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1 Infinitely Divisible Random Variables

1.1 Definition

A random variable X taking values in IRd is infinitely divisible if its
characteristic function

µ̂(u) = E(ei(u·X)) = (µ̂n)n

where µ̂n is a vcharacteristic function.

Example 1.1 A Gaussian variable, a Cauchy variable, a Poisson vari-
able and the hitting time of the level a for a Brownian motion are exam-
ples of infinitely divisible random variables.

A Lévy measure ν is a positive measure on IRd \ {0} such that∫
IRd\{0}

min(1, ‖x‖2)ν(dx) <∞ .
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Proposition 1.2 (Lévy-Khintchine representation.)
If X is an infinitely divisible random variable, there exists a triple (m,A, ν)
where m ∈ IRd, A is a non-negative quadratic form and ν is a Lévy mea-
sure such that

µ̂(u) = exp
(
i(u·m) − (u·Au) +

∫
IRd

(ei(u·x) − 1 − i(u·x)11{|x|≤1})ν(dx)
)
.
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Example 1.3 Gaussian laws. The Gaussian law N (m,σ2) has the
characteristic function exp(ium − u2σ2/2). Its characteristic triple is
(m,σ, 0).

Cauchy laws. The standard Cauchy law has the characteristic func-
tion

exp(−c|u|) = exp
(
c

π

∫ ∞

−∞
(eiux − 1)x−2dx

)
.

Its characteristic triple is (in terms of m0) (0, 0, π−1x−2dx).
Gamma laws. The Gamma law Γ(a, ν) has the characteristic func-

tion

(1 − iu/ν)−a = exp
(
a

∫ ∞

0

(eiux − 1)e−νx
dx

x

)
.

Its characteristic triple is (in terms of m0) (0, 0, 11{x>0} ax−1e−νxdx).
The exponential Lévy process corresponds to the case a = 1.
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1.2 Stable Random Variables

A random variable is stable if for any a > 0, there exist b > 0 and c ∈ IR
such that [µ̂(u)]a = µ̂(bu) eicu .

Proposition 1.4 The characteristic function of a stable law can be writ-
ten

µ̂(u) =


exp(ibu− 1

2σ
2u2), forα = 2

exp (−γ|u|α[1 − iβ sgn(u) tan(πα/2)]) , forα �= 1, �= 2
exp (γ|u|(1 − iβv ln |u|)) , α = 1

,

where β ∈ [−1, 1]. For α �= 2, the Lévy measure of a stable law is
absolutely continuous with respect to the Lebesgue measure, with density

ν(dx) =
{

c+x−α−1dx if x > 0
c−|x|−α−1dx if x < 0 .

Here c± are non-negative real numbers, such that β = (c+ − c−)/(c+ +
c−).
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More precisely,

c+ =
1
2
(1 + β)

αγ

Γ(1 − α) cos(απ/2)
,

c− =
1
2
(1 − β)

αγ

Γ(1 − α) cos(απ/2)
.

The associated Lévy process is called a stable Lévy process with index
α and skewness β.

Example 1.5 A Gaussian variable is stable with α = 2. The Cauchy
law is stable with α = 1.
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2 Lévy Processes

2.1 Definition and Main Properties

A IRd-valued process X such that X0 = 0 is a Lévy process if
a- for every s, t, 0 ≤ s ≤ t <∞, Xt −Xs is independent of FX

s

b- for every s, t the r.vs Xt+s −Xt and Xs have the same law.
c- X is continuous in probability, i.e., P (|Xt − Xs| > ε) → 0 when

s→ t for every ε > 0.
Brownian motion, Poisson process and compound Poisson processes

are examples of Lévy processes.

Proposition 2.1 Let X be a Lévy process. Then, for any fixed t,

(Xu, u ≤ t) law= (Xt −Xt−u, u ≤ t)

Consequently, (Xt, infu≤tXu)
law= (Xt, Xt − supu≤tXu)

and for any α ∈ IR,∫ t

0

du eαXu
law= eαXt

∫ t

0

du e−αXu .
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2.2 Poisson Point Process, Lévy Measure

For every Borel set Λ ∈ IRd, such that 0 /∈ Λ̄, where Λ̄ is the closure of
Λ, we define

NΛ
t =

∑
0<s≤t

11Λ(∆Xs),

to be the number of jumps before time t which take values in Λ.

