X Simposio de Probabilidad y Procesos Estocasticos 1ra Reunión Franco Mexicana de Probabilidad Guanajuato, 3 al 7 de noviembre de 2008

Curso de Riesgo Credito

- 1. Structural Approach
- 2. Hazard Process Approach
- 3. Hedging Defaultable Claims
- 4. Credit Default Swaps
- 5. Several Defaults: Density Approach

Hazard Process Approach

Tomasz R. Bielecki, IIT, Chicago Monique Jeanblanc, University of Evry Marek Rutkowski, University of New South Wales, Sydney In a financial market built on a filtered probability space $(\Omega, \mathcal{G}, \mathbb{F}, \mathbb{P})$, a default occurs at some random time τ .

The filtration $\mathbb F$ is called the reference filtration

The random time τ is a non-negative random variable on the probability space $(\Omega, \mathcal{G}, \mathbb{P})$ and we denote by $H_t = \mathbb{1}_{\tau \leq t}$ the default process.

OUTLINE:

- Model for single default
- Intensity approach
- Density approach

Model for single default

Hazard Process

Hazard Process of a Random Time

- We set $\mathcal{G}_t = \mathcal{H}_t \vee \mathcal{F}_t$ where \mathcal{H}_t is the natural filtration of H
- We shall write $\mathbb{G} = \mathbb{H} \vee \mathbb{F}$ to denote the **full filtration**.
- We denote $G_t = \mathbb{P}(\tau > t | \mathcal{F}_t)$ the conditional survival probability.
- It is easily seen that G is a bounded, non-negative, \mathbb{F} -super-martingale.
- We assume that $G_t > 0$ for every $t \in \mathbb{R}_+$ and we set $\Gamma_t = -\ln G_t$. The process Γ is called the **hazard process**.
- Any \mathcal{G}_t -measurable random variable Y_t writes

$$Y_t 1\!\!1_{t < \tau} = \widetilde{Y}_t 1\!\!1_{t < \tau}$$

where \widetilde{Y}_t is \mathcal{F}_t -measurable

Properties of the supermartingale G

- Let $G_t = m_t A_t$ be the Doob-Meyer decomposition of the super-martingale $(G_t, t \ge 0)$.
- The process

$$M_t = H_t - \int_0^t (1 - H_s) \frac{dA_s}{G_{s-}} = H_t - \Lambda_{t \wedge \tau}$$

is a G-martingale. The process $\Lambda_t = \int_0^t \frac{dA_s}{G_{s-}}$ is called the F-intensity.

• The multiplicative decomposition of the supermartingale G is $G_t = n_t K_t$ where n is an F-martingale and K a predictable non increasing process. One has

$$dn_t = e^{\Lambda_t} dM_t, \ K_t = e^{-\Lambda_t}$$

- If G is non increasing, then τ is a pseudo-stopping time. A random time τ is a pseudo-stopping time if for any bounded F-martingale m, one has E(m_τ) = m₀ or, equivalently if m_{t∧τ} is a G-martingale
- If any \mathbb{F} martingale is continuous and if τ avoids \mathbb{F} -stopping times, then G is continuous
- G is a continuous non increasing process if and only if τ is a pseudo-stopping time that avoids stopping times.
- If G is continuous and **non increasing**, then $\Lambda = \Gamma$ and the process $M_t = H_t \Gamma_{t \wedge \tau}$ is a G-martingale.

Conditional Expectations

• (*Dellacherie*) For any \mathcal{G} -measurable random variable Y we have

$$\mathbb{E}_{\mathbb{P}}(\mathbb{1}_{\{\tau>t\}}Y \mid \mathcal{G}_t) = \mathbb{1}_{\{\tau>t\}} \frac{\mathbb{E}_{\mathbb{P}}(\mathbb{1}_{\{\tau>t\}}Y \mid \mathcal{F}_t)}{\mathbb{P}(\tau>t \mid \mathcal{F}_t)}.$$

• If, in addition, Y is \mathcal{F}_s -measurable for $s \ge t$, then

$$\mathbb{E}_{\mathbb{P}}(\mathbb{1}_{\{\tau > s\}}Y \,|\, \mathcal{G}_t) = \mathbb{1}_{\{\tau > t\}} \frac{1}{G_t} \mathbb{E}_{\mathbb{P}}(YG_s \,|\, \mathcal{F}_t).$$

• Let G be continuous and let Z be an \mathbb{F} -predictable process. Then for any $t \leq s$, we have

$$\mathbb{E}_{\mathbb{P}}(Z_{\tau}\mathbb{1}_{\{t<\tau\leq s\}} \mid \mathcal{G}_t) = \mathbb{1}_{\{\tau>t\}} \frac{1}{G_t} \mathbb{E}_{\mathbb{P}}\Big(-\int_t^s Z_u dG_u \mid \mathcal{F}_t\Big).$$

Immersion property

• (Brémaud-Yor) If

$$G_t = \mathbb{P}(\tau > t | \mathcal{F}_t) = \mathbb{P}(\tau > t | \mathcal{F}_\infty)$$

then any F-martingale is a G-martingale.

