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1 Counting processes and stochastic inte-
gral

N, — n if te€ [TnyTn—i—l[
'™ ) 400 otherwise

or, equivalently

N = Z ]I{Tngt} — Z nﬂ{Tn§t<Tn+1} :

n>1 n>1

We denote by NN;_ the left-limit of Ny when s — t,s5 <t
and by AN, = Ny, — N,_ the jump process of V.



The stochastic integral

t
| cuan.
0

is defined as

t o0
(O*N)t = / CSdNS = CSdNS = Z CTn]l{TnSt} .
0 n=1
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2 Standard Poisson process

2.1 Definition

The standard Poisson process is a counting process such that
- for every s,t, Nyys — Ny is independent of FY,
- for every s,t, the r.v. N;ys — N; has the same law as Nj.



2.2 First properties

E(Nt) — )\t, Var (Nt) = At

for every x > 0,t > 0,u,a € IR

E(CL‘Nt) _ eAt(x—l); E(eiuNt) _ ekt(ew—l); E(eaNt) _ eAt(eo‘—l) . (2.1)



2.3 Martingale properties

For each o € IR, for each bounded Borel function h, the following pro-
cesses are F-martingales:

(’l,) Mt — Nt - )\t,
(11) M7 — Xt = (N; — Mt)? — A,

(ii3)  exp(aN; — M(e® — 1)), (2.2)

(iv)  exp] /0 h(s)dN, — A /O (") — 1)ds] .



For any > —1, any bounded Borel function A, and any bounded
Borel function ¢ valued in | — 1, oo[, the processes

exp[ln(% + B)N; — A\t t: (1+ /B)Nte—ABt’

exp:/o h(s)dMs + )\/O (14 h(s) — eh(s))ds] :

exp:/o In(1 + o(s))dN, — )\/Otgp(s)ds] |

exp] /O In(1 + o(s))dM, + A /0 (In(L + o(s)) — (s)ds)]

are martingales.



Let H be an F-predictable bounded process, then the following pro-
cesses are martingales

t t t
(H*M)t:/ HSdMS:/ HSdNS—A/ H,ds
0 0 0

(HxM))? — A/Ot H?ds (2.3)

t t
exp (/ H,dNg + )\/ (1 — eHS)d:s)
0 0

Property (2.3) does not extend to adapted processes H. For exam-
t

ple, from fJ(NS — Ns_)dMg = Ny, it follows that / N.dM, is not a
0

martingale.
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Remark 2.1 Note that (i) and (iii) imply that the process (M7 —N;;t >
0) is a martingale.

The process At is the predictable quadratic variation (M), whereas
the process (INy,t > 0) is the optional quadratic variation [M].

For any pu € [0,1], the processes M? — (uN; + (1 — p)At) are also
martingales.
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2.4 Infinitesimal Generator

The Poisson process is a Lévy process, hence a Markov process, its in-
finitesimal generator L is defined as

L) (@) = Alf(x+1) = f(z)].

Therefore, for any bounded Borel function f, the process

Cf = F(NY) — £(0) — / L(f)(N,)ds

is a martingale.
Furthermore,

Cl = [ 1F(Nee 1) = FN. ..
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Exercise:

Extend the previous formula to functions f(¢,z) defined on IR" x IR
and C'! with respect to ¢, and prove that if

L; = exp(log(1 4+ ¢)N; — A¢t)

then
st — Lt—¢th .
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2.4.1 Watanabe’s characterization

Let N be a counting process and assume that there exists A > 0 such
that M; = N; — At is a martingale. Then N is a Poisson process with

intensity A.
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2.5 Change of Probability

If N is a Poisson process, then, for g > —1,
Ly = (14 p)M e

is a strictly positive martingale with expectation equal to 1.

d
Let @ be the probability defined as d—?’l 7, = L.

