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1 Counting processes and stochastic inte-
gral

Nt =
{

n if t ∈ [Tn, Tn+1[
+∞ otherwise

or, equivalently

Nt =
∑
n≥1

11{Tn≤t} =
∑
n≥1

n11{Tn≤t<Tn+1} .

We denote by Nt− the left-limit of Ns when s→ t, s < t
and by ∆Ns = Ns −Ns− the jump process of N .
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The stochastic integral ∫ t

0

CsdNs

is defined as

(C�N)t =
∫ t

0

CsdNs =
∫

]0,t]

CsdNs =
∞∑
n=1

CTn
11{Tn≤t} .
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2 Standard Poisson process

2.1 Definition

The standard Poisson process is a counting process such that
- for every s, t, Nt+s −Nt is independent of FN

t ,
- for every s, t, the r.v. Nt+s −Nt has the same law as Ns.
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2.2 First properties

E(Nt) = λt, Var (Nt) = λt

for every x > 0, t > 0, u, α ∈ IR

E(xNt) = eλt(x−1) ; E(eiuNt) = eλt(e
iu−1) ; E(eαNt) = eλt(e

α−1) . (2.1)
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2.3 Martingale properties

For each α ∈ IR, for each bounded Borel function h, the following pro-
cesses are F-martingales:

(i) Mt = Nt − λt,

(ii) M2
t − λt = (Nt − λt)2 − λt,

(iii) exp(αNt − λt(eα − 1)),

(iv) exp
[ ∫ t

0

h(s)dNs − λ

∫ t

0

(eh(s) − 1)ds
]
.

(2.2)
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For any β > −1, any bounded Borel function h, and any bounded
Borel function ϕ valued in ] − 1,∞[, the processes

exp[ln(1 + β)Nt − λβt] = (1 + β)Nte−λβt,

exp
[ ∫ t

0

h(s)dMs + λ

∫ t

0

(1 + h(s) − eh(s))ds
]
,

exp
[ ∫ t

0

ln(1 + ϕ(s))dNs − λ

∫ t

0

ϕ(s)ds
]
,

exp
[ ∫ t

0

ln(1 + ϕ(s))dMs + λ

∫ t

0

(ln(1 + ϕ(s)) − ϕ(s)ds)
]
,

are martingales.
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Let H be an F-predictable bounded process, then the following pro-
cesses are martingales

(H�M)t =
∫ t

0

HsdMs =
∫ t

0

HsdNs − λ

∫ t

0

Hsds

((H�M)t)2 − λ

∫ t

0

H2
sds

exp
(∫ t

0

HsdNs + λ

∫ t

0

(1 − eHs)ds
) (2.3)

Property (2.3) does not extend to adapted processes H. For exam-

ple, from
∫ t
0
(Ns − Ns−)dMs = Nt, it follows that

∫ t

0

NsdMs is not a

martingale.
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Remark 2.1 Note that (i) and (iii) imply that the process (M2
t −Nt; t ≥

0) is a martingale.

The process λt is the predictable quadratic variation 〈M〉, whereas
the process (Nt, t ≥ 0) is the optional quadratic variation [M ].

For any µ ∈ [0, 1], the processes M2
t − (µNt + (1 − µ)λt) are also

martingales.
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2.4 Infinitesimal Generator

The Poisson process is a Lévy process, hence a Markov process, its in-
finitesimal generator L is defined as

L(f)(x) = λ[f(x+ 1) − f(x)] .

Therefore, for any bounded Borel function f , the process

Cft = f(Nt) − f(0) −
∫ t

0

L(f)(Ns)ds

is a martingale.
Furthermore,

Cft =
∫ t

0

[f(Ns− + 1) − f(Ns−)]dMs .
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Exercise:

Extend the previous formula to functions f(t, x) defined on IR+ × IR
and C1 with respect to t, and prove that if

Lt = exp(log(1 + φ)Nt − λφt)

then
dLt = Lt−φdMt .
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2.4.1 Watanabe’s characterization

Let N be a counting process and assume that there exists λ > 0 such
that Mt = Nt − λt is a martingale. Then N is a Poisson process with
intensity λ.
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2.5 Change of Probability

If N is a Poisson process, then, for β > −1,

Lt = (1 + β)Nte−λβt

is a strictly positive martingale with expectation equal to 1.