Definition 2.2 The σ-additive measure ν defined on IRd − {0} by

ν(Λ) = E(NΛ
1 )

is called the Lévy measure of the process X.

Proposition 2.3 Assume ν(1) <∞. Then, the process

NΛ
t =

∑
0<s≤t

11Λ(∆Xs)

is a Poisson process with intensity ν(Λ). The processes NΛ and NΓ are
independent if ν(Γ∩Λ) = 0, in particular if Λ and Γ are disjoint. Hence,
the jump process of a Lévy process is a Poisson point process.
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Let Λ be a Borel set of IRd with 0 /∈ Λ̄, and f a Borel function defined
on Λ. We have∫

Λ

f(x)Nt(ω, dx) =
∑

0<s≤t
f(∆Xs(ω))11Λ(∆Xs(ω)) .

Proposition 2.4 (Compensation formula.) If f is bounded and van-
ishes in a neighborhood of 0,

E(
∑

0<s≤t
f(∆Xs)) = t

∫
IRd

f(x)ν(dx) .

More generally, for any bounded predictable process H

E

∑
s≤t

Hsf(∆Xs)

 = E

[∫ t

0

dsHs

∫
f(x)dν(x)

]
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and if H is a predictable function (i.e. H : Ω× IR+ × IRd → IR is P ×B
measurable)

E

∑
s≤t

Hs(ω,∆Xs)

 = E

[∫ t

0

ds

∫
dν(x)Hs(ω, x)

]
.

Both sides are well defined and finite if

E

[∫ t

0

ds

∫
dν(x)|Hs(ω, x)|

]
<∞

Proof: Let Λ be a Borel set of IRd with 0 /∈ Λ̄, f a Borel function
defined on Λ. The process NΛ being a Poisson process with intensity
ν(Λ), we have

E

(∫
Λ

f(x)Nt(·, dx)
)

= t

∫
Λ

f(x)ν(dx),
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and if f11Λ ∈ L2(dν)

E

(∫
Λ

f(x)Nt(·, dx) − t

∫
Λ

f(x)ν(dx)
)2

= t

∫
Λ

f2(x)ν(dx) .

�

Proposition 2.5 (Exponential formula.)
Let X be a Lévy process and ν its Lévy measure. For all t and all

Borel function f defined on IR+×IRd such that
∫ t
0
ds
∫ |1−ef(s,x)|ν(dx) <

∞, one has

E

exp

∑
s≤t

f(s,∆Xs)11{∆Xs �=0}

 = exp
(
−
∫ t

0

ds

∫
(1 − ef(s,x))ν(dx)

)
.

Warning 2.6 The above property does not extend to predictable func-
tions.
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Proposition 2.7 (Lévy-Itô’s decomposition.) If X is a Rd-valued
Lévy process, such that

∫
{|x|<1} |x|ν(dx) < ∞ it can be decomposed into

X = Y (0)+Y (1)+Y (2)+Y (3) where Y (0) is a constant drift, Y (1) is a lin-
ear transform of a Brownian motion, Y (2) is a compound Poisson process
with jump size greater than or equal to 1 and Y (3) is a Lévy process.
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2.3 Lévy-Khintchine Representation

Proposition 2.8 Let X be a Lévy process. There exists m ∈ IRd, a non-
negative semi-definite quadratic form A, a Lévy measure ν such that for
u ∈ IRd

E(exp(i(u·X1))) =

exp
(
i(u·m) − (u·Au)

2
+
∫
IRd

(ei(u·x) − 1 − i(u·x)11|x|≤1)ν(dx)
)

(2.1)

where ν is the Lévy measure.
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2.4 Representation Theorem

Proposition 2.9 Let X be a IRd-valued Lévy process and FX its natural
filtration. Let M be a locally square integrable martingale with M0 = m.
Then, there exists a family (ϕ,ψ) of predictable processes such that∫ t

0

|ϕis|2ds <∞, a.s.