The process N is a Q-Poisson process with intensity equal to (14 3)\.
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2.6 Hitting Times

Let T, = inf{t, Ny > x}. Then, for n < z < n+ 1, T, is equal to the
time of the n!"-jump of N, hence has a Gamma (n) law.
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3 Inhomogeneous Poisson Processes

3.1 Definition

t
Let A be an IRT-valued function satisfying / AMu)du < oo, Vt.
0

An inhomogeneous Poisson process N with intensity A is a counting
process with independent increments which satisfies for ¢ > s

P(N, - N, = n) = Mot R 0) (3.1)

where A(s,t) = A(t) — A(s) = / Au)du, and A(t) = /0 Au)du.
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3.2 Martingale Properties

Let N be an inhomogeneous Poisson process with deterministic intensity
A. The process

(My = Ny — /t A(s)ds, t > 0)

is an F¥-martingale, and the increasing function A(t) = | "A(s)ds is

0
called the compensator of N.

Let ¢ be an F¥- predictable process such that E(f(;5 |Ps| A(s)ds) < o0
for every t. Then, the process ( fg psdM,,t > 0) is an FN-martingale.
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In particular,

E ( /O 5, dN8> _ ( /O t quA(s)ds) | (3.2)

Let H be an F- predictable process. The following processes are mar-

tingales
H*Mt_/HdM /HdN / s)Hgds

*M), / s)H2ds (3.3)

exp</HdN / ds>.
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Proposition 3.1 (Compensation formula.) For any real numbers u
and o, for any t

B(e™™) = exp((e™ — 1)A())
B(e™N) = exp((e” — 1)A(2).
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3.3 Watanabe’s Characterization

Proposition 3.2 (Watanabe characterization.) Let N be a count-
ing process and A an increasing, continuous function with zero value at
time zero. Let us assume that My = Ny — A(t) is a martingale. Then N
1s an inhomogeneous Poisson process with compensator A.
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3.4 Stochastic calculus

3.4.1 Integration by parts formula

t t
Let X; = x +/ gsdNg and Y; = y +/ gsdNg, where g and g are
0 0

predictable processes.

XYy = ay+ Y AXY),=ay+ ) Yo AX,+ > X, AY,+ > AX,AY,

s<t s<t s<t s<t

{ {
= :zzy+/ XS_dYS+/ Y, dXs+ [X,Y]
0 0
where

t
(X, Y] =) AX AY, =) G.g;AN, = / JsgsdNs .
0

s<t s<t
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If dX; = hydt + g;dN; and dY; = %tdt + g;dN;, one gets

t t
X,Y; = zy +/ Y,_dX, +/ Y,_dX,+ [X,Y),
0 0

where

t
[Xay]t:/ gsgsts-
0

If dX; = g;dM; and dY; = g;dM;, the process X;Y; — [X,Y]; is a
martingale.
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3.4.2 1Ito’s Formula

Let N be a Poisson process and f a bounded Borel function. The de-
composition

f(Ne) = f(No) + D Lf(Ns) = f(Ns-)]

0<s<t

is trivial and corresponds to It6’s formula for a Poisson process.

Z [f(Ns_ + 1) o f(Ns_)]ANs

0<s<t 0<s<t

= [ 10+ 1) = FN.laN..

(]
=
=
|
Pas
d
I
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Let

t
Xt=x+/ gsdNy =2+ > gr,
0

with g a predictable process.
The trivial equality

F(Xy) = F(Xo)+ Y (F

s<t

holds for any bounded function F'.

