This property is the Markov property for process with independent increments (see Appendix).<i

Note that, in particular, if f is a bounded Borel function, and s < t,
E(f(No)|FY) = E(f(No)INs) = E(f(Ny — Ny + Ny )|Ny) = F(N;)

with F(z) = E(f(N¢—s+x)). Indeed, if (X,Y) are independent random variables E(f(X,Y)|Y) = ¥(Y)
with ¥(y) = E(f(X.y)).

Theorem 1.2.2 The Poisson process with parameter X is the unique counting process with independent
stationary increments.

PROOF: Let N be a counting process with independent stationary increments and 77 = inf{t : N, = 1}.
Let us prove that 77 has an exponential law. Using the property of independent stationary increments
of the counting process N, we obtain

P(Ty >t+s) = P(Nyps=0)=P(Neys — Ny =0, N, = 0)
= P(Nt+5 — Nt = O) P(Nt = 0) = P(Tl > t) ]P(Tl > S)

hence the result from Proposition 1.1.1. The independence and the stationarity of the sequence
Ty,---,T, —T,_1 follows from the strong Markov property.

Exercise 1.2.2 Let N be a Poisson process. Then

P(Ty, -, T, € AIN; =n) =P(U,,, - U,, € A)
where (U;,i =1,---,n) are i.i.d. random variable with uniform law on [0,t] and Uy, < U,, < --- < U,,
Exercise 1.2.3 [Law of Large numbers|Let N be a Poisson process with parameter A. Prove that

lim_, o Ny = 00 a.s. and

N,

lim =% =\ as..
t—o00 t
Exercise 1.2.4 Let Ny,---, N; be independent Poisson processes with parameter 64, --,0;. Prove

that the processes N; have no common jumps and Ny + - - - + Ni is a Poisson process with parameter
014+ 0.

1.2.3 Martingale Properties

From the independence of the increments of the Poisson process, we derive martingale properties of
various processes.

Proposition 1.2.2 Let N be a Poisson process with intensity \.
(i) The process My = Ny — At is a martingale.
(ii) The process M? — X\t = (N; — \t)? — Mt is a martingale.
(iii) The process M? — Ny is a martingale.
(iv) For any «, the process exp(aNy — At(e® — 1)) is a martingale.
(v) For any 3, the process (14 B3)Nte=Pt is a martingale.

PrOOF: The properties (i) (ii) and (iv) are an application of the more general following Proposition
2.2.5. Now, adding the two F¥-martingales M; and M? — At proves that M? — N; is a martingale.
Property (v) follows from the independence of the increments and the computation of the generating
function.<
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Definition 1.2.2 The martingale (M; := Ny — M, t > 0) is called the compensated process of N,
and X\ is the intensity of the process N.

It follows from the martingale property of M? — At that At is the predictable variation process of
M. The process M? — Ny is a martingale, N is increasing and AN, = (AM,)?. Hence, the quadratic
variation process of M is N.

Remark 1.2.1 One can think that, since Ny = N;_, a.s. the process Ny — Ny_ is null, hence is a mar-
tingale, hence the predictable variation process is Ny_. This is obviously false. Firstly, the predictable
variation is unique, up to indistinguability. The process Ny_ is not equal to At. Furthermore, the process
Ni — Ny_ is not a null process, since P(Vt, X, = X;_) is not equal to 1.

The previous Proposition 1.2.2 admits an extension:

Proposition 1.2.3 Let N be an F-Poisson process. For each bounded Borel function h, for any 8 > —1,
and any bounded Borel function ¢ valued in ] — 1, 00[, the following processes are F-martingales:

exp[ln(1 + B)N; — \jt]
exp[fo s)dNs — )‘f M) —1)ds]= eXP[fo s)dM; — )‘fo — h(s) = 1)ds],

exp[ [3 In(1 + ¢(s))dN; — A [5 p(s)ds]= exp|[ [ In(1 + @(s))dM; + A [ (In(1 + ¢(s)) — ¢(s))ds] ,

PROOF: The study of exp[In(1 + 3)N; — A\3t] = (1 + B)Nte=*?* was done in Proposition 1.2.2. In the
specific case 8 > —1, it can also be done setting In(1 + 3) = « in (iv) of the same Proposition. For the
other processes, proceed using Monotone class Theorem.<

We have chosen to write exp[fo s)dN; — )‘fo h(s) —1)ds instead of exp[fo s)dNs + )‘fo (1-—

eh(s))ds to help the reader to memorize the formule: for A non-negative, the process fo s)dNy is
increasing, so we have to subtract a non negative a quantity to obtain a martingale.

Proposition 1.2.4 Let N be an F-Poisson process and H be an F-predictable bounded process, then
the following processes are martingales

(HxM), := [} HidM, = [} HydN, — X [J Hyds

((H*M)¢)? = X [y H2ds (1.1)

exp (fy HdN, = A fy (et —1)ds)
PROOF: In a first step, the proof is done for elementary predictable processes H
Exercise 1.2.5 Assuming that fo _dMy is a martingale as stated in Proposition 1.2.4, prove that

fo NgdM; is not a martingale.

1.2.4 Change of Probability

Theorem 1.2.3 Let N be a Poisson process with intensity A\, and Q be the probability defined as
Blr =1+ p)Nee 0,
Then the process N is a Q-Poisson process with intensity equal to (1 + ).

PROOF: In a first step, one note that, from Proposition 1.2.3, for § > —1, the process L defined as
Ly = (14 p)Ne

is a strictly positive martingale with expectation equal to 1. Then, from the definition of Q, for any
sequence 0 =t <ty < -+ <tpy1 =1,

Eq (H :civti+1—Nu> =Ep <e>\Bt H((l +ﬂ)xi)N‘i+1—Nu>

=1 i=1
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The right-hand side is computed using that, under P, the process N is a Poisson process (hence with
independent increments) and is equal to

e~ B HEP < (14 p)x ) l+1*t1:) — oA He—h(twl—ti) eMtit1—t)(14+B)zi _ H6(1+5)>\(ti+1—ti)($i—1) )

i=1 i=1
It follows that, for any j (take all the z;’s, except the jth one, equal to 1)
Eo <$Nt_j+1—Nt_j) — (MDA E 41 —t) (5 —1)
Vi )

which establishes that, under Q, the r.v. Ni, ., — N;, has a Poisson law with parameter (1 + 3)A, then

that .

=1
which is equivalent to the independence of the 1ncrements.<

1.3 Inhomogeneous Poisson Processes

1.3.1 Definition

Instead of considering a constant intensity A as before, now (A(t),t# > 0) is an RT-valued function

satisfying A(t) : = fo u)du < 00,Vt. An inhomogeneous Poisson process N with intensity A is a
counting process with 1ndependent increments which satisfies for ¢ > s
A(s, )"
]P)(Nt - Ns = ’I'l,) = e—A(s,t) 7( (S 1 )> (12)
n!

where A(s,t) = A(t) — A(s) = fst A(u)du, and A(t fo
If (T,,,n > 1) is the sequence of successive jump tlmes assomated with N, the law of T}, is:

P(T, < )= 7 [ exp(=A() (A(5)" " dAs).

It can easily be shown that an inhomogeneous Poisson process with deterministic intensity is an inho-
mogeneous Markov process. Moreover, E(N;) = A(t), Var(Ny) = A(¢).

An inhomogeneous Poisson process can be constructed as a deterministic changed time Poisson process:
if V is a standard Poisson process with intensity 1, the process N defined as Ny = Ny () is an inhomo-
geneous Poisson process with intensity A. An inhomogeneous Poisson process can also be constructed
using a change of probability (see below).

1.3.2 Martingale Properties

Proposition 1.3.1 Let N be an mhomogeneous Poisson process with deterministic intensity X and FN
its natural filtration. Define A(t fo s)ds. The process

(M, = N, — A(t), t > 0)

is an FN -martingale, and the increasing function A is called the (deterministic) compensator of N.

Let ¢ be an FN -predictable process such that E(fg |ps|A(s)ds) < oo for every t. Then, the process
(fot ¢sdM,,t > 0) is an FN -martingale. In particular,

E (/Ot b, dNS> =E (/Ot gbsA(s)ds) . (1.3)

As an immediate extension of results obtained in the constant intensity case, for any bounded F¥-
predictable process H, the following processes are martingales

a) (H*Mt—fOHdM JEHL(AN, — [ \(s)H.ds
b) (H*M),)? — [ A( H2ds
c) exp (fo H,dN, — fo Ha _ 1)ds) )
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1.3.3 Stochastic Intensity

Let (2, F,P) be a filtered probability space and A a non-negative F-adapted process such that fot Asds <
00.

Definition 1.3.1 A counting process N is said to be an inhomogeneous Poisson process with stochastic
intensity X if the process

t
(Mt :Ntf/ )\st,tZO)
0

is a martingale, called the compensated martingale.

1.3.4 Stochastic Calculus

In this section, M is the compensated martingale of an inhomogeneous Poisson process N with intensity
(As, 8 > 0). From now on, we restrict our attention to integrals of predictable processes, even if the
stochastic integrals are defined in a more general setting.

