ENSAE, 2004

1

Plan

Processus de Poisson Processus mixtes Processus de Lévy

Processus de Poisson

- 1. Counting processes and stochastic integral
- 2. Standard Poisson process
- 3. Inhomogeneous Poisson Processes
- 4. Stochastic intensity processes

1 Counting processes and stochastic integral

$$N_t = \begin{cases} n & \text{if } t \in [T_n, T_{n+1}[+\infty & \text{otherwise} \end{cases}$$

or, equivalently

$$N_t = \sum_{n \ge 1} \mathbb{1}_{\{T_n \le t\}} = \sum_{n \ge 1} n \mathbb{1}_{\{T_n \le t < T_{n+1}\}}.$$

We denote by N_{t-} the left-limit of N_s when $s \to t, s < t$ and by $\Delta N_s = N_s - N_{s-}$ the jump process of N. The stochastic integral

$$\int_0^t C_s dN_s$$

is defined as

$$(C\star N)_t = \int_0^t C_s dN_s = \int_{]0,t]} C_s dN_s = \sum_{n=1}^\infty C_{T_n} 1\!\!1_{\{T_n \le t\}} \,.$$

2 Standard Poisson process

2.1 Definition

The standard Poisson process is a counting process such that

- for every $s, t, N_{t+s} N_t$ is independent of \mathcal{F}_t^N ,
- for every s, t, the r.v. $N_{t+s} N_t$ has the same law as N_s .

2.2 First properties

$$E(N_t) = \lambda t, \quad \operatorname{Var}(N_t) = \lambda t$$

for every $x > 0, t > 0, u, \alpha \in \mathbb{R}$

$$E(x^{N_t}) = e^{\lambda t(x-1)}; \ E(e^{iuN_t}) = e^{\lambda t(e^{iu}-1)}; \ E(e^{\alpha N_t}) = e^{\lambda t(e^{\alpha}-1)}. \ (2.1)$$

2.3 Martingale properties

For each $\alpha \in \mathbb{R}$, for each bounded Borel function h, the following processes are **F**-martingales:

(i)
$$M_t = N_t - \lambda t$$
,
(ii) $M_t^2 - \lambda t = (N_t - \lambda t)^2 - \lambda t$,
(iii) $\exp(\alpha N_t - \lambda t (e^{\alpha} - 1))$,
(iv) $\exp\left[\int_0^t h(s) dN_s - \lambda \int_0^t (e^{h(s)} - 1) ds\right]$.
(2.2)

For any $\beta > -1$, any bounded Borel function h, and any bounded Borel function φ valued in $]-1,\infty[$, the processes

$$\exp[\ln(1+\beta)N_t - \lambda\beta t] = (1+\beta)^{N_t} e^{-\lambda\beta t},$$

$$\exp\left[\int_0^t h(s)dM_s + \lambda \int_0^t (1+h(s) - e^{h(s)})ds\right],$$

$$\exp\left[\int_0^t \ln(1+\varphi(s))dN_s - \lambda \int_0^t \varphi(s)ds\right],$$

$$\exp\left[\int_0^t \ln(1+\varphi(s))dM_s + \lambda \int_0^t (\ln(1+\varphi(s)) - \varphi(s)ds)\right],$$

are martingales.

Let H be an **F**-predictable bounded process, then the following processes are martingales

$$(H\star M)_t = \int_0^t H_s dM_s = \int_0^t H_s dN_s - \lambda \int_0^t H_s ds$$
$$((H\star M)_t)^2 - \lambda \int_0^t H_s^2 ds$$
$$\exp\left(\int_0^t H_s dN_s + \lambda \int_0^t (1 - e^{H_s}) ds\right)$$
(2.3)

Property (2.3) does not extend to adapted processes H. For example, from $\int_0^t (N_s - N_{s-}) dM_s = N_t$, it follows that $\int_0^t N_s dM_s$ is not a martingale.

Remark 2.1 Note that (i) and (iii) imply that the process $(M_t^2 - N_t; t \ge 0)$ is a martingale.

The process λt is the predictable quadratic variation $\langle M \rangle$, whereas the process $(N_t, t \ge 0)$ is the optional quadratic variation [M].

For any $\mu \in [0, 1]$, the processes $M_t^2 - (\mu N_t + (1 - \mu)\lambda t)$ are also martingales.

2.4 Infinitesimal Generator

The Poisson process is a Lévy process, hence a Markov process, its infinitesimal generator \mathcal{L} is defined as

$$\mathcal{L}(f)(x) = \lambda [f(x+1) - f(x)].$$

Therefore, for any bounded Borel function f, the process

$$C_t^f = f(N_t) - f(0) - \int_0^t \mathcal{L}(f)(N_s) ds$$

is a martingale.

Furthermore,

$$C_t^f = \int_0^t [f(N_{s-} + 1) - f(N_{s-})] dM_s \,.$$

Exercise:

Extend the previous formula to functions f(t, x) defined on $\mathbb{I}\!R^+ \times \mathbb{I}\!R$ and C^1 with respect to t, and prove that if

$$L_t = \exp(\log(1+\phi)N_t - \lambda\phi t)$$

then

$$dL_t = L_{t-}\phi dM_t \,.$$

2.4.1 Watanabe's characterization

Let N be a counting process and assume that there exists $\lambda > 0$ such that $M_t = N_t - \lambda t$ is a martingale. Then N is a Poisson process with intensity λ .

