ENSAE, 2004

1 Definition

A mixed process is a process X

$$
X_{t}=X_{0}+\int_{0}^{t} h_{s} d s+\int_{0}^{t} f_{s} d W_{s}+\int_{0}^{t} g_{s} d M_{s}
$$

The jump times of the process X are those of N, the jump of X is $\Delta X_{t}=X_{t}-X_{t-}=g_{t} \Delta N_{t}$.

2 Itô's Formula

Let

$$
\begin{aligned}
d X_{t} & =h_{t} d t+f_{t} d W_{t}+g_{t} d M_{t} \\
d Y_{t} & =\tilde{h}_{t} d t+\tilde{f}_{t} d W_{t}+\tilde{g}_{t} d M_{t} .
\end{aligned}
$$

2.1 Integration by Parts

The integration by parts formula reads

$$
d(X Y)=X_{-\star} d Y+Y_{-\star} d X+d[X, Y]
$$

with $d[X, Y]_{t}=f_{t} \tilde{f}_{t} d t+g_{t} \tilde{g}_{t} d N_{t}$.

2.2 Itô's Formula: One Dimensional Case

Let F be a $C^{1,2}$ function, and

$$
d X_{t}=h_{t} d t+f_{t} d W_{t}+g_{t} d M_{t}
$$

Then,

$$
\begin{align*}
F\left(t, X_{t}\right)= & F\left(0, X_{0}\right)+\int_{0}^{t} \partial_{s} F\left(s, X_{s}\right) d s+\int_{0}^{t} \partial_{x} F\left(s, X_{s-}\right) d X_{s} \\
& +\frac{1}{2} \int_{0}^{t} \partial_{x x} F\left(s, X_{s}\right) f_{s}^{2} d s \tag{2.1}\\
& +\sum_{s \leq t}\left[F\left(s, X_{s}\right)-F\left(s, X_{s^{-}}\right)-\partial_{x} F\left(s, X_{s-}\right) \Delta X_{s}\right]
\end{align*}
$$

3 Predictable Representation Theorem

Let Z be a square integrable \mathbf{F}-martingale. There exist two predictable processes $\left(H_{1}, H_{2}\right)$ such that $Z=z+H_{1} \cdot W+H_{2} \cdot M$, with

$$
\int_{0}^{t}\left(H_{1}(s)\right)^{2} d s<\infty, \int_{0}^{t}\left(H_{2}(s)\right)^{2} \lambda(s) d s<\infty, \text { a.s. }
$$

4 Change of probability

4.1 Exponential Martingales

Let γ and ψ be two predictable processes such that $\gamma_{t}>-1$. The solution of

$$
\begin{equation*}
d L_{t}=L(t-)\left(\psi_{t} d W_{t}+\gamma_{t} d M_{t}\right) \tag{4.1}
\end{equation*}
$$

is the strictly positive exponential local martingale

$$
\begin{aligned}
L_{t}= & L_{0} \prod_{s \leq t}\left(1+\gamma_{s} \Delta N_{s}\right) e^{-\int_{0}^{t} \gamma_{s} \lambda(s) d s} \exp \left(\int_{0}^{t} \psi_{s} d W_{s}-\frac{1}{2} \int_{0}^{t} \psi_{s}^{2} d s\right) \\
= & L_{0} \exp \left(\int_{0}^{t} \ln \left(1+\gamma_{s}\right) d N_{s}-\int_{0}^{t} \lambda(s) \gamma_{s} d s+\int_{0}^{t} \psi_{s} d W_{s}-\frac{1}{2} \int_{0}^{t} \psi_{s}^{2} d s\right) \\
= & L_{0} \exp \left(\int_{0}^{t} \ln \left(1+\gamma_{s}\right) d M_{s}+\int_{0}^{t}\left[\ln \left(1+\gamma_{s}\right)-\gamma_{s}\right] \lambda_{s} d s\right) \\
& \times \exp \left(\int_{0}^{t} \psi_{s} d W_{s}-\frac{1}{2} \int_{0}^{t} \psi_{s}^{2} d s\right)
\end{aligned}
$$

4.2 Girsanov's Theorem

If P and Q are equivalent probabilities, there exist two predictable processes ψ and γ, with $\gamma>-1$ such that the Radon-Nikodym density L is of the form

$$
d L_{t}=L_{t-}\left(\psi_{t} d W_{t}+\gamma_{t} d M_{t}\right) .
$$

Then, \tilde{W} and \tilde{M} are Q-martingales where

$$
\tilde{W}_{t}=W_{t}-\int_{0}^{t} \psi_{s} d s, \tilde{M}_{t}=M_{t}-\int_{0}^{t} \lambda(s) \gamma_{s} d s .
$$