Let Q be the probability defined as
dQ

dP
|Ft

= Lt.

The process N is a Q-Poisson process with intensity equal to (1+β)λ.
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2.6 Hitting Times

Let Tx = inf{t,Nt ≥ x}. Then, for n ≤ x < n + 1, Tx is equal to the
time of the nth-jump of N , hence has a Gamma (n) law.
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3 Inhomogeneous Poisson Processes

3.1 Definition

Let λ be an IR+-valued function satisfying
∫ t

0

λ(u)du <∞,∀t.
An inhomogeneous Poisson process N with intensity λ is a counting

process with independent increments which satisfies for t > s

P (Nt −Ns = n) = e−Λ(s,t) (Λ(s, t))n

n!
(3.1)

where Λ(s, t) = Λ(t) − Λ(s) =
∫ t

s

λ(u)du, and Λ(t) =
∫ t

0

λ(u)du.
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3.2 Martingale Properties

Let N be an inhomogeneous Poisson process with deterministic intensity
λ. The process

(Mt = Nt −
∫ t

0

λ(s)ds, t ≥ 0)

is an FN -martingale, and the increasing function Λ(t) =
∫ t
0
λ(s)ds is

called the compensator of N .

Let φ be an FN - predictable process such that E(
∫ t
0
|φs|λ(s)ds) <∞

for every t. Then, the process (
∫ t
0
φsdMs, t ≥ 0) is an FN -martingale.
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In particular,

E

(∫ t

0

φs dNs

)
= E

(∫ t

0

φsλ(s)ds
)
. (3.2)

Let H be an FN - predictable process. The following processes are mar-
tingales

(H�M)t =
∫ t

0

HsdMs =
∫ t

0

HsdNs −
∫ t

0

λ(s)Hsds

((H�M)t)2 −
∫ t

0

λ(s)H2
sds

exp
(∫ t

0

HsdNs −
∫ t

0

λ(s)(eHs − 1)ds
)
.

(3.3)
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Proposition 3.1 (Compensation formula.) For any real numbers u
and α, for any t

E(eiuNt) = exp((eiu − 1)Λ(t))
E(eαNt) = exp((eα − 1)Λ(t)) .
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3.3 Watanabe’s Characterization

Proposition 3.2 (Watanabe characterization.) Let N be a count-
ing process and Λ an increasing, continuous function with zero value at
time zero. Let us assume that Mt = Nt −Λ(t) is a martingale. Then N
is an inhomogeneous Poisson process with compensator Λ.
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3.4 Stochastic calculus

3.4.1 Integration by parts formula

Let Xt = x +
∫ t

0

gsdNs and Yt = y +
∫ t

0

g̃sdNs, where g and g̃ are

predictable processes.

XtYt = xy +
∑
s≤t

∆(XY )s = xy +
∑
s≤t

Ys−∆Xs +
∑
s≤t

Xs−∆Ys +
∑
s≤t

∆Xs ∆Ys

= xy +
∫ t

0

Xs−dYs +
∫ t

0

Ys−dXs + [X,Y ]t

where

[X,Y ]t =
∑
s≤t

∆Xs ∆Ys =
∑
s≤t

g̃sgs∆Ns =
∫ t

0

g̃sgsdNs .
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If dXt = htdt+ gtdNt and dYt = h̃tdt+ g̃tdNt, one gets

XtYt = xy +
∫ t

0

Ys−dXs +
∫ t

0

Ys−dXs + [X,Y ]t

where

[X,Y ]t =
∫ t

0

g̃sgsdNs .

If dXt = gtdMt and dYt = g̃tdMt, the process XtYt − [X,Y ]t is a
martingale.
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3.4.2 Itô’s Formula

Let N be a Poisson process and f a bounded Borel function. The de-
composition

f(Nt) = f(N0) +
∑

0<s≤t
[f(Ns) − f(Ns−)]

is trivial and corresponds to Itô’s formula for a Poisson process.