2.5 Change of Probability

If N is a Poisson process, then, for $\beta > -1$,

$$L_t = (1+\beta)^{N_t} e^{-\lambda\beta t}$$

is a strictly positive martingale with expectation equal to 1. Let Q be the probability defined as $\frac{dQ}{dP}|_{\mathcal{F}_t} = L_t$.

The process N is a Q-Poisson process with intensity equal to $(1+\beta)\lambda$.

2.6 Hitting Times

Let $T_x = \inf\{t, N_t \ge x\}$. Then, for $n \le x < n+1$, T_x is equal to the time of the n^{th} -jump of N, hence has a Gamma (n) law.

3 Inhomogeneous Poisson Processes

3.1 Definition

Let λ be an \mathbb{R}^+ -valued function satisfying $\int_0^t \lambda(u) du < \infty, \forall t$.

An inhomogeneous Poisson process N with intensity λ is a counting process with independent increments which satisfies for t > s

$$P(N_t - N_s = n) = e^{-\Lambda(s,t)} \frac{(\Lambda(s,t))^n}{n!}$$
(3.1)

where
$$\Lambda(s,t) = \Lambda(t) - \Lambda(s) = \int_{s}^{t} \lambda(u) du$$
, and $\Lambda(t) = \int_{0}^{t} \lambda(u) du$.

3.2 Martingale Properties

Let N be an inhomogeneous Poisson process with deterministic intensity $\lambda.$ The process

$$(M_t = N_t - \int_0^t \lambda(s) ds, t \ge 0)$$

is an \mathbf{F}^N -martingale, and the increasing function $\Lambda(t) = \int_0^t \lambda(s) ds$ is called the compensator of N.

Let ϕ be an \mathbf{F}^N - predictable process such that $E(\int_0^t |\phi_s|\lambda(s)ds) < \infty$ for every t. Then, the process $(\int_0^t \phi_s dM_s, t \ge 0)$ is an \mathbf{F}^N -martingale. In particular,

$$E\left(\int_0^t \phi_s \, dN_s\right) = E\left(\int_0^t \phi_s \lambda(s) ds\right) \,. \tag{3.2}$$

Let H be an $\mathbf{F}^N\text{-}$ predictable process. The following processes are martingales

$$(H \star M)_{t} = \int_{0}^{t} H_{s} dM_{s} = \int_{0}^{t} H_{s} dN_{s} - \int_{0}^{t} \lambda(s) H_{s} ds$$
$$((H \star M)_{t})^{2} - \int_{0}^{t} \lambda(s) H_{s}^{2} ds$$
$$(3.3)$$
$$\exp\left(\int_{0}^{t} H_{s} dN_{s} - \int_{0}^{t} \lambda(s) (e^{H_{s}} - 1) ds\right).$$

Proposition 3.1 (Compensation formula.) For any real numbers u and α , for any t

$$E(e^{iuN_t}) = \exp((e^{iu} - 1)\Lambda(t))$$
$$E(e^{\alpha N_t}) = \exp((e^{\alpha} - 1)\Lambda(t)).$$

3.3 Watanabe's Characterization

Proposition 3.2 (Watanabe characterization.) Let N be a counting process and Λ an increasing, continuous function with zero value at time zero. Let us assume that $M_t = N_t - \Lambda(t)$ is a martingale. Then N is an inhomogeneous Poisson process with compensator Λ .

3.4 Stochastic calculus

3.4.1 Integration by parts formula

Let $X_t = x + \int_0^t g_s dN_s$ and $Y_t = y + \int_0^t \tilde{g}_s dN_s$, where g and \tilde{g} are predictable processes.

$$\begin{aligned} X_t Y_t &= xy + \sum_{s \le t} \Delta (XY)_s = xy + \sum_{s \le t} Y_{s-} \Delta X_s + \sum_{s \le t} X_{s-} \Delta Y_s + \sum_{s \le t} \Delta X_s \, \Delta Y_s \\ &= xy + \int_0^t X_{s-} dY_s + \int_0^t Y_{s-} dX_s + [X,Y]_t \end{aligned}$$

where

$$[X,Y]_t = \sum_{s \le t} \Delta X_s \, \Delta Y_s = \sum_{s \le t} \widetilde{g}_s g_s \Delta N_s = \int_0^t \widetilde{g}_s g_s dN_s \,.$$

If
$$dX_t = h_t dt + g_t dN_t$$
 and $dY_t = \tilde{h}_t dt + \tilde{g}_t dN_t$, one gets

$$X_t Y_t = xy + \int_0^t Y_{s-} dX_s + \int_0^t Y_{s-} dX_s + [X, Y]_t$$

where

$$[X,Y]_t = \int_0^t \widetilde{g}_s g_s dN_s \,.$$

If $dX_t = g_t dM_t$ and $dY_t = \tilde{g}_t dM_t$, the process $X_t Y_t - [X, Y]_t$ is a martingale.

