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In a financial market built on a filtered probability space (Ω,G, F, P), a
default occurs at some random time τ .

The filtration F is called the reference filtration

The random time τ is a non-negative random variable on the probability
space (Ω,G, P) and we denote by Ht = 11τ≤t the default process.
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OUTLINE:

• Model for single default

• Intensity approach

• Density approach
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Model for single default
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Hazard Process

Hazard Process of a Random Time

• We set Gt = Ht ∨ Ft where Ht is the natural filtration of H

• We shall write G = H ∨ F to denote the full filtration.

• We denote Gt = P(τ > t | Ft) the conditional survival
probability.

• It is easily seen that G is a bounded, non-negative,
F-super-martingale.

• We assume that Gt > 0 for every t ∈ R+ and we set Γt = − lnGt.
The process Γ is called the hazard process.

• Any Gt-measurable random variable Yt writes

Yt11t<τ = Ỹt11t<τ

where Ỹt is Ft-measurable
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Properties of the supermartingale G

• Let Gt = mt − At be the Doob-Meyer decomposition of the
super-martingale (Gt, t ≥ 0).

• The process

Mt = Ht −
∫ t

0

(1 − Hs)
dAs

Gs−
= Ht − Λt∧τ

is a G-martingale. The process Λt =
∫ t

0
dAs

Gs−
is called the

F-intensity.

• The multiplicative decomposition of the supermartingale G is
Gt = ntKt where n is an F-martingale and K a predictable non
increasing process. One has

dnt = eΛtdMt, Kt = e−Λt
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• If G is non increasing, then τ is a pseudo-stopping time. A
random time τ is a pseudo-stopping time if for any bounded
F-martingale m, one has E(mτ ) = m0 or, equivalently if mt∧τ is a
G-martingale

• If any F martingale is continuous and if τ avoids F-stopping times,
then G is continuous

• G is a continuous non increasing process if and only if τ is a
pseudo-stopping time that avoids stopping times.

• If G is continuous and non increasing, then Λ = Γ and the
process Mt = Ht − Γt∧τ is a G-martingale.
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Conditional Expectations

• (Dellacherie) For any G-measurable random variable Y we have

EP(11{τ>t}Y | Gt) = 11{τ>t}
EP(11{τ>t}Y | Ft)

P(τ > t | Ft)
.

• If, in addition, Y is Fs-measurable for s ≥ t, then

EP(11{τ>s}Y | Gt) = 11{τ>t}
1
Gt

EP(Y Gs | Ft).

• Let G be continuous and let Z be an F-predictable process. Then
for any t ≤ s, we have

EP(Zτ11 {t<τ≤s} | Gt) = 11{τ>t}
1
Gt

EP

(
−

∫ s

t

ZudGu

∣∣∣Ft

)
.
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Immersion property

• (Brémaud-Yor) If

Gt = P(τ > t|Ft) = P(τ > t|F∞)

then any F-martingale is a G-martingale.

• (Kusuoka) In that case, if the filtration F is generated by a
Brownian motion W , then, any G-martingale Z admits a
representation

Zt = z +
∫ t

0

ẑsdWs +
∫ t

0

z̃sdMs

where ẑ and z̃ are G-predictable processes
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Interpretation of the Intensity Process

• We now restrict our attention to the case where Λt =
∫ t

0
λu du

where λ represents the F-intensity rate of τ.

• Intuitively

P{τ ∈ [t, t + dt] | Ft ∨Ht} = 11{τ>t}λt dt

that is
P{τ ∈ [t, t + dt] | Ft ∨ {τ > t}} = λt dt.
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Canonical Construction

• Let Λ be an F-adapted, increasing, continuous processes, defined on
a probability space (Ω̂, F, P). We assume that Λ0 = 0 and Λ∞ = ∞.

• Let (Ω̃, F̃ , P̃) be an auxiliary probability space with a random
variable U uniformly distributed on [0, 1]. Hence ζ = − lnU has the
unit exponential probability distribution

• We set, on (Ω,F , P) = (Ω̂ × Ω̃, F̂ ⊗ F̃ , P̂ × P̃)

τ = inf { t ∈ R+ : Λt(ω̂) ≥ − lnU(ω̃) }

• The random variable U is independent of the hazard process Λ, the
r.v. − lnU has exponential law.