 (Kusuoka) In that case, if the filtration F is generated by a Brownian motion W, then, any G-martingale Z admits a representation

$$Z_t = z + \int_0^t \widehat{z}_s dW_s + \int_0^t \widetilde{z}_s dM_s$$

where \hat{z} and \tilde{z} are \mathbb{G} -predictable processes

Interpretation of the Intensity Process

- We now restrict our attention to the case where $\Lambda_t = \int_0^t \lambda_u \, du$ where λ represents the F-intensity rate of τ .
- Intuitively

$$\mathbb{P}\{\tau \in [t, t+dt] \mid \mathcal{F}_t \lor \mathcal{H}_t\} = \mathbb{1}_{\{\tau > t\}} \lambda_t \, dt$$

that is

$$\mathbb{P}\{\tau \in [t, t+dt] \mid \mathcal{F}_t \lor \{\tau > t\}\} = \lambda_t \, dt.$$

Canonical Construction

- Let Λ be an \mathbb{F} -adapted, increasing, continuous processes, defined on a probability space $(\widehat{\Omega}, \mathbb{F}, \mathbb{P})$. We assume that $\Lambda_0 = 0$ and $\Lambda_{\infty} = \infty$.
- Let $(\widetilde{\Omega}, \widetilde{\mathcal{F}}, \widetilde{\mathbb{P}})$ be an auxiliary probability space with a random variable U uniformly distributed on [0, 1]. Hence $\zeta = -\ln U$ has the unit exponential probability distribution
- We set, on $(\Omega, \mathcal{F}, \mathbb{P}) = (\widehat{\Omega} \times \widetilde{\Omega}, \widehat{\mathcal{F}} \otimes \widetilde{\mathcal{F}}, \widehat{\mathbb{P}} \times \widetilde{\mathbb{P}})$

 $\tau = \inf \left\{ t \in \mathbb{R}_+ : \Lambda_t(\widehat{\omega}) \ge -\ln U(\widetilde{\omega}) \right\}$

- The random variable U is independent of the hazard process Λ , the r.v. $-\ln U$ has exponential law.
- Then

$$\mathbb{P}(\tau > t | \mathcal{F}_t) = \exp(-\Lambda_t) = \mathbb{P}(\tau > t | \mathcal{F}_\infty)$$

In that model, any F-martingale in a G-martingale.

Immersion property

It can be proved that, if

$$G_t = \mathbb{P}(\tau > t | \mathcal{F}_t) = \mathbb{P}(\tau > t | \mathcal{F}_\infty)$$

is continuous and strictly increasing, then there exists a random variable Θ , independent of \mathcal{F}_{∞} such that

 $\tau = \inf \left\{ t \in \mathbb{R}_+ : -\ln G_t \ge \Theta \right\} = \inf \left\{ t \in \mathbb{R}_+ : \Gamma_t \ge -\ln U \right\}$

Immersion property (2)

Assume that

- \mathbb{F} is the filtration generated by default-free assets with prices $S_t, t \ge 0$
- this market is complete and arbitrage free
- using strategies which are G-adapted does not give arbitrage opportunities
- the prices of default free assets remain $(S_t, t \ge 0)$ in the filtration \mathbb{G} ,

then immersion property holds true under the unique e.m.m.

Valuation of Defaultable Claims

- In order to value a defaultable claim we need also to specify a discount factor (for instance, the savings account).
- Here we have assumed that B = 1, that is, r = 0.
- \bullet We assume that immersion property holds under the e.m.m. $\mathbb Q$

Valuation of the Terminal Payoff

To value the terminal payoff we shall use the following result.

Proposition 1

If λ^Q is the default intensity rate under \mathbb{Q} then

$$\mathbb{E}_{\mathbb{Q}}(\mathbb{1}_{\{\tau>s\}}Y \,|\, \mathcal{G}_t) = \mathbb{1}_{\{\tau>t\}} \mathbb{E}_{\mathbb{Q}}(Ye^{-\int_t^s \lambda_u^Q \,du} \,|\, \mathcal{F}_t).$$

Valuation of Recovery Process

The following result appears to be useful in the valuation of the recovery payoff Z_{τ} which occurs at time τ .

Proposition 2 If λ^Q is the default intensity under \mathbb{Q} then

$$\mathbb{E}_{\mathbb{Q}}(Z_{\tau}\mathbb{1}_{\{t<\tau\leq s\}} \mid \mathcal{G}_{t}) = \mathbb{1}_{\{\tau>t\}} \mathbb{E}_{\mathbb{Q}}\left(\int_{t}^{s} Z_{u}e^{-\int_{t}^{u}\lambda_{v}^{Q} dv} \lambda_{u}^{Q} du \mid \mathcal{F}_{t}\right).$$

Valuation of Promised Dividends

To value the **promised dividends** A that are paid prior to τ we shall make use of the following result.