Integration by parts formula

We start with an elementary case.

Let (z4,t > 0) and (y;,t > 0) be two predictable processes and define two processes X and Y as
Xi=ao+ fg zsdNg and Y; = y + fg ysdNs. The jumps of X (resp. of Y)) occur at the same times as
the jumps of N and AX, = z,AN,, AY, = y,AN,. The processes X and Y are of finite variation and
are constant between two jumps. Then

XY, = ay+ Y AXY), =ay+ Y X AV, + Y Vi AX + Y AX,AY,
s<t s<t s<t s<t

The first equality is obvious, the second one is easy to check. Hence, from the definition of stochastic
integrals (see Section 4.2)

t t
XYy = :Cy+/ Ys—dXs+/ Xs—dYs+[X7Y]t
0 0

where (note that (AN;)? = AN;)

t
(X, V] =) AX,AY, =) zy.AN, = / zsys AN .
0

s<t s<t

More generally, if dX; = pdt + x1dN; with Xg = x and dY; = vydt + y:dN; with Yy = y, one gets

t t
XtK:xy+/ YS,dXS+/ X,_dY, + [X, Y],
0 0

where [X,Y]; = fot Zs Ys ANy . In particular, if dX; = x;dM,; and dY; = yd M, the process X;Y; —[X,Y]:
is a local martingale.

It6’s Formula

For inhomogeneous Poisson processes, It6’s formula is obvious as we now explain.
Let N be a Poisson process and f a bounded Borel function. The decomposition

FINY) = F(No)+ Y [F(Ne) = f(N,-))] (1.4)

0<s<t

is trivial and is the main step to obtain It6’s formula for a Poisson process.
We can write the right-hand side of (1.4) as a stochastic integral:

YUWN) = (NG = > [F(Ne- +1) = f(N,-)JAN,

0<s<t 0<s<t

/0 F(Ne +1) = F(N,-)JdN,,
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hence, the canonical decomposition of f(N;) as the sum of a martingale and an absolute continuous
adapted process is

f(Ni) = f(No) +/O [f(Ng= +1) = f(Ns-)]dM +/0 [f(Ng= +1) = f(Ng-)]Asds.

More generally, let h be an adapted process and g a predictable process such that fot |hs|ds <
t
00, [y 1gs|Asds < 0.

Proposition 1.3.2 Let dXt = htdt + gtht = (ht — gtAt)dt + gtht and F € 01’1(R+ X R) Then

F(t, X3)

t t
FOX0)+ [ 0F(s, X)ds + [ 0,8 (s, X (b~ gd)ds + 30 (s X) = F(s,X.o)
0 0

s<t

t t
F(0, Xo) +/ atF(S,XS)ds—f—/ 0. F (s, Xs-)dX,
0 0

+Z [F<S>Xs) - F(87Xsf> - aa:F(&Xsf)gsANs] . (15)

s<t

t t t
_ / O,F (s, X,)ds +/ 0uF (5, X)(hs — gohs)ds +/ [F(s, X.) — F(s, X,_)dN,
0 0 0
PROOF: Indeed, between two jumps, dX; = (hy — A¢ge)dt, and for T, < s <t < T 41,
t t
F(t, X)) = F(s, X,) + / O, F (1, X, )du + / 0 F (11, Xo) (h — gua)dlt

At jump times, F(T,, Xr,) = F(Tn, X1,-) + AF(-, X)71,.<

Remark that, in the “ds” integrals, we can write X,_ or Xj, since, for any bounded Borel function

/ P yds = / p(x.ds

Note that since dNg a.s. Ny = Ns_ + 1, one has

/f _)dN, = /fN+1)N

[

We shall use systematlcally use the form fo )dN s, even if the fo f(Ns+1)dNs has a meaning. The
reason is that fo _)dM, = fo s )dN; +)\ fo s )ds is a martingale, whereas fo (Ng+1)dM,
is not.

Exercise 1.3.1 Check that the formula (1.5) can be written as
F(t, X;) — F(0, Xo)

_ / 0,F (s, X,) ds+/ 0. F (s, X,) gs)\(s))ds—i—/ot[F(s,Xs)—F(s,XS_)]dNS

= /0 O F (s, Xs)ds + /0 0. F (s, Xs_)dX,s + /Ot[F(s, Xs)— F(s,Xs_) — 0, F(s,Xs_)gs]dNs
-/ O (s, X.)ds + / 0, F (s, X, )X, + / [F(5, Xo 4 92) — F(s, Xa_) — 0, F (s, Xo_)g.JdN,
= /Ot (OuF (5, Xs) + [F (s, Xs— + gs) — F(s, Xs-) — 0. F(5, X5-)gs|A) ds

+/t[F(s>Xs +gs) - F(S,XS,)]CZMS
0
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1.3.5 Change of Probability
Doléans-Dade exponential

Let ¢ be a predictable process such that f(f lps|Asds < oco. The process Z = E(pxM) is the unique
solution to the SDE (called the Doléans Dade exponential)

Zy =1 +/ Zu— @ude
10,2]

Let . \
X, = / podM, =" 0 AN, —/ Oshsds .
0 0

s<t

Then, dZ; = Z,-dX;. Tt is easy to prove that
t
Zy = exp ( — / <ps)\sds) H(l + @sAN) = exp (Xt) H(l + AXs)efAXS
0 s<t s<t

Indeed, for t € [T}, Ty 41[, the equation Z; = 1 —|—f] Zu_ pudM, writes

0,¢]
dZt = Zt_QOtht = _Zt—At(ptdta
hence Z; = Zr, exp — f; Aspsds. At time Ty, Z7, = Zp— (1 + 1)

In the case where ¢ > —1,
t
H(l + psANg) = e s<t M1+ ANG) exp/ In(1 + ps)dN;
s<t 0
hence

t t
Z; = exp (/ In(1 + ¢s)dNg — / gos)\sds) .
0 0

Note that in Section 1.3.2, we have already obtained this kind of martingales (see ¢), with H = In(1+4¢).

Radon-Nykodym densities

If P and Q are equivalent probabilities, there exists a predictable process 7y, with v > —1 such that the
Radon-Nikodym density L = dQ/dP is of the form

st = Lt—’ytht .

Girsanov’s theorem

Let P and Q are equivalent probabilities, with RN density L with dL; = Li_vdM,;. Let N be a P
inhomogeneous Poisson process with intensity A, and M its compensated martingale. Then, the process

t
My = M; —/ As7sds
0

is a Q-martingale. In particular, the process N is a Q-Poisson process with (stochastic) intensity
As(1 + 7). This gives a way to construct Poisson processes with a given intensity.

1.4 Compound Poisson process

Definition 1.4.1 Let N be a standard Poisson process with parameter X and (Y;);>1, be i.i.d. random

variables, independent of the process N. The process X; := Zi:(f) Y; s called a compound Poisson
process.
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We denote by F' the cumulative distribution function for the Y’s: F(y) = P(Y1 < y). We shall say that
X is a (\, F')-compound Poisson process

Theorem 1.4.1 Let X be a (\, F)-compound Poisson process
(i) The process X has stationary and independent increments
(i) The characteristic function of the r.v. Xy is

E[e~ %] = AEETM]-1) exp ()\t/(e_my - 1)F(dy)> .
R
Assume that E[e®¥1] < co. Then, the Laplace transform of the r.v.is

E[Eaxt] _ eAt(E[eayl]fl) = exp <)\t/(6ay —_ 1)F(dy)> .
R

(i11) Assume that E(|Y1|) < co. Then, the process (Z;y = X, — tAE(Y1),t > 0) is a martingale and in
particular, E(Xy) = ME(Y1) = Mt [ yF(dy).
(iii) If E(Y?) < oo, the process (Z7 — tAE(Y),t > 0) is a martingale and Var (X¢) = ME(Y?).

PROOF: (i) We leave the proof to the reader.
(ii) Let us compute the characteristic function of Xj:

o0

Ee™*) = Y E(Ly—ne™>inYh) = 3 BN, = n)(E(e)"
n=0

= exp ()\t+ )\t/emyF(dy)>

Properties (iii), (iv) follow from (i)

Proposition 1.4.1 The predictable process ME(Y7) is the predictable quadratic variation of the mar-
tingale Z. The quadratic variation of Z is [Z]: = Zg;l Y2

2

PROOF: Let us give the proof in the case E(Y?) < co. The increasing process Zg;l Y~ is a compound

Poisson process, hence Y2 | V,2 — ME(Y}?) is a martingale. Therefore
Ny
Z? —tAE(Y?) ZW ME(YD) = Z7 = > V)
n=1

is a martingale. Moreover, the jumps of Z? are the jumps of ZTJ:/;I Y2 <

We now denote by v the positive measure v(dy) = AF'(dy). Using that notation, a (A, F')-compound
Poisson process will be called a v-compound Poisson process. Conversely, to any positive finite
measure v on R, we can associate a cumulative distribution function setting A = v(R) and F(dy) =
v(dy)/X and construct a v-compound Poisson process. The measure v satisfies

Ny
=FE <Z ]]_yneA> :/Au(dx).

