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Defaultable Claims and Traded Assets

Defaultable Claims

Let us first describe a generic defaultable claim:

1. Default of a firm occurs at time τ . Default may be bankruptcy or
other financial distress.

2. At maturity T the promised payoff X is paid only if the default
did not occurred.

3. The promised dividends A are paid up to default time.

4. The recovery claim X̃ is received at time T, if default occurs
prior to or at the claim’s maturity date T .

5. The recovery process Z specifies the recovery payoff at time of
default, if default occurs prior to or at the maturity date T.
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Traded Assets

• We postulate that a risky asset V , which represents the value of
the firm, is traded. The riskless asset (the savings account B)
satisfies

dBt = r Bt dt.

• The market where the riskless asset and the asset V are traded is
assumed to be complete and arbitrage free.

• Under the unique equivalent martingale measure P∗, the value of
the firm V satisfies a diffusion process, for instance, a geometric
Brownian motion given as

dVt = Vt

(
r dt + σ dWt

)
where W is a one-dimensional standard Brownian motion under the
martingale measure P∗.
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Merton’s Model of Corporate Debt

Merton’s Model

Merton’s model of a corporate debt postulates that:

1. A firm has a single liability with the promised payoff at maturity
(nominal value) L. Firm’s debt is interpreted as the zero-coupon
bond with maturity T.

2. Default may occur at time T only. The default event corresponds
to the event {VT < L} so that the default time τ equals

τ = T11{VT <L} + ∞11{VT ≥L}.

3. At maturity T , the holder of the corporate bond with the
nominal value L receives

DT = min(VT , L) = L − max(L − VT , 0) = L − (L − VT )+.
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Debt Valuation

• The value D(Vt) of the firm’s debt at time t is given by the
risk-neutral valuation formula

D(t, T ) = B(t, T ) EP∗(DT | Ft)

where B(t, T ) is the price of the unit T -maturity risk-free bond,
that is,

B(t, T ) = e−r(T−t).

• We also have that at maturity T

DT = L − PT = L − (L − VT )+.

• Hence for any date t ∈ [0, T ]

D(t, T ) = B(t, T )
(
L − EP∗ ((L − VT )+ | Ft)

)
= LB(t, T ) − Pt

where Pt is the price of a put option with strike L and expiry T .
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Merton’s Formula

Proposition 1 The value D(t, T ) of the corporate bond equals for
0 ≤ t < T

D(t, T ) = Vt N
(− d+(Vt, T − t)

)
+ LB(t, T )N (d−(Vt, T − t)

)
where

d±(Vt, T − t) =
1

σ
√

T − t

(
ln(Vt/L) +

(
r ± 1

2
σ2
)
(T − t)

)
.

This follows from the equality

D(t, T ) = LB(t, T ) − Pt

and the Black-Scholes formula for the put option

Pt = LB(t, T )N (− d−(Vt, T − t)
)− Vt N

(− d+(Vt, T − t)
)
.
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Distance to Default

• The real-world probability of finishing below L at date T is

P(VT ≤ L|Ft) = N (−d−) = N
(
− ln(Vt/L) +

(
μ − 1

2σ2
)
(T − t)

σ
√

T − t

)
.

• Hence

P(VT > L|Ft) = 1−N (−d−) = N
(

ln(Vt/L) +
(
μ − 1

2σ2
)
(T − t)

σ
√

T − t

)
.

Definition 1 The distance to default is given by

ln(Vt/L) +
(
μ − 1

2σ2
)
(T − t)

σ
√

T − t
=

EP(lnVT |Ft) − lnL

σ
√

T − t
.
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Equity as a Call Option

• The equity value at T is given by the expression

max(VT − L, 0).

• It corresponds to the payoff of a call option on the assets of the
firm V with strike given by the bond’s face value L and maturity T .

Corollary 1 The value E(Vt) of equity at time zero is therefore given
by the Black-Scholes (1973) call option pricing formula

E(Vt) = Vt N
(
d+(Vt, T − t)

)− LB(t, T )N (d−(Vt, T − t)
)

or briefly
E(Vt) = BS (Vt, T − t, L, r, σ).
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Estimation of Parameters

• The face value L can be estimated from balance sheet data.

• The rate r can be estimated from prices of default-free (Treasury)
bonds.

• To estimate V0 and σ indirectly, we first observe the equity value
E(V0) and its volatility σE directly from the stock market.

• Using these quantities, we then solve a system of two equations for
V0 and σ where:

– the first equation is provided by the equity pricing formula,
relating assets, asset volatility and equity:

E(V0) = BS(V0, T, L, r, σ).

– the second equation can be obtained via Itô’s formula applied to
the equity value:

σEE(V0) = σV0N
(
d+(V0, T )

)
.
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Credit Spread

• For t < T the credit spread S(t, T ) of the corporate bond is
defined as

S(t, T ) = − 1
T − t

ln
L B(t, T )
D(t, T )

.