∑
0<s≤t

[f(Ns) − f(Ns−)] =
∑

0<s≤t
[f(Ns− + 1) − f(Ns−)]∆Ns

=
∫ t

0

[f(Ns− + 1) − f(Ns−)]dNs .
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Let

Xt = x+
∫ t

0

gsdNs = x+
∑
Tn≤t

gTn
,

with g a predictable process.
The trivial equality

F (Xt) = F (X0) +
∑
s≤t

(F (Xs) − F (Xs−)) ,

holds for any bounded function F .
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Let
dXt = htdt+ gtdMt = (ht − gtλ(t))dt+ gtdNt

and F ∈ C1,1(IR+ × IR). Then

F (t,Xt) = F (0, X0) +
∫ t

0

∂tF (s,Xs)ds+
∫ t

0

∂xF (s,Xs−)(hs − gsλ(s))ds

+
∑
s≤t

F (s,Xs) − F (s,Xs−) (3.4)

= F (0, X0) +
∫ t

0

∂tF (s,Xs)ds+
∫ t

0

∂xF (s,Xs−)dXs

+
∑
s≤t

[F (s,Xs) − F (s,Xs−) − ∂xF (s,Xs−)gs∆Ns] .
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The formula (3.4) can be written as

F (t,Xt) − F (0, X0) =
∫ t

0

∂tF (s,Xs)ds+
∫ t

0

∂xF (s,Xs)(hs − gsλ(s))ds

+
∫ t

0

[F (s,Xs) − F (s,Xs−)]dNs

=
∫ t

0

∂tF (s,Xs)ds+
∫ t

0

∂xF (s,Xs−)dXs

+
∫ t

0

[F (s,Xs) − F (s,Xs−) − ∂xF (s,Xs−)gs]dNs

=
∫ t

0

∂tF (s,Xs)ds+
∫ t

0

∂xF (s,Xs−)dXs

+
∫ t

0

[F (s,Xs− + gs) − F (s,Xs−) − ∂xF (s,Xs−)gs]dNs .
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3.5 Predictable Representation Property

Proposition 3.3 Let FN be the completion of the canonical filtration
of the Poisson process N and H ∈ L2(FN

∞), a square integrable random
variable. Then, there exists a predictable process h such that

H = E(H) +
∫ ∞

0

hsdMs

and E(
∫∞
0
h2
sds) <∞.
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3.6 Independent Poisson Processes

Definition 3.4 A process (N1, · · · , Nd) is a d-dimensional F-Poisson
process if each N j is a right-continuous adapted process such that N j

0 = 0
and if there exists constants λj such that for every t ≥ s ≥ 0

P
[
∩dj=1(N

j
t −N j

s = nj)|Fs
]

=
d∏
j=1

e−λj(t−s) (λj(t− s))nj

nj !
.

Proposition 3.5 An F-adapted process N is a d-dimensional F-Poisson
process if and only if

(i) each N j is an F-Poisson process
(ii) no two N j’s jump simultaneously.
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4 Stochastic intensity processes

4.1 Definition

Definition 4.1 Let N be a counting process, F-adapted and (λt, t ≥ 0)
a non-negative F- progressively measurable process such that for every t,
Λt =

∫ t
0
λsds <∞ P a.s..

The process N is an inhomogeneous Poisson process with stochastic in-
tensity λ if for every non-negative F-predictable process (φt, t ≥ 0) the
following equality is satisfied

E

(∫ ∞

0

φs dNs

)
= E

(∫ ∞

0

φsλsds

)
.