25
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Let
dXt = htdt -+ gtht = (ht — gt)\(t))dt -+ gtht

and F' € CH1(IRT x IR). Then
F(LX,) = F(0.X,)+ / 9,F (s, X.) ds+/ D, F (5, Xo_)(he — go\(s))ds

+ZF s, Xs) (5, Xs—) (3.4)

s<t
=  F(0, Xy) /&; Sde+/6’FsX)dX

+ Z F(s,Xs_)— 0,F(s,Xs_)gsANg] .

s<t
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The formula (3.4) can be written as
t t
F(t,X;) — F(0,Xp) = / O F (s, Xs)ds —|—/ 0. F (s, Xs)(hs — gsA(s))ds
0 0

+/t[F(S Xs) — F(s, Xs_)]dNg

— /875 sts—l—/@FsX

+/[ (8, Xs) — F(s,Xs_) — 0, F(s,Xs_)gs]dNg

— /5’75 sts—i—/(?FsX

+/O[ (5, Xae + ) — F(s, Xo_) — 05 F (5, X,_)galdN,

27



3.5 Predictable Representation Property

Proposition 3.3 Let FV be the completion of the canonical filtration
of the Poisson process N and H € L*(FLY), a square integrable random
variable. Then, there exists a predictable process h such that

H = E(H) +/ hedM,
0

and E( [, h2ds) < oo.
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3.6 Independent Poisson Processes

Definition 3.4 A process (N',--- N%) is a d-dimensional F-Poisson
process if each N7 is a right-continuous adapted process such that Nj = 0
and if there exists constants \; such that for everyt > s >0

d
P [m;?:l(Nﬁ — N{ = nj)|fs} =11

j=1

oA (=) (Aj (T —5))"
nj! .

Proposition 3.5 An F-adapted process N is a d-dimensional F-Poisson

process if and only if
(i) each N7 is an F-Poisson process
(i) no two N7 ’s jump simultaneously.

29



4 Stochastic intensity processes

4.1 Definition

Definition 4.1 Let N be a counting process, ¥-adapted and (¢, t > 0)

a non-negative F - progressively measurable process such that for every t,
Ay = fg Asds < oo P a.s..

The process N 1is an inhomogeneous Poisson process with stochastic in-

tensity \ if for every non-negative ¥F-predictable process (¢, t > 0) the
following equality is satisfied

E(/Ooongst) :E(/Ooogbs)\sds) .

Therefore (M; = Ny — Ay, t > 0) is an F-local martingale.
If ¢ is a predictable process such that Vi, E(f(;5 |Ds|Asds) < oo, then
(f(;5 psdMs, t > 0) is an F-martingale.
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An inhomogeneous Poisson process N with stochastic intensity A; can
be viewed as time changed of N, a standard Poisson process N; = Ny, .
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4.2 1Ito’s formula

The formula obtained in Section 3.4 generalizes to inhomogeneous Pois-
son process with stochastic intensity.
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4.3 Exponential Martingales

Proposition 4.2 Let N be an inhomogeneous Poisson process with stochas-
tic intensity (A\¢, t > 0), and (ug, t > 0) a predictable process such that

fg |ps|As ds < 0o. Then, the process L defined by

exp(— fg tsAs ds) if t<Ty
Lt — t . (41)
Hn,Tngt(l + pr, ) exp(— fo psAsds) of t>1Th
18 a local martingale, solution of
st — Lt_/itht, LO =1. (42)

Moreover, if i is such that Vs, ug > —1,

¢ t
L; = exp [—/ s Asds + / In(1 4+ ps) dNS] .
0 0

33



The local martingale L is denoted by £ (uxM ') and named the Doléans-
Dade exponential of the process uxM.
This process can also be written

t
L; = H (1 4+ pusANg ) exp [—/ ,us)\Sds] .
0

0<s<t

Moreover, it Vi, u; > —1, then L is a non-negative local martingale,
therefore it is a supermartingale and

¢
L; = exp —/ us)\sds—|—21n(1—|—us)ANs
0

s<t

- / /
= exp —/ ,us)\sds—l—/ In(1 —|—,u8)dNS]
L Jo 0

-t t
= exp / In(1 4+ ps) — ps] As ds + / In(1 4 ps) dMS] :
|Jo 0
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The process L is a martingale if V¢, E(L;) = 1.