• If we define the forward short spread at time T as

FSST (ω) = lim
t↑T

S(t, T )(ω)

then one may check that:

FSST (ω) = 0 if ω ∈ {VT > L},

and
FSST (ω) = ∞ if ω ∈ {VT < L}.
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Drawbacks of Merton’s Model

From the practical viewpoint, the classic Merton’s approach have
several drawbacks:

1. It postulates a simple capital structure.

2. Default is only possible at the debt’s maturity.

3. Costless bankruptcy.

4. Perfect capital markets.

5. Risk-free interest rates constant.

6. Only applicable to publicly traded firms.

7. Empirically not plausible.
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Black and Cox Model

Black and Cox Model

• In the Black and Cox model, the default occurs at the first
passage time of the value process V to a deterministic
default-triggering barrier.

• The default may thus occur at any time before or on the bond’s
maturity date T.

• More precisely, the default time equals

τ = inf { t ∈ [0, T ] : Vt < L}
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Corporate Bond

• The corporate bond is defined as the following defaultable claim:

– the payoff L is paid at maturity T if there is no default before
maturity

– If the default takes place at τ < T , the recovery βVτ = βL where
β is a constant in [0, 1] is paid at time τ .

• Similarly as in Merton’s model, it is assumed that the short-term
interest rate is deterministic and equal to a positive constant r.

15



Risk-Neutral Valuation

• For any t < T the price D(t, T ) of the corporate bond has the
following probabilistic representation

D(t, T ) = LEP∗
(
e−r(T−t)11{τ≥T}

∣∣∣Ft

)
+ βL EP∗

(
e−r(τ−t)11{t<τ<T}

∣∣∣Ft

)
which is valid on the event {τ > t}.

• It is clear that D(t, T ) = u(Vt, t) for some pricing function u.
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Risk-Neutral Valuation

• After default – that is, on the set {τ ≤ t}, we clearly have

D(t, T ) = 0

• To evaluate the conditional expectation, it suffices to use the
conditional probability distribution P∗(τ ≤ s | Ft) of the first
passage time of the process V to the barrier L, for s ≥ t.
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First Passage Time

• Let the value process V obey the SDE

dVt = Vt

(
(r − κ) dt + σ dWt

)
with constant coefficients κ and σ > 0.

• For every t < s ≤ T , on the event {t < τ},

P∗(τ ≤ s | Ft) = N
(

ln L
Vt

− ν(s − t)

σ
√

s − t

)

+
(

L

Vt

)2b

N
(

ln L
Vt

+ ν(s − t)

σ
√

s − t

)
,

where

b =
ν

σ2
=

r − κ − 1
2σ2

σ2
.
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Zero Recovery Case

Let κ = 0 and let D0(t, T ) be the value of a claim that delivers L at
time T if T < τ and zero otherwise, i.e., the bond with zero recovery.

D0(t, T ) = e−r(T−t)L P∗(τ ≥ T
∣∣Ft

)
.

Proposition 2 Let ν = r − 1
2σ2. We have, on the event {τ > t},

D0(t, T ) = LB(t, T )
(
N (h1(Vt, T − t)

) − ( L

Vt

)2ν

N (h2(Vt, T − t)
))

,

h1(Vt, T − t) =
ln(Vt/L) + ν(T − t)

σ
√

T − t
,

h2(Vt, T − t) =
ln(L/Vt) + ν(T − t)

σ
√

T − t
.
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Black and Cox Formula: General Case

• In the Black and Cox model, the default occurs at the first passage
time of the value process V to a deterministic default-triggering
barrier.

• More precisely, the default time equals

τ = inf { t ∈ [0, T ] : Vt < Ke−γ(T−t)}

for some constant K ≤ L.

• We write
v̄(t) = Ke−γ(T−t).
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Corporate Bond

• The corporate bond is defined as the following defaultable claim

X = L, C = 0, Z = β2V, X̃ = β1VT , τ = τ̄ ∧ τ̂ ,

where β1, β2 are constants in [0, 1] and the early default time τ̄

equals
τ̄ = inf { t ∈ [0, T ) : Vt ≤ v̄(t)}

and τ̂ is Merton’s default time: τ̂ = T11{VT <L} + ∞11{VT ≥L}.

• Similarly as in Merton’s model, it is assumed that the short-term
interest rate is deterministic and equal to a positive constant r.

• We postulate, in addition, that v̄(t) ≤ LB(t, T ) or, more explicitly,

Ke−γ(T−t) ≤ Le−r(T−t), ∀ t ∈ [0, T ].
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Recall that
dVt = Vt

(
(r − κ) dt + σV dWt

)
where W is a one-dimensional standard Brownian motion under the
martingale measure P∗.