By application of results on processes with independent increments, we obtain that, for any o € R such
that [*_|e®® — 1|v(dz) < oo the process

exp (aXt ¢ / (e 1)u(dx))

—00

is a martingale.
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1.4.1 Random Measure

Let (Y;,,T,) be a sequence of random variables, with 0 < T} < --- < T,, < ---. We now introduce the
random measure N = " d7, y, on RT X R, i.e. N(w,[0,t] x A) = ZnN;(lw) Iy, ()ea. As usual, we shall

omit the w, and write only N([0,¢] x A) or N(dt,dz). We shall also write N;(dz) = N([0,¢],dz). We
denote by (f * N); the integral

Ny

//f N(ds, dzx) /f )Ny (da) = f(Yi).

k=1
t
X, :/ /JJN(ds,da:)
0o Jr

Proposition 1.4.2 If v(|f]|) < oo, the process

In particular

M} = (f *N);, — tv(f) //f N(ds, dz) — dsv(dz))

is a martingale.

PRrROOF: Indeed, the process Z;, = Z,ICV;I f(Y) is a U compound Poisson process, where U, defined as

Ny
=B} Urones) = /A F(w)v(dy)

is the image of v by f. Hence, if E(f(Y1)) < oo, the process Z; — tAE(f(Y1)) = Z¢ — t [ f(z)v(dz) is a
martingale. <

Using again that Z is a compound Poisson process, it follows that the process

exp (Zf i) —t/ (/@ _ 1) (dx) — exp (/ /f N(ds, dz) —t/_o;(ef(‘”) - 1)u(dw)>

k=1
(1.6)
is a martingale

1.4.2 Change of Measure

Let X be a v-compound Poisson process under P, we present some particular probability measures Q
equivalent to IP such that, under QQ, X is still a compound Poisson process.

Let v a positive finite measure on R absolutely continuous w.r.t. v, and A= 7(R) > 0. Let

Li=exp [t(A—X)+ > In (ZS) (AX,)

s<t
Applying the martingale property (1.6) for f = In (%), the process L is a martingale. Set Q|z, = LP|£,.
Proposition 1.4.3 Under Q, the process X is a v-compound Poisson process.

PROOF: First we find the law of the r.v. X; under Q. From the definition of Q

Ny
Eq(e™Xt) = Ep(e™* exp <t()\ -3+ > f(Yk)>

= - ()‘t)n -2 iU "
_ Ze At - JRTCESY) <]Ep(€ Y1+f(Y1)))

n=0

e ()n t(A=2) dv iy )
= Y e Ta Ep(o-(Yi)e"™)

n=0

- i ()‘;!)n e th (i /ei“ydﬁ(y))n = eXpt/(ei“y — 1)dv(y)

n=0
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It remains to check that X is with independent and stationary increments under Q. By Bayes formula,
fort > s

1 .
Fa) = T Ep(Le™ TR

= exp ((t —s) /(ei” - 1)ﬁ(d$)> .
<
We can also write this theorem in terms of the random measure N. Let

exp </R f(2)Ny(dz) — t/oo (ef@ — 1)u(dm))

—0o0

= exp </(:/Rf(x)N(ds,dx) - t/o:o(ef(ﬂ - 1)1/(d:c)>

be a martingale. Define dQ|z, = LidP|z,. Then

EQ(eiu(thxs)

Ly

/Ot /R(N(d&dac) —dse P y(dx))

is a Q-martingale.

1.5 A Specific Example: Processes with a single jump

Processes with a single jump are of great interest in Credit risk. We give some examples and we state
some easy rules of computation. The reader can refer to the lecture of M. Rutkowski in this volume for
more informations.

1.5.1 Elementary example

Let N be a Poisson process with deterministic intensity A and H; = Ngar,. The process M; :=
Ny — fg A(s)ds being a martingale, the stopped process M = H; — fg/\Tl A(s)ds is a martingale. The
quadratic variation process of M? is equal to H.

1.5.2 Cox Processes

Let F be a given filtration and A an F-adapted non-negative process. Let © be a random variable,
independent of F with an unit exponential law. We define

t
T =inf{t : / Asds > O}
0

Then {7 >t} : = {fg Asds < ©}, hence

P(r > t) :IE”(/Ot)\Sds< ) :E(exp (—/Ot/\sds)>

(We have used that if X and Y are independent r.v.’s, then P(X < Y) = E(®(X)) with &(z) = P(x <
Y).
We also obtain

t t
P(r > | F,) = IP’(/ Aods < O|F)) = exp <_/ )\sds>
0 0

(we use that if YV is independent of G and if X is G measurable, P(X < Y|G) = ¥(X) with ¥(x) =
Pz <Y).

Proposition 1.5.1 1,<; — OMT Asds is a Fy V o(T At) martingale.

PROOF: See Rutkowski’s lecture.<
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1.5.3 Quadratic variation

In the so-called intensity approach in a credit risk setting, one works under the following hypothesis:
there exists a non-negative process A such that

tAT t
Mt :Ht_/ ASdS:Ht _At/\T :Ht—/ (1—H§)A6d8
0 0

is a martingale. The quadratic variation process of M is H: indeed
M? —Hy = H;—2HAn, +A2, — H,;
= Aar(Ainr —2Hy) = Xy

Now, if Z; = A¢ar, then dZ; = (1 — Hy)A\dt. Integration by parts formula leads to, using that Z is a
bounded variation continuous process

dXt = (Zt - 2Ht)dZt + Zt(dZt - 2dHt) = —2Zt(dHt - dZt) - 2thZt
= —2Z,(dH, — dZ,) = —2Z,dM,

since

H,dZy = Hi(1 — Hy)\dt = 0.
Hence, X is a martingale, and AH; = AM?.



Chapter 2

Lévy Processes

2.1 Infinitely Divisible Random Variables

2.1.1 Definition

A random variable X taking values in R is infinitely divisible if its characteristic function ji satisfies
Vu, fi(u) = E(e"X) = (fn(u)"

where [i,, is a characteristic function.
In other terms, a random variable X is infinitely divisible if, for any n, X has the same law as Z?zl Xin
where X, =1,---n are i.i.d. random variables.

Example 2.1.1 A Gaussian variable and a Poisson variable are examples of infinitely divisible random
variables. Indeed, for a Gaussian variable

N 1, m 1o G N\"
i(u) = exp(ium — 50U )= (exp(wn —5 U ) = (fn(u))
where [i,, (u) = exp(iu’r — %%2112) is the c.f. of a N(2, 72) I.v.

Cauchy laws and Gamma laws are also infinitely divisible (see below).

Definition 2.1.1 A Lévy measure is a positive measure v on R\ {0} such that
/ min(1, |?)v(dz) < co.
R\{0}

In what follows, we shall assume that v does not charge the set {0}, so that we shall write [, f(z)v(dz)
instead of f]R\{O} f(x)v(dz) for suitable functions f.

Proposition 2.1.1 (Lévy-Khintchine representation.)

If X is an infinitely divisible random wvariable with characteristic function [, there exists a triple
(m,0?,v) where m € R and v is a Lévy measure such that

1 .
i(u) = exp (ium - iazuz + /(e“‘z -1- iu:v]l“wgl})y(d:r)) .
R

Note that the integral fR(eiW — 1 —iuxll{z|<1y)v(dr) converges, due to the assumptions on v. If the
integral [ |x|ly,<13v(dz) converges,

b(u) = exp (iumo — %azu2 + /R(eim — 1)1/(dx)>

with mg = m — f xl{|x‘§1}u(dx). In that case, we shall say that the LK representation is written in a
reduced form

19
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Example 2.1.2 a) Gaussian law. The characteristic triple of the Gaussian law A/ (m, 02) is (m, 7, 0).
b) Poisson law The characteristic triple of a Poisson law of parameter A is (0,0, Ad (dx)).
¢) Cauchy law. The standard Cauchy law has the characteristic function

exp(—clu|) = exp (;/ (e — 1)3:_2031‘) .

Its reduced form characteristic triple is (0,0, 7~ 'z ~2dz).
d) Gamma law. The Gamma law I'(a, v) has the characteristic function

(1 — iu/v)~ = exp (a /Ooo(em - 1)e—mdx) .

T

Its reduced form characteristic triple is (0,0, 1,0y ar~le "%dx).

2.1.2 Stable Random Variables

A random variable is stable if for any a > 0, there exist b > 0 and ¢ € R such that [fi(u)]* = fi(bu) e'*.
A stable r.v. is infinitely divisible.

