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1 Infinitely Divisible Random Variables

1.1 Definition

A random variable X taking values in IR? is infinitely divisible if its
characteristic function

ilu) = B X)) = ()"

where [i,, is a vcharacteristic function.

Example 1.1 A Gaussian variable, a Cauchy variable, a Poisson vari-
able and the hitting time of the level a for a Brownian motion are exam-
ples of infinitely divisible random variables.

A Lévy measure v is a positive measure on IR? \ {0} such that

/ min(1, [[]|2)v(dz) < o
R\ {0}



Proposition 1.2 (Lévy-Khintchine representation.)
If X is an infinitely divisible random variable, there exists a triple (m, A, v)

where m € IR?, A is a non-negative quadratic form and v is a Lévy mea-
sure such that

) = exp (iwm) = (wdu) + [ (@) <1 = i(w)1 e (da) )



Example 1.3 Gaussian laws. The Gaussian law A (m,c?) has the
characteristic function exp(ium — u?c?/2). Its characteristic triple is
(m,0,0).

Cauchy laws. The standard Cauchy law has the characteristic func-

tion o
exp(—clu|) = exp (E / (e — 1):1:_2da:) :
T — o0

Its characteristic triple is (in terms of mg) (0,0, 7 1z ~2dx).
Gamma laws. The Gamma law I'(a, v) has the characteristic func-

tion - ;
(1 —iu/v)” % =exp (a/ (e — 1)6_1/x—w> :
0 T

Its characteristic triple is (in terms of mg) (0,0, L{,~01 az™ e ""dx).
The exponential Lévy process corresponds to the case a = 1.



1.2 Stable Random Variables

A random variable is stable if for any a > 0, there exist b > 0 and c € IR
such that [f(u)]* = ji(bu) e*v.

Proposition 1.4 The characteristic function of a stable law can be writ-

ten
exp(ibu — 02u?), fora = 2
f(u) = q exp (=7y|u[*[1 —if sgn(u) tan(ra/2)]), fora#1,#2
exp (y|ul(1 —ifvinul)), a=1

where 3 € [—1,1]. For a # 2, the Lévy measure of a stable law is
absolutely continuous with respect to the Lebesque measure, with density

ctx—oldz if © >0
v(dz) = { clx|7* tde  if 2 <0.

+

Here ¢* are non-negative real numbers, such that 8 = (¢t —c¢7)/(ct +

c).



More precisely,

1 i
C—I— — 5(1 + 6)F(1 _ Ck) Cos(aﬂ'/Q) 9

The associated Lévy process is called a stable Lévy process with index
« and skewness (.

Example 1.5 A Gaussian variable is stable with o = 2. The Cauchy
law is stable with o = 1.



2 Lévy Processes

2.1 Definition and Main Properties

A IR%valued process X such that Xy = 0 is a Lévy process if

a- for every s,t,0 < s <t < oo, X; — X, is independent of F*

b- for every s,t the r.vs X;1 s — X; and X have the same law.

c- X is continuous in probability, i.e., P(|X: — Xs| > €) — 0 when
s — t for every € > 0.

Brownian motion, Poisson process and compound Poisson processes
are examples of Lévy processes.

Proposition 2.1 Let X be a Lévy process. Then, for any fixed t,
(Xpou <) (X — Xi—w,u < 1)

Consequently, (X, inf,<; Xy,) faw (X, Xt —sup, <y Xu)
and for any a € IR,

{ {
law _
/ du v "= eO‘Xt/ du e *Xu
0 0



2.2 Poisson Point Process, Lévy Measure

For every Borel set A € IR, such that 0 ¢ A, where A is the closure of
A, we define

Nf =) 1A(AX,),

0<s<t
to be the number of jumps before time ¢ which take values in A.

Definition 2.2 The o-additive measure v defined on IR — {0} by
v(A) = E(NY)
18 called the Lévy measure of the process X.

Proposition 2.3 Assume v(1) < co. Then, the process

NtA: Z HA(AXS)

0<s<t

is a Poisson process with intensity v(A). The processes N and NU are
independent if v(I'NA) = 0, in particular if A and T are disjoint. Hence,
the jump process of a Lévy process is a Poisson point process.



Let A be a Borel set of IR? with 0 ¢ A, and f a Borel function defined
on A. We have

/f VN, (w, dz) ZfAX WA (AX, ().