• Then
P(τ > t|Ft) = exp(−Λt) = P(τ > t|F∞)

In that model, any F-martingale in a G-martingale.
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Immersion property

It can be proved that, if

Gt = P(τ > t|Ft) = P(τ > t|F∞)

is continuous and strictly increasing, then there exists a random
variable Θ, independent of F∞ such that

τ = inf { t ∈ R+ : − lnGt ≥ Θ } = inf { t ∈ R+ : Γt ≥ − lnU }
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Immersion property (2)

Assume that

• F is the filtration generated by default-free assets with prices
St, t ≥ 0

• this market is complete and arbitrage free

• using strategies which are G-adapted does not give arbitrage
opportunities

• the prices of default free assets remain (St, t ≥ 0) in the filtration G,

then immersion property holds true under the unique e.m.m.
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Valuation of Defaultable Claims

• In order to value a defaultable claim we need also to specify a
discount factor (for instance, the savings account).

• Here we have assumed that B = 1, that is, r = 0.

• We assume that immersion property holds under the
e.m.m. Q

Valuation of the Terminal Payoff

To value the terminal payoff we shall use the following result.

Proposition 1

If λQ is the default intensity rate under Q then

EQ(11{τ>s}Y | Gt) = 11{τ>t} EQ(Y e−
∫ s

t
λQ

u du | Ft).

16



Valuation of Recovery Process

The following result appears to be useful in the valuation of the
recovery payoff Zτ which occurs at time τ.

Proposition 2 If λQ is the default intensity under Q then

EQ(Zτ11 {t<τ≤s} | Gt) = 11{τ>t} EQ

( ∫ s

t

Zue−
∫ u

t
λQ

v dv λQ
u du

∣∣∣Ft

)
.
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Valuation of Promised Dividends

To value the promised dividends A that are paid prior to τ we shall
make use of the following result.

Proposition 3 Assume that ΛQ is a continuous process and let A be an
F-predictable bounded process of finite variation. Then for every t ≤ s

EQ

( ∫
(t,s]

(1 − Hu) dAu

∣∣∣Gt

)
= 11{τ>t} EQ

( ∫
(t,s]

eΛQ
t −ΛQ

u dAu

∣∣∣Ft

)
.
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Defaultable Assets

Let B(t, T ) be the price at time t of a default-free bond paying 1 at
maturity T satisfies

B(t, T ) = EQ

(
exp

( − ∫ T

t

rs ds
) ∣∣∣Ft

)
.

The market price D(t, T ) of a defaultable zero-coupon bond with
maturity T is

D(t, T ) = EQ

(
11{T<τ} exp

( − ∫ T

t

rs ds
) ∣∣∣Gt

)

= 11{τ>t}EQ

(
exp

( − ∫ T

t

[rs + λQ
s ] ds

) ∣∣∣Ft

)
.
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Recovery paid at Maturity

We consider a contract which pays Zτ at date T , if τ ≤ T where Z is an
F-adapted process and no payment in the case τ > T . We also assume
that the interest rate is null.
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Recovery paid at Maturity

We consider a contract which pays Zτ at date T , if τ ≤ T where Z is an
F-adapted process and no payment in the case τ > T . We also assume
that the interest rate is null. The price at time t of this contract is

St = E(Zτ11τ≤T |Gt) = Zτ11τ≤t + 11t<τE(Zτ11t<τ≤T |Gt)
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Recovery paid at Maturity

We consider a contract which pays Zτ at date T , if τ ≤ T where Z is an
F-adapted process and no payment in the case τ > T . We also assume
that the interest rate is null. The price at time t of this contract is

St = E(Zτ11τ≤T |Gt) = Zτ11τ≤t + 11t<τE(Zτ11t<τ≤T |Gt)

= Zτ11τ≤t + 11t<τ eΛt E(
∫ T

t

Zue−Λuλudu|Ft)
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Recovery paid at Maturity

We consider a contract which pays Zτ at date T , if τ ≤ T where Z is an
F-adapted process and no payment in the case τ > T . We also assume
that the interest rate is null. The price at time t of this contract is