Proposition 2.1.2 The characteristic function of a stable law can be written

exp(ibu — Lo%u?), fora =2
i(u) = ¢ exp (—v|ul*[1 —if sgn(u) tan(ra/2)]), fora#1,#2
exp (v|ul(1 —ifBvin|ul)), a=1

where 8 € [—1,1]. For a # 2, the Lévy measure of a stable law is absolutely continuous with respect to
the Lebesgue measure, with density
ctoz—o ldg if £ >0
v(dz) = { clz|7e dx  if 2 <0.
Here ¢t are non-negative real numbers, such that 8 = (¢t —c7)/(ct +¢7).
More precisely,

1 sl
ot = 5(1+5)F(1_Oé)cos(om/Q),
© = ORI G costan/a)

Example 2.1.3 A Gaussian variable is stable with o = 2. The Cauchy law is stable with o = 1.

2.2 Definition and Main Properties of Lévy Processes

2.2.1 Definition

An real-valued process X such that Xy = 0 is a Lévy process if
a- for every s,t,0 < s <t < oo, the r.v. X; — X, is independent of FX
b- for every s,t the r.v’s X;1s — X; and X have the same law.
c- X is continuous in probability, i.e., P(|X; — Xs| > €) — 0 when s — ¢ for every ¢ > 0.

Brownian motion, Poisson process and compound Poisson processes are examples of Lévy processes.

2.2.2 Poisson Point Process, Lévy Measure

For every Borel set A € R, such that 0 ¢ A, where A is the closure of A, we define

Ni = > a(AXY),

0<s<t

to be the number of jumps before time ¢ which take values in A.
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Definition 2.2.1 The o-additive measure v defined on R\ {0} by
v(A) = E(NT')
is called the Lévy measure of the process X.

o If (R \ {0}) < o0, the process X has a finite number of jumps in any finite time interval. In finance,
when v(R\ {0}) < oo, one refers to finite activity.

o If v(R\ {0}) = oo, the process corresponds to infinite activity.

Proposition 2.2.1 Let A be a Borel set and assume v(A) < co.
a) The process N® defined as

NtA: Z ]]-A(AXS)

0<s<t

is a standard Poisson process with constant intensity v(A).
b) Let T be another Borel set with v(I') < oo. The processes N* and N' are independent if v(I'NA) = 0,
in particular if A and T’ are disjoint.

The map A — N{*(w) defines a o-finite measure on R? denoted by N;(w,dz). Let A be a Borel set
of R with 0 ¢ A, and f a Borel function defined on A. We have

[ H@Ndn) = ¥ FAX@)IAAX.).

0<s<t

As usual, we shall omit the w and write N;(dz) for Ny(w,dx). The process [, f(x)Ny(dzx) is a Lévy

If {1, & L'(dv), then
B ([ romian) = [ o)
and, if flx € L(dv) N L2(dv),
E l( /A f(@)Ni(da) — 1 /A f(x)u(dm)Q] 1 /A 12 (@)w(da)

If f is bounded and vanishes in a neighborhood of 0,
B S fax) =t [ fpldo).
0<s<t R

and, for any bounded predictable process H

E | Hf(AX,) :E[/OtdsHs/Rf(m)du(x)} .

s<t

More generally, if H is a predictable function (i.e. H : Q x RT x R? — R is P x B measurable) such
that E Uot dsfdz/(x)\HS(',mﬂ] < 00, then

E | Hi(,AX,) :E[/Otds/dy(x)Hs(-,x)} .

s<t

Let X be a Lévy process with jumps bounded by 1. Then, E(|X;|™) < oo for any n = 1,2,. The process
Z; = Xy — E(X;) is a martingale with decomposition Z; = Z¢ + Z¢ where Z¢ is a martingale with
continuous path (in fact a Brownian motion up to a multiplicative constant) and Z¢ = [2N;(dz) —
tv(dz)
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Proposition 2.2.2 (Lévy-Ité’s decomposition.) If X is a Lévy process, it can be decomposed into

Xt:Oét+O'Bt+/

et x (Ne(dz) — tv(dz)) + / xN¢(dx)

|z|>1
Proposition 2.2.3 (Exponential formula.)

Let X be a Lévy process and v its Lévy measure. For all t and all Borel function f defined on
Rt x R? such that fot ds [, |1 — /&P |v(dz) < oo, one has

t
E |exp Zf(S,AXS)Il{AXS;éO} = exp (/ ds/(ef(s””) — 1)V(dsc)> .
s<t 0

Warning 1 The above property does not extend to predictable functions.

2.2.3 Lévy-Khintchine Representation

If X is a Lévy process, then, for any t, the r.v. X; is infinitely divisible.

Proposition 2.2.4 Let X be a Lévy process. There exists m,0 € R, a Lévy measure v such that for
u € R

E(exp(iuX;)) = exp (ium — %oju2 + /}R(ei’“Ij —1- iux]l$|<1)u(da:)) (2.1)
It can be proved that the Lévy measure is indeed the one defined in Definition (2.2.1)
Definition 2.2.2 The complex valued continuous function ® such that
E [exp(iuX1)] = exp(—P(u))

is called the characteristic exponent (sometimes the Lévy exponent) of the Lévy process X .
IfE [e*] < oo for any A > 0, the function ¥ defined on [0, 00|, such that

E [exp(AX1)] = exp(¥(N))

is called the Laplace exponent of the Lévy process X.
It follows that, if W(\) exists,

E [exp(iuX;)] = exp(—t®(u)), E [exp(AX})] = exp(t P (X))

and
T(A) =—D(—iN).

From LK formula, the characteristic exponent and the Laplace exponent can be computed as follows:

1 —
O(u) = —ium+ iazu2 — /(e“” — 1 —duxlly < )v(de)

=
Nt
[

1
Am + 502)\2 + /(em — 1= Azl <;)v(dr).

e If o =0 and v(R) < oo, the process X is a compound Poisson process with “drift”.

e If 0 =0, ¥(R) = co and flx\gl |z|v(dx) < oo, the paths of X are of bounded variation on any finite
time interval.

e If 0 =0, ¥(R) = co and flr\él |z|v(dx) = oo, the paths of X are no longer of bounded variation on
any finite time interval.
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2.2.4 Martingales

Proposition 2.2.5 Let X be a Lévy process.
(i) If E(|X¢|) < oo, then the process Xy — E(Xy) is a martingale.

iuXy

(i) For any u, the process Zy(u) : = == 5 is a martingale.

]E(e"’“’Xt

(i4i) If E(e’Mt) < 0o , the process % is a martingale
PROOF: (i)From independence properties E(X; — X;|F;) = E(X; — X5).
(ii) Using independence of the increments,

eiuXs B (ef(Xe=Xe))

- w(Xe—Xs)) _ piuXs
E(Zf(U)U:s) - ]E(eiuXt)E(e ) =€ E(ei“(Xt—Xs))E(ei"Xs)

= Zs(u)
and the result follows.

2.2.5 Itd’s formula

Let X be a Lévy process with decomposition

dXt = Oédt —+ O'dBt +/

x (N(dt, dz) — v(dz)dt) + / aN(dt, dx)
|z|<1

|| =1

Let Y; = f(t, X;) where f is a C1? function. Then, Y is a semi-martingale

1
dY; Ouf(t, Xy )dt + Of,(t, X¢) (adt + odBy) + 5(,—28%:5]“@, X)dt

i /I \ 1(f(t’Xt7 +x) = f(t, Xy~ ) — 20, f(t, X;-)) v(dx)dt
i /I \<1(f(t’Xt7 +x) — f(t,X;-)) (N(dt, dx) — v(dz)dt)
+ /| Dl(f(t,Xf +x) — f(t, X,-)) N(dt, dx)

Comments 2.2.1 As a consequence of the semi-martingale property, if F is a C? function , then, the
series

D IF(AX,) = F(0) — F'(0)AX,]

s<t
converges.

2.2.6 Representation Theorem

Proposition 2.2.6 Let X be a Lévy process and FX its natural filtration. Let M be a locally square
integrable martingale with My = m. Then, there exists a family (o, ) of predictable processes such that

¢ t
/ ls|2ds < o0, a.s., / / |5 (x)|2ds v(dr) < oo, a.s.
0 0o Jr

and

M, =m+ /Ot s dWy + /Ot/Rws(x)(N(ds,dz) —dsv(dr)) .

2.3 Change of measure

2.3.1 Esscher transform

Assume that E(e*Xt) < co. The process L; = % is then a strictly positive martingale with
expectation equal to 1. We define a probability @, equivalent to P by the formula

AXy
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This particular choice of measure transformation, (called an Esscher transform) preserves the Lévy pro-
cess property, as we prove now.

Proposition 2.3.1 Let X be a P-Lévy process with parameters (m,o,v). Let X be such that E(e?t) <
oo and suppose Q is defined by (2.2). Then X is a Lévy process under Q, and if the Lévy-Khintchine
decomposition of X under P is (2.1), then the Lévy-Khintchine decomposition of X under Q is

1
Eq(exp(iuXi)) = exp <ium(>‘) - 202u2 + /( e z'u:c]1|x§1)u(>‘)(dx))
R
with

mN = m+a2)\+/ z(e* — 1)v(dx)

|z[<1
vN(dz) = e Mu(dzx).
PROOF: The characteristic exponent of X under @ is obtained from

i(u—iA) Xt)
7t<I>(u7i)\)et<I>(7i)\)

o1V (u) _ Eq(eXt) = Ep(e —e

S e

hence,
DN (1) = d(u —iX) — B(—i)).