3.4.2 Itô's Formula

Let N be a Poisson process and f a bounded Borel function. The decomposition

$$f(N_t) = f(N_0) + \sum_{0 < s \le t} [f(N_s) - f(N_{s^-})]$$

is trivial and corresponds to Itô's formula for a Poisson process.

$$\sum_{0 < s \le t} [f(N_s) - f(N_{s^-})] = \sum_{0 < s \le t} [f(N_{s^-} + 1) - f(N_{s^-})] \Delta N_s$$
$$= \int_0^t [f(N_{s^-} + 1) - f(N_{s^-})] dN_s.$$

Let

$$X_t = x + \int_0^t g_s dN_s = x + \sum_{T_n \le t} g_{T_n},$$

with g a predictable process.

The trivial equality

$$F(X_t) = F(X_0) + \sum_{s \le t} \left(F(X_s) - F(X_{s-}) \right) \,,$$

holds for any bounded function F.

Let

$$dX_t = h_t dt + g_t dM_t = (h_t - g_t \lambda(t))dt + g_t dN_t$$

and $F \in C^{1,1}(\mathbb{I} R^+ \times \mathbb{I} R)$. Then

$$F(t, X_t) = F(0, X_0) + \int_0^t \partial_t F(s, X_s) ds + \int_0^t \partial_x F(s, X_{s-}) (h_s - g_s \lambda(s)) ds + \sum_{s \le t} F(s, X_s) - F(s, X_{s-})$$
(3.4)
$$= F(0, X_0) + \int_0^t \partial_t F(s, X_s) ds + \int_0^t \partial_x F(s, X_{s-}) dX_s + \sum_{s \le t} [F(s, X_s) - F(s, X_{s-}) - \partial_x F(s, X_{s-})g_s \Delta N_s] .$$

The formula (3.4) can be written as

$$\begin{split} F(t,X_t) &- F(0,X_0) = \int_0^t \partial_t F(s,X_s) ds + \int_0^t \partial_x F(s,X_s) (h_s - g_s \lambda(s)) ds \\ &+ \int_0^t [F(s,X_s) - F(s,X_{s-})] dN_s \\ = &\int_0^t \partial_t F(s,X_s) ds + \int_0^t \partial_x F(s,X_{s-}) dX_s \\ &+ \int_0^t [F(s,X_s) - F(s,X_{s-}) - \partial_x F(s,X_{s-})g_s] dN_s \\ = &\int_0^t \partial_t F(s,X_s) ds + \int_0^t \partial_x F(s,X_{s-}) dX_s \\ &+ \int_0^t [F(s,X_{s-} + g_s) - F(s,X_{s-}) - \partial_x F(s,X_{s-})g_s] dN_s \,. \end{split}$$

3.5 Predictable Representation Property

Proposition 3.3 Let \mathbf{F}^N be the completion of the canonical filtration of the Poisson process N and $H \in L^2(\mathcal{F}^N_\infty)$, a square integrable random variable. Then, there exists a predictable process h such that

$$H = E(H) + \int_0^\infty h_s dM_s$$

and $E(\int_0^\infty h_s^2 ds) < \infty$.

3.6 Independent Poisson Processes

Definition 3.4 A process (N^1, \dots, N^d) is a d-dimensional **F**-Poisson process if each N^j is a right-continuous adapted process such that $N_0^j = 0$ and if there exists constants λ_j such that for every $t \ge s \ge 0$

$$P\left[\bigcap_{j=1}^{d} (N_t^j - N_s^j = n_j) | \mathcal{F}_s\right] = \prod_{j=1}^{d} e^{-\lambda_j (t-s)} \frac{(\lambda_j (t-s))^{n_j}}{n_j!}$$

Proposition 3.5 An **F**-adapted process N is a d-dimensional **F**-Poisson process if and only if

(i) each N^j is an **F**-Poisson process
(ii) no two N^j's jump simultaneously.

4 Stochastic intensity processes

4.1 Definition

Definition 4.1 Let N be a counting process, **F**-adapted and $(\lambda_t, t \ge 0)$ a non-negative **F**- progressively measurable process such that for every t, $\Lambda_t = \int_0^t \lambda_s ds < \infty P \text{ a.s.}$

The process N is an inhomogeneous Poisson process with stochastic intensity λ if for every non-negative **F**-predictable process ($\phi_t, t \ge 0$) the following equality is satisfied

$$E\left(\int_0^\infty \phi_s \, dN_s\right) = E\left(\int_0^\infty \phi_s \lambda_s ds\right) \,.$$

Therefore $(M_t = N_t - \Lambda_t, t \ge 0)$ is an **F**-local martingale.

If ϕ is a predictable process such that $\forall t, E(\int_0^t |\phi_s|\lambda_s ds) < \infty$, then $(\int_0^t \phi_s dM_s, t \ge 0)$ is an **F**-martingale.

An inhomogeneous Poisson process N with stochastic intensity λ_t can be viewed as time changed of \tilde{N} , a standard Poisson process $N_t = \tilde{N}_{\Lambda_t}$.

4.2 Itô's formula

The formula obtained in Section 3.4 generalizes to inhomogeneous Poisson process with stochastic intensity.