Proposition 2.4 (Compensation formula.) If f is bounded and van-
1shes in a neighborhood of 0,

E( ) f(AX) =t @)

More generally, for any bounded predictable process H

E|Y H,f(AX,) :E[/OtdsHS/f(x)du(x)]

s<t




and if H is a predictable function (i.e. H : Qx IRT x IR* — IR is P x B
measurable)

E|Y Hy(w,AX,)| =E Uot ds/dz/(a:)HS(w,x)] .

s<t

Both sides are well defined and finite if

E [/Ot ds/du(x)ms(w,x)\] < o

PROOF: Let A be a Borel set of IR? with 0 ¢ A, f a Borel function
defined on A. The process N* being a Poisson process with intensity
v(A), we have

E( / f(x)M(-,dx)) —t [ fwian),
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and if f1, € L2(dv)

c([renscon o) |

Proposition 2.5 (Exponential formula.)
Let X be a Lévy process and v its Lévy measure. For all t and all
Borel function f defined on IR x IR? such that fot ds [|1—e/ ¥ v (dr) <

00, one has

E |exp Zf(saAXs>ﬂ{AX87£O} = exp <—/O d3/<1—6f(3ax))y<d;p)) .

s<t

Warning 2.6 The above property does not extend to predictable func-
tions.
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Proposition 2.7 (Lévy-Itd’s decomposition.) If X is a R*-valued
Lévy process, such that f{|x|<1} lz|v(dx) < oo it can be decomposed into
X=YO1yD4y@4vY® where YO is a constant drift, YV is a lin-
ear transform of a Brownian motion, Y ) is a compound Poisson process
with jump size greater than or equal to 1 and Y'®) is a Lévy process.

12



2.3 Lévy-Khintchine Representation

Proposition 2.8 Let X be a Lévy process. There exists m € IRY, a non-
negative semi-definite quadratic form A, a Lévy measure v such that for

u € IR?
E(exp(i(u-X71))) =

exp (i(u-m)— (“';4“) + /]R (et —1—i(u-x)]l|x|§1)y(da:)> (2.1)

where v is the Lévy measure.
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2.4 Representation Theorem

Proposition 2.9 Let X be a IR*-valued Lévy process and FX its natural
filtration. Let M be a locally square integrable martingale with My =
Then, there exists a family (p,v) of predictable processes such that

/ 0 |?ds < o0, a.s.

//]Rdws r)|?ds v(dzr) < 0o, a.s.

M; =m + Z/O O dW! —|—/O - Ys(x)(N(ds,dz) — dsv(dr)) .
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3 Change of measure

3.1 Esscher transform

We define a probability (), equivalent to P by the formula

Pl . (3.1)

This particular choice of measure transformation, (called an Esscher
transform) preserves the Lévy process property.

15



Proposition 3.1 Let X be a P-Lévy process with parameters (m, A, v)
where A = RTR. Let )\ be such that E(e(/\'Xt>) < 00 and suppose () 1is

defined by (3.1). Then X is a Lévy process under Q, and if the Lévy-

Khintchine decomposition of X under P is (2.1), then the decomposition
of X under @ is

(u-Au)

: (3.2)

Eolexp(i(wX1))) = exp (i(wm™) -
+ /Bd(ei(“'x) —1- i(u-af)]1|w|§1)l/()‘>(dx))
with

m™ = m4+ R\ +/ (e — 1)v(dx)

|z|<1
v N (dz) = eMu(de).
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The characteristic exponent of X under () is
N (1) = B(u — iX\) — B(—iN).

If U(N\) < oo, UM (u) = U(u+ A) — ¥(N\) for u > min(—\,0).

17



3.2 General case

More generally, any density (L;,t > 0) which is a positive martingale
can be used.

r=00

d
dLy =) GidW} + / Uy (2)[N(dt, dz) — dtv(dz)] .
1=1 x

=—00

From the strict positivity of L, there exists ¢, 1 such that ¢; = L;_ oy, {Et =
Li_(e?*) — 1), hence the process L satisfies

dLy = Ly <Z tdW} + / (e¥ &) — 1[N (dt, dz) — dtu(dx)]) (3.3)

1=1
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Proposition 3.2 Let Q|r, = L; P|F, where L is defined in (3.3). With
respect to (),

: d : : :
(1) W7 </ W, — f(f psds is a Brownian motion

(i) The process N is compensated by e¥ 5% dsv(dx) meaning that
for any Borel function h such that

T
/ / h(s, z)|e? ¥ dsv(dz) < oo,
0 JR

the process

/0 /JR h(s,x) (N(ds,d:z:) - ew(s’x)dsu(daﬁ)>

15 a local martingale.
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4 Fluctuation theory

Let M; = sup,«; Xs be the running maximum of the Lévy process X.
The reflected process M — X enjoys the strong Markov property.