Therefore (Mt = Nt − Λt, t ≥ 0) is an F-local martingale.
If φ is a predictable process such that ∀t, E(

∫ t
0
|φs|λsds) < ∞, then

(
∫ t
0
φsdMs, t ≥ 0) is an F-martingale.
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An inhomogeneous Poisson process N with stochastic intensity λt can
be viewed as time changed of Ñ , a standard Poisson process Nt = ÑΛt

.
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4.2 Itô’s formula

The formula obtained in Section 3.4 generalizes to inhomogeneous Pois-
son process with stochastic intensity.
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4.3 Exponential Martingales

Proposition 4.2 Let N be an inhomogeneous Poisson process with stochas-
tic intensity (λt, t ≥ 0), and (µt, t ≥ 0) a predictable process such that∫ t
0
|µs|λs ds <∞. Then, the process L defined by

Lt =

{
exp(− ∫ t

0
µsλs ds) if t < T1∏

n,Tn≤t(1 + µTn
) exp(− ∫ t

0
µsλs ds) if t ≥ T1

(4.1)

is a local martingale, solution of

dLt = Lt−µtdMt, L0 = 1 . (4.2)

Moreover, if µ is such that ∀s, µs > −1,

Lt = exp
[
−
∫ t

0

µsλsds+
∫ t

0

ln(1 + µs) dNs

]
.

33



The local martingale L is denoted by E(µ�M) and named the Doléans-
Dade exponential of the process µ�M .

This process can also be written

Lt =
∏

0<s≤t
(1 + µs∆Ns ) exp

[
−
∫ t

0

µs λs ds

]
.

Moreover, if ∀t, µt > −1, then L is a non-negative local martingale,
therefore it is a supermartingale and

Lt = exp

− ∫ t

0

µsλsds+
∑
s≤t

ln(1 + µs)∆Ns


= exp

[
−
∫ t

0

µsλsds+
∫ t

0

ln(1 + µs) dNs

]
= exp

[∫ t

0

[ln(1 + µs) − µs]λs ds+
∫ t

0

ln(1 + µs) dMs

]
.
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The process L is a martingale if ∀t, E(Lt) = 1.

If µ is not greater than −1, then the process L defined in (4.1) is still
a local martingale which satisfies dLt = Lt−µtdMt. However it may be
negative.
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4.4 Change of Probability

Let µ be a predictable process such that µ > −1 and
∫ t
0
λs|µs|ds <∞.

Let L be the positive exponential local martingale solution of

dLt = Lt−µtdMt .

Assume that L is a martingale and let Q be the probability measure
equivalent to P defined on Ft by Q|Ft

= Lt P |Ft
.

Under Q, the process

(Mµ
t
def
= Mt −

∫ t

0

µsλsds = Nt −
∫ t

0

(µs + 1)λs ds , t ≥ 0)

is a local martingale.
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5 An Elementary Model of Prices including
Jumps

Suppose that S is a stochastic process with dynamics given by

dSt = St−(b(t)dt+ φ(t)dMt), (5.1)

where M is the compensated compensated martingale associated with
a Poisson process and where b, φ are deterministic continuous functions,
such that φ > −1. The solution of (5.1) is

St = S0 exp
[
−
∫ t

0

φ(s)λ(s)ds+
∫ t

0

b(s)ds
]∏
s≤t

(1 + φ(s)∆Ns)

= S0 exp
[∫ t

0

b(s)ds
]

exp
[∫ t

0

ln(1 + φ(s))dNs −
∫ t

0

φ(s)λ(s)ds
]
.

37



Hence St exp
(
−
∫ t

0

b(s)ds
)

is a strictly positive martingale.

We denote by r the deterministic interest rate and byRt = exp
(
− ∫ t

0
r(s)ds

)
the discounted factor.

Any strictly positive martingale L can be written as dLt = Lt−µtdMt

with µ > −1.
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Let (Yt = RtStLt, t ≥ 0). Itô’s calculus yields to

dYt ∼= Yt− ((b(t) − r(t))dt+ φ(t)µtd[M ]t)
∼= Yt− (b(t) − r(t) + φ(t)µtλ(t)) dt .

Hence, Y is a local martingale if and only if µtλ(t) = −b(t) − r(t)
φ(t)

.