Proposition 3 Assume that Λ^Q is a continuous process and let A be an \mathbb{F} -predictable bounded process of finite variation. Then for every $t \leq s$

$$\mathbb{E}_{\mathbb{Q}}\left(\int_{(t,s]} (1-H_u) \, dA_u \, \Big| \, \mathcal{G}_t\right) = \mathbb{1}_{\{\tau > t\}} \, \mathbb{E}_{\mathbb{Q}}\left(\int_{(t,s]} e^{\Lambda_t^Q - \Lambda_u^Q} \, dA_u \, \Big| \, \mathcal{F}_t\right).$$

Defaultable Assets

Let B(t,T) be the price at time t of a default-free bond paying 1 at maturity T satisfies

$$B(t,T) = \mathbb{E}_{\mathbb{Q}}\left(\exp\left(-\int_{t}^{T} r_{s} \, ds\right) \middle| \mathcal{F}_{t}\right).$$

The market price D(t,T) of a defaultable zero-coupon bond with maturity T is

$$D(t,T) = \mathbb{E}_{\mathbb{Q}}\left(\mathbbm{1}_{\{T < \tau\}} \exp\left(-\int_{t}^{T} r_{s} \, ds\right) \middle| \mathcal{G}_{t}\right)$$
$$= \mathbbm{1}_{\{\tau > t\}} \mathbb{E}_{\mathbb{Q}}\left(\exp\left(-\int_{t}^{T} [r_{s} + \lambda_{s}^{Q}] \, ds\right) \middle| \mathcal{F}_{t}\right).$$

We consider a contract which pays Z_{τ} at date T, if $\tau \leq T$ where Z is an \mathbb{F} -adapted process and no payment in the case $\tau > T$. We also assume that **the interest rate is null**.

We consider a contract which pays Z_{τ} at date T, if $\tau \leq T$ where Z is an \mathbb{F} -adapted process and no payment in the case $\tau > T$. We also assume that the interest rate is null. The price at time t of this contract is

$$S_t = \mathbb{E}(Z_\tau \mathbb{1}_{\tau \le T} | \mathcal{G}_t) = Z_\tau \mathbb{1}_{\tau \le t} + \mathbb{1}_{t < \tau} \mathbb{E}(Z_\tau \mathbb{1}_{t < \tau \le T} | \mathcal{G}_t)$$

We consider a contract which pays Z_{τ} at date T, if $\tau \leq T$ where Z is an \mathbb{F} -adapted process and no payment in the case $\tau > T$. We also assume that the interest rate is null. The price at time t of this contract is

$$S_t = \mathbb{E}(Z_{\tau} \mathbb{1}_{\tau \leq T} | \mathcal{G}_t) = Z_{\tau} \mathbb{1}_{\tau \leq t} + \mathbb{1}_{t < \tau} \mathbb{E}(Z_{\tau} \mathbb{1}_{t < \tau \leq T} | \mathcal{G}_t)$$
$$= Z_{\tau} \mathbb{1}_{\tau \leq t} + \mathbb{1}_{t < \tau} e^{\Lambda_t} \mathbb{E}(\int_t^T Z_u e^{-\Lambda_u} \lambda_u du | \mathcal{F}_t)$$

We consider a contract which pays Z_{τ} at date T, if $\tau \leq T$ where Z is an \mathbb{F} -adapted process and no payment in the case $\tau > T$. We also assume that the interest rate is null. The price at time t of this contract is

$$S_t = \mathbb{E}(Z_{\tau} \mathbb{1}_{\tau \leq T} | \mathcal{G}_t) = Z_{\tau} \mathbb{1}_{\tau \leq t} + \mathbb{1}_{t \leq \tau} \mathbb{E}(Z_{\tau} \mathbb{1}_{t < \tau \leq T} | \mathcal{G}_t$$
$$= Z_{\tau} \mathbb{1}_{\tau \leq t} + \mathbb{1}_{t < \tau} e^{\Lambda_t} \mathbb{E}(\int_t^T Z_u e^{-\Lambda_u} \lambda_u du | \mathcal{F}_t)$$
$$= \int_0^t Z_u dH_u + L_t \left(m_t^Z - \int_0^t Z_u e^{-\Lambda_u} \lambda_u du \right)$$
where $m_t^Z = \mathbb{E}(\int_0^T Z_u e^{-\Lambda_u} \lambda_u du | \mathcal{F}_t)$ and $L_t = \mathbb{1}_{t < \tau} e^{\Lambda_t}$