∫ t

0

∫
IRd

|ψs(x)|2ds ν(dx) <∞, a.s.

and

Mt = m+
d∑
i=1

∫ t

0

ϕisdW
i
s +

∫ t

0

∫
IRd

ψs(x)(N(ds, dx) − ds ν(dx)) .
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3 Change of measure

3.1 Esscher transform

We define a probability Q, equivalent to P by the formula

Q|Ft
=

e(λ·Xt)

E(e(λ·Xt))
P |Ft

. (3.1)

This particular choice of measure transformation, (called an Esscher
transform) preserves the Lévy process property.
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Proposition 3.1 Let X be a P -Lévy process with parameters (m,A, ν)
where A = RTR. Let λ be such that E(e(λ·Xt)) < ∞ and suppose Q is
defined by (3.1). Then X is a Lévy process under Q, and if the Lévy-
Khintchine decomposition of X under P is (2.1), then the decomposition
of X under Q is

EQ(exp(i(u·X1))) = exp
(
i(u·m(λ)) − (u·Au)

2
(3.2)

+
∫
IRd

(ei(u·x) − 1 − i(u·x)11|x|≤1)ν(λ)(dx)
)

with

m(λ) = m+Rλ+
∫
|x|≤1

x(eλx − 1)ν(dx)

ν(λ)(dx) = eλxν(dx) .

16



The characteristic exponent of X under Q is

Φ(λ)(u) = Φ(u− iλ) − Φ(−iλ) .

If Ψ(λ) <∞, Ψ(λ)(u) = Ψ(u+ λ) − Ψ(λ) for u ≥ min(−λ, 0).
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3.2 General case

More generally, any density (Lt, t ≥ 0) which is a positive martingale
can be used.

dLt =
d∑
i=1

ϕ̃itdW
i
t +

∫ x=∞

x=−∞
ψ̃t(x)[N(dt, dx) − dtν(dx)] .

From the strict positivity of L, there exists ϕ,ψ such that ϕ̃t = Lt−ϕt, ψ̃t =
Lt−(eψ(t,x) − 1), hence the process L satisfies

dLt = Lt−

(
d∑
i=1

ϕitdW
i
t +

∫
(eψ(t,x) − 1)[N(dt, dx) − dtν(dx)]

)
(3.3)
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Proposition 3.2 Let Q|Ft
= Lt P |Ft

where L is defined in (3.3). With
respect to Q,

(i) Wϕ
t
def
= Wt −

∫ t
0
ϕsds is a Brownian motion

(ii) The process N is compensated by eψ(s,x)dsν(dx) meaning that
for any Borel function h such that∫ T

0

∫
IR

|h(s, x)|eψ(s,x)dsν(dx) <∞ ,

the process ∫ t

0

∫
IR

h(s, x)
(
N(ds, dx) − eψ(s,x)dsν(dx)

)
is a local martingale.
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4 Fluctuation theory

Let Mt = sups≤tXs be the running maximum of the Lévy process X.
The reflected process M −X enjoys the strong Markov property.

Let θ be an exponential variable with parameter q, independent of
X. Note that

E(eiuXθ ) = q

∫
E(eiuXt)e−qtdt = q

∫
e−tΦ(u)e−qtdt .

Using excursion theory, the random variables Mθ and Xθ −Mθ can be
proved to be independent, hence

E(eiuMθ )E(eiu(Xθ−Mθ)) =
q

q + Φ(u)
. (4.1)

The equality (4.1) is known as the Wiener-Hopf factorization.
Let mt = mins≤t(Xs). Then

mθ
law= Xθ −Mθ .
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If E(eX1) < ∞, using Wiener-Hopf factorization, Mordecki proves
that the boundaries for perpetual American options are given by

bp = KE(emθ ), bc = KE(eMθ )

where mt = infs≤tXs and θ is an exponential r.v. independent of X

with parameter r, hence bcbp =
rK2

1 − lnE(eX1)
.
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4.1 Pecherskii-Rogozin Identity

For x > 0, denote by Tx the first passage time above x defined as

Tx = inf{t > 0 : Xt > x}

and by Kx = XTx
− x the so-called overshoot.