Assume that µ > −1 and Q|Ft
= Lt P |Ft

. Under Q, N is a Poisson
process with intensity ((µ(s) + 1)λ(s), s ≥ 0) and

dSt = St−(r(t)dt+ φ(t)dMµ
t )

where (Mµ(t) = Nt −
∫ t
0
(µ(s) + 1)λ(s) ds , t ≥ 0) is the compensated

Q-martingale.
Hence Q is the unique equivalent martingale measure.
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5.1 Poisson Bridges

Let N be a Poisson process with constant intensity λ and M its compen-
sated martingale. Let FN

t = σ(Ns, s ≤ t) be its natural filtration and
Gt = σ(Ns, s ≤ t;NT ) the natural filtration enlarged with the terminal
value of the process N .

Proposition 5.1 The process ηt = Nt −
∫ t

0

NT −Ns
T − s

ds, t ≤ T is a

G-martingale with predictable bracket Λt =
∫ t

0

NT −Ns
T − s

ds.
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6 Compound Poisson Processes

6.1 Definition and Properties

Let λ be a positive number and F (dy) be a probability law on IR. A
(λ, F ) compound Poisson process is a process X = (Xt, t ≥ 0) of the
form

Xt =
Nt∑
k=1

Yk

whereN is a Poisson process with intensity λ > 0 and the (Yk, k ∈ IN) are
i.i.d. square integrable random variables with law F (dy) = P (Y1 ∈ dy),
independent of N .
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Proposition 6.1 A compound Poisson process has stationary and in-
dependent increments; the cumulative function of Xt is

P (Xt ≤ x) = e−λt
∑
n

(λt)n

n!
F ∗n(x) .

If E(|Y1|) < ∞, the process (Zt = Xt − tλE(Y1), t ≥ 0) is a martin-
gale and in particular, E(Xt) = λtE(Y1) = λt

∫
yF (dy).

If E(Y 2
1 ) <∞, the process (Z2

t − tλE(Y 2
1 ), t ≥ 0) is a martingale and

Var (Xt) = λtE(Y 2
1 ).
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Corollary 6.2 Let X be a (λ, F ) compound Poisson process independent
of W . Let

dSt = St−(µdt+ dXt) .

Then,

St = S0e
µt

Nt∏
k=1

(1 + Yk)

In particular, if 1 + Y1 > 0, a.s.

St = S0 exp(µt+
Nt∑
k=1

ln(1 + Yk) .

The process (Ste−rt, t ≥ 0) is a martingale if and only if µ+λE(Y1) = r.
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6.2 Martingales

We now denote by ν the measure ν(dy) = λF (dy), a (λ, F ) compound
Poisson process will be called a (λ, ν) compound Poisson process.

Proposition 6.3 If X is a (λ, ν) compound Poisson process, for any α

such that
∫ ∞

−∞
eαuν(du) <∞, the process

Z
(α)
t = exp

(
αXt + t

(∫ ∞

−∞
(1 − eαu)ν(du)

))
is a martingale and

E(eαXt) = exp
(
−t
(∫ ∞

−∞
(1 − eαu)ν(du)

))
.
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Proposition 6.4 Let X be a (λ, ν) compound Poisson process, and f a
bounded Borel function. Then, the process

exp

(
Nt∑
k=1

f(Yk) + t

∫ ∞

−∞
(1 − ef(x))ν(dx)

)

is a martingale. In particular

E

(
exp

(
Nt∑
k=1

f(Yk)

))
= exp

(
−t
∫ ∞

−∞
(1 − ef(x))ν(dx)

)
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For any bounded Borel function f , we denote by ν(f) =
∫∞
−∞ f(x)ν(dx)

the product λE(f(Y1)).

Proposition 6.5 Let X be a (λ, ν) compound Poisson process. The
process

Mf
t =

∑
s≤t

f(∆Xs)11{∆Xs �=0} − tν(f)

is a martingale. Conversely, suppose that X is a pure jump process and
that there exists a finite positive measure σ such that∑

s≤t
f(∆Xs)11{∆Xs �=0} − tσ(f)

is a martingale for any f , then X is a (σ(1), σ) compound Poisson pro-
cess.
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6.3 Hitting Times

Let Xt = bt+
∑Nt

k=1 Yk.
Assume that the support of F is included in ] −∞, 0].