5 Mixed Processes in Finance

The dynamics of the price are supposed to be given by

$$
\begin{equation*}
d S_{t}=S(t-)\left(b_{t} d t+\sigma_{t} d W_{t}+\phi_{t} d M_{t}\right) \tag{5.1}
\end{equation*}
$$

or in closed form

$$
\begin{gathered}
S_{t}=S_{0} \exp \left(\int_{0}^{t} b_{s} d s\right) \mathcal{E}(\phi \star M)_{t} \mathcal{E}(\sigma \star W)_{t} \\
d S_{t}=S_{t-}\left((r-\delta) d t+\sigma d W_{t}+\phi d M_{t}\right)
\end{gathered}
$$

Here $M_{t}=N_{t}-\lambda t$ is a Q-martingale.

We can write
$E\left(e^{-r t}\left(K-S_{t}\right)^{+}\right)=E\left(e^{-\delta t} Z_{t}\left(\frac{K S_{0}}{S_{t}}-S_{0}\right)^{+}\right)=\tilde{E}\left(e^{-\delta t}\left(\frac{K S_{0}}{S_{t}}-S_{0}\right)^{+}\right)$.
Setting \widehat{Q} where $\left.d \widehat{Q}\right|_{\mathcal{F}_{t}}=\left.Z_{t} d Q\right|_{\mathcal{F}_{t}}$ the process $\widehat{S}=1 / S$ follows

$$
d \widehat{S}_{t}=\widehat{S}_{t-}\left((\delta-r) d t-\sigma d \tilde{W}_{t}-\frac{\phi}{1+\phi} d \tilde{M}_{t}\right)
$$

where $\widehat{W}_{t}=W_{t}-\sigma t$ is a \widehat{Q}-BM and $\widehat{M}_{t}=N_{t}-\lambda(1+\phi) t$ is a $\widehat{Q}-$ martingale. Hence, denoting by C_{E} (resp. P_{E}) the price of a European call (resp. put)

$$
P_{E}(x, K, r, \delta ; \sigma, \phi, \lambda)=C_{E}\left(K, x, \delta, r ; \sigma,-\frac{\phi}{1+\phi}, \lambda(1+\phi)\right)
$$

5.1 Hitting Times

Let $S_{t}=S_{0} e^{X_{t}}$. Let us denote by $T_{L}(S)$ the first passage time of the process S at level L, for $L>S_{0}$ as $T_{L}(S)=\inf \left\{t \geq 0: S_{t} \geq L\right\}$ and its companion first passage time $T_{\ell}(X)=T_{L}(S)$, the first passage time of the process X at level $\ell=\ln \left(L / S_{0}\right)$, for $\ell>0$ as $T_{\ell}(X)=\inf \{t \geq 0:$ $\left.X_{t} \geq \ell\right\}$.

The process $Z^{(k)}$ is the martingale

$$
\begin{equation*}
Z_{t}^{(k)}=S_{0}^{k} \mathcal{E}\left(\phi_{k} M\right)_{t} \mathcal{E}(\sigma k W)_{t}=S_{0}^{k} \exp \left(k X_{t}-t g(k)\right) \tag{5.2}
\end{equation*}
$$

and $g(k)$ is the so-called Lévy exponent

$$
\begin{equation*}
g(k)=b k+\frac{1}{2} \sigma^{2} k(k-1)+\lambda\left[(1+\phi)^{k}-1-k \phi\right] . \tag{5.3}
\end{equation*}
$$

When there are no positive jumps, i.e., $\phi \in]-1,0[$,

$$
E\left[\exp \left(-g(k) T_{\ell}\right)\right]=\exp (-k \ell) .
$$

Inverting the Lévy exponent $g(k)$ we obtain

$$
\begin{align*}
& E\left(\exp \left(-u T_{\ell}\right)\right)=\exp \left(-g^{-1}(u) \ell\right), \quad \text { for } S_{0}<L \tag{5.4}\\
& E\left(\exp \left(-u T_{\ell}\right)\right)=1 \text { otherwise }
\end{align*}
$$

Here $g^{-1}(u)$ is the positive root of $g(k)=u$.
If the jump size is positive there is a non zero probability that $X_{T_{\ell}}$ is strictly greater than ℓ. In this case, we introduce the so-called overshoot $K(\ell)$

$$
\begin{equation*}
K(\ell)=X_{T_{\ell}}-\ell \tag{5.5}
\end{equation*}
$$

The difficulty is to obtain the law of the overshoot.