We consider a contract which pays Z_{τ} at date T, if $\tau \leq T$ where Z is an \mathbb{F} -adapted process and no payment in the case $\tau > T$. We also assume that the interest rate is null. The price at time t of this contract is

$$S_{t} = \mathbb{E}(Z_{\tau} \mathbb{1}_{\tau < T} | \mathcal{G}_{t}) = Z_{\tau} \mathbb{1}_{\tau < t} + \mathbb{1}_{t < \tau} \mathbb{E}(Z_{\tau} \mathbb{1}_{t < \tau < T} | \mathcal{G}_{t})$$
$$= Z_{\tau} \mathbb{1}_{\tau < t} + \mathbb{1}_{t < \tau} e^{\Lambda_{t}} \mathbb{E}(\int_{t}^{T} Z_{u} e^{-\Lambda_{u}} \lambda_{u} du | \mathcal{F}_{t})$$
$$= \int_{0}^{t} Z_{u} dH_{u} + L_{t} \left(m_{t}^{Z} - \int_{0}^{t} Z_{u} e^{-\Lambda_{u}} \lambda_{u} du \right)$$

where $m_t^Z = \mathbb{E}(\int_0^T Z_u e^{-\Lambda_u} \lambda_u du | \mathcal{F}_t)$ and $L_t = \mathbb{1}_{t < \tau} e^{\Lambda_t}$ are \mathbb{G} martingales.

We assume here that \mathbb{F} -martingales are continuous. From $dL_t = -L_{t-}dM_t$ and integration by parts formula we deduce that

$$dS_t = Z_t (dH_t - \lambda_t (1 - H_t) dt) - S_{t-} dM_t + L_t dm_t^Z$$
$$= (Z_t - S_{t-}) dM_t + L_t dm_t^Z$$

If the payment Z is done at time τ

 $S_t = \mathbb{1}_{t < \tau} \mathbb{E}(Z_\tau \mathbb{1}_{t < \tau < T} | \mathcal{G}_t)$ $= L_t \left(m_t^Z - \int_0^t Z_u e^{-\Lambda_u} \lambda_u du \right)$

If the payment Z is done at time τ

$$S_t = \mathbb{1}_{t < \tau} \mathbb{E}(Z_\tau \mathbb{1}_{t < \tau < T} | \mathcal{G}_t)$$
$$= L_t \left(m_t^Z - \int_0^t Z_u e^{-\Lambda_u} \lambda_u du \right)$$

If the payment Z is done at time τ

$$S_t = \mathbb{1}_{t < \tau} \mathbb{E}(Z_\tau \mathbb{1}_{t < \tau < T} | \mathcal{G}_t)$$
$$= L_t \left(m_t^Z - \int_0^t Z_u e^{-\Lambda_u} \lambda_u du \right)$$

where $m_t^Z = \mathbb{E}(\int_0^T Z_u e^{-\Lambda_u} \lambda_u du | \mathcal{F}_t).$

If the payment Z is done at time τ

$$S_t = \mathbb{1}_{t < \tau} \mathbb{E}(Z_\tau \mathbb{1}_{t < \tau < T} | \mathcal{G}_t)$$
$$= L_t \left(m_t^Z - \int_0^t Z_u e^{-\Lambda_u} \lambda_u du \right)$$

where $m_t^Z = \mathbb{E}(\int_0^T Z_u e^{-\Lambda_u} \lambda_u du | \mathcal{F}_t)$. In that case $S_t = 0$ after default.

$$dS_t = -Z_t \lambda_t (1 - H_t) dt - S_{t-} dM_t + L_t dm_t^Z.$$

If the payment Z is done at time τ

$$S_t = \mathbb{1}_{t < \tau} \mathbb{E}(Z_{\tau} \mathbb{1}_{t < \tau < T} | \mathcal{G}_t)$$
$$= L_t \left(m_t^Z - \int_0^t Z_u e^{-\Lambda_u} \lambda_u du \right)$$

where $m_t^Z = \mathbb{E}(\int_0^T Z_u e^{-\Lambda_u} \lambda_u du | \mathcal{F}_t)$. In that case $S_t = 0$ after default.

$$dS_t = -Z_t \lambda_t (1 - H_t) dt - S_{t-} dM_t + L_t dm_t^Z.$$

The process $S_t + \int_0^t Z_s (1 - H_s) \lambda_s ds$ is a martingale.

The savings account $Y_t^0 = 1$, a risky asset with risk-neutral dynamics $dY_t = Y_t \sigma dW_t$ and a DZC of maturity T with price D(t,T) are traded.

The savings account $Y_t^0 = 1$, a risky asset with risk-neutral dynamics $dY_t = Y_t \sigma dW_t$ and a DZC of maturity T with price D(t,T) are traded. The reference filtration is that of the Brownian motion W.