The process (exp(uXt − tψ(u)), t ≥ 0) is a martingale, with

ψ(u) = bu− λ

∫ 0

−∞
(1 − euy)F (dy) .

Let Tx = inf{t : Xt > x}. Since the process X has no positive jumps,
XTx

= x.
Hence E(euXt∧Tx−(t∧Tx)ψ(u)) = 1 and when t goes to infinity, one

obtains
E(eux−Txψ(u)11{Tx<∞}) = 1 .
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If ψ admits an inverse ψ�, one gets if Tx is finite

E(e−λTx) = e−xψ
�(λ) .

Setting Zk = −Yk, the random variables Zk can be interpreted as

losses for insurance companies. The process z + bt−
Nt∑
k=1

Zk is called the

Cramer-Lundberg risk process. The time τ = inf{t : Xt ≤ 0} is the
bankruptcy time for the company.
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One sided exponential law. If F (dy) = θeθy11{y<0}dy, one obtains

ψ(u) = bu− λu

θ + u
, hence inverting ψ,

E(e−κTx11{Tx<∞}) = e−xψ
�(κ) ,

with

ψ�(κ) =
λ+ κ− θb+

√
(λ+ κ− θb)2 + 4θb
2b

.
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6.4 Change of Measure

Let X be a (λ, ν) compound Poisson process, λ̃ > 0 and F̃ a probability
measure on IR, absolutely continuous w.r.t. F and ν̃(dx) = λ̃F̃ (dx). Let

Lt = exp

t(λ− λ̃) +
∑
s≤t

ln
(
dν̃

ν

)
(∆Xs)

 .

Set dQ|Ft
= LtdP |Ft

.

Proposition 6.6 Under Q, the process X is a (λ̃, ν̃) compound Poisson
process.
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6.5 Price Process

Let
dSt = (αSt− + β) dt+ (γSt− + δ)dXt (6.1)

where X is a (λ, ν) compound Poisson process. The solution of (6.1) is
a Markov process with infinitesimal generator

L(f)(x) =
∫ +∞

−∞
[f(x+ γxy + δy) − f(x)] ν(dy) + (αx+ β)f ′(x) .

Let S be the solution of (6.1). The process e−rtSt is a martingale if
and only if

γ

∫
yν(dy) + α = r, δ

∫
yν(dy) + β = 0 .
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Let F̃ be a probability measure absolutely continuous with respect
to F and

Lt = exp

t(λ− λ̃) +
∑
s≤t

ln

(
λ̃

λ

dF̃

dF

)
(∆Xs)

 .

Let dQ|Ft
= LtdP |Ft

. The process (Ste−rt, t ≥ 0) is a Q-martingale
if and only if

λ̃γ

∫
yF̃ (dy) + α = r, λ̃δ

∫
yF̃ (dy) + β = 0

Hence, there are an infinite number of e.m.m.. One can change the
intensity of the Poisson process, and/or the law of the jumps.
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7 Marked Point Processes

7.1 Definition

Let (Ω,F , P ) be a probability space, (Zn) a sequence of random vari-
ables taking values in a measurable space (E, E), and (Tn) an increasing
sequence of positive random variables. For each Borel set A ⊂ E, we de-
fine the process Nt(A) =

∑
n

11{Tn≤t}11{Zn∈A} and the counting measure

µ(ω, ds, dz) by∫
]0,t]

∫
E

H(s, z)µ(ds, dz) =
∑
n

H(Tn, Zn)11{Tn≤t} =
Nt∑
n=1

H(Tn, Zn) .

The natural filtration of N is

FN
t = σ(Ns(A), s ≤ t, A ∈ E) .
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In what follows, we assume thatNt(A) admits the F-predictable intensity
λt(A), i.e. there exists a predictable process (λt(A), t ≥ 0) such that

Nt(A) −
∫ t

0

λs(A)ds

is a martingale. Then, ifXt =
Nt∑
n=1

H(Tn, Zn) whereH is an F predictable

process which satisfies

E

(∫
]0,t]

∫
E

|H(s, z)|λs(dz)ds
)
<∞

the process

Xt −
∫ t

0

∫
E

H(s, z)λs(dz)ds =
∫

]0,t]

∫
E

H(s, z) [µ(ds, dz) − λs(dz)ds]
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is a martingale and in particular

E

(∫
]0,t]

∫
E

H(s, z)µ(ds, dz)

)
= E

(∫
]0,t]

∫
E

H(s, z)λs(dz)ds

)
.