Let 6 be an exponential variable with parameter g, independent of
X. Note that

E(e¥e) = q/E(ei“Xt)e_qtdt = q/e_tcb(“)e_qtdt.

Using excursion theory, the random variables My and Xg — My can be
proved to be independent, hence

B(ette) B(e o)) = — - o (4.1)

The equality (4.1) is known as the Wiener-Hopf factorization.
Let my = ming<;(X;). Then

law
me = Xg— My .

20



If E(e*t) < oo, using Wiener-Hopf factorization, Mordecki proves
that the boundaries for perpetual American options are given by

b, = KE(e™),b. = KE("?)

where m; = inf;<; X and 6 is an exponential r.v. independent of X
rK?
1 —InE(eX1)

with parameter r, hence b.b, =

21



4.1 Pecherskii-Rogozin Identity

For x > 0, denote by T, the first passage time above = defined as
T, =inf{t >0 : X; >z}
and by K, = X7, — x the so-called overshoot.

Proposition 4.1 (Pecherskii-Rogozin Identity.) For every triple of
positive numbers (o, 3, q),

OO e qT e—aTm—BKm T — Iﬁl(Oz, q) B Iﬁl(Oz, B)
/o Bl ) (¢ — B)k(a, q) (42
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5 Spectrally Negative Lévy Processes

A spectrally negative Lévy process is a Lévy process with no positive
jumps, its Lévy measure is supported by (—o0,0). Then, X admits
exponential moments

E(exp(AX}:)) = exp(tP(A)) < 0o, VA >0

where

1 0
U(A) =Am + 502)\2 —1—/ (eM —1— Ml g pcoy)v(dT).

— OO0

Let X be a Lévy process, M; = SUDg<¢ Xs and Z, = M, — X,. It X is

spectrally negative, the process M; = e~ %%t —14+aY; — U(a) fg e~ *sds
is a martingale (Asmussen-Kella-Whitt martingale).
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6 Exponential Lévy Processes as Stock Price
Processes

6.1 Exponentials of Lévy Processes

Let S; = xe*t where X is a (m, 02, v) real valued Lévy process.

Let us assume that E(e™“*1) <; nfty, for a € [—¢,,¢|. This implies
that X has finite momments of all orders. In terms of Lévy measure,

/]1{|$|21}6_axv(d$) < 00,

/]1{|$|21}x“6_0‘xu(dx) < ooVa>0

/]1{|x|21}y(dx) < o0
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The solution of the SDE
dS; = S;_(b(t)dt + o(t)dX;)

1S

S, = Spexp ( /O t o(s)dX, + /0 t(b(s) - %20(3)6@ [] (1+0(s)AX,) exp(—a(s)AX,

0<s<t
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6.2 Option pricing with Esscher Transform

Let S; = Spe""t*¢ where L is a Lévy process under a the historical
probability P.

Proposition 6.1 We assume that V(o) = E(e®*t) < oo on some open
interval (a,b) with b —a > 1 and that there exists a real number 0 such
that ¥(a) = ¥(a+1). The process e™"tS; = Spe™t is a martingale under

QXt
the probability Q) defined as Q) = Z; P where Z; = ;;(9)

Hence, the value of a contingent claim h(S7) can be obtained, as-
suming that the emm chosen by the market is ) as

1
Vi = e "TYEG(W(ST)|Fy) = e "0 \P(H)Ep(h(yer(T—t)JrXTteeth)‘

y==>St
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6.3 A Differential Equation for Option Pricing

Assume that
V(t,z) = e "I Eg(h(e" X))

belongs to C*2. Then

rV = %aQﬁmv + 0V + / (V(t,z+y) = V(t,z))vidy) .

27



6.4 Put-call Symmetry

Let us study a financial market with a riskless asset with constant interest
rate r, and a price process S; = Spe** where X is a Lévy process such
that e~ ("=9)%S, is a martingale. In terms of characteristic exponent, this
condition means that ¢(1) = r — §, and the characteristic triple of X is
such that

m=rT— 5—0‘2/2 — /(ey — 1 —y]1{|y|§1}y(dy) .