4.3 Exponential Martingales

Proposition 4.2 Let N be an inhomogeneous Poisson process with stochastic intensity $(\lambda_t, t \ge 0)$, and $(\mu_t, t \ge 0)$ a predictable process such that $\int_0^t |\mu_s| \lambda_s \, ds < \infty$. Then, the process L defined by

$$L_t = \begin{cases} \exp(-\int_0^t \mu_s \lambda_s \, ds) & \text{if } t < T_1 \\ \prod_{n, T_n \le t} (1 + \mu_{T_n}) \exp(-\int_0^t \mu_s \lambda_s \, ds) & \text{if } t \ge T_1 \end{cases}$$
(4.1)

is a local martingale, solution of

$$dL_t = L_{t-} \mu_t dM_t, \quad L_0 = 1.$$
(4.2)

Moreover, if μ is such that $\forall s, \mu_s > -1$,

$$L_t = \exp\left[-\int_0^t \mu_s \lambda_s ds + \int_0^t \ln(1+\mu_s) dN_s\right] \,.$$

The local martingale L is denoted by $\mathcal{E}(\mu \star M)$ and named the Doléans-Dade exponential of the process $\mu \star M$.

This process can also be written

$$L_t = \prod_{0 < s \le t} (1 + \mu_s \Delta N_s) \exp\left[-\int_0^t \mu_s \lambda_s \, ds\right] \, .$$

Moreover, if $\forall t, \mu_t > -1$, then L is a non-negative local martingale, therefore it is a supermartingale and

$$L_t = \exp\left[-\int_0^t \mu_s \lambda_s ds + \sum_{s \le t} \ln(1+\mu_s) \Delta N_s\right]$$

=
$$\exp\left[-\int_0^t \mu_s \lambda_s ds + \int_0^t \ln(1+\mu_s) dN_s\right]$$

=
$$\exp\left[\int_0^t [\ln(1+\mu_s) - \mu_s] \lambda_s ds + \int_0^t \ln(1+\mu_s) dM_s\right].$$

The process L is a martingale if $\forall t, E(L_t) = 1$.

If μ is not greater than -1, then the process L defined in (4.1) is still a local martingale which satisfies $dL_t = L_{t-}\mu_t dM_t$. However it may be negative.

4.4 Change of Probability

Let μ be a predictable process such that $\mu > -1$ and $\int_0^t \lambda_s |\mu_s| ds < \infty$.

Let L be the positive exponential local martingale solution of

$$dL_t = L_{t-}\mu_t dM_t \,.$$

Assume that L is a martingale and let Q be the probability measure equivalent to P defined on \mathcal{F}_t by $Q|_{\mathcal{F}_t} = L_t P|_{\mathcal{F}_t}$.

Under Q, the process

$$(M_t^{\mu} \stackrel{def}{=} M_t - \int_0^t \mu_s \lambda_s ds = N_t - \int_0^t (\mu_s + 1)\lambda_s \, ds \, , t \ge 0)$$

is a local martingale.

5 An Elementary Model of Prices including Jumps

Suppose that S is a stochastic process with dynamics given by

$$dS_t = S_{t-}(b(t)dt + \phi(t)dM_t),$$
(5.1)

where M is the compensated compensated martingale associated with a Poisson process and where b, ϕ are deterministic continuous functions, such that $\phi > -1$. The solution of (5.1) is

$$S_t = S_0 \exp\left[-\int_0^t \phi(s)\lambda(s)ds + \int_0^t b(s)ds\right] \prod_{s \le t} (1 + \phi(s)\Delta N_s)$$
$$= S_0 \exp\left[\int_0^t b(s)ds\right] \exp\left[\int_0^t \ln(1 + \phi(s))dN_s - \int_0^t \phi(s)\lambda(s)ds\right]$$

Hence
$$S_t \exp\left(-\int_0^t b(s)ds\right)$$
 is a strictly positive martingale.

We denote by r the deterministic interest rate and by $R_t = \exp\left(-\int_0^t r(s)ds\right)$ the discounted factor.

Any strictly positive martingale L can be written as $dL_t = L_{t-}\mu_t dM_t$ with $\mu > -1$. Let $(Y_t = R_t S_t L_t, t \ge 0)$. Itô's calculus yields to $dY_t \cong Y_{t-} ((b(t) - r(t))dt + \phi(t)\mu_t d[M]_t)$ $\cong Y_{t-} (b(t) - r(t) + \phi(t)\mu_t\lambda(t)) dt$.

Hence, Y is a local martingale if and only if $\mu_t \lambda(t) = -\frac{b(t) - r(t)}{\phi(t)}$.

Assume that $\mu > -1$ and $Q|_{\mathcal{F}_t} = L_t P|_{\mathcal{F}_t}$. Under Q, N is a Poisson process with intensity $((\mu(s) + 1)\lambda(s), s \ge 0)$ and

$$dS_t = S_{t-}(r(t)dt + \phi(t)dM_t^{\mu})$$

where $(M^{\mu}(t) = N_t - \int_0^t (\mu(s) + 1)\lambda(s) \, ds, t \ge 0)$ is the compensated Q-martingale.

Hence Q is the unique equivalent martingale measure.