If E(e@t7X1) < 00, the Laplace exponent of X under Q is obtained from

Ep (e tN)Xe)

t\Ilo‘)('y) ) Xt _
€ Q(e™) Ep(e2Xr)

hence, W) (y) = U(y 4+ A) — T(N).

2.3.2 (General case

More generally, any density (L, ¢ > 0) which is a positive martingale can be used to define an equivalent
change of probability. From representation martingales property, any martingale can be written as

dLy = G dW, + /R Uy (z)[N(dt, dz) — dtv(dz)] .

From the strict positivity of L, there exists ¢, 1) such that p; = L;_ ¢y, zzt = Lt,(ew(t”’) —1), hence the
process L satisfies

dL; = Ly- <<ptth + / (e¥®®) _1)[N(dt, dz) — dtu(dx)]) (2.3)
Proposition 2.3.2 Let Q|r, = L: P|#, where L is defined in (2.3). With respect to Q,

(i) W& def fo ©sds is a Brownian motion
(i) The process N is compensated by V™) dsv(dx) meaning that for any Borel function h such

T
/ / |h(s,z)|e? P dsv(dr) < oo
o Jr
/ / s,x) (N(ds,dz) — ew(s’”)dsu(dm))

that

the process

is a local martingale.

In this general setting the Lévy property is lost
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2.4 Exponential Lévy Processes as Stock Price Processes

In a Black and Scholes model, prices can be written as an exponential of a drifted Brownian motion, or
as a Doléans-Dade martingale of a drifted Brownian motion. We prove here that this property extends
to Lévy processes.

Proposition 2.4.1 Let X be a (m,0%,v) Lévy process.

(i) Let Sy = eXt be the ordinary exponential of the process X. The stochastic logarithm of S (i.e., the
process Y which satisfies Sy = E(Y)¢) is a Lévy process and is given by

Y; = L(S): :Xt-l—}(y?t— Z (1+AXS—6AX~‘) .

2
0<s<t
The Lévy characteristics of Y are
1 2 x
my = m+50°+ [ ((€ = Dler <ty — 2l gjzi<1y) v(da)
0% = o?

vy (A)

v({x:e®—1€ A}) = /IIA(eI —Dv(dz).

(ii) Let Zy = E(X); the Doléans-Dade exponential of X. If Z > 0, the ordinary logarithm of Z is a
Lévy process L given by

1
Li=In(Z) = X, — §a2t+ > (n(1+AX,) - AX,) .

0<s<t
Its Lévy characteristics are
1
mp, = m-— 5(72 + / (ln(l + .1‘)]1{‘ In(14a)|<1} — .’L‘Il{|x|31}) v(dz)
0?2 = o
v(A) = v({z:In(l+4+2) € A}) = /]lA(ln(l + z)) v(dx)

PROOF: We only prove part (i) and leave part (ii) to the reader. Note that the series >, ,(1+AX, —
e2Xs) is absolutely convergent by the result stated in Comment 2.2.1.
The process Y; = Xt—i—%aZt—Z(KSSt (1 + AX, — eAXS) is a Lévy process, 03 = 02, and AY; = eAXi1.

Using the equality
t
S (14 AX, — A% = / / (1+2 — e*)N(ds, dz)
o Jr

s<t

we obtain that the Lévy-Ito6 decomposition of Y is (where my is defined in Proposition 2.4.1)

¢ t
mt + o By —|—/ / xN(ds, dx) —|—/ / xN(ds, dx)
0 J{lz|<1} 0 J{|z[>1}

1 t
+§U2t - / /(1 +x — e*)N(ds, dz)
0

Y;

t
= myt+oB; —|—/ /(ez - 1)]1{‘6.1_1|<1}N(d8,d$)
0
t
+/ /(ew - l)ﬂ{‘ew_lbl}N(d&dx)
0

t t
= myt—FO’Bt—F/ /y]l{|y|<1}Ny(ds,dy)—|—/ /y]l{‘y|>1}Ny(d8,dy).
0 0

The result follows.<
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2.4.1 Option pricing with Esscher Transform
Let S; = Spe™ X+ where X is a Lévy process under the historical probability P.

Proposition 2.4.2 We assume that E(e®*1) < oo on some open interval (a,b) with b—a > 1 and that

there exists a real number 6 such that W(0) = ¥(0 4+ 1). The process e~ S; = SpeXt is a martingale
06Xy

under the probability Q defined as Q|r, = ZiP|F, where Z; = W

PROOF: The process X is a Q-Lévy process, hence et /Eg(eX*) is a Q- martingale. Now,

1 1
Xy 0+1) X+ _ YO+t _
Eq(e™) = Ep(el"™¥) gy = " 5 =1

The martingale property follows.<

Exercise 2.4.1 Check that, if S; = Spe”*T78B¢  the previous Proposition gives the well know result of
change of probability in a Black Scholes model.

Hence, the value of a contingent claim h(S7) can be obtained, assuming that the emm chosen by the
market is Q) as

1

—r(T—t —r(T—t
Vi= e OB (h(SpIF) = e g E

P(h(yer(Tft)JrXT_te&XT_f, ) ’y:St

Note that the dynamics of .S are

dS, = S, <7‘dt + odWy + /(ez — 1)Nx (dt, dz))
R

2.4.2 A Differential Equation for Option Pricing

Let S; = Spe* Xt where X is a (m, 02, v)-Lévy process under the risk-neutral probability Q. Assume
that

V(t,S) = e " DEG(H(Sr)[S; = S)

belongs to C'**2. Then
rV = %U2assv + 0V +rSosV + / (V(t,S8eY) = V(t,S) — S(e¥ —1)0sV (¢, 5)) v(dy) .

Introducing the change of variables 7 =T — ¢, z = In(S/K) + r7, and the function h(z) = H(e*K)/K,
then u(r,z) = e"T-DV (¢, 9)/K = Eq(h(x + X)) satisfies

1
Oru = mOyu + §U2aza:u + / (U(Ta T+ y) - ’U,(T7 'T) - yl|y\<1azu(7—7 1‘)) V(dy) .

2.4.3 Put-call Symmetry

Let us study a financial market with a riskless asset with constant interest rate r and dividend yield
8, and a price process Sy = SpeX* where X is a Lévy process such that e~ ("=9*S, is a martingale. In
terms of characteristic exponent, this condition means that (1) = r — 4, and the characteristic triple
of X is such that

m=r—20—02/2— /(ey — 1=yl <1y)v(dy).
Then, the following symmetry between call and put prices holds:

CE(SOaK7T767T7¢) = PE(K7S0757T7T7{/;)'
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2.5 Subordinators

A Lévy process which takes values in [0, 00[ (i.e. with increasing paths) is a subordinator. In this case,
the parameters in the Lévy-Khintchine decomposition are m > 0,0 = 0 and the Lévy measure v is a

measure on |0, oo[ with f]o Oo[(l A z)v(dz) < oo. The Laplace exponent can be expressed as

O(u) =du+ / (1 —e " u(dx)

10,00[

where § > 0.

Definition 2.5.1 Let Z be a subordinator and X an independent Lévy process. The process )?t =Xy,
s a Lévy process, called subordinated Lévy process.

Example 2.5.1 Compound Poisson process. A compound Poisson process with Y; > 0 is a sub-
ordinator.

Example 2.5.2 Gamma process. The Gamma process is an increasing Lévy process, hence a sub-
ordinator, with one sided Lévy measure

1 T
—exp(——) a0
x 2
Example 2.5.3 Let W be a BM, and
T.=inf{t>0: W; >r}.

The process (T, > 0) is a stable (1/2) subordinator, its Lévy measure is mﬂmwd% Let B be a

BM independent of W. The process By, is a Cauchy process, its Lévy measure is dz/(7a?).

Proposition 2.5.1 (Changes of Lévy characteristics under subordination.) Let X be a (m*X, 0%, v¥)
Lévy process and Z be a subordinator with drift 3 and Lévy measure v, independent of X.The process
Xi = Xz, is a Lévy process with characteristic exponent

O (u) = iau + %E(u) - /R(e"“” — 1 —duxll <)V (de)

with
a = ﬂax+/ /VZ(dS)]l|r|§1$P(X5 € dx)
R+ JR
A = pAX

v(dx) = ﬁl/de—i—/ v?(ds)P(X, € dx).
R+

Example 2.5.4 Normal Inverse Gaussian. The NIG Lévy process is a subordinated process with

Lévy measure 22 %Kl (a]z|)de.

2.6 Examples of Lévy Processes

2.6.1 Variance-Gamma Model

The variance Gamma process is a Lévy process where X; has a Variance Gamma law VG(c,v, ). Its
characteristic function is

1 —t/v
E(exp(iuX;)) = (1 — tufv + 202uu2> .