5.2 Affine Jump Diffusion Models

$$
d S_{t}=\mu\left(S_{t}\right) d t+\sigma\left(S_{t}\right) d W_{t}+d X_{t}
$$

where X is a (λ, ν) compound Poisson process. The infinitesimal generator of S is
$\mathcal{L} f=\partial_{t} f+\mu(x) \partial_{x} f+\frac{1}{2} \operatorname{Tr}\left(\partial_{x x} f \sigma \sigma^{T}\right)+\lambda \int(f(x+z, t)-f(x, t)) d \nu(z)$
for $f \in C_{b}^{2}$.
Proposition 5.1 Suppose that $\mu(x)=\mu_{0}+\mu_{1} x ; \sigma^{2}(x)=\sigma_{0}+\sigma_{1} x$ are affine functions, and that $\int e^{z y} \nu(d y)<\infty, \forall z$. Then, for any affine function $\psi(x)=\psi_{0}+\psi_{1} x$, there exist two functions α and β such that

$$
E\left(e^{\theta S_{T}} \exp \left(-\int_{t}^{T} \psi\left(S_{s}\right) d s\right) \mid \mathcal{F}_{t}\right)=e^{\alpha(t)+\beta(t) S_{t}}
$$

5.3 Mixed Processes involving Compound Poisson Processes

Proposition 5.2 Let W be a Brownian motion and X be a (λ, F) compound Poisson process independent of W. Let

$$
d S_{t}=S_{t-}\left(\mu d t+\sigma d W_{t}+d X_{t}\right) .
$$

The process $\left(S_{t} e^{-r t}, t \geq 0\right)$ is a martingale if and only if $\mu+\lambda E\left(Y_{1}\right)=r$.

5.4 General Jump-Diffusion Processes

Let W be a Brownian motion and $p(d s, d z)$ a marked point process. Let $\mathcal{F}_{t}=\sigma\left(W_{s}, p([0, s], A), A \in \mathcal{E} ; s \leq t\right)$. The solution of

$$
d S_{t}=S_{t-}\left(\mu_{t} d t+\sigma_{t} d W_{t}+\int_{\mathbb{R}} \varphi(t, x) p(d t, d x)\right)
$$

can be written in an exponential form as

$$
S_{t}=S_{0} \exp \left(\int_{0}^{t}\left[\mu_{s}-\frac{1}{2} \sigma_{s}^{2}\right] d s+\int_{0}^{t} \sigma_{s} d W_{s}\right) \prod_{n=1}^{N_{t}}\left(1+\varphi\left(T_{n}, Z_{n}\right)\right)
$$

where $N_{t}=p((0, t], \mathbb{R})$ is the total number of jumps.

6 Incompleteness

6.1 Risk-neutral Probability Measures Set

Assume that

$$
\begin{equation*}
d(R S)_{t}=R(t) S_{t-}\left([b(t)-r(t)] d t+\sigma(t) d W_{t}+\phi(t) d M_{t}\right) \tag{6.1}
\end{equation*}
$$

The set \mathcal{Q} of e.m.m. is the set of probability measures $P^{\psi, \gamma}$ such that $\left.\frac{d P^{\psi, \gamma}}{d P}\right|_{\mathcal{F}_{t}}=L_{t}^{\psi, \gamma}$ where $L_{t}^{\psi, \gamma} \stackrel{\text { def }}{=} L_{t}^{\psi, W} L_{t}^{\gamma, M}$

$$
\left\{\begin{array}{rl}
L_{t}^{\psi, W} & =\mathcal{E}(\psi \star W)_{t}
\end{array}=\exp \left[\int_{0}^{t} \psi_{s} d W_{s}-\frac{1}{2} \int_{0}^{t} \psi_{s}^{2} d s\right] .\right.
$$

$$
\begin{equation*}
b(t)-r(t)+\sigma(t) \psi_{t}+\lambda(t) \phi(t) \gamma_{t}=0 \quad, \quad d P \otimes d t p . s \tag{6.2}
\end{equation*}
$$