The savings account $Y_t^0 = 1$, a risky asset with risk-neutral dynamics $dY_t = Y_t \sigma dW_t$ and a DZC of maturity T with price D(t,T) are traded. The reference filtration is that of the Brownian motion W. Then,

 $D(t,T) = L_t \mathbb{Q}(\tau > T | \mathcal{F}_t) = L_t m_t$

with $m_t = \mathbb{Q}(\tau > T | \mathcal{F}_t) = \mathbb{E}(e^{-\Lambda_T} | \mathcal{F}_t), L_t = \mathbb{1}_{t < \tau} e^{\Lambda_t}.$

The savings account $Y_t^0 = 1$, a risky asset with risk-neutral dynamics $dY_t = Y_t \sigma dW_t$ and a DZC of maturity T with price D(t,T) are traded. The reference filtration is that of the Brownian motion W. Then,

 $D(t,T) = L_t \mathbb{Q}(\tau > T | \mathcal{F}_t) = L_t m_t$

with $m_t = \mathbb{Q}(\tau > T | \mathcal{F}_t) = \mathbb{E}(e^{-\Lambda_T} | \mathcal{F}_t), L_t = \mathbb{1}_{t < \tau} e^{\Lambda_t}.$ The price of a defaultable call with payoff $\mathbb{1}_{T < \tau}(Y_T - K)^+$ is

$$C_t = \mathbb{E}(\mathbb{1}_{T < \tau}(Y_T - K)^+ | \mathcal{G}_t) = \mathbb{1}_{t < \tau} e^{\Lambda_t} \mathbb{E}(e^{-\Lambda_T}(Y_T - K)^+ | \mathcal{F}_t)$$

The savings account $Y_t^0 = 1$, a risky asset with risk-neutral dynamics $dY_t = Y_t \sigma dW_t$ and a DZC of maturity T with price D(t,T) are traded. The reference filtration is that of the Brownian motion W. Then,

 $D(t,T) = L_t \mathbb{Q}(\tau > T | \mathcal{F}_t) = L_t m_t$

with $m_t = \mathbb{Q}(\tau > T | \mathcal{F}_t) = \mathbb{E}(e^{-\Lambda_T} | \mathcal{F}_t), L_t = \mathbb{1}_{t < \tau} e^{\Lambda_t}.$ The price of a defaultable call with payoff $\mathbb{1}_{T < \tau}(Y_T - K)^+$ is

$$C_t = \mathbb{E}(\mathbbm{1}_{T < \tau}(Y_T - K)^+ | \mathcal{G}_t) = \mathbbm{1}_{t < \tau} e^{\Lambda_t} \mathbb{E}(e^{-\Lambda_T}(Y_T - K)^+ | \mathcal{F}_t)$$
$$= L_t m_t^Y$$

with $m_t^Y = \mathbb{E}(e^{-\Lambda_T}(Y_T - K)^+ | \mathcal{F}_t).$

The savings account $Y_t^0 = 1$, a risky asset with risk-neutral dynamics $dY_t = Y_t \sigma dW_t$ and a DZC of maturity T with price D(t,T) are traded. The reference filtration is that of the Brownian motion W. Then,

 $D(t,T) = L_t \mathbb{Q}(\tau > T | \mathcal{F}_t) = L_t m_t$

with $m_t = \mathbb{Q}(\tau > T | \mathcal{F}_t) = \mathbb{E}(e^{-\Lambda_T} | \mathcal{F}_t), L_t = \mathbb{1}_{t < \tau} e^{\Lambda_t}.$ The price of a defaultable call with payoff $\mathbb{1}_{T < \tau}(Y_T - K)^+$ is

$$C_t = \mathbb{E}(\mathbbm{1}_{T < \tau}(Y_T - K)^+ | \mathcal{G}_t) = \mathbbm{1}_{t < \tau} e^{\Lambda_t} \mathbb{E}(e^{-\Lambda_T}(Y_T - K)^+ | \mathcal{F}_t)$$

= $L_t m_t^Y$

with $m_t^Y = \mathbb{E}(e^{-\Lambda_T}(Y_T - K)^+ | \mathcal{F}_t)$, hence

$$dC_t = L_t dm_t^Y - m_t^Y L_{t-} dM_t$$

$$dD(t,T) = m_t dL_t = -m_t L_{t-} dM_t = -e^{-\Lambda_T} L_{t-} dM_t$$
.

$$dD(t,T) = m_t dL_t = -m_t L_{t-} dM_t = -e^{-\Lambda_T} L_{t-} dM_t.$$

Furthermore,

$$m_t^Y = e^{-\Lambda_T} \mathbb{E}((Y_T - K)^+ | \mathcal{F}_t) = e^{-\Lambda_T} C_t^Y$$

where C^{Y} is the price of a call in the Black Scholes model.

$$dD(t,T) = m_t dL_t = -m_t L_{t-} dM_t = -e^{-\Lambda_T} L_{t-} dM_t.$$

Furthermore,

$$m_t^Y = e^{-\Lambda_T} \mathbb{E}((Y_T - K)^+ | \mathcal{F}_t) = e^{-\Lambda_T} C_t^Y$$

where C^Y is the price of a call in the Black Scholes model. This quantity is $C_t^Y = C^Y(t, Y_t)$ and satisfies $dC_t^Y = \Delta_t dY_t$ where Δ_t is the Delta-hedge $(\Delta_t = \partial_y C^Y(t, Y_t))$.