If 11 is not greater than —1, then the process L defined in (4.1) is still
a local martingale which satisfies dL; = L;_ u;dM;. However it may be
negative.
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4.4 Change of Probability

Let u be a predictable process such that u > —1 and fg As|ps|ds < oo.

Let L be the positive exponential local martingale solution of
st — Lt_,utht .

Assume that L is a martingale and let () be the probability measure
equivalent to P defined on F; by Q|x, = L: P|£,.

Under (), the process

/ /
(M = M, — / tsAsds = Ny — / (s + D) Asds ,t > 0)
0 0

is a local martingale.
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5 An Elementary Model of Prices including
Jumps

Suppose that S is a stochastic process with dynamics given by

dS; = Si_ (b(t)dt + (t)dM,), (5.1)

where M is the compensated compensated martingale associated with

a Poisson process and where b, ¢ are deterministic continuous functions,
such that ¢ > —1. The solution of (5.1) is

Sy = Spexp / o(s)A(s)ds + /t b(s)ds] H(l + ¢(s)AN)

s<t

~  Syexp /O b(s )ds]exp[/ In(1 + é(s))dN, — /gb ]

37



t
Hence S; exp (— / b(s)ds) is a strictly positive martingale.
0

We denote by r the deterministic interest rate and by R; = exp (— fg r(s)ds)

the discounted factor.

Any strictly positive martingale L can be written as dL; = L;_ s dM;
with pu > —1.
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Let (Y; = R:SiL¢,t > 0). Ito’s calculus yields to

dY; = Y ((b(t) — r(t))dt + () ped[M];)
=Y, (b(t) — () + S(DAD)) dt.
Hence, Y is a local martingale if and only if u\(t) = — bt) Cbzt; (t)

Assume that p > —1 and Q|#, = L; P|#,. Under @, N is a Poisson
process with intensity ((u(s) + 1)A(s), s > 0) and

dS; = Sy (r(t)dt + ¢(t)dM!")
where (MH*(t) = fo JA(s)ds, t > 0) is the compensated

Q—martmgale
Hence () is the unique equivalent martingale measure.
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5.1 Poisson Bridges

Let N be a Poisson process with constant intensity A and M its compen-
sated martingale. Let F¥ = o(N,,s < t) be its natural filtration and
G = 0(Ng,s < t; Np) the natural filtration enlarged with the terminal
value of the process V.

t
Np — N
Proposition 5.1 The process n; = N; — ; “ds, t < T is a
0 — S
t
N — N
G-martingale with predictable bracket Ay = ; > ds.
0 — S

40



6 Compound Poisson Processes

6.1 Definition and Properties

Let A be a positive number and F'(dy) be a probability law on IR. A
(A, F') compound Poisson process is a process X = (X;,t > 0) of the

form
N,
X, = Z Y,
k=1

where N is a Poisson process with intensity A > 0 and the (Y3, k € IN) are
i.i.d. square integrable random variables with law F'(dy) = P(Y1 € dy),
independent of V.

41



Proposition 6.1 A compound Poisson process has stationary and in-
dependent increments; the cumulative function of X; s

(AD)"

n!

P(X,<z)=e M Z

n

If E(|Y1|) < oo, the process (Z; = Xy — tAE(Y1),t > 0) is a martin-
gale and in particular, E(X;) = ME(Y1) = At [ yF(dy).

If E(Y?) < oo, the process (Z2 —t \E(Y{),t > 0) is a martingale and
Var (X;) = ME(Y?).
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Corollary 6.2 Let X be a (N, F') compound Poisson process independent
of W. Let
dSt — St_(,udt -+ dXt) .

Then,
Ny
Sp = Soe* 1] (14 Ya)
k=1
In particular, if 1 +Y7 > 0, a.s.
Ny
Sy = So exp(ut + Z In(1+ Yzx).
k=1

The process (S;e™ ", t > 0) is a martingale if and only if u+AE(Y1) =r.
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6.2 Martingales

We now denote by v the measure v(dy) = AF(dy), a (), F') compound
Poisson process will be called a (A, v) compound Poisson process.