The Variance Gamma process can be characterized as a time changed BM with drift as follows: let W
be a BM, ~(t) a G(1/v,1/v) process. Then

X =0v(t) + oW



28 CHAPTER 2. LEVY PROCESSES

is a VG(o,v,0) process. The variance Gamma process is a finite variation process. Hence it is the
difference of two increasing processes. Madan et al. [24, 23] showed that it is the difference of two
independent Gamma processes

Xi = Gt pr,m) — G(t; 2, 72) -

Indeed, the characteristic function can be factorized

E(exp(iuX;)) = (1 _ W> — (1 . iu)—t/“f

141 Vo
with
1
vt =5 (v + Vet 200?)
vt =1 (0~ VR 1 ave?)
22
The Lévy density of X is
11
— —exp(—u|z|) for z < 0
7 |zl
11
— —exp(—121) forxz > 0.
vz
The density of X; is
2 & 2 Tfi 1
€o2 x kl
Ki_1(—=+vV22(60% + 202
YY1\ 2m0T(1/2) (92+202/’y) 3 5(02 ( a%/7))

where K, is the modified Bessel function.
Stock prices driven by a Variance-Gamma process have dynamics

t oad,
Sy = Spexp (rt + X(t;0,v,0) + —In(1 — v — 2))
v
From E(e*Xt) = exp (75 In(1—60v — %”)), we get that S;e™"! is a martingale. The parameters v and
0 give control on skewness and kurtosis. See Madan et al. for more comments.
The CGMY model, introduced by Carr et al. [10] is an extension of the Variance-Gamma model.
The Lévy density is
e Me >0
M%GGCD T < 0
with C > 0,M >0,G>0and Y < 2,Y ¢ Z.

If Y < 0, there is a finite number of jumps in any finite interval, if not, the process has infinite activity.
If Y € [1,2], the process is with infinite variation.

2.6.2 Double Exponential Model

The Model

A particular Lévy model is the double exponential jumps model, introduced by Kou [18] and Kou and
Wang [19, 20]. In this model

Ny
Xp=pt+oW, +3 Y,

=1

where W is a Brownian motion independent of N and Zf\il Y; is a compound Poisson process. The
r.v’s Y; are i.i.d., independent of N and W and the density of the law of Y7 is

f(x) =pme " 0y + (1= p)mee™ pcoy -
The Lévy measure of X is v(dx) = Af(z)dx.
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Here, 7; are positive real numbers, and p € [0, 1]. With probability p (resp. (1 — p)), the jump size
is positive (resp. negative) with exponential law with parameter 7, (resp 72).
It is easy to prove that

2
p 1l-p p  l1—p 1 1
E(Y;) = — — ,var (Y1) = =5 + +p(l—p <+
(> m 72 () 77% % ( )771 T2

and that, for n; > 1, E(e¥1) = p% +(1—-p) 11%2. Moreover

_ 1 1—

M — iU N2 + iu

where b = p + AE(Y1lljy,1<1) = p+ Ap (1_;7;'1 — e*m) - A1 -p) (1_27;12 - e*’72>. The Laplace

exponent of X, i.e., the function ¥ such that E(e®Xt) = exp(¥(3)t) is defined for —ny < 3 < 1y as

U(B) = Bu+ 3620—2 + )\(mpTﬁ + Oﬂ_f;”? —1).

Change of probability

Let Sy = Spe"* Xt where X; = (u — %0'2)t + oW, + 25\21 Y;. Then, setting V; = e¥*, using an Escher

transform, the process Sie™"" will be a Q martingale with Q|, = L;dP|z, and L; = ]E(EZT);), for o such

that ¥(a) = ¥(a+1). Under Q, the Lévy measure of X is D(dz) = e®“v(dz) = e* \f (z)dz = Af (z)dx
where, after some standard computations

=
8

~—
I

(Bie™ ™ Laso) + (1 = D)™ Liacy ) -
m = m-a, n=mnm+a

~ 1—

- A( rm_ p)?b)
m—o N2+ o

—~ 2 + &

p = pn

1
apn + n2(m — o+ apm)

In particular, the process X is a double exponential process under Q.

Hitting times
Proposition 2.6.1 For any x >0
Pl <t, X;, —b>z)=e ""P(n, <t, X, —b>0)

PRrROOF:
The infinitesimal generator of X is

Lf= %aQﬁmf +pdsf + A/R(f(ac +y) = f(2))v(dw)

Let T, = inf{t : X; > z}. Then Kou and Wang [19] establish that, for » > 0 and z > 0,

E(eT) — M= Pr_ P2 s n Prmm P —ap,
m  Bo—5 m  Bo— 5
E(e e lx, o _ ey PP ases,
( X, >y) ™ ﬁQ — 61 ( )
- - -0 Ba—m B —0 _
E eOXTm Ty _ e@m <771 61 62 e z (1 + e z 32
( ) B2 —pBrm —0 (52—51771—9

where 0 < 81 < 11 < B2 are roots of G(f3) = r. The method is based on finding an explicit solution of
Lu = ru where L is the infinitesimal generator of the process X.
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Chapter 3

Mixed Processes

3.1 Definition

A mixed process is a process X with dynamics

t ¢ ¢
X = Xo+ / asds + / o, dWs + / psdMsy ,
0 0 0

where W is a standard Brownian motion and M is the compensated martingale of an inhomogeneous
Poisson process N, i.e., My = Ny — fot Asds. Here the processes W and M are independent and adapted
with respect to a filtration F. The coefficients a, 0, are assumed to be F-predictable processes,
satisfying integrability conditions, i.e.,

t t t t
/ laslds < oo, / o2ds < o0, / 02 \ds < oo, / |ps|Asds < 00
0 0 0 0

The process X is a special semi-martingale, its continuous martingale part is X7 = fot osdWs. The
jump times of the process X are those of N, the jump of X is AX; = X; — Xy~ = ¢, AN,.
The predictable bracket of X is

¢ ¢
(X)) = / o2ds —|—/ Asp2ds
0 0
The quadratic variation process is [X]; = [J 02ds + [; ¢2dN,. If X and Y be two mixed processes

dXt = atdt + Utth + (Ptht 5
dY; = dtdt+&tth +35th15 .

then, the covariation process is d[X, Y], = 0.6¢dt + o1 dN; and the predictable bracket is d(X,Y); =
(O’ta't —+ )\QDtht)dt

Remark 3.1.1 One can extend this definition to the case where M is the compensated martingale of a
compound Poisson process. However, in that case, one has to introduce the random measure associated
with the compound process.

3.2 Ito’s Formula

3.2.1 One Dimensional Case

Let F be a C*? function, and
dXt = atdt + O'tth + QDtht .

Then,

t ¢
F(t, X:) = F(O,X0)+/ OSF(S,XS)ds—l—/ 0. F (s, Xs_)dX,
0 0

+% /Ot DpaF(5, X5 )02 ds + Z[F(S,Xs) — F(s, Xy-) = 0. F(s, X, )AX,]. (3.1)

s<t

31
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This formula can be written in different forms. An important form is the following, where the canonical
decomposition of the semi-martingale Y is given

t t
F(t>Xt) - F(O,X()) :/ amF(SaXs>USdW8 +/ [F(S>Xs* + (Ps) - F(SﬂXs*)] dMS
0 0
t
+/ [(&F + a0, F + %aﬁamF)(s, X))+ Xs[Fs, X5 + ) — F(s,Xs) — 0. F (s, X4)ps] | ds.
0

In the particular case of deterministic t coefficients a,0, and A, it follows that if F' solves the
following IPDE

O F(tx) + a(t)d.F(t,z)+ %&(t)amp(t, z)
+ OAD[F(tx + (b)) — F(t,z) — 0, F(t,z)p(t)] = 0, dta.s.

the process F(t, X;) is a local martingale

3.3 Predictable Representation Theorem

Let Z be a square integrable F-martingale. There exist two predictable processes (i,7) such that
Z=z+¢ - W+~y-M, with

¢ ¢
/ Yids < oo,/ Y2\(s)ds < o0, a.s.
0 0

3.4 Change of probability

3.4.1 Exponential Martingales
Let v and % be two predictable processes. The solution of

dL; = Ly- (Ve dWy + v d M)

is the strictly positive exponential local martingale

. t 1
L= Lo H(1 + s AN,) e Jo 1:AE)ds oy (/ YsdWy — 5/ zbgds)
0 0

s<t

If 74+ > —1, the process L is sticly positive and can be written as

t t t 1t
L; = Lyexp (/ In(1 + ~,)dNg — / A(s)7sds Jr/ Y dWy — 5/ z/;fds) .
0 0 0 0

3.4.2 Girsanov’s Theorem

If P and @ are equivalent probabilities, there exist two predictable processes 1 and ~, with v > —1
such that the Radon-Nikodym density L is of the form

dL; = Ly (¢ dW; + v, dMy) .
Then, the processes

. t . t
Wt = Wt — / '(/JSdS, Mt = Mt — / A(s)’ySds
0 0

are (Q-martingales. The process W is a @Q-Brownian motion. Note that W and M can fail to be
independent.
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3.5 Hitting Times

Here, N is a standard Poisson process, with compensated martingale M. Let
dX; = adt + odWy + @dM;, Xo =0.