$$dD(t,T) = m_t dL_t = -m_t L_{t-} dM_t = -e^{-\Lambda_T} L_{t-} dM_t.$$

Furthermore,

$$m_t^Y = e^{-\Lambda_T} \mathbb{E}((Y_T - K)^+ | \mathcal{F}_t) = e^{-\Lambda_T} C_t^Y$$

where C^Y is the price of a call in the Black Scholes model. This quantity is $C_t^Y = C^Y(t, Y_t)$ and satisfies $dC_t^Y = \Delta_t dY_t$ where Δ_t is the Delta-hedge $(\Delta_t = \partial_y C^Y(t, Y_t))$.

$$C_t = L_t m_t^Y = \mathbb{1}_{t < \tau} e^{\Lambda_t} e^{-\Lambda_T} C^Y(t, Y_t)$$
$$= L_t e^{-\Lambda_T} C^Y(t, Y_t) = D(t, T) C^Y(t, Y_t)$$

From

$$C_t = D(t, T)C^Y(t, Y_t)$$

we deduce

$$dC_t = e^{-\Lambda_T} (L_t dC_t^Y + C_t^Y dL_t) = e^{-\Lambda_T} (L_t \Delta_t dY_t - C_t^Y L_{t-} dM_t)$$

= $e^{-\Lambda_T} (L_t \Delta_t dY_t - C_t^Y L_{t-} dM_t)$

From

$$C_t = D(t, T)C^Y(t, Y_t)$$

we deduce

$$dC_t = e^{-\Lambda_T} (L_t dC_t^Y + C_t^Y dL_t) = e^{-\Lambda_T} (L_t \Delta_t dY_t - C_t^Y L_{t-} dM_t)$$

= $e^{-\Lambda_T} (L_t \Delta_t dY_t - C_t^Y L_{t-} dM_t)$

Therefore, using that $dD(t,T) = m_t dL_t = -e^{-\Lambda_T} L_{t-} dM_t$ we get

$$dC_t = e^{-\Lambda_T} L_t \Delta_t dY_t + C_t^Y dD(t,T) = e^{-\Lambda_T} L_t \Delta_t dY_t + \frac{C_t}{D(t,T)} dD(t,T)$$

From

$$C_t = D(t, T)C^Y(t, Y_t)$$

we deduce

$$dC_t = e^{-\Lambda_T} (L_t dC_t^Y + C_t^Y dL_t) = e^{-\Lambda_T} (L_t \Delta_t dY_t - C_t^Y L_{t-} dM_t)$$

= $e^{-\Lambda_T} (L_t \Delta_t dY_t - C_t^Y L_{t-} dM_t)$

Therefore, using that $dD(t,T) = m_t dL_t = -e^{-\Lambda_T} L_{t-} dM_t$ we get

$$dC_t = e^{-\Lambda_T} L_t \Delta_t dY_t + C_t^Y dD(t,T) = e^{-\Lambda_T} L_t \Delta_t dY_t + \frac{C_t}{D(t,T)} dD(t,T)$$

hence, an hedging strategy consists of holding $\frac{C_{t-}}{D(t,T)}$ DZCs.

In the general case, one obtains

$$dC_{t} = \frac{C_{t-}}{D(t,T)} dD(t,T) + L_{t-} \frac{m_{t}^{Y}}{m_{t}} dM_{t} + L_{t-} dm_{t}^{Y}$$

An hedging strategy consists of holding $\frac{C_{t-}}{D(t,T)}$ DZCs.

Intensity approach

In intensity based models, the default time τ is a stopping time in a given filtration \mathbb{G} , representing the full information of the market.

Definition of the intensity process

• The process $(H_t = \mathbb{1}_{\tau \leq t}, t \geq 0)$ is a G-adapted increasing càdlàg process, hence a G-submartingale, and there exists a unique G-predictable increasing process $\Lambda^{\mathbb{G}}$, called the G-compensator, such that the process

$$M_t = H_t - \Lambda_t^{\mathbb{G}}$$

is a \mathbb{G} -martingale. The compensator satisfies $\Lambda_t^{\mathbb{G}} = \Lambda_{t \wedge \tau}^{\mathbb{G}}$.

- The process $\Lambda^{\mathbb{G}}$ is continuous if and only if τ is a \mathbb{G} -totally inaccessible stopping time.
- If τ is predictable, $M_t = H_t H_t = 0$

A predictable stopping time T is a stopping time such that there exists a sequence of stopping times T_n so that $T_n < T$ and $T_n \to T$

A totally inaccessible stopping time is a stopping time so that $\mathbb{P}(T = S) = 0$ for any predictable stopping time S.

• In intensity based models, it is generally assumed that $\Lambda^{\mathbb{G}}$ is absolutely continuous with respect to Lebesgue measure, i.e., that there exists a non-negative \mathbb{G} -adapted process $(\lambda_t^{\mathbb{G}}, t \ge 0)$ such that

$$M_t = H_t - \int_0^t \lambda_s^{\mathbb{G}} ds$$

is a G-martingale.