Proposition 6.3 If X is a (\,v) compound Poisson process, for any «

©.@)
such that / e“v(du) < oo, the process

— 00

29 — exp (oth L ( /_ 0;(1 _ eo‘“)u(du)>)

1S a martingale and

B(eX) = exp (—t ( /_ 0;(1 - eo‘“)y(du))) .

44



Proposition 6.4 Let X be a (A, v) compound Poisson process, and [ a
bounded Borel function. Then, the process

XPp (if(Yk)ﬂLt/OO

15 a martingale. In particular

E (exp (if(ﬁ))) = exp (—t/_o;u - ef(x))y(dx))

o

(1 — ef(‘”))y(da:)>
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For any bounded Borel function f, we denote by v(f) = [ f(z)v(dx)
the product AE(f(Y1)).

Proposition 6.5 Let X be a (A v) compound Poisson process. The
process

M} =" f(AX) L ax,20p — tv(f)

s<t

1s a martingale. Conversely, suppose that X is a pure jump process and
that there exists a finite positive measure o such that

> f(AX)Liax, 20y — to(f)

s<t

is a martingale for any f, then X is a (o(1),0) compound Poisson pro-
cess.
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6.3 Hitting Times

Let Xy = bt + 30", V3.
Assume that the support of F' is included in | — oo, 0].

The process (exp(uX; — ti(u)),t > 0) is a martingale, with

0
Y(u) = bu — )\/ (1 —e"Y)F(dy) .
Let T, = inf{t : X; > x}. Since the process X has no positive jumps,
XTw == .
Hence FE(e"Xerre —(tATe)¥(w)) — 1 and when t goes to infinity, one

obtains
E<€u:c—Tm¢(u)ﬂ{Tx<oo}) —1.
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If ) admits an inverse ¢!, one gets if T, is finite

E(e ) = OV

Setting Z, = —Y}, the random variables Z; can be interpreted as
Ny

losses for insurance companies. The process z + bt — Z Zp. is called the
k=1

Cramer-Lundberg risk process. The time 7 = inf{t : X; < 0} is the
bankruptcy time for the company.
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One sided exponential law. If F(dy) = Qeey]l{y@}dy, one obtains

Y(u) = bu — H)fu’ hence inverting ),
E(e™™ " yp, cooy) = e~V (W)
with
S () = A+ kK —0b+ \/()\+/ﬁ)—9b)2+49b‘

20
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6.4 Change of Measure

Let X be a (A, v) compound Poisson process, A>0and F a probability
measure on IR, absolutely continuous w.r.t. F' and v(dx) = AF'(dx). Let

Li=exp [t = X) + Zln (dju) (AXy)
s<t

Set dQ‘ft = Lth|]:t.

Proposition 6.6 Under (Q, the process X is a (X, v) compound Poisson
PTOCESS.
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6.5 Price Process

Let

where X is a (A, ) compound Poisson process. The solution of (6.1) is
a Markov process with infinitesimal generator

+00
L(f)(x) = / @+ yay + 8y) — F(@)] v(dy) + (oz + B) ().

— o0

Let S be the solution of (6.1). The process e~ "*S; is a martingale if
and only if

7/yu(dy)+oz:r, 5/yy(dy)+ﬁ:0.
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Let F be a probability measure absolutely continuous with respect
to F' and

Let dQ|z, = LidP|x,. The process (S;e™"" t > 0) is a Q-martingale
if and only if

Xv/yﬁ(dy)—l—a:r, X&/yﬁ(dy)—l—ﬁzo

Hence, there are an infinite number of e.m.m.. One can change the
intensity of the Poisson process, and/or the law of the jumps.
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7 Marked Point Processes