Proposition 4.1 (Pecherskii-Rogozin Identity.) For every triple of
positive numbers (α, β, q),∫ ∞

0

e−qxE(e−αTx−βKx)dx =
κ(α, q) − κ(α, β)
(q − β)κ(α, q)

(4.2)
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5 Spectrally Negative Lévy Processes

A spectrally negative Lévy process is a Lévy process with no positive
jumps, its Lévy measure is supported by (−∞, 0). Then, X admits
exponential moments

E(exp(λXt)) = exp(tΨ(λ)) <∞, ∀λ > 0

where

Ψ(λ) = λm+
1
2
σ2λ2 +

∫ 0

−∞
(eλx − 1 − λx11{−1<x<0})ν(dx) .

Let X be a Lévy process, Mt = sups≤tXs and Zt = Mt−Xt. If X is
spectrally negative, the process Mt = e−αZt −1+αYt−Ψ(α)

∫ t
0
e−αZsds

is a martingale (Asmussen-Kella-Whitt martingale).
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6 Exponential Lévy Processes as Stock Price
Processes

6.1 Exponentials of Lévy Processes

Let St = xeXt where X is a (m,σ2, ν) real valued Lévy process.
Let us assume that E(e−αX1) <i nfty, for α ∈ [−ε, , ε]. This implies

that X has finite momments of all orders. In terms of Lévy measure,∫
11{|x|≥1}e−αxν(dx) < ∞ ,∫

11{|x|≥1}xae−αxν(dx) < ∞∀a > 0∫
11{|x|≥1}ν(dx) < ∞
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The solution of the SDE

dSt = St−(b(t)dt+ σ(t)dXt)

is

St = S0 exp
(∫ t

0

σ(s)dXs +
∫ t

0

(b(s) − σ2

2
σ(s)ds

) ∏
0<s≤t

(1+σ(s)∆Xs) exp(−σ(s)∆Xs)
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6.2 Option pricing with Esscher Transform

Let St = S0e
rt+Xt where L is a Lévy process under a the historical

probability P .

Proposition 6.1 We assume that Ψ(α) = E(eαX1) <∞ on some open
interval (a, b) with b − a > 1 and that there exists a real number θ such
that Ψ(α) = Ψ(α+1). The process e−rtSt = S0e

Xt is a martingale under

the probability Q defined as Q = ZtP where Zt =
eθXt

Ψ(θ)

Hence, the value of a contingent claim h(ST ) can be obtained, as-
suming that the emm chosen by the market is Q as

Vt = e−r(T−t)EQ(h(ST )|Ft) = e−r(T−t) 1
Ψ(θ)

EP (h(yer(T−t)+XT−teθXT−t)
∣∣
y=St
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6.3 A Differential Equation for Option Pricing

Assume that
V (t, x) = e−r(T−t)EQ(h(ex+XT−t))

belongs to C1,2. Then

rV =
1
2
σ2∂xxV + ∂tV +

∫
(V (t, x+ y) − V (t, x)) ν(dy) .
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6.4 Put-call Symmetry

Let us study a financial market with a riskless asset with constant interest
rate r, and a price process St = S0e

Xt where X is a Lévy process such
that e−(r−δ)tSt is a martingale. In terms of characteristic exponent, this
condition means that ψ(1) = r − δ, and the characteristic triple of X is
such that

m = r − δ − σ2/2 −
∫

(ey − 1 − y11{|y|≤1}ν(dy) .

Then, the following symmetry between call and put prices holds:

CE(S0,K, r, δ, T, ψ) = PE(K,S0, δ, r, T, ψ̃) .

28



7 Subordinators

A Lévy process which takes values in [0,∞[ (i.e. with increasing paths)
is a subordinator. In this case, the parameters in the Lévy-Khintchine
decomposition are m ≥ 0, σ = 0 and the Lévy measure ν is a measure

on ]0,∞[ with
∫

]0,∞[

(1 ∧ x)ν(dx) < ∞. The Laplace exponent can be

expressed as

Φ(u) = δu+
∫

]0,∞[

(1 − e−ux)ν(dx)

where δ ≥ 0.

Definition 7.1 Let Z be a subordinator and X an independent Lévy pro-
cess. The process X̃t = XZt

is a Lévy process, called subordinated
Lévy process.