 This process λ^G is called the G-intensity rate and vanishes after time τ, i.e.,

$$M_t = H_t - \int_0^{t \wedge \tau} \lambda_s^{\mathbb{G}} ds = H_t - \int_0^t (1 - H_s) \lambda_s^{\mathbb{G}} ds.$$

• One gets, under some regularity assumption,

$$\lambda_t^{\mathbb{G}} = \lim_{h \to 0} \frac{1}{h} \mathbb{Q}(t < \tau \le t + h | \mathcal{G}_t) = \lim_{h \to 0} \frac{1}{h} \mathbb{1}_{\{t < \tau\}} \mathbb{Q}(\tau \le t + h | \mathcal{G}_t),$$

when the limit (a.s.) exists.

Pricing rule for conditional claims

For $X \in \mathcal{G}_T$, integrable,

 $\mathbb{E}_{\mathbb{Q}}(X\mathbb{1}_{T<\tau}|\mathcal{G}_t) = \mathbb{1}_{\{t<\tau\}}\left(V_t - \mathbb{E}_{\mathbb{Q}}(\mathbb{1}_{\{\tau\leq T\}}\Delta V_\tau|\mathcal{G}_t)\right)$

where the process V is defined by:

$$V_t = e^{\Lambda_t^{\mathbb{G}}} \mathbb{E}_{\mathbb{Q}}(X e^{-\Lambda_T^{\mathbb{G}}} | \mathcal{G}_t) = e^{\Lambda_{t \wedge \tau}^{\mathbb{G}}} \mathbb{E}_{\mathbb{Q}}(X e^{-\Lambda_{T \wedge \tau}^{\mathbb{G}}} | \mathcal{G}_t).$$

and where ΔV_{τ} denotes the jump of V at τ , i.e., $\Delta V_{\tau} = V_{\tau} - V_{\tau^{-}}$. Using the intensity rate, the pricing rule becomes:

$$\mathbb{E}_{\mathbb{Q}}(X\mathbb{1}_{T<\tau}|\mathcal{G}_t) = \mathbb{1}_{\{t<\tau\}}\mathbb{E}_{\mathbb{Q}}\left(Xe^{-\int_t^T\lambda_s^{\mathbb{G}}ds}\Big|\mathcal{G}_t\right) - \mathbb{E}_{\mathbb{Q}}(\mathbb{1}_{\{t<\tau\leq T\}}\Delta V_\tau|\mathcal{G}_t).$$

Proof: Apply the integration by parts formula to the product U = VL(remark $U_T = \mathbb{1}_{\{T < \tau\}} X$), with $L_t = 1 - H_t$

$$dU_t = (\Delta V_\tau) dL_t + (L_{t-} dm_t - V_{t-} dM_t),$$

(where $dm_t = e^{\Lambda_t} dY_t$, for $Y_t = e^{-\Lambda_t} V_t$), which yields to $U_t = \mathbb{E}_{\mathbb{Q}}(\mathbbm{1}_{t < \tau \leq T} \Delta V_{\tau} + U_T | \mathcal{G}_t).$ For example, whereas the price of a zero-coupon bond writes (if $\beta_t = \exp\left(-\int_0^t r_s ds\right)$ denotes the savings account):

$$B(t,T) = \beta_t \mathbb{E}_{\mathbb{Q}}\left(\left.\frac{1}{\beta_T}\right| \mathcal{G}_t\right) = \mathbb{E}_{\mathbb{Q}}\left(\left.e^{-\int_t^T r_s ds}\right| \mathcal{G}_t\right),$$

the price of a defaultable zero-coupon bond with no recovery and notional 1 is:

$$D(t,T) = \beta_t \mathbb{E}_{\mathbb{Q}} \left(\left. \frac{\mathbb{1}_{T < \tau}}{\beta_T} \right| \mathcal{G}_t \right)$$
$$= \mathbb{1}_{\{t < \tau\}} \mathbb{E}_{\mathbb{Q}} \left(\left. e^{-\int_t^T \left(r_s + \lambda_s^{\mathbb{G}} \right) ds} \right| \mathcal{G}_t \right) - \mathbb{E}_{\mathbb{Q}} (\mathbb{1}_{\{t < \tau \le T\}} \Delta V_{\tau}^D | \mathcal{G}_t)$$
where $V_t^D = \mathbb{E}_{\mathbb{Q}} (\exp - \int_t^{\tau \wedge T} \lambda_s ds | \mathcal{G}_t).$

Density Approach

We assume here that there exists a family of processes $(\alpha(u), u \in \mathbb{R}^+)$ such that

$$G_t(\theta) := \mathbb{P}(\tau > \theta | \mathcal{F}_t) = \int_{\theta}^{\infty} \alpha_t(u) du$$

Note that, for any u, the process $(\alpha_t(u), t \ge 0)$ is an \mathbb{F} -martingale such that $\int_0^\infty \alpha_t(u) du = 1$. One has

$$G_t = G_t(t) = \mathbb{P}(\tau > t | \mathcal{F}_t)$$

We assume that G and α does not vanish.