St = E(Zτ11τ≤T |Gt) = Zτ11τ≤t + 11t≤τE(Zτ11t<τ≤T |Gt)

= Zτ11τ≤t + 11t<τ eΛt E(
∫ T

t

Zue−Λuλudu|Ft)

=
∫ t

0

ZudHu + Lt

(
mZ

t −
∫ t

0

Zue−Λuλudu

)

where mZ
t = E(

∫ T

0
Zue−Λuλudu|Ft) and Lt = 11t<τ eΛt
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Recovery paid at Maturity

We consider a contract which pays Zτ at date T , if τ ≤ T where Z is an
F-adapted process and no payment in the case τ > T . We also assume
that the interest rate is null. The price at time t of this contract is

St = E(Zτ11τ<T |Gt) = Zτ11τ<t + 11t<τE(Zτ11t<τ<T |Gt)

= Zτ11τ<t + 11t<τ eΛt E(
∫ T

t

Zue−Λuλudu|Ft)

=
∫ t

0

ZudHu + Lt

(
mZ

t −
∫ t

0

Zue−Λuλudu

)

where mZ
t = E(

∫ T

0
Zue−Λuλudu|Ft) and Lt = 11t<τ eΛt are G

martingales.
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We assume here that F-martingales are continuous. From
dLt = −Lt−dMt and integration by parts formula we deduce that

dSt = Zt(dHt − λt(1 − Ht)dt) − St−dMt + LtdmZ
t

= (Zt − St−) dMt + LtdmZ
t
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Recovery paid at Default

If the payment Z is done at time τ

St = 11t<τE(Zτ11t<τ<T |Gt)

= Lt

(
mZ

t −
∫ t

0

Zue−Λuλudu

)
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Recovery paid at Default

If the payment Z is done at time τ

St = 11t<τE(Zτ11t<τ<T |Gt)

= Lt

(
mZ

t −
∫ t

0

Zue−Λuλudu

)
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Recovery paid at Default

If the payment Z is done at time τ

St = 11t<τE(Zτ11t<τ<T |Gt)

= Lt

(
mZ

t −
∫ t

0

Zue−Λuλudu

)

where mZ
t = E(

∫ T

0
Zue−Λuλudu|Ft).
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Recovery paid at Default

If the payment Z is done at time τ

St = 11t<τE(Zτ11t<τ<T |Gt)

= Lt

(
mZ

t −
∫ t

0

Zue−Λuλudu

)

where mZ
t = E(

∫ T

0
Zue−Λuλudu|Ft). In that case St = 0 after default.

dSt = −Ztλt(1 − Ht)dt − St−dMt + LtdmZ
t .
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Recovery paid at Default

If the payment Z is done at time τ

St = 11t<τE(Zτ11t<τ<T |Gt)

= Lt

(
mZ

t −
∫ t

0

Zue−Λuλudu

)

where mZ
t = E(

∫ T

0
Zue−Λuλudu|Ft). In that case St = 0 after default.

dSt = −Ztλt(1 − Ht)dt − St−dMt + LtdmZ
t .

The process St +
∫ t

0
Zs(1 − Hs)λsds is a martingale.
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Price and Hedging a defaultable call

The savings account Y 0
t = 1, a risky asset with risk-neutral dynamics

dYt = YtσdWt and a DZC of maturity T with price D(t, T ) are traded.
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Price and Hedging a defaultable call

The savings account Y 0
t = 1, a risky asset with risk-neutral dynamics

dYt = YtσdWt and a DZC of maturity T with price D(t, T ) are traded.
The reference filtration is that of the Brownian motion W .
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Price and Hedging a defaultable call

The savings account Y 0
t = 1, a risky asset with risk-neutral dynamics

dYt = YtσdWt and a DZC of maturity T with price D(t, T ) are traded.
The reference filtration is that of the Brownian motion W . Then,

D(t, T ) = LtQ(τ > T |Ft) = Ltmt

with mt = Q(τ > T |Ft) = E(e−ΛT |Ft), Lt = 11t<τ eΛt .
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Price and Hedging a defaultable call

The savings account Y 0
t = 1, a risky asset with risk-neutral dynamics

dYt = YtσdWt and a DZC of maturity T with price D(t, T ) are traded.
The reference filtration is that of the Brownian motion W . Then,

