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1 Definition
A mixed process is a process X
t t t
X, :Xo—l—/ hsds—l—/ deWS—i—/ gsdMy .
0 0 0

The jump times of the process X are those of N, the jump of X is
AXt = Xt — Xt_ = gtANt.



2 1Ito’s Formula

Let
dX; = hydt + f1dWi + ged My,
dY, = hydt + fodW, + GodM, .

2.1 Integration by Parts

The integration by parts formula reads
d(XY)=X_*xdY + Y _*xdX +d[X,Y]

with d[X, Y]t — ftﬁdt + gt?]tht-



2.2 Itd’s Formula: One Dimensional Case

Let F be a C''? function, and

dXt — htdt + ftth + gtht .

Then,
t t
F(t,X,) = F(O,X0)+/ 6’SF(5,XS)d5+/ O, F (s, Xs_)dX,
0 0
1 t
+§/ Opa (5, X)) f2 ds (2.1)
0
+ ) [F(s,Xs) = F(s,X-) — 0. F (s, X,_)AX,] .
s<t



3 Predictable Representation Theorem

Let Z be a square integrable F-martingale. There exist two predictable
processes (Hy, Hs) such that Z = 2+ Hy - W + Hs - M, with

/(Hl ds<oo/H2 s)ds < 00, a.s.



4 Change of probability

4.1 Exponential Martingales

Let v and ¢ be two predictable processes such that v > —1. The solution
of

is the strictly positive exponential local martingale

. t 1 t
Lt — LO H 1 + VSAN f VoA 8)d exXp (/ wdes o 5/ ¢3d8>
0 0

s<t

t 1 [t
= Lgexp (/ In(1 + v)dNs — / $)vsds —|—/ YsdW s — 5/ ¢§d8>
0 0

t t
Lo exp (/ In(1 4 ~s)dMs + / In(1 + v5) — ’ys])\sd5>
0 0

t 1 t
X exp (/ Ve dWs — 5/ wgds) .
0 0



4.2 Girsanov’s Theorem

If P and () are equivalent probabilities, there exist two predictable pro-
cesses ¢ and 7y, with v > —1 such that the Radon-Nikodym density L is
of the form

st = Lt_ (wtth + ’}/tht) .
Then, W and M are (-martingales where

t t
W, = W, —/ Weds, My = M, —/ A($)vsds .
0 0



5 Mixed Processes in Finance
The dynamics of the price are supposed to be given by
dSt — S(t—)(btdt + O'tth + (btht)

or in closed form

t
St = So exp (/ bsds) E(OxM) E(a+xW )y .
0

dS; = Si_((r — 6)dt + cdWy 4+ pd M)
Here M; = N; — At is a (Q-martingale.

(5.1)



We can write

E(e " (K—-8,)T)=E (e—&Zt(KSfO — SO)+> = F (e—&(KSO — SO)+> .

Setting Q where dQ|z, = Z;dQ|#, the process S = 1/ follows

08, = 8, ((6 — r)dt — od W, — —2— i)

14 ¢

where W, = W, — ot is a Q-BM and M; = N; — A1+ )t is a Q-
martingale. Hence, denoting by Cr (resp. Pg) the price of a European
call (resp. put)

Pg(z,K,r,0;0,0,\) = Cg(K,x,8,7; 0, —%,)\(1 + ¢)).

+¢



5.1 Hitting Times

Let S; = SpeXt. Let us denote by T7(S) the first passage time of the
process S at level L, for L > Sy as T1(S) = inf{t > 0 : S; > L} and
its companion first passage time Ty(X) = T (.5), the first passage time
of the process X at level £ =1n(L/Sy), for £ > 0 as Ty(X) = inf{t > 0 :
X; > 1}

The process Z%) is the martingale
7" = SEE($1 M) E(0kW), = S§ exp(kX: —tg(k))  (5.2)
and g(k) is the so-called Lévy exponent
1
g(k) = bk + 502k(k D+ A1+ ) —1—Ekg)]. (5.3)

When there are no positive jumps, i.e., ¢ €] — 1,0,

Elexp(—g(k)Ty)] = exp(—kl).
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Inverting the Lévy exponent g(k) we obtain

E(exp(—uTy)) = exp(—g '(u)f), for Sy < L; (5.4)
E(exp(—uTy)) = 1 otherwise.

Here g~ !(u) is the positive root of g(k) = w.

If the jump size is positive there is a non zero probability that X, is

strictly greater than /. In this case, we introduce the so-called overshoot
K (¢)
K{)=Xp, —¢. (5.5)

The difficulty is to obtain the law of the overshoot.
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5.2 Affine Jump Diffusion Models

dSt — M(St)dt + O'(St)th + dXt

where X is a (A, v) compound Poisson process. The infinitesimal gener-
ator of S is

Lf=0f+ u(x)o.f+ %Tr((?mfaaT) + )\/(f(x + z,t) — f(x,t))dv(z)

for f € C}.