Let us denote by Ty(X), the first passage time of the process X at level ¢, for £ > 0 as Ty(X) = inf{t >
0: Xy >/1}.

The process Z; = exp(kX; — tg(k)) where

g(k) = ak + %azk(k A+ — 1 k). (3.2)
is a martingale When there are no positive jumps, i.e., ¢ < 0, X7, = ¢, hence
Elexp(—g(k)Te)] = exp(—kf) .
Inverting the Lévy exponent g(k) we obtain
E(exp(—uly)) = exp(—g~" (u) £),

where g~!(u) is the positive root of g(k) = u.

If the jump size is positive there is a non zero probability that X, is strictly greater than ¢. In this
case, we introduce the so-called overshoot K (¢)

K{)=Xg, —¢. (3.3)
The difficulty is to obtain the law of the overshoot.

3.6 Mixed Processes in Finance

The dynamics of the price are supposed to be given by
dSt = St_ (btdt + O'tth + ¢tht) (34)
or in closed form

t
Sy = So exp (/ bsds> E(px M) E(axW )y .
0

In order that the price remains positive, one assumes that ¢, > —1.

3.6.1 Symmetry Formula

We now restrict our attention to the case of constant coefficients r,d, 0, ¢, A) , and we establish the
symmetry formula, which gives the price of an European Call in terms of the price of an European Put.
We assume that, under @,

dS; = Sy— ((r — 0)dt + adWy + ¢dMy)
where 0 is a dividend (or, in case of currency, the foreign interest rate). In that case, the process
Zy = Ste(‘s_r)t/So is a strictly positive Q-martingale with expectation equal to 1. Here M; = N; — At
is a -martingale. We can write

E(e " (K — S)T) =E (a“zt([;&’ - so)+) =E <e—5f(KS&’ - so)+) ,

t t
where d@|]—"t = Z:dQ|#,. The process S = 1/ follows

dS, = 8,_((6 — r)dt — odW, — %dﬂl)

where Wt =W,—otisa @—BM and ]\//.Tt =N — A1+ ¢)tisa @—martingale. Hence, denoting by Cg
(resp. Pg) the price of a European call (resp. put)

PE(x,erv(s;Uvd)v)‘):CE(KvxvdaT;Uv_ 7)‘(1+¢))

¢
1+¢
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3.6.2 Incompleteness

A market in which a riskless asset and a risky asset, with a mixed process dynamics is incomplete. We
determine here the set of e.m.m. and we determine the range of prices for a European call. We denote
by R(t) = exp — fot r(s)ds the discount factor, where the interest rate r is assumed to be deterministic.
Assume that

d(RS), = R()S,_([b(t) — r(t)]dt + o(t)dW, + ¢(t)dM,) (3.5)

The set of probability measures equivalent to P is the set of measures P¥+¥ such that ‘“Zl;v = Lf”'y

t

where Lf”'y = L%’W Lz’M
LYY = E(RW), = exp [ [y wedW, — § [y w2ds]
Mo _ t t
L) = E(y*M); =exp [fo In(1+ vs)dNs — [, )\(s)'ysds} .

In order that P¥»7 is an e.m.m., one has to impose conditions on the parameters such that the discounted
price process SR is a P¥7-martingale, or that L¥"VSR is a P martingale. Some It calculus yields to
the relation

b(t) —r(t) + o) + At)p(t)y: =0 , dP @ dip.s. (3.6)
We study now the range of viable prices associated with a European call option, that is, the interval
Jinfrer V;7, sup,cp V'], for V) = e "T=DEYY((Sp — K)T|F).
We denote by BS the Black-Scholes function, that is, the function such that
R(t)BS(z,t) = E(R(T)(Xr — K)T|X; =2), BS(z,T)=(r—K)*

when

Proposition 3.6.1 Let PY € Q. Then, the associated viable price is bounded below by the Black-Scholes
function, evaluated at the underlying asset value, and bounded above by the underlying asset value, i.e.,

R()BS(Si, 1) < EV(R(T) (St — K)|F) < R(t) S

The range of viable prices V,' = %EV((ST — K)T|F) is exactly the interval |BS(Sy,t), Sil.

3.7 Other models

3.7.1 Affine Jump Diffusion Models

dSt = M(St)dt + O'(St)th + dXt

where X is a (A, v) compound Poisson process. The infinitesimal generator of S is
1
Lf=0f+ pu(x)of+ iTr(amfaaT) + )\/(f(x +2,t) — f(z,1))dv(z)

for f € CZ.

Proposition 3.7.1 Suppose that p(x) = po + pix;02(x) = 09 + o1x are affine functions, and that
J e*v(dy) < 0o,Vz. Then, for any affine function () = 1o + Y1z, there exist two functions o and 3
such that

T
E<eesT exp (_/ ¢(Ss)d5> |F:) = e@®O+B()S:
t
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3.7.2 Mixed Processes involving Compound Poisson Processes

Proposition 3.7.2 Let W be a Brownian motion and X be a (A, F') compound Poisson process inde-
pendent of W. Let
dSt = St_ (,udt + O'th + dXt) .

The process (Sie™" t > 0) is a martingale if and only if p + AE(Yy) =r.

3.7.3 General Jump-Diffusion Processes

Let W be a Brownian motion and p(ds,dz) a marked point process. Let F; = o(Ws,p([0,s],A4), A €
&; s <t). The solution of

45, = Sy (pedt + oydW, + / o (t, 2)p(dt, dz))
R

can be written in an exponential form as

Ny

t 1 t
St = SO exp (/ |::us - 2U§:| ds +/ 0’de5> H(l + (P(Tn, Zn))
0 0

n=1

where N; = p((0,¢],R) is the total number of jumps.

3.8 Lévy-Ito processes

One can consider the more general class of Lévy-Itd processes
dX; = a;dt + oy dWy + / ﬂ{‘zkl}'yt(x)]v(dt, dx) + / ]1{‘1|21}’Yt<.%‘)N(dt7d.’L‘) ,

. These processes are semi-martingales.
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Chapter 4

Appendix

4.1 Processes and Filtrations

A continuous time process is a family of random variables (X¢,t > 0), defined on a probability space
(Q,F,P). The process is said to be measurable if the map

(QXR+,.7'-®B) —
(w,t) — Xi(w)

is measurable. In all this text we say process for continuous time measurable process.

If a filtration F = (F;,t > 0) is given, the process X is said to be F-adapted if, for any ¢, the r.v.
X; is Fi-mesurable. The natural filtration of a (measurable) process is the filtration F¥X defined as
F =0(Xs,5 <t).

A process Y is said to be a modification of X if, for any ¢, P(X; = Y;) = 1. A process is continuous,
(resp. continuous on right (cad), continuous on right with limits on left (cadlag!)) if the map t — X;(w)
is continuous a.s. (resp. continuous on right, continuous on right with limits on left). If X is cadlag,
one denotes by X;- = limgy; X, the left limit of X and by AX; = X; — X;- the jump of X at time ¢.

A filtration F satisfies the usual hypotheses if Fy contains all the negligeable sets (i.e., all the sets A
such that there exists 4;,i =1,2; A; € Foo, A1 € A C As, P(A3\ A1) = 0) and is right-continuous, i.e.,
Fiy = Ng>tFs. If a process X is continuous on right, its natural filtration is continuous on right. In the
following, we shall assume that the filtrations satisfy the usual hypothesis (i.e., if it is not the case, we
complete the filtration and take its right-continuous regularization).

4.2 Integration w.r.t. a Finite Variation Process

4.2.1 Some Definitions

An increasing process is a process (A, t > 0) such that Ag =0, A; < A;a.s., for s < t. The process is
said to be integrable if E(A,) < co. Increasing processes admit a right-continuous modification with
limit on left (we shall always take this version).

Any increasing process can be written as A; = Af+ Af where A€ is an increasing continuous process
and A is an increasing pure jump process, i.e., A = Y s<t AA,;. The summation ) ., AA, is in fact
a summation over a denumerable number of times s, i.e., the times where A admits a jump.

Finite variation processes are the difference between two increasing process. We consider always
their right-continuous modification with limit on left.

4.2.2 Stieltjes Integral

Let U be a cadlag process with bounded variation (i.e., the difference between two increasing processes).
The Stieltjes integral fooo 05dU, is defined for elementary processes 6 of the form 0, = 9,1}, 4(s),

Lwe use the french acronym for continu & droite, pourvu de limites & gauche

37
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with ¥, ar.v. as [ 0,dUs = ¥, (U(b) — U(a)) and for 6 such that [~ [s]|dU(s)| < co by linearity and
passage to the limit. (Hence, the integral is defined path-by-path.) Then, one defines the integral

t o
/ 0,dU, = | 6,dU, = / 110,03 05dU .
0 10,¢] 0

Note that if U has a jump at time tg, then (0, : = fot 0sdUg, t > 0) has also a jump at time ¢ given as
AOy, =0y, — @tE = 0, AUy, .