D(t, T ) = LtQ(τ > T |Ft) = Ltmt

with mt = Q(τ > T |Ft) = E(e−ΛT |Ft), Lt = 11t<τ eΛt .
The price of a defaultable call with payoff 11T<τ (YT − K)+ is

Ct = E(11T<τ (YT − K)+|Gt) = 11t<τeΛtE(e−ΛT (YT − K)+|Ft)
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Price and Hedging a defaultable call

The savings account Y 0
t = 1, a risky asset with risk-neutral dynamics

dYt = YtσdWt and a DZC of maturity T with price D(t, T ) are traded.
The reference filtration is that of the Brownian motion W . Then,

D(t, T ) = LtQ(τ > T |Ft) = Ltmt

with mt = Q(τ > T |Ft) = E(e−ΛT |Ft), Lt = 11t<τ eΛt .
The price of a defaultable call with payoff 11T<τ (YT − K)+ is

Ct = E(11T<τ (YT − K)+|Gt) = 11t<τeΛtE(e−ΛT (YT − K)+|Ft)

= Ltm
Y
t

with mY
t = E(e−ΛT (YT − K)+|Ft).
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Price and Hedging a defaultable call

The savings account Y 0
t = 1, a risky asset with risk-neutral dynamics

dYt = YtσdWt and a DZC of maturity T with price D(t, T ) are traded.
The reference filtration is that of the Brownian motion W . Then,

D(t, T ) = LtQ(τ > T |Ft) = Ltmt

with mt = Q(τ > T |Ft) = E(e−ΛT |Ft), Lt = 11t<τ eΛt .
The price of a defaultable call with payoff 11T<τ (YT − K)+ is

Ct = E(11T<τ (YT − K)+|Gt) = 11t<τeΛtE(e−ΛT (YT − K)+|Ft)

= Ltm
Y
t

with mY
t = E(e−ΛT (YT − K)+|Ft), hence

dCt = LtdmY
t − mY

t Lt−dMt
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In the particular case where λ is deterministic, mt = e−ΛT and
dmt = 0. Therefore, D(t, T ) = mtLt = Lte

−ΛT and

dD(t, T ) = mtdLt = −mtLt−dMt = −e−ΛT Lt−dMt .
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In the particular case where λ is deterministic, mt = e−ΛT and
dmt = 0. Therefore, D(t, T ) = mtLt = Lte

−ΛT and

dD(t, T ) = mtdLt = −mtLt−dMt = −e−ΛT Lt−dMt .

Furthermore,

mY
t = e−ΛT E((YT − K)+|Ft) = e−ΛT CY

t

where CY is the price of a call in the Black Scholes model.
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In the particular case where λ is deterministic, mt = e−ΛT and
dmt = 0. Therefore, D(t, T ) = mtLt = Lte

−ΛT and

dD(t, T ) = mtdLt = −mtLt−dMt = −e−ΛT Lt−dMt .

Furthermore,

mY
t = e−ΛT E((YT − K)+|Ft) = e−ΛT CY

t

where CY is the price of a call in the Black Scholes model.
This quantity is CY

t = CY (t, Yt) and satisfies dCY
t = ΔtdYt where Δt is

the Delta-hedge (Δt = ∂yCY (t, Yt)).
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In the particular case where λ is deterministic, mt = e−ΛT and
dmt = 0. Therefore, D(t, T ) = mtLt = Lte

−ΛT and

dD(t, T ) = mtdLt = −mtLt−dMt = −e−ΛT Lt−dMt .

Furthermore,

mY
t = e−ΛT E((YT − K)+|Ft) = e−ΛT CY

t

where CY is the price of a call in the Black Scholes model.
This quantity is CY

t = CY (t, Yt) and satisfies dCY
t = ΔtdYt where Δt is

the Delta-hedge (Δt = ∂yCY (t, Yt)).