Then, the following symmetry between call and put prices holds:

CE(SOaKara 57T7 w) — PE(K7 50757 ’I“,T,?Z) .
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7 Subordinators

A Lévy process which takes values in [0, co| (i.e. with increasing paths)
is a subordinator. In this case, the parameters in the Lévy-Khintchine
decomposition are m > 0,0 = 0 and the Lévy measure v is a measure

on |0, co[ with / (1 A x)v(dr) < oco. The Laplace exponent can be
]0,00]
expressed as

B(u) :5u—|—/ (1 — e=5)(dx)

]0,00]
where 0 > 0.

Definition 7.1 Let Z be a subordinator and X an independent Lévy pro-
cess. The process Xy = Xz, 15 a Lévy process, called subordinated
Lévy process.

Example 7.2 Compound Poisson process. A compound Poisson
process with Yz > 0 is a subordinator.

29



Example 7.3 Gamma process. The Gamma process G(t;7) is a sub-
ordinator which satisfies

G(t+h;y) — G(t;) "2 T(h; ) .

Here I'(h;~y) follows the Gamma law. The Gamma process is an increas-
ing Lévy process, hence a subordinator, with one sided Lévy measure

1 xT

= —— ) 1,.<0.
:CeXP( 7) >0

Example 7.4 Let W be a BM, and
T,=inf{t >0 : Wy >r}.

The process (T;.,7 > 0) is a stable (1/2) subordinator, its Lévy measure

1
is TSI I,-odx. Let B be a BM independent of WW. The process
T

Br, is a Cauchy process, its Lévy measure is dx/(mwz?).
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Proposition 7.5 (Changes of Lévy characteristics under subor-
dination.) Let X be a (a™*, A%, v*) Lévy process and Z be a subordi-
nator with drift 8 and Lévy measure v? | independent of X.The process
Xy = Xz, is a Lévy process with characteristic exponent

®(u) = i(a-u) + %Z(u) - / (€ ®) — 1 —i(u-w) 1|y <y )V (dr)
with
a = pBa* +/VZ(ds)Il|x|§1:UP(XS c dx)
A = pA*

v(dzr) = Bridx+ /VZ<dS>P(XS € dx).

Example 7.6 Normal Inverse Gaussian. The NIG Lévy process is

Sav eP®
a subordinated process with Lévy measure a2 T—‘K 1 (a|x])de.
T |x

31



8 Variance-Gamma Model

The variance Gamma process is a Lévy process where X; has a Variance
Gamma law VG(o,v, ). Its characteristic function is

1 —t/v
E(exp(iuXy)) = (1 — 1ubv + 502yu2) .

The Variance Gamma process can be characterized as a time changed
BM with drift as follows: let W be a BM, ~(t) a G(1/v,1/v) process.
Then

X =0~(t) + oW,

is a VG(o, v, 0) process. The variance Gamma process is a finite variation
process. Hence it is the difference of two increasing processes. Madan et
al. showed that it is the difference of two independent Gamma processes

X: =Gt p1,m) — Gt pa,v2) -
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Indeed, the characteristic function can be factorized

E(exp(iuX,)) = (1 - ﬂ) —t (1 N ﬂ) —t/~

" V9
with
1
vt = 5 (QV + /0202 + 2VO'2)
1
vyt = 5 (91/ — /0202 + 2ua2>
The Lévy density of X is
1 1
— — exp(—rv1l|z|) for x <0
ety
11
— —exp(—1ox) for x > 0.
v x

The density of X7 is

Oz
2¢€ 02

V7 2moT (1/2)




where K, is the modified Bessel function.
Stock prices driven by a Variance-Gamma process have dynamics

2
S; = Sp exp (rt + X (t;0,v,0) + ln(l — Ov — UTV))

v

O'2V

From E(eXt) = exp (——ln(l — v — 7)), we get that Sie™"" is a
martingale. The parameters v and 6 give control on skewness and kur-
tosis.

The CGMY model, introduced by Carr et al. is an extension of the
Variance-Gamma model. The Lévy density is

r
—Mzx
xY+1e x>0
< C Gz 0
|£B|Y+1e Tr <

with C >0,M >0,G>0and Y <2,Y ¢ Z.
If Y <0, there is a finite number of jumps in any finite interval, if not,
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the process has infinite activity. If Y € [1, 2], the process is with infinite
variation. This process is also called KoBol.
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