6.2 The Range of Prices for European Call Case

We study now the range of viable prices associated with a European call option, that is, the interval $] \inf _{\gamma \in \Gamma} V_{t}^{\gamma}, \sup _{\gamma \in \Gamma} V_{t}^{\gamma}\left[\right.$, for $B=\left(S_{T}-K\right)^{+}$. We denote by $\mathcal{B S}$ the Black-Scholes function, that is, the function such that

$$
R(t) \mathcal{B S}(x, t)=E\left(R(T)\left(X_{T}-K\right)^{+} \mid X_{t}=x\right), \quad \mathcal{B S}(x, T)=(x-K)^{+}
$$

when

$$
\begin{equation*}
d X_{t}=X_{t}\left(r(t) d t+\sigma(t) d W_{t}\right) . \tag{6.3}
\end{equation*}
$$

Theorem 6.1 Let $P^{\gamma} \in \mathcal{Q}$. Then, the associated viable price is bounded below by the Black-Scholes function, evaluated at the underlying asset value, and bounded above by the underlying asset value, i.e.,

$$
R(t) \mathcal{B S}\left(S_{t}, t\right) \leq E^{\gamma}\left(R(T)\left(S_{T}-K\right)^{+} \mid \mathcal{F}_{t}\right) \leq R(t) S_{t}
$$

The range of viable prices $V_{t}^{\gamma}=\frac{R(T)}{R(t)} E^{\gamma}\left(\left(S_{T}-K\right)^{+} \mid \mathcal{F}_{t}\right)$ is exactly the interval $] \mathcal{B S}\left(S_{t}, t\right), S_{t}[$.

7 Complete Markets

7.1 A Two Assets Model

$$
\begin{gathered}
d S_{1}(t)=S_{1}(t-)\left(b_{1}(t) d t+\sigma_{1}(t) d W_{t}+\phi_{1}(t) d M_{t}\right) \\
d S_{2}(t)=S_{2}\left(t_{-}\right)\left(b_{2}(t) d t+\sigma_{2}(t) d W_{t}+\phi_{2}(t) d M_{t}\right)
\end{gathered}
$$

Under the conditions

$$
\begin{array}{r}
\left|\sigma_{1}(t) \phi_{2}(t)-\sigma_{2}(t) \phi_{1}(t)\right| \geq \epsilon>0 \\
\frac{\left[b_{2}(t)-\lambda(t) \phi_{2}(t)-r(t)\right] \sigma_{1}(t)-\left[b_{1}(t)-\lambda(t) \phi_{1}(t)-r(t)\right] \sigma_{2}(t)}{\sigma_{2}(t) \phi_{1}(t)-\sigma_{1}(t) \phi_{2}(t)}>0
\end{array}
$$

we obtain an arbitrage free complete market. The risk-neutral probability is defined by $\left.Q\right|_{\mathcal{F}_{t}}=\left.L_{t}^{\psi, \gamma} P\right|_{\mathcal{F}_{t}}$, where

$$
d L_{t}=L_{t-}\left[\psi_{t} d W_{t}+\gamma_{t} d M_{t}\right]
$$

and

$$
b_{i}(t)-r(t)+\sigma_{i}(t) \psi_{t}+\lambda(t) \phi_{i}(t) \gamma_{t}=0, i=1,2
$$

7.2 Structure equation

The equation

$$
\begin{equation*}
d[X, X]_{t}=d t+\beta(t) d X_{t} \tag{7.1}
\end{equation*}
$$

as a unique solution which is a martingale, for β a deterministic function.

7.2.1 Dritschel and Protter's model

$$
d S_{t}=S_{t-} \sigma d Z_{s}
$$

where Z is a martingale satisfying (7.1) with β constant, $-2 \leq \beta<0$

7.2.2 Privault's model

Let ϕ and α be two bounded deterministic Borel functions defined on \mathbb{R}^{+}. Let

$$
\lambda(t)= \begin{cases}\alpha^{2}(t) / \phi^{2}(t) & \text { if } \phi(t) \neq 0, \\ 0 & \text { if } \phi(t)=0, t \in \mathbb{R}^{+} .\end{cases}
$$

Let B be a standard Brownian motion, and N an inhomogeneous Poisson process with intensity λ. The process defined as $\left(X_{t}, t \geq 0\right)$

$$
\begin{equation*}
d X_{t}=\mathbb{1}_{\{\phi(t)=0\}} d B_{t}+\frac{\phi(t)}{\alpha(t)}\left(d N_{t}-\lambda(t) d t\right), t \in \mathbb{R}^{+}, X_{0}=0 \tag{7.2}
\end{equation*}
$$

satisfies the structure equation

$$
d[X, X]_{t}=d t+\frac{\phi(t)}{\alpha(t)} d X_{t}
$$