5.1 Poisson Bridges

Let N be a Poisson process with constant intensity λ and M its compensated martingale. Let $\mathcal{F}_t^N = \sigma(N_s, s \leq t)$ be its natural filtration and $\mathcal{G}_t = \sigma(N_s, s \leq t; N_T)$ the natural filtration enlarged with the terminal value of the process N.

Proposition 5.1 The process $\eta_t = N_t - \int_0^t \frac{N_T - N_s}{T - s} ds$, $t \leq T$ is a **G**-martingale with predictable bracket $\Lambda_t = \int_0^t \frac{N_T - N_s}{T - s} ds$.

6 Compound Poisson Processes

6.1 Definition and Properties

Let λ be a positive number and F(dy) be a probability law on \mathbb{R} . A (λ, F) compound Poisson process is a process $X = (X_t, t \ge 0)$ of the form

$$X_t = \sum_{k=1}^{N_t} Y_k$$

where N is a Poisson process with intensity $\lambda > 0$ and the $(Y_k, k \in \mathbb{N})$ are i.i.d. square integrable random variables with law $F(dy) = P(Y_1 \in dy)$, independent of N. **Proposition 6.1** A compound Poisson process has stationary and independent increments; the cumulative function of X_t is

$$P(X_t \le x) = e^{-\lambda t} \sum_n \frac{(\lambda t)^n}{n!} F^{*n}(x) \,.$$

If $E(|Y_1|) < \infty$, the process $(Z_t = X_t - t\lambda E(Y_1), t \ge 0)$ is a martingale and in particular, $E(X_t) = \lambda t E(Y_1) = \lambda t \int y F(dy)$.

If $E(Y_1^2) < \infty$, the process $(Z_t^2 - t\lambda E(Y_1^2), t \ge 0)$ is a martingale and Var $(X_t) = \lambda t E(Y_1^2)$. **Corollary 6.2** Let X be a (λ, F) compound Poisson process independent of W. Let

$$dS_t = S_{t-}(\mu dt + dX_t).$$

Then,

$$S_t = S_0 e^{\mu t} \prod_{k=1}^{N_t} (1 + Y_k)$$

In particular, if $1 + Y_1 > 0, a.s.$

$$S_t = S_0 \exp(\mu t + \sum_{k=1}^{N_t} \ln(1 + Y_k)).$$

The process $(S_t e^{-rt}, t \ge 0)$ is a martingale if and only if $\mu + \lambda E(Y_1) = r$.

6.2 Martingales

We now denote by ν the measure $\nu(dy) = \lambda F(dy)$, a (λ, F) compound Poisson process will be called a (λ, ν) compound Poisson process.

Proposition 6.3 If X is a (λ, ν) compound Poisson process, for any α such that $\int_{-\infty}^{\infty} e^{\alpha u} \nu(du) < \infty$, the process

$$Z_t^{(\alpha)} = \exp\left(\alpha X_t + t\left(\int_{-\infty}^{\infty} (1 - e^{\alpha u})\nu(du)\right)\right)$$

is a martingale and

$$E(e^{\alpha X_t}) = \exp\left(-t\left(\int_{-\infty}^{\infty} (1-e^{\alpha u})\nu(du)\right)\right) \,.$$

Proposition 6.4 Let X be a (λ, ν) compound Poisson process, and f a bounded Borel function. Then, the process

$$\exp\left(\sum_{k=1}^{N_t} f(Y_k) + t \int_{-\infty}^{\infty} (1 - e^{f(x)})\nu(dx)\right)$$

is a martingale. In particular

$$E\left(\exp\left(\sum_{k=1}^{N_t} f(Y_k)\right)\right) = \exp\left(-t \int_{-\infty}^{\infty} (1 - e^{f(x)})\nu(dx)\right)$$

For any bounded Borel function f, we denote by $\nu(f) = \int_{-\infty}^{\infty} f(x)\nu(dx)$ the product $\lambda E(f(Y_1))$.

Proposition 6.5 Let X be a (λ, ν) compound Poisson process. The process

$$M_t^f = \sum_{s \le t} f(\Delta X_s) \mathbb{1}_{\{\Delta X_s \neq 0\}} - t\nu(f)$$

is a martingale. Conversely, suppose that X is a pure jump process and that there exists a finite positive measure σ such that

$$\sum_{s \le t} f(\Delta X_s) \mathbb{1}_{\{\Delta X_s \ne 0\}} - t\sigma(f)$$

is a martingale for any f, then X is a $(\sigma(1), \sigma)$ compound Poisson process.

6.3 Hitting Times

Let $X_t = bt + \sum_{k=1}^{N_t} Y_k$. Assume that the support of F is included in $] - \infty, 0]$.

The process $(\exp(uX_t - t\psi(u)), t \ge 0)$ is a martingale, with

$$\psi(u) = bu - \lambda \int_{-\infty}^{0} (1 - e^{uy}) F(dy) \,.$$

Let $T_x = \inf\{t : X_t > x\}$. Since the process X has no positive jumps, $X_{T_x} = x$.