The process N is called a marked point process.
This is a generalization of the compound Poisson process: we have

introduced a spatial dimension for the size of jumps which are no more
i.i.d. random variables.
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7.2 Predictable representation property

Let (Ω,F ,F, P ) be a probability space where bF is the filtration gener-
ated by the marked point process q.

Then, any (P,F)-martingale M admits the representation

Mt = M0 +
∫ t

0

∫
E

H(s, x)(µ(ds, dx) − λs(dx)ds)

where H is a predictable process such that

E

(∫ t

0

∫
E

|H(s, x)|λs(dx)ds
)
<∞
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More generally

Proposition 7.1 Let W be a Brownian motion and µ(ds, dz) a marked
point process. Let Ft = σ(Ws, p([0, s], A); s ≤ t, A ∈ E) completed. Then,
any (P,F) local martingale has the representation

Mt = M0 +
∫ t

0

ϕsdWs +
∫ t

0

∫
E

H(s, z)(µ(ds, dz) − λs(dz)ds)

where ϕ is a predictable process such that
∫ t
0
ϕ2
sds <∞
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7.3 Random Measure

More generally, one defines a random measure. Let (E, E) be a measur-
able Polish space, i.e., a topological space endowed with a distance under
which the space is complete and separable.

Definition 7.2 A random measure µ on the space IR+×E is a family of
nonnegative measures µ(ω, dt, dx), ω ∈ Ω) defined on IR+×E) satisfying
µ(ω, {0} × E) = 0
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8 Poisson Point Processes

8.1 Poisson Measures

Let (E, E) be a measurable Polish space. A random measure φ on E
is a Poisson measure with intensity ν, where ν is a σ-finite measure on
E, if for every Borel set B ⊂ E with ν(B) < ∞, φ(B) has a Poisson
distribution with parameter ν(B) and if Bi, i ≤ n are disjoint sets, the
variables φ(Bi), i ≤ n are independent.
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Example: Let ν be a probability measure, Yk, k ∈ IN be i.i.d. random
variables with law ν and N a Poisson variable independent of Yk’s. The

random measure
N∑
k=1

δYk
is a Poisson measure. Here δe is the Dirac

measure at point e.
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8.2 Point Processes

Let (E, E) be a measurable space and δ is an isolated additional point.
We set Eδ = E ∪ δ, Eδ = σ(E , {δ}).
Definition 8.1 Let e be a stochastic process defined on a probability
space (Ω,F , P ), taking values in (Eδ, Eδ). The process e is a point process
if

(i) the map (t, ω) → et(ω) is B(]0,∞[) ⊗F-measurable
(ii) the set Dω = {t : et(ω) �= δ} is a.s. countable.

For every measurable set B of ]0,∞[×E, we set

NB(ω) =
∑
s≥0

11B(s, es(ω)) .

In particular, if B =]0, t] × Γ, we write

NΓ
t = NB = Card{s ≤ t : e(s) ∈ Γ} .

Let the space (Ω, P ) be endowed with a filtration F. A point process
is F-adapted if, for any Γ ∈ E , the process NΓ is F-adapted. For any
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Γ ∈ Eδ, we define a point process eΓ by

eΓ
t (ω) = et(ω) if et(ω) ∈ Γ

eΓ
t (ω) = δ otherwise

Definition 8.2 A point process e is discrete if NE
t < ∞ a.s. for every

t. A point process is σ-discrete if there is a sequence En of sets with
E = ∪En such that each eEn is discrete.
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8.3 Poisson Point Processes

Definition 8.3 An F-Poisson point process is a σ-discrete point process
such that

(i) the process e is F-adapted
(ii) for any s and t and any Γ ∈ E, the law of NΓ

s+t −NΓ
t condi-

tioned on Ft is the same as the law of NΓ
t .