Proposition 5.1 Suppose that p(x) = pg + p1x;0%(x) = o9 + o1 are
affine functions, and that [e*Yv(dy) < oo,Vz. Then, for any affine
function (x) = g + Y1, there exist two functions o and (B such that

T
B(e"7 exp (‘/ w(ss>d8> F) = e 005
t
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5.3 Mixed Processes involving Compound Poisson
Processes

Proposition 5.2 Let W be a Brownian motion and X be a (A, F') com-
pound Poisson process independent of W. Let

dSt — St_(/,Ldt + O'th + dXt) .

The process (Sie™ "t > 0) is a martingale if and only if p+AE(Y1) = r.
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5.4 (General Jump-Diffusion Processes

Let W be a Brownian motion and p(ds, dz) a marked point process. Let
Fi =o0(Ws,p(|0,s],A),A € &; s <t). The solution of

dSt — St_ (/Ltdt + O'tth + / Qﬁ(t, Clj)p(dt, da:))
IR

can be written in an exponential form as

Ny

/ 1 '
S; = Sp exp (/ [,us — 503] ds —|—/ anWS) H(l + (T, Zy,))
0 0

n=1

where N; = p((0,t], IR) is the total number of jumps.
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6 Incompleteness

6.1 Risk-neutral Probability Measures Set

Assume that
d(RS): = R(t)S:—([b(t) — r(t)|dt + o(t)dW; + ¢(t)d M) (6.1)

The set Q of e.m.m. is the set of probability measures P¥»Y such that
dP¥" d

= Lzb,')/
iP |,

where

( LQD’W = EWxW); =exp /deW ——/ wﬁds]

L}M = &(«M), =exp /0 In(1 + v5)dNg — / ds] :
b(t) —r(t) +o(t)s + A(t)dp(t)y: =0 , dP ® ditp.s. (6.2)
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6.2 The Range of Prices for European Call Case

We study now the range of viable prices associated with a European call
option, that is, the interval | inf,cr V", sup,cp V;'[, for B = (Sp — K)™.
We denote by BS the Black-Scholes function, that is, the function such
that

R(t)BS(z,t) = BE(R(T)( Xt — K)" |X; =2), BS(z,T)=(x— K)*

when
dX: = Xe(r(t)dt + o(t) dWy). (6.3)

Theorem 6.1 Let PY € Q. Then, the associated viable price is bounded
below by the Black-Scholes function, evaluated at the underlying asset
value, and bounded above by the underlying asset value, i.e.,

R(t)BS(S;,t) < EY(R(T) (St — K)t|F) < R(t) S

R(T
The range of viable prices V,' = LE”((ST — K)"|F) is exactly the

R(?)
interval |BS (S, t), St
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7 Complete Markets
7.1 A Two Assets Model

dS1(t) = S1(t=)(b1(¢)dt + o1 (¢)dWy + ¢1(t)d M)
dS(t) = Sa(t_)(b2(t)dt + o2(t)dW; + ¢2(t)dM;),

Under the conditions

o1(D)P2(t) — o2(t)p1(t)] =€ > 0

b2(8) = A(®)P2(t) —r(t)] o1 (t) — [b1(t) — A(t)@1(t) — r(t)] o2(?) > 0
o2(t)P1(t) — o1(t)P2(t)

we obtain an arbitrage free complete market. The risk-neutral probabil-

ity is defined by Q|z, = LY P|z,, where
ClLt = Lt_ [wtth + ’}/tht]

and

bi(t) — r(t) + oi(t)e + A(#)Pi () e = 0,4 = 1,2
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7.2 Structure equation

The equation

as a unique solution which is a martingale, for 3 a deterministic function.

7.2.1 Dritschel and Protter’s model

dSt — St_O'dZS

where Z is a martingale satisfying (7.1) with § constant, —2 < 3 < 0
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7.2.2 Privault’s model
Let ¢ and o be two bounded deterministic Borel functions defined on
IRT. Let , , .
A(t) = a”(t)/¢=(t) if ¢(t) # 0,
0 if (t) =0, te RT.

Let B be a standard Brownian motion, and N an inhomogeneous Poisson
process with intensity A\. The process defined as (X;,t > 0)

t
dX, = T yg(—0ydB; + o() (AN, — A(t)dt) ,t € RT,Xo=0  (7.2)

a(t)

satisfies the structure equation

d[X, X, = dt + o) ix,

a(t)
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