Ct = Ltm
Y
t = 11t<τeΛte−ΛT CY (t, Yt)

= Lte
−ΛT CY (t, Yt) = D(t, T )CY (t, Yt)
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From
Ct = D(t, T )CY (t, Yt)

we deduce

dCt = e−ΛT (LtdCY
t + CY

t dLt) = e−ΛT (LtΔtdYt − CY
t Lt−dMt)

= e−ΛT (LtΔtdYt − CY
t Lt−dMt)
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From
Ct = D(t, T )CY (t, Yt)

we deduce

dCt = e−ΛT (LtdCY
t + CY

t dLt) = e−ΛT (LtΔtdYt − CY
t Lt−dMt)

= e−ΛT (LtΔtdYt − CY
t Lt−dMt)

Therefore, using that dD(t, T ) = mtdLt = −e−ΛT Lt−dMt we get

dCt = e−ΛT LtΔtdYt + CY
t dD(t, T ) = e−ΛT LtΔtdYt +

Ct

D(t, T )
dD(t, T )
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From
Ct = D(t, T )CY (t, Yt)

we deduce

dCt = e−ΛT (LtdCY
t + CY

t dLt) = e−ΛT (LtΔtdYt − CY
t Lt−dMt)

= e−ΛT (LtΔtdYt − CY
t Lt−dMt)

Therefore, using that dD(t, T ) = mtdLt = −e−ΛT Lt−dMt we get

dCt = e−ΛT LtΔtdYt + CY
t dD(t, T ) = e−ΛT LtΔtdYt +

Ct

D(t, T )
dD(t, T )

hence, an hedging strategy consists of holding Ct−
D(t,T ) DZCs.

43



In the general case, one obtains

dCt =
Ct−

D(t, T )
dD(t, T ) + Lt−

mY
t

mt
dMt + Lt−dmY

t

An hedging strategy consists of holding Ct−
D(t,T ) DZCs.
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Intensity approach
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In intensity based models, the default time τ is a stopping time in a
given filtration G, representing the full information of the market.
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Definition of the intensity process

• The process (Ht = 11τ≤t, t ≥ 0) is a G-adapted increasing càdlàg
process, hence a G-submartingale, and there exists a unique
G-predictable increasing process ΛG, called the G-compensator,
such that the process

Mt = Ht − ΛG
t

is a G-martingale. The compensator satisfies ΛG
t = ΛG

t∧τ .

• The process ΛG is continuous if and only if τ is a G-totally
inaccessible stopping time.

• If τ is predictable, Mt = Ht − Ht = 0

A predictable stopping time T is a stopping time such that there exists
a sequence of stopping times Tn so that Tn < T and Tn → T

A totally inaccessible stopping time is a stopping time so that
P(T = S) = 0 for any predictable stopping time S.
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• In intensity based models, it is generally assumed that ΛG is
absolutely continuous with respect to Lebesgue measure, i.e., that
there exists a non-negative G-adapted process (λG

t , t ≥ 0) such that

Mt = Ht −
∫ t

0

λG
s ds

is a G-martingale.

• This process λG is called the G-intensity rate and vanishes after
time τ , i.e.,

Mt = Ht −
∫ t∧τ

0

λG
s ds = Ht −

∫ t

0

(1 − Hs)λG
s ds.

• One gets, under some regularity assumption,

λG
t = lim

h→0

1
h

Q(t < τ ≤ t + h|Gt) = lim
h→0

1
h

11{t<τ}Q(τ ≤ t + h|Gt),

when the limit (a.s.) exists.
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Pricing rule for conditional claims

For X ∈ GT , integrable,

EQ(X11T<τ |Gt) = 11{t<τ}
(
Vt − EQ(11{τ≤T} ΔVτ |Gt)

)
where the process V is defined by:

Vt = eΛG

t EQ(Xe−ΛG

T |Gt) = eΛG

t∧τ EQ(Xe−ΛG

T∧τ |Gt).

and where ΔVτ denotes the jump of V at τ , i.e., ΔVτ = Vτ − Vτ− .