Therefore, for any disjoint family (Γi, i = 1, . . . , d), the process (NΓi
t , i =

1, · · · , d) is a d-dimensional Poisson process. Moreover, if NΓ is finite
almost surely, then E(NΓ

t ) < ∞ and the quantity 1
tE(NΓ

t ) does not
depend on t.

Definition 8.4 The σ-finite measure on E defined by

n(Γ) =
1
t
E(NΓ

t )

is called the characteristic measure of e.

If n(Γ) <∞, the process NΓ
t − tn(Γ) is a martingale.
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Proposition 8.5 (Compensation formula.) Let H be a positive pro-
cess vanishing at δ, measurable with respect to P × Eδ. Then

E

∑
s≥0

H(s, ω, es(ω))

 = E

[∫ ∞

0

ds

∫
H(s, ω, u)n(du)

]
.

If, for any t, E
[∫ t

0

ds

∫
H(s, ω, u)n(du)

]
<∞, the process

∑
s≤t

H(s, ω, es(ω)) −
∫ t

0

ds

∫
H(s, ω, u)n(du)

a martingale.

Proof: It is enough to prove this formula for H(s, ω, u) = K(s, ω)11Γ(u).
In that case, NΓ

t − tn(Γ) is a martingale. �
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Proposition 8.6 (Exponential formula.) If f is a B⊗E-measurable
function such that

∫ t
0
ds
∫ |f(s, u)|n(du) <∞ for every t, then,

E

exp

i ∑
0<s≤t

f(s, es)

 = exp
(∫ t

0

ds

∫
(eif(s,u) − 1)n(du)

)

Moreover, if f ≥ 0,

E

exp

−
∑

0<s≤t
f(s, es)

 = exp
(
−
∫ t

0

ds

∫
(1 − e−f(s,u))n(du)

)
.

If ν is finite, then the associated counting process is a compound
Poisson process.

8.4 The Itô measure of Brownian excursions

Let (Bt, t ≥ 0) be a Brownian motion and (τs) be the inverse of the local
time (Lt) at level 0. The set {∪s≥0]τs−(ω), τs(ω)[ } is (almost surely)
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equal to the complement of the zero set {u : Bu(ω) = 0}. The excursion
process (es, s ≥ 0) is defined as

es(ω)(t) = 11{t ≤ τs − τs−}Bτs− + t , t ≥ 0.

This is a path-valued process e : IR+ → Ω∗, where

Ω∗ = {ε : IR+ → IR : ∃V (ε) <∞, with ε(V (ε) + t) = 0,∀t ≥ 0

ε(u) �= 0,∀ 0 < u < V (ε), ε(0) = 0, ε is continuous } .
Hence, V (ε) is the lifetime of ε.

The excursion process is a Poisson Point Process; its characteristic
measure n evaluated on the set Γ, i.e., n(Γ), is defined as the intensity
of the Poisson process

NΓ
t
def
=
∑
s≤t

11es∈Γ .

The quantity n(Γ) is the positive real γ such that NΓ
t − tγ is an (Fτt

)-
martingale.
From Itô’s theorem, the excursion process is a Poisson point process.
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Conditionally on V = v, the process

(|εu|, u ≤ v)

is a BES(3) bridge of length v. Let M(ε) = supu≤v |εu|. Then,

n(M(ε) ∈ dm) =
dm

m2

and, conditionally onM = m, the two processes εu, u ≤ Tm and εV−u, u ≤
V −Tm are two independent BES(3) processes considered up to their first
hitting time of m. The Itô-Williams description of the measure n is

n(dε) =
∫ ∞

0

nV (dv)
1
2
(Πv

+ + Πv
−) (dε)

where nV (dv) =
dv√
2πv3

is the law of the lifetime V under n and Πv
+

(resp. Πv
−) is the law of the standard Bessel Bridge (resp. the law of its

opposite) with dimension 3 and length v.
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