Hence $E(e^{uX_{t\wedge T_x}-(t\wedge T_x)\psi(u)}) = 1$ and when t goes to infinity, one obtains

$$E(e^{ux - T_x\psi(u)} 1_{\{T_x < \infty\}}) = 1.$$

If ψ admits an inverse ψ^{\sharp} , one gets if T_x is finite

$$E(e^{-\lambda T_x}) = e^{-x\psi^{\sharp}(\lambda)} \,.$$

Setting $Z_k = -Y_k$, the random variables Z_k can be interpreted as losses for insurance companies. The process $z + bt - \sum_{k=1}^{N_t} Z_k$ is called the Cramer-Lundberg risk process. The time $\tau = \inf\{t : X_t \leq 0\}$ is the bankruptcy time for the company. **One sided exponential law.** If $F(dy) = \theta e^{\theta y} \mathbb{1}_{\{y < 0\}} dy$, one obtains $\psi(u) = bu - \frac{\lambda u}{\theta + u}$, hence inverting ψ ,

$$E(e^{-\kappa T_x} 1_{\{T_x < \infty\}}) = e^{-x\psi^{\sharp}(\kappa)},$$

with

$$\psi^{\sharp}(\kappa) = \frac{\lambda + \kappa - \theta b + \sqrt{(\lambda + \kappa - \theta b)^2 + 4\theta b}}{2b}$$

٠

6.4 Change of Measure

Let X be a (λ, ν) compound Poisson process, $\tilde{\lambda} > 0$ and \tilde{F} a probability measure on \mathbb{R} , absolutely continuous w.r.t. F and $\tilde{\nu}(dx) = \tilde{\lambda}\tilde{F}(dx)$. Let

$$L_t = \exp\left(t(\lambda - \widetilde{\lambda}) + \sum_{s \le t} \ln\left(\frac{d\widetilde{\nu}}{\nu}\right)(\Delta X_s)\right)$$

Set $dQ|_{\mathcal{F}_t} = L_t dP|_{\mathcal{F}_t}$.

Proposition 6.6 Under Q, the process X is a $(\lambda, \tilde{\nu})$ compound Poisson process.

6.5 Price Process

Let

$$dS_t = (\alpha S_{t-} + \beta) dt + (\gamma S_{t-} + \delta) dX_t$$
(6.1)

where X is a (λ, ν) compound Poisson process. The solution of (6.1) is a Markov process with infinitesimal generator

$$\mathcal{L}(f)(x) = \int_{-\infty}^{+\infty} \left[f(x + \gamma xy + \delta y) - f(x) \right] \nu(dy) + (\alpha x + \beta) f'(x) \,.$$

Let S be the solution of (6.1). The process $e^{-rt}S_t$ is a martingale if and only if

$$\gamma \int y\nu(dy) + \alpha = r, \quad \delta \int y\nu(dy) + \beta = 0.$$

Let \widetilde{F} be a probability measure absolutely continuous with respect to F and

$$L_t = \exp\left(t(\lambda - \widetilde{\lambda}) + \sum_{s \le t} \ln\left(\frac{\widetilde{\lambda}}{\lambda} \frac{d\widetilde{F}}{dF}\right) (\Delta X_s)\right)$$

Let $dQ|_{\mathcal{F}_t} = L_t dP|_{\mathcal{F}_t}$. The process $(S_t e^{-rt}, t \ge 0)$ is a *Q*-martingale if and only if

$$\widetilde{\lambda}\gamma\int y\widetilde{F}(dy) + \alpha = r, \quad \widetilde{\lambda}\delta\int y\widetilde{F}(dy) + \beta = 0$$

Hence, there are an infinite number of e.m.m.. One can change the intensity of the Poisson process, and/or the law of the jumps.

7 Marked Point Processes

7.1 Definition

Let (Ω, \mathcal{F}, P) be a probability space, (Z_n) a sequence of random variables taking values in a measurable space (E, \mathcal{E}) , and (T_n) an increasing sequence of positive random variables. For each Borel set $A \subset E$, we define the process $N_t(A) = \sum_n \mathbb{1}_{\{T_n \leq t\}} \mathbb{1}_{\{Z_n \in A\}}$ and the counting measure $\mu(\omega, ds, dz)$ by

$$\int_{]0,t]} \int_E H(s,z)\mu(ds,dz) = \sum_n H(T_n,Z_n) \mathbb{1}_{\{T_n \le t\}} = \sum_{n=1}^{N_t} H(T_n,Z_n) \,.$$

The natural filtration of N is

$$\mathcal{F}_t^N = \sigma(N_s(A), s \le t, A \in \mathcal{E}).$$

In what follows, we assume that $N_t(A)$ admits the **F**-predictable intensity $\lambda_t(A)$, i.e. there exists a predictable process $(\lambda_t(A), t \ge 0)$ such that

$$N_t(A) - \int_0^t \lambda_s(A) ds$$

is a martingale. Then, if $X_t = \sum_{n=1}^{N_t} H(T_n, Z_n)$ where H is an \mathbf{F} predictable

process which satisfies

$$E\left(\int_{]0,t]}\int_{E}|H(s,z)|\lambda_{s}(dz)ds\right)<\infty$$

the process

$$X_t - \int_0^t \int_E H(s, z) \lambda_s(dz) ds = \int_{]0,t]} \int_E H(s, z) \left[\mu(ds, dz) - \lambda_s(dz) ds \right]$$

is a martingale and in particular

$$E\left(\int_{]0,t]}\int_{E}H(s,z)\mu(ds,dz)\right) = E\left(\int_{]0,t]}\int_{E}H(s,z)\lambda_{s}(dz)ds\right)$$

The process N is called a marked point process.