We denote

ν = r − κ − 1
2
σ2

V ,

m = ν − γ = r − κ − γ − 1
2
σ2

V ,

b = mσ−2
V .

For the sake of brevity, in the statement of the Black and Cox valuation
result we shall write σ instead of σV .
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First Passage Time

• For every t < s ≤ T and x ≥ L, the following equality holds on the
event {t < τ}

P∗(Vs ≥ x, τ ≥ s | Ft) = N
(

ln(Vt/x) + ν(s − t)
σV

√
s − t

)
−
(

L

Vt

)2b

N
(

lnL2 − ln(xVt) + ν(s − t)
σV

√
s − t

)
,

where ν = r − κ − 1
2σ2

V .

• Both formulae follow from the well known properties of the
Brownian motion (in particular, the reflection principle).
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Basic Lemma

Let σ > 0 and ν ∈ R. Let Xt = νt + σWt for every t ∈ R+ where W is a
Brownian motion under Q.

Lemma 1 For every x > 0

Q
(

sup
0≤u≤s

Xu ≤ x
)

= N
(

x − νs

σ
√

s

)
− e2νσ−2xN

(−x − νs

σ
√

s

)
and for every x < 0

Q
(

inf
0≤u≤s

Xu ≥ x
)

= N
(−x + νs

σ
√

s

)
− e2νσ−2xN

(
x + νs

σ
√

s

)
.
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Proof of the Lemma: 1

To derive the first equality, we combine Girsanov’s theorem with
reflection principle for the Brownian motion. Assume first that σ = 1.

Let P be the probability measure on (Ω,Fs) given by

dP

dQ
= e−νWs− ν2

2 s, Q-a.s.

so that the process W ∗
t := Xt = Wt + νt, t ∈ [0, s], is a standard

Brownian motion under P. Also

dQ

dP
= eνW∗

s − ν2
2 s, P-a.s.

Moreover, for x > 0,

Q
(

sup
0≤u≤s

Xu > x, Xs ≤ x
)

= EP

(
eνW∗

s − ν2
2 s 11{ sup 0≤u≤s W∗

u >x, W∗
s ≤x}

)
.
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Proof of the Lemma: 2

We set τx = inf { t ≥ 0 : W ∗
t = x} and we define an auxiliary process

(W̃t, t ∈ [0, s]) by setting

W̃t = W ∗
t 11{τx≥t} + (2x − W ∗

t )11{τx<t}.

By virtue of the reflection principle, W̃ is a Brownian motion under P.

Moreover, we have

{ sup
0≤u≤s

W̃u > x, W̃s ≤ x} = {W ∗
s ≥ x} ⊂ {τx ≤ s}.

Let
J = Q

(
sup

0≤u≤s
Xu ≤ x

)
= Q

(
sup

0≤u≤s
(Wu + νu) ≤ x

)
.
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Proof of the Lemma: 3

J = Q(Xs ≤ x) − Q
(

sup
0≤u≤s

Xu > x, Xs ≤ x
)

= Q(Xs ≤ x) − EP

(
eνW∗

s − ν2
2 s 11{ sup 0≤u≤s W∗

u >x, W∗
s ≤x}

)
= Q(Xs ≤ x) − EP

(
eνW̃s− ν2

2 s 11{ sup 0≤u≤s W̃u>x, W̃s≤x}
)

= Q(Xs ≤ x) − EP

(
eν(2x−W∗

s )− ν2
2 s 11{W∗

s ≥x}
)

= Q(Xs ≤ x) − e2νx EP

(
eνW∗

s − ν2
2 s 11{W∗

s ≤−x}
)

= Q(Ws + νs ≤ x) − e2νx Q(Ws + νs ≤ −x)

= N
(

x − νs√
s

)
− e2νxN

(−x − νs√
s

)
.
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Proof of the Lemma: 4

This ends the proof of the first equality for σ = 1.

We have, for any σ > 0,

Q
(

sup
0≤u≤s

(σWu + νu) ≤ x
)

= Q
(

sup
0≤u≤s

(Wu + νσ−1u) ≤ xσ−1
)

and this implies the first formula for any σ 
= 0.

Since −W is a standard Brownian motion under Q, we also have that,
for any x < 0,

Q
(

inf
0≤u≤s

(σWu + νu) ≥ x
)

= Q
(

sup
0≤u≤s

(σWu − νu) ≤ −x
)

and thus the second formula follows from the first one.
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Black and Cox Formula

Proposition 3 Assume that

m2 + 2σ2(r − γ) > 0.