7.1 Definition

Let (2, F, P) be a probability space, (Z,) a sequence of random vari-
ables taking values in a measurable space (E, ), and (7},) an increasing
sequence of positive random variables. For each Borel set A C E, we de-

fine the process N;(A) = Z L7, <31y 7z, cay and the counting measure

wu(w,ds, dz) by

Ny

/ /H (ds, dz) ZHTn,Z)Il{T<t}_ZHTn,Z)
0,t]

n=1

The natural filtration of N is

FYN =o(Ns(A),s <t,A€E).
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In what follows, we assume that N;(A) admits the F-predictable intensity
At(A), i.e. there exists a predictable process (A:(A),t > 0) such that

N, (A) — /O A (A)ds

Ny
is a martingale. Then, if X; = Z H(T,, Z,) where H is an F predictable

n=1
process which satisfies

/ /\H 2)|[As(dz)ds | < oo

0,1]

the process
t

Xt—/ /H(s,z (dz) ds—/ /H p(ds, dz) — Ag(dz)ds]
0o JE 0,1]
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is a martingale and in particular

E ( /M /E H(s,z),u(ds,dz)) _ 5 ( /]O’t] [E H(s,z))\s(dz)ds> |

The process NV is called a marked point process.

This is a generalization of the compound Poisson process: we have
introduced a spatial dimension for the size of jumps which are no more
i.i.d. random variables.
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7.2 Predictable representation property

Let (2, F,F, P) be a probability space where bF' is the filtration gener-
ated by the marked point process q.
Then, any (P, F)-martingale M admits the representation

M; = M +/O /EH(s,x)(u(ds,da:) — As(dx)ds)

where H is a predictable process such that

E (/Ot/E\H(s,x)MS(da:)ds) < o

50



More generally

Proposition 7.1 Let W be a Brownian motion and u(ds,dz) a marked
point process. Let Fy = o(Ws,p([|0,s], A);s <t, A€ &) completed. Then,
any (P, F) local martingale has the representation

M; = My + /Ot wsdWs + /Ot /E H (s, z)(u(ds,dz) — As(dz)ds)

where @ 1s a predictable process such that fg p32ds < 00
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7.3 Random Measure

More generally, one defines a random measure. Let (E,£) be a measur-
able Polish space, i.e., a topological space endowed with a distance under
which the space is complete and separable.

Definition 7.2 A random measure 1 on the space IRT™ x E is a family of
nonnegative measures p(w, dt,dx),w € Q) defined on IR x E) satisfying
pu(w,{0} x E) =0
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8 Poisson Point Processes

8.1 Poisson Measures

Let (E,£) be a measurable Polish space. A random measure ¢ on E
is a Poisson measure with intensity v, where v is a o-finite measure on
E, if for every Borel set B C E with v(B) < oo, ¢(B) has a Poisson
distribution with parameter v(B) and if B;,7 < n are disjoint sets, the
variables ¢(B;),i < n are independent.
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Example: Let v be a probability measure, Y, kK € IN be i.i.d. random

variables with law v and IV a Poisson variable independent of Y;’s. The
N

random measure E dy, 1s a Poisson measure. Here J. is the Dirac

k=1
measure at point e.
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8.2 Point Processes

Let (F,&) be a measurable space and § is an isolated additional point.
We set Es = EUS,E =o(E,{d}).

Definition 8.1 Let e be a stochastic process defined on a probability
space (2, F, P), taking values in (Es,Es). The process e is a point process

if
(1) the map (t,w) — e (w) is B(]0, oo[) @ F-measurable
(ii) the set D, = {t : e;(w) # 0} is a.s. countable.

For every measurable set B of |0, 00[x F, we set

NP(w) =) 1p(s,es(w)).

>0
In particular, if B =]0,¢t] x I", we write
N} = NP =Card{s <t : e(s) eT}.