This is a generalization of the compound Poisson process: we have introduced a spatial dimension for the size of jumps which are no more i.i.d. random variables.

7.2 Predictable representation property

Let $(\Omega, \mathcal{F}, \mathbf{F}, P)$ be a probability space where bF is the filtration generated by the marked point process q.

Then, any (P, \mathbf{F}) -martingale M admits the representation

$$M_t = M_0 + \int_0^t \int_E H(s, x)(\mu(ds, dx) - \lambda_s(dx)ds)$$

where H is a predictable process such that

$$E\left(\int_0^t \int_E |H(s,x)|\lambda_s(dx)ds\right) < \infty$$

More generally

Proposition 7.1 Let W be a Brownian motion and $\mu(ds, dz)$ a marked point process. Let $\mathcal{F}_t = \sigma(W_s, p([0, s], A); s \leq t, A \in \mathcal{E})$ completed. Then, any (P, \mathbf{F}) local martingale has the representation

$$M_t = M_0 + \int_0^t \varphi_s dW_s + \int_0^t \int_E H(s, z)(\mu(ds, dz) - \lambda_s(dz)ds)$$

where φ is a predictable process such that $\int_0^t \varphi_s^2 ds < \infty$

7.3 Random Measure

More generally, one defines a random measure. Let (E, \mathcal{E}) be a measurable Polish space, i.e., a topological space endowed with a distance under which the space is complete and separable.

Definition 7.2 A random measure μ on the space $\mathbb{R}^+ \times E$ is a family of nonnegative measures $\mu(\omega, dt, dx), \omega \in \Omega$ defined on $\mathbb{R}^+ \times E$ satisfying $\mu(\omega, \{0\} \times E) = 0$

8 Poisson Point Processes

8.1 Poisson Measures

Let (E, \mathcal{E}) be a measurable Polish space. A random measure ϕ on E is a Poisson measure with intensity ν , where ν is a σ -finite measure on E, if for every Borel set $B \subset E$ with $\nu(B) < \infty$, $\phi(B)$ has a Poisson distribution with parameter $\nu(B)$ and if $B_i, i \leq n$ are disjoint sets, the variables $\phi(B_i), i \leq n$ are independent.

Example: Let ν be a probability measure, $Y_k, k \in \mathbb{N}$ be i.i.d. random variables with law ν and N a Poisson variable independent of Y_k 's. The random measure $\sum_{k=1}^{N} \delta_{Y_k}$ is a Poisson measure. Here δ_e is the Dirac measure at point e.

8.2 Point Processes

Let (E, \mathcal{E}) be a measurable space and δ is an isolated additional point. We set $E_{\delta} = E \cup \delta, \mathcal{E}_{\delta} = \sigma(\mathcal{E}, \{\delta\}).$

Definition 8.1 Let \mathbf{e} be a stochastic process defined on a probability space (Ω, \mathcal{F}, P) , taking values in $(E_{\delta}, \mathcal{E}_{\delta})$. The process \mathbf{e} is a point process if

> (i) the map $(t, \omega) \to \mathbf{e}_t(\omega)$ is $\mathcal{B}(]0, \infty[) \otimes \mathcal{F}$ -measurable (ii) the set $D_\omega = \{t : \mathbf{e}_t(\omega) \neq \delta\}$ is a.s. countable.

For every measurable set B of $]0, \infty[\times E, we set]$

$$N^B(\omega) = \sum_{s \ge 0} \mathbb{1}_B(s, \mathbf{e}_s(\omega)) \,.$$

In particular, if $B =]0, t] \times \Gamma$, we write

$$N_t^{\Gamma} = N^B = \operatorname{Card}\{s \le t : \mathbf{e}(s) \in \Gamma\}.$$

Let the space (Ω, P) be endowed with a filtration **F**. A point process is **F**-adapted if, for any $\Gamma \in \mathcal{E}$, the process N^{Γ} is **F**-adapted. For any $\Gamma \in \mathcal{E}_{\delta}$, we define a point process \mathbf{e}^{Γ} by

$$\mathbf{e}_t^{\Gamma}(\omega) = \mathbf{e}_t(\omega) \text{ if } \mathbf{e}_t(\omega) \in \Gamma$$

$$\mathbf{e}_t^{\Gamma}(\omega) = \delta \text{ otherwise}$$

Definition 8.2 A point process \mathbf{e} is discrete if $N_t^E < \infty$ a.s. for every t. A point process is σ -discrete if there is a sequence E_n of sets with $E = \bigcup E_n$ such that each \mathbf{e}^{E_n} is discrete.

8.3 Poisson Point Processes

Definition 8.3 An **F**-Poisson point process is a σ -discrete point process such that

(i) the process **e** is **F**-adapted

(ii) for any s and t and any $\Gamma \in \mathcal{E}$, the law of $N_{s+t}^{\Gamma} - N_t^{\Gamma}$ conditioned on \mathcal{F}_t is the same as the law of N_t^{Γ} .