The price D(t, T ) = u(Vt, t) of the corporate bond equals, on the event
{τ > t},

D(t, T ) = LB(t, T )
(
N (h1(Vt, T − t)

)− R2b
t N (h2(Vt, T − t)

))
+ β1Vte

−κ(T−t)
(
N (h3(Vt, T − t)) −N (h4(Vt, T − t)

))
+ β1Vte

−κ(T−t)R2b+2
t

(
N (h5(Vt, T − t)) −N (h6(Vt, T − t)

))
+ β2Vt

(
Rθ+ζ

t N (h7(Vt, T − t)
)

+ Rθ−ζ
t N (h8(Vt, T − t)

))
where

Rt = v̄(t)/Vt, θ = b + 1, ζ = σ−2
√

m2 + 2σ2(r − γ).
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Black and Cox Formula

h1(Vt, T − t) =
ln (Vt/L) + ν(T − t)

σ
√

T − t
,

h2(Vt, T − t) =
ln v̄2(t) − ln(LVt) + ν(T − t)

σ
√

T − t
,

h3(Vt, T − t) =
ln (L/Vt) − (ν + σ2)(T − t)

σ
√

T − t
,

h4(Vt, T − t) =
ln (K/Vt) − (ν + σ2)(T − t)

σ
√

T − t
,

h5(Vt, T − t) =
ln v̄2(t) − ln(LVt) + (ν + σ2)(T − t)

σ
√

T − t
,

h6(Vt, T − t) =
ln v̄2(t) − ln(KVt) + (ν + σ2)(T − t)

σ
√

T − t
,

h7,8(Vt, T − t) =
ln (v̄(t)/Vt) ± ζσ2(T − t)

σ
√

T − t
.
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Proof of the Black and Cox Formula

Lemma 2 For any a ∈ R and b > 0 we have, for every y > 0,∫ y

0

x dN
(

lnx + a

b

)
= e

1
2 b2−a N

(
ln y + a − b2

b

)
∫ y

0

x dN
(− lnx + a

b

)
= e

1
2 b2+a N

(− ln y + a + b2

b

)
.

Let a, b, c ∈ R satisfy b < 0 and c2 > 2a. Then for y > 0∫ y

0

eax dN
(

b − cx√
x

)
=

d + c

2d
g(y) +

d − c

2d
h(y),

where
d =

√
c2 − 2a, g(y) = eb(c−d) N

(
b−dy√

y

)
, h(y) = eb(c+d) N

(
b+dy√

y

)
.
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Drawbacks of Black and Cox Model

Black and Cox model inherits some drawbacks of the original Merton
approach:

1. Simple capital structure.

2. Perfect capital markets.

3. Risk-free interest rates constant.

4. Only applicable to publicly traded firms.

5. Empirically not plausible.
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Shortcomings of Structural Approach

1. Assumes the total value of firm assets can be easily observed.

2. Postulates that the total value of firm assets is a tradable security.

3. Generates low credit spreads for corporate bonds close to maturity.

4. Requires a judicious specification of the default barrier in order to
get a good fit with the observed spread curves.

5. Defaults can be determined by factors other than assets and
liabilities (for example, defaults could occur for reasons of
illiquidity).
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Further Developments

The first-passage-time approach was later developed by:

• Leland (1994), Hilberink and Rogers (2005), Decamps et al. (2008):
optimal capital structure, bankruptcy costs, tax benefits,

• Longstaff and Schwartz (1995): constant barrier and random
interest rates (Vasicek’s model),

• Kou (2003) : First passage time, Lévy process, constant barrier

• Moraux (2003): Parisian default time,

• Coculescu et al. (2007), Herkommer (2007), Cetin (2008):
Incomplete information

• and others.
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Levy processes

In Kou’s model

Xt = μt + σWt +
Nt∑
i=1

Yi ,

where the density of the law of Y1 is

ν(dx) =
(
pη1e

−η1x11{x>0} + (1 − p)η2e
η2xI{x<0}

)
dx .

Here, ηi are positive real numbers, and p ∈ [0, 1].

The default time is
τ = inf{t : Xt ≤ b}
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Parisian Default Time

• For a continuous process V and a given t > 0, we introduce a
random variable gb

t (V ), representing the last moment before t when
the process V was at a given level b

gb
t (V ) = sup { 0 ≤ s ≤ t : Vs = b}.

• The Parisian stopping time is the first time at which the process
V is below the level b for a time period of length greater or equal to
a constant D. Formally, the stopping time τ is given by the formula

τ = inf { t ∈ R+ : (t − gb
t (V ))11{Vt<b} ≥ D}.

• In the case of V given by the Black-Scholes equation, it is possible
to find the joint probability distribution of (τ, Vτ ) by means of the
Laplace transform.
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Partial Observation

The investor has no full knowledge of the value of the firm

• The observed process is correlated with the value of the firm

• The value of the firm is observed with noise

In that case, one has to compute

Q(τ > t|Gt)

where G is the filtration of the observation
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