Example 7.2 Compound Poisson process. A compound Poisson
process with Yk ≥ 0 is a subordinator.
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Example 7.3 Gamma process. The Gamma process G(t; γ) is a sub-
ordinator which satisfies

G(t+ h; γ) −G(t; γ) law= Γ(h; γ) .

Here Γ(h; γ) follows the Gamma law. The Gamma process is an increas-
ing Lévy process, hence a subordinator, with one sided Lévy measure

1
x

exp(−x
γ

)11x>0 .

Example 7.4 Let W be a BM, and

Tr = inf{t ≥ 0 : Wt ≥ r} .

The process (Tr, r ≥ 0) is a stable (1/2) subordinator, its Lévy measure

is
1√

2π x3/2
11x>0dx. Let B be a BM independent of W . The process

BTt
is a Cauchy process, its Lévy measure is dx/(πx2).
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Proposition 7.5 (Changes of Lévy characteristics under subor-
dination.) Let X be a (aX , AX , νX) Lévy process and Z be a subordi-
nator with drift β and Lévy measure νZ , independent of X.The process
X̃t = XZt

is a Lévy process with characteristic exponent

Φ(u) = i(ã·u) +
1
2
Ã(u) −

∫
(ei(u·x) − 1 − i(u·x)11|x|≤1)ν̃(dx)

with

ã = βaX +
∫
νZ(ds)11|x|≤1xP (Xs ∈ dx)

Ã = βAX

ν̃(dx) = βνXdx+
∫
νZ(ds)P (Xs ∈ dx) .

Example 7.6 Normal Inverse Gaussian. The NIG Lévy process is

a subordinated process with Lévy measure
δα

π

eβx

|x| K1(α|x|)dx.
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8 Variance-Gamma Model

The variance Gamma process is a Lévy process where Xt has a Variance
Gamma law VG(σ, ν, θ). Its characteristic function is

E(exp(iuXt)) =
(

1 − iuθν +
1
2
σ2νu2

)−t/ν
.

The Variance Gamma process can be characterized as a time changed
BM with drift as follows: let W be a BM, γ(t) a G(1/ν, 1/ν) process.
Then

Xt = θγ(t) + σWγ(t)

is a VG(σ, ν, θ) process. The variance Gamma process is a finite variation
process. Hence it is the difference of two increasing processes. Madan et
al. showed that it is the difference of two independent Gamma processes

Xt = G(t;µ1, γ1) −G(t;µ2, γ2) .
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Indeed, the characteristic function can be factorized

E(exp(iuXt)) =
(

1 − iu

ν1

)−t/γ (
1 +

iu

ν2

)−t/γ

with

ν−1
1 =

1
2

(
θν +

√
θ2ν2 + 2νσ2

)
ν−1
2 =

1
2

(
θν −

√
θ2ν2 + 2νσ2

)
The Lévy density of X is

1
γ

1
|x| exp(−ν1|x|) for x < 0

1
γ

1
x

exp(−ν2x) for x > 0 .

The density of X1 is

2e
θx
σ2

γ1/γ
√

2πσΓ(1/2)

(
x2

θ2 + 2σ2/γ

) 1
2γ − 1

4

K 1
γ − 1

2
(

1
σ2

√
x2(θ2 + 2σ2/γ))
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where Kα is the modified Bessel function.
Stock prices driven by a Variance-Gamma process have dynamics

St = S0 exp
(
rt+X(t;σ, ν, θ) +

t

ν
ln(1 − θν − σ2ν

2
)
)

From E(eXt) = exp
(
− t

ν
ln(1 − θν − σ2ν

2
)
)

, we get that Ste−rt is a

martingale. The parameters ν and θ give control on skewness and kur-
tosis.

The CGMY model, introduced by Carr et al. is an extension of the
Variance-Gamma model. The Lévy density is

C

xY+1
e−Mx x > 0

C

|x|Y+1
eGx x < 0

with C > 0,M ≥ 0, G ≥ 0 and Y < 2, Y /∈ ZZ.
If Y < 0, there is a finite number of jumps in any finite interval, if not,
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the process has infinite activity. If Y ∈ [1, 2[, the process is with infinite
variation. This process is also called KoBol.
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