Therefore, for any disjoint family $(\Gamma_i, i = 1, ..., d)$, the process $(N_t^{\Gamma_i}, i = 1, ..., d)$ is a *d*-dimensional Poisson process. Moreover, if N^{Γ} is finite almost surely, then $E(N_t^{\Gamma}) < \infty$ and the quantity $\frac{1}{t}E(N_t^{\Gamma})$ does not depend on *t*.

Definition 8.4 The σ -finite measure on \mathcal{E} defined by

$$\mathbf{n}(\Gamma) = \frac{1}{t} E(N_t^{\Gamma})$$

is called the characteristic measure of \mathbf{e} .

If $\mathbf{n}(\Gamma) < \infty$, the process $N_t^{\Gamma} - t\mathbf{n}(\Gamma)$ is a martingale.

Proposition 8.5 (Compensation formula.) Let H be a positive process vanishing at δ , measurable with respect to $\mathcal{P} \times \mathcal{E}_{\delta}$. Then

$$E\left[\sum_{s\geq 0} H(s,\omega,\mathbf{e}_s(\omega))\right] = E\left[\int_0^\infty ds \int H(s,\omega,u)\mathbf{n}(du)\right].$$

If, for any t,
$$E\left[\int_{0}^{t} ds \int H(s,\omega,u)\mathbf{n}(du)\right] < \infty$$
, the process
$$\sum_{s \le t} H(s,\omega,\mathbf{e}_{s}(\omega)) - \int_{0}^{t} ds \int H(s,\omega,u)\mathbf{n}(du)$$

a martingale.

PROOF: It is enough to prove this formula for $H(s, \omega, u) = K(s, \omega) \mathbb{1}_{\Gamma}(u)$. In that case, $N_t^{\Gamma} - t\mathbf{n}(\Gamma)$ is a martingale. **Proposition 8.6 (Exponential formula.)** If f is a $\mathcal{B} \otimes \mathcal{E}$ -measurable function such that $\int_0^t ds \int |f(s, u)| \mathbf{n}(du) < \infty$ for every t, then,

$$E\left[\exp\left(i\sum_{0$$

Moreover, if $f \ge 0$,

$$E\left[\exp\left(-\sum_{0$$

If ν is finite, then the associated counting process is a compound Poisson process.

8.4 The Itô measure of Brownian excursions

Let $(B_t, t \ge 0)$ be a Brownian motion and (τ_s) be the inverse of the local time (L_t) at level 0. The set $\{\bigcup_{s\ge 0}]\tau_{s^-}(\omega), \tau_s(\omega)[\}$ is (almost surely) equal to the complement of the zero set $\{u : B_u(\omega) = 0\}$. The excursion process $(\mathbf{e}_s, s \ge 0)$ is defined as

$$\mathbf{e}_{s}(\omega)(t) = \mathbb{1}_{\{t \leq \tau_{s} - \tau_{s^{-}}\}} B_{\tau_{s^{-}}} + t, t \ge 0.$$

This is a path-valued process $\mathbf{e}: \mathbb{R}_+ \to \Omega_*$, where

$$\Omega_* = \{ \epsilon : I\!\!R_+ \to I\!\!R : \exists V(\epsilon) < \infty, \text{ with } \epsilon(V(\epsilon) + t) = 0, \forall t \ge 0 \}$$

 $\epsilon(u) \neq 0, \forall 0 < u < V(\epsilon), \epsilon(0) = 0, \epsilon \text{ is continuous} \}.$

Hence, $V(\epsilon)$ is the lifetime of ϵ .

The excursion process is a Poisson Point Process; its characteristic measure **n** evaluated on the set Γ , i.e., $\mathbf{n}(\Gamma)$, is defined as the intensity of the Poisson process

$$N_t^{\Gamma} \stackrel{def}{=} \sum_{s \le t} 1\!\!1_{e_s \in \Gamma} \,.$$

The quantity $\mathbf{n}(\Gamma)$ is the positive real γ such that $N_t^{\Gamma} - t\gamma$ is an (\mathcal{F}_{τ_t}) -martingale.

From Itô's theorem, the excursion process is a Poisson point process.

Conditionally on V = v, the process

$$(|\epsilon_u|, u \le v)$$

is a BES(3) bridge of length v. Let $M(\epsilon) = \sup_{u \leq v} |\epsilon_u|$. Then,

$$\mathbf{n}(M(\epsilon) \in dm) = \frac{dm}{m^2}$$

and, conditionally on M = m, the two processes $\epsilon_u, u \leq T_m$ and $\epsilon_{V-u}, u \leq V - T_m$ are two independent BES(3) processes considered up to their first hitting time of m. The Itô-Williams description of the measure \mathbf{n} is

$$\mathbf{n}(d\epsilon) = \int_0^\infty \mathbf{n}_V(dv) \, \frac{1}{2} (\Pi^v_+ + \Pi^v_-) \, (d\epsilon)$$

where $\mathbf{n}_V(dv) = \frac{dv}{\sqrt{2\pi v^3}}$ is the law of the lifetime V under **n** and Π^v_+ (resp. Π^v_-) is the law of the standard Bessel Bridge (resp. the law of its opposite) with dimension 3 and length v.