• The Doob-Meyer decomposition of G is given by

$$G_t = Z_t - \int_0^t \alpha_u(u) du$$

where Z is the square-integrable martingale defined as

$$Z_t = 1 - \int_0^t \left(\alpha_t(u) - \alpha_u(u) \right) du = \mathbb{E}\left[\int_0^\infty \alpha_u(u) du | \mathcal{F}_t \right].$$

• We define $\lambda_t := \frac{\alpha_t(t)}{G_{t-}}$. The process

$$H_t - \int_0^t (1 - H_s) \lambda_s ds$$

is a \mathbb{G} -martingale

• The multiplicative decomposition of G is given by

$$G_t = n_t e^{-\int_0^t \lambda_s ds}$$
 where $dn_t = e^{\int_0^t \lambda_s ds} dZ_t.$

The \mathcal{G}_t -conditional expectation of $f(\tau)$ is given by

$$\mathbb{E}[f(\tau)|\mathcal{G}_t] = \alpha_t^{\mathrm{bd}}(f) \, 1\!\!1_{\{\tau > t\}} + f(\tau) \, 1\!\!1_{\{\tau \le t\}}$$

where

$$\alpha_t^{\mathrm{bd}}(f) = \frac{1}{G_t} \int_t^\infty \alpha_t(u) f(u) du$$

More generally, the \mathcal{G}_t -conditional expectation of any integrable $\mathcal{F}_t \otimes \sigma(\tau)$ -measurable r.v. $Y_t(\tau)$, is given by

$$\mathbb{E}[Y_t(\tau)|\mathcal{G}_t] = \alpha_t^{\mathrm{bd}}(Y_t) 1\!\!1_{\{\tau > t\}} + Y_t(\tau) 1\!\!1_{\{\tau \le t\}}$$

where

$$\alpha_t^{\rm bd}(Y_t) = \frac{\int_t^\infty Y_t(u)\alpha_t(u)\eta(du)}{S_t}$$

For any $T \ge t$, let $Y_T(\theta)$ be a function $\mathcal{F}_T \otimes \mathcal{B}$ -measurable Then,

$$\mathbb{E}[Y_T(\tau)|\mathcal{G}_t]\mathbb{1}_{\{\tau \le t\}} = Y_t^{ad}(T,\tau)\mathbb{1}_{\{\tau \le t\}} \quad d\mathbb{P}-a.s..$$

where

$$Y_t^{ad}(T,\theta) := \frac{\mathbb{E}\left[Y_T(\theta)\alpha_T(\theta)\big|\mathcal{F}_t\right]}{\alpha_t(\theta)} \quad d\mathbb{P}-a.s..$$

Assume that $\widetilde{S} = (\widetilde{S}_t, t \leq T)$ is an \mathbb{R}^{n+2} valued process constructed on $(\Omega, \mathcal{A}, \mathbb{P}), S^0$ denoting the saving accounts, and \mathbb{G} is the natural filtration generated by \widetilde{S} .

We emphasize that \mathbb{P} is a probability measure defined on \mathcal{A} .

We denote by $\Theta_{\mathbb{P}}^{\mathbb{G}}(\widetilde{S})$ the set of \mathbb{G} -e.m.ms, i.e., the set of probability measures \mathbb{Q} defined on \mathcal{A} , equivalent to \mathbb{P} on \mathcal{A} , such that the discounted process $(\widetilde{S}_t/S_t^0, t \leq T)$ is a (\mathbb{G}, \mathbb{Q}) -local martingale.

In what follows, we assume that $S^0 \equiv 1$.

Assume that \mathbb{F} is the natural filtration of the \mathbb{R}^{n+1} -valued process Sand that this market is complete. Let \mathbb{P}^* be an e.m.m. (the restriction of \mathbb{P}^* to \mathbb{F} is unique) For every $X \in \mathcal{M}(\mathbb{G}, \mathbb{P}^*)$, there exists two \mathbb{G} -predictable process β and γ such that

$$dX_t = \gamma_t d\widehat{S}_t + \beta_t dM_t.$$

There exists a probability $\mathbb{Q} \in \Theta_{\mathbb{P}^*}^{\mathbb{G}}(S)$ such that immersion property holds under \mathbb{Q}

If the market generated by S is incomplete, we assume that the market chooses an e.m.m. \mathbb{P}^* . We assume that a default sensitive asset S^{n+2} is traded.

There exists a unique G-e.m.m. $\mathbb{Q} \in \Theta_{\mathbb{P}^*}^{\mathbb{G}} \left(\widetilde{S} \right)$, that preserves \mathcal{F}_T , i.e., $\mathbb{E}^{\mathbb{Q}} \left(X_T \right) = \mathbb{E}^* \left(X_T \right)$,

for any $X_T \in L^2(\mathcal{F}_T)$.