4.2.3 Integration by Parts

If U and V are two finite variation processes, Stieltjes’ integration by parts formula can be written as
follows

UV, = UgVp+ Vsts+/ U,—dV, (4.1)
10,¢] 10,¢]

UaVo+ [ Vidv.+ [ Ucavi+ 3 AUV,
10,t] 10,t]

s<t

The summation ) ., AU, AV is in fact a summation over a denumerable number of times s, i.e., the
times where U and V admit a common jump. As a partial check, one can verify that the jumps of the left-
hand side, i.e., U;V; —U,-V;—, are equal to the jumps of the right hand side V,- AU;+U,- AV, +AU; AV4.

4.2.4 Chain Rule
Let F € C' and A a finite variation process. Then,
t
F(A)) = F(A4o) + / F'(A-)dAs + ) (F(A,) = F(A-) — F/(A,-))AA,
0 s<t
or,

F(Ar) = F(Ao) + /Ot F'(Ag-)dAS + ) F(A,) = F(A,-)

s<t

where A€ is the continuous part of A.

4.2.5 Exponential Process

Proposition 4.2.1 Let A be a given finite variation process. The unique solution of dZy = Z,-dA;, Zy =
1 is
Zy = exp(A7) [ (1 + AA,)

s<t

This process is non-negative iff AAg > —1.

PROOF: It suffices to solve the SDE between two jumps (i.e., dZ; = Z,-dAf) , and to take care about
the jumps. From definition, the solution satisfies AZ; = Z,- AAy, ie., Zy = Z,- (1 + AA;). <

4.3 General Theory of Stochastic Processes

Let (Q,F,P) be a filtered probability space. The process X is indistinguishable from Y if {w :

Xi(w) = Yi(w),Vt} is a mesurable set and P(X; = Y;,Vt) = 1. If X and Y are modifications of each
other and are a.s. continuous, they are indistinguishable.
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4.3.1 Stopping Times

A random variable 7, valued in Rt U {+oc0} is an F-stopping time if, for any ¢,
{7’ < f,} SV

When no confusion is possible, we shall say only stopping time. If F C G, any F-stopping time is a
G-stopping time.
If 7 is an F-stopping time, the o-algebra F. of events prior to 7 is defined as:

Fr={AeFs : An{r <t} € F, Vt}.
The o-algebra F,- of the events strictly prior to 7 is the smallest o-algebra which contains Fy and all
the sets of the form AN {t < 7} for A € F,t > 0.

Proposition 4.3.1 Any stopping time T is a decreasing limit of stopping times 7, where T, are valued
in a denumerable set

ProoF: Write 7, = Y 5o &t L (+00) =y oo <
Proposition 4.3.2 If X is a cad process, and T an FX -stopping time, then X, is F, measurable.

An important example of stopping time is the following: if A is a closed set, and X is a continuous
process, then Dy = inf{t > 0 : X; € A} is an F-stopping time. (We recall that inf () = +o00.) The
predictable o-algebra P is the o-algebra on ) x RT generated generated by the stochastic intervals
]S, T] where S and T are two F-stopping times such that S < T. Tt is also generated by the F-adapted

cag (or continuous) processes. A process is said to be predictable if it is measurable with respect to
the predictable o-field. If X is a cadlag process, then (X;_,t > 0) is a predictable process.

Definition 4.3.1 A stopping time T is predictable if there exists an increasing sequence (Tp,) of
stopping times such that almost surely

i) lim, T, = T
ii) T, < T for every n on the set {T > 0}.

A stopping time T is totally inaccessible if P(T = S < 00) = 0 for any predictable stopping time S.
An equivalent definition is: for any increasing sequence of stopping times T,,, P({limT,, =T} NA) =0
where A =N{T, <T}.

4.3.2 Local Martingales and Semi-martingales

Local martingale

Definition 4.3.2 An adapted, right-continuous process M is an F-local martingale if there exists a
sequence of stopping times (Ty,) such that

1) The sequence T, is increasing and lim,, T,, = oo, a.s.

() q n g nin s

i) For every n, the stopped process MTr i <oy is an F-martingale.
{T»>0}

A sequence of stopping times such that (i) holds is called a localizing or reducing sequence.

Semi-martingale

An F-semi-martingale is a cadlag process X which can be written as X; = Xg + M; + A; where M
is an F-local martingale with value 0 at time 0 and where A is an F-adapted cadlag process with finite
variation. In general, this decomposition is not unique (see the Poisson process), and it is necessary
to add some conditions on the finite variation process to get the uniqueness.

Definition 4.3.3 A special semi-martingale is a semi-martingale with a predictable finite variation
part. Such a decomposition X = Xg+ M + A with A predictable, is unique. Call it the canonical
decomposition of X, if it exists.

The martingale part of the semi martingale X can be written as a sum of a continuous martingale and
a discontinuous martingale: X = M¢ 4+ M? + A. The continuous martingale M is often called the
continuous martingale part of X and is denoted by X¢ (This notation is the one in use, one should
avoid the confusion with the continuous part of X)

A continuous semi-martingale is a special semi-martingale, and A is continuous
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4.3.3 Covariation of Local Martingales

e Continuous Local martingales: Let X be a continuous local martingale. The predictable quadratic
variation process of X is the continuous increasing process (X) such that X2 — (X) is a local martingale.
Let X and Y be two continuous local martingales. The predictable covariation process is the continuous
finite variation process (X,Y") such that XY — (X,Y) is a local martingale. Note that (X) = (X, X)
and

(X+Y)=(X)+()+2(X,Y).

In the particular case where X; = = + fot rsdWs and Yy = y + fot ysdWs, where W is a BM and z,y
two adapted processes such that fot 22ds < o0, fot y2ds < oo, then (X,Y), = fot TsYsds.

e General local martingales: Let X and Y be two local martingales.
The covariation process is the finite variation process [X,Y] such that

XY — [X,Y] is a local martingale

A[X,Y]: = AXAY;
The process [X] = [X, X]| is non-decreasing. If the martingales X and Y are continuous, [X,Y] =
(X,Y). This covariation process is the limit in probability of ng;) (Xty, — X0 (Y, — Y3,), for
0 <ty <+ <ty <t when sup; <, (ti — ti—1) goes to 0.
If X and Y are continuous, (X,Y) = [X,Y].
If P and Q are equivalent probability measures, the quadratic covariation process [X,Y] under P and
under Q are the same. The covariation [X,Y] of both processes X and Y can be also defined by
polarisation

i+1

(X +Y]=[X]+[Y]+2[X,Y]
Let us recall that, if W is a Brownian motion (W), = [W]; = t. If M is the compensated martingale of

a Poisson process, [M] = N.

The predictable covariation process is the continuous finite variation process (X,Y’) such that XY —
(X,Y) is a local martingale. The existence of such a process may fail for discontinuous martingales.

4.3.4 Covariation of Semi-martingales

If X and Y are semi-martingales and if X¢,Y ¢ are their continuous martingale parts, their quadratic
covariation is

[X,Y]e = (XY + ) (AX,)(AYS).

s<t

The integration by parts formula is

d(X,Y;) = X;-dY; + Yi-dX, + d[X, Y]

4.4 Change of probability

4.4.1 Doléans-Dade exponential

If X is a semi-martingale, then the process Z = £(X) is the unique solution to the SDE (called the
Doléans Dade exponential)

Zy=1 +/ Zy— dX,,.
10,¢]

It is known that
1 ,
E(X) = exp (X¢ — Xo — §(X°>t) [T+ Ax,)e2X,

u<t

where X ¢ is the continuous martingale component of X.
If X is a local martingale, Z is also a local martingale.
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4.4.2 Girsanov’s Theorem

Theorem 4.4.1 Let X be a local martingale with respect to P and Q|x, = Ly P|z,. Then,

b d[X, L],
X, - / A

is a Q-local martingale.

PROOF: In a first step, one notes that a process Z is a Q-local martingale iff LZ is a P-local martingale.
Then, the proof relies on stochastic calculus.<

4.5 Processes with Stationary and Independent Increments

4.5.1 Definition
Let X be a cadlag process. We denote by F¥ its natural filtration. The process is said to have

e Independent increments if, for any pair (s,t) of positive numbers Xy, — X; is independent of F;*

e Stationary increments if for any pair (s,t) of positive numbers, X; s — X faw X

4.5.2 Strong Markov Property

Theorem 4.5.1 Let X be a process with stationary and independent increments. For any FX -stopping
time T, the process Y defined on the set T < 0o as Yy = X¢yr — X has the same law as the process X
and is independent of F.

PROOF: Let us set ¢(t;u) = E(e®™¥¢). Let us assume that the stopping time 7 is bounded and let
A € F.. Then, applying several time the optional sampling theorem

. +t;
E|Taexp|id u(Vy, -V, , = E|1a H 7 :t ;s ot — tj—1,u;)
Tt+lj-1 J

= P(A) H<p(tj —tj-1,u5)

J
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