Let the space ({2, P) be endowed with a filtration F. A point process
is F-adapted if, for any I' € &£, the process N' is F-adapted. For any

01



' € &, we define a point process e by

e; (w) = e(w)ifeq(w) el
e; (w) = &otherwise

Definition 8.2 A point process e is discrete if NF < oo a.s. for every
t. A point process is o-discrete if there is a sequence E, of sets with
E = UE,, such that each e® is discrete.
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8.3 Poisson Point Processes

Definition 8.3 An F-Poisson point process is a o-discrete point process
such that

(i) the process e is F-adapted

(i) for any s and t and any T € &, the law of Ni,, — N} condi-
tioned on F; is the same as the law of N} .

Therefore, for any disjoint family (I';,4 = 1,...,d), the process (N, ,i =
1,---,d) is a d-dimensional Poisson process. Moreover, if N! is finite
almost surely, then E(N}) < oo and the quantity 1 E(N;}) does not
depend on t.

Definition 8.4 The o-finite measure on £ defined by

n(r) = E(NT)

18 called the characteristic measure of e.

If n(I") < oo, the process N} — tn(I') is a martingale.
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Proposition 8.5 (Compensation formula.) Let H be a positive pro-
cess vanishing at 0, measurable with respect to P x Es. Then

E _ZH(s,w,eS(w)) = F UOOO ds/H(s,w,u)n(du)] .

s>0

t
If, for any t, £ [/ ds/H(s,w,u)n(du)] < 00, the process
0

" H(s,w, e,(w)) - /O s / H (s, w, u)n(du)

s<t
a martingale.

PROOF: It is enough to prove this formula for H (s, w,u) = K(s,w)lr(u).
In that case, N} — tn(I') is a martingale. JAN
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Proposition 8.6 (Exponential formula.) If f is a B® E-measurable
function such that fot ds [ |f(s,u)n(du) < oo for every t, then,

Elexp|i Y f(s,es) || =exp ( /O tds / (eif<8>u>—1)n(du))

Moreover, if f > 0,

Elexp|— Y f(s.e5) || =exp <—/Otds/(1—e_f(s’“))n(du)).

0<s<t

If v is finite, then the associated counting process is a compound
Poisson process.

8.4 The Ito measure of Brownian excursions

Let (B¢, t > 0) be a Brownian motion and (75) be the inverse of the local
time (L;) at level 0. The set {Us>0]7s- (w), Ts(w)[ } is (almost surely)
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equal to the complement of the zero set {u : B,(w) = 0}. The excursion
process (es, s > 0) is defined as

es(w)(t) = ]l{t < Te — 7_8_} BTs— _|_t,t > 0.
This is a path-valued process e : IR, — (2., where
Q. ={e: IRy — IR :3V(e) < 0o, with e(V(e) +1t) =0,Vt >0

e(u) #0,V0 <u < V(e), €(0) =0, €is continuous } .

Hence, V (¢€) is the lifetime of e.
The excursion process is a Poisson Point Process; its characteristic
measure n evaluated on the set I'; i.e., n(I"), is defined as the intensity

of the Poisson process
def
Ntr ; Z HGSEF .
s<t

The quantity n(T") is the positive real v such that N} — tv is an (F,, )-
martingale.
From It0’s theorem, the excursion process is a Poisson point process.
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Conditionally on V' = v, the process
(lew]; u < v)
is a BES(3) bridge of length v. Let M(e) = sup, <, |€,|. Then,

dm

n(M((e) € dm) = —
(M(e) € dm) = 5
and, conditionally on M = m, the two processes €,,,u < T}, and €y _,,u <
V —T,, are two independent BES(3) processes considered up to their first

hitting time of m. The Ito6-Williams description of the measure n is

n(de) — /0 " (do) %(Hg F 1) (de)

d
where ny (dv) = Y s the law of the lifetime V under n and 1T

vV 23

(resp. IIV) is the law of the standard Bessel Bridge (resp. the law of its
opposite) with dimension 3 and length v.
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