Using the intensity rate, the pricing rule becomes:

EQ(X11T<τ |Gt) = 11{t<τ}EQ

(
Xe−

∫ T
t

λG

s ds
∣∣∣Gt

)
− EQ(11{t<τ≤T} ΔVτ |Gt).
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Proof: Apply the integration by parts formula to the product U = V L

(remark UT = 11{T<τ}X), with Lt = 1 − Ht

dUt = (ΔVτ ) dLt + (Lt−dmt − Vt−dMt) ,

(where dmt = eΛtdYt, for Yt = e−ΛtVt), which yields to
Ut = EQ(11t<τ≤T ΔVτ + UT |Gt).
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For example, whereas the price of a zero-coupon bond writes (if

βt = exp
(
− ∫ t

0
rsds

)
denotes the savings account):

B (t, T ) = βtEQ

(
1

βT

∣∣∣∣Gt

)
= EQ

(
e−

∫ T
t

rsds
∣∣∣Gt

)
,

the price of a defaultable zero-coupon bond with no recovery and
notional 1 is:

D (t, T ) = βtEQ

(
11T<τ

βT

∣∣∣∣Gt

)

= 11{t<τ}EQ

(
e−

∫ T
t (rs+λG

s)ds
∣∣∣Gt

)
− EQ(11{t<τ≤T} ΔV D

τ |Gt)

where V D
t = EQ(exp− ∫ τ∧T

t
λsds|Gt).
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Density Approach
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We assume here that there exists a family of processes (α(u), u ∈ R+)
such that

Gt(θ) := P(τ > θ|Ft) =
∫ ∞

θ

αt(u)du

Note that, for any u, the process (αt(u), t ≥ 0) is an F-martingale such
that

∫ ∞
0

αt(u)du = 1. One has

Gt = Gt(t) = P(τ > t|Ft)

We assume that G and α does not vanish.
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• The Doob-Meyer decomposition of G is given by

Gt = Zt −
∫ t

0

αu(u)du

where Z is the square-integrable martingale defined as

Zt = 1 −
∫ t

0

(
αt(u) − αu(u)

)
du = E[

∫ ∞

0

αu(u)du|Ft].

• We define λt := αt(t)
Gt−

. The process

Ht −
∫ t

0

(1 − Hs)λsds

is a G-martingale

• The multiplicative decomposition of G is given by

Gt = nte
− ∫ t

0 λsds where dnt = e
∫ t
0 λsdsdZt.
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The Gt-conditional expectation of f(τ) is given by

E[f(τ)|Gt] = αbd
t (f) 11{τ>t} + f(τ) 11{τ≤t}

where

αbd
t (f) =

1
Gt

∫ ∞

t

αt(u)f(u)du
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More generally, the Gt-conditional expectation of any integrable
Ft ⊗ σ(τ)-measurable r.v. Yt(τ), is given by

E[Yt(τ)|Gt] = αbd
t (Yt) 11{τ>t} + Yt(τ) 11{τ≤t}

where

αbd
t (Yt) =

∫ ∞
t

Yt(u)αt(u)η(du)
St
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For any T ≥ t, let YT (θ) be a function FT ⊗ B-measurable

Then,
E[YT (τ)|Gt]11{τ≤t} = Y ad

t (T, τ)11{τ≤t} dP − a.s..

where

Y ad
t (T, θ) :=

E
[
YT (θ)αT (θ)

∣∣Ft

]
αt(θ)

dP − a.s..
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Assume that S̃ = (S̃t, t ≤ T ) is an Rn+2 valued process constructed on
(Ω,A, P), S0 denoting the saving accounts, and G is the natural
filtration generated by S̃.

We emphasize that P is a probability measure defined on A.

We denote by ΘG
P (S̃) the set of G-e.m.ms, i.e., the set of probability

measures Q defined on A, equivalent to P on A, such that the
discounted process (S̃t/S0

t , t ≤ T ) is a (G, Q)-local martingale.

In what follows, we assume that S0 ≡ 1.
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Assume that F is the natural filtration of the Rn+1-valued process S

and that this market is complete. Let P∗ be an e.m.m. (the restriction
of P∗ to F is unique) For every X ∈ M (G, P∗), there exists two
G-predictable process β and γ such that

dXt = γtdŜt + βtdMt.

There exists a probability Q ∈ ΘG
P∗(S) such that immersion property

holds under Q
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If the market generated by S is incomplete, we assume that the market
chooses an e.m.m. P∗. We assume that a default sensitive asset Sn+2 is
traded.

There exists a unique G-e.m.m. Q ∈ΘG
P∗

(
S̃

)
, that preserves FT , i.e.,

EQ (XT ) = E∗ (XT ) ,

for any XT ∈ L2 (FT ) .
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