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In a financial market built on a filtered probability space (2,G,F,P), a

default occurs at some random time 7.
The filtration IF is called the reference filtration

The random time 7 is a non-negative random variable on the probability
space (£2,G,P) and we denote by H, = 1., the default process.



OUTLINE:
e Model for single default
e Intensity approach

e Density approach



Model for single default



Hazard Process
Hazard Process of a Random Time
e We set G; = 'H; V F; where H; is the natural filtration of H
e We shall write G = H V I to denote the full filtration.

e We denote G; = P(7 > t|F;) the conditional survival
probability.

e It is easily seen that G is a bounded, non-negative,

[F-super-martingale.

e We assume that G; > 0 for every t € R, and we set I'y = —In G;.
The process I' is called the hazard process.

e Any G;-measurable random variable Y; writes
Yilicr =Y ller

where Y; is F;-measurable



Properties of the supermartingale G

o Let G; = m; — A; be the Doob-Meyer decomposition of the
super-martingale (G, t > 0).

e The process

t
dA,
Mi=Hi~ (1= H)G™ = Hi = Ao,
0 s—
is a G-martingale. The process A; = (f g’fj is called the

[F-intensity.

e The multiplicative decomposition of the supermartingale G is
G+ = nsK; where n is an [F-martingale and K a predictable non
increasing process. One has

dnt = €Atht, Kt = G_At



If G is non increasing, then 7 is a pseudo-stopping time. A
random time 7 is a pseudo-stopping time if for any bounded
F-martingale m, one has [E(m,) = mg or, equivalently if m;s, is a

G-martingale

If any F martingale is continuous and if 7 avoids F-stopping times,

then G is continuous

(G is a continuous non increasing process if and only if 7 is a

pseudo-stopping time that avoids stopping times.

If G is continuous and non increasing, then A =1I" and the

process M; = H; — I'; o, is a G-martingale.



Conditional Expectations

e (Dellacherie) For any G-measurable random variable Y we have

EP<]1{T>75}Y ’ ft)
IP)(T > 1 |Ft> .

EP(H{T>t}Y ‘ gt) — ]]‘{T>t}

e If in addition, Y is Fs;-measurable for s > ¢, then

1
Ep(Lrss)Y |Ge) = N(rgy EEP(YGS | Ft).

e Let GG be continuous and let Z be an [F-predictable process. Then
for any t < s, we have

1 S
EIP’(ZT]l {t<1<s} ‘gt) — ]1{T>t} EEP( - / ZudGu Ft)
t
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Immersion property

e (Brémaud-Yor) If
Gy = ]P)(T > t‘ft) = P(T > t|Foo>
then any F-martingale is a G-martingale.

e (Kusuoka) In that case, if the filtration F is generated by a
Brownian motion W, then, any G-martingale Z admits a

representation

t t
Zt =z + / /Z\SdWS + / ngMS
0 0

where z and 7z are G-predictable processes
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Interpretation of the Intensity Process

e We now restrict our attention to the case where A; = f(f Ay du
where )\ represents the F-intensity rate of .

e Intuitively
]P){T c [t, t+ dt] |Ft V Ht} = ]1{7>t})\t dt

that is
P{r e lt,t+dt]| FrV{r >t}} = A\ dt.
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Canonical Construction

Let A be an F-adapted, increasing, continuous processes, defined on
a probability space (£2,F,IP). We assume that Ag = 0 and A, = oc.

Let (Q, F, I?’) be an auxiliary probability space with a random
variable U uniformly distributed on [0, 1]. Hence ( = —In U has the
unit exponential probability distribution

We set, on (Q,F, P) = (Q x Q, F® F,Px P)
r=inf{t e R, : Ay(®) > —InU(w) }

The random variable U is independent of the hazard process A, the
r.v. —InU has exponential law.

Then
P(r > t|F;) = exp(—Ay) = P(7 > t|Fo)

In that model, any F-martingale in a G-martingale.
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Immersion property

It can be proved that, if
G, =P(r > t|F) =P(r > t|Fao)

is continuous and strictly increasing, then there exists a random

variable ©, independent of F,, such that

r=inf{teRy : —InG; >0} =inf{teRy : Iy >—-InU}

14



Immersion property (2)
Assume that

e [ is the filtration generated by default-free assets with prices
S, t >0

e this market is complete and arbitrage free

e using strategies which are (G-adapted does not give arbitrage

opportunities
e the prices of default free assets remain (S;,¢ > 0) in the filtration G,

then immersion property holds true under the unique e.m.m.
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Valuation of Defaultable Claims

e In order to value a defaultable claim we need also to specify a
discount factor (for instance, the savings account).

e Here we have assumed that B = 1, that is, » = 0.

¢ We assume that immersion property holds under the

e.m.m. Q
Valuation of the Terminal Payoff
To value the terminal payoff we shall use the following result.

Proposition 1

If \@Q is the default intensity rate under Q then

EQ(H{T>S}Y | gt) — 11{7‘>t} E@(Ye_ I AS au | ft)
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Valuation of Recovery Process

The following result appears to be useful in the valuation of the
recovery payoft Z. which occurs at time 7.

Proposition 2 If \? is the default intensity under Q then

Eo(Z: 1 ft<r<sy [Gt) = Lirsgy E@(/ Zye~ JIT @ gy ‘ .7-",5).

t
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Valuation of Promised Dividends

To value the promised dividends A that are paid prior to 7 we shall
make use of the following result.

Proposition 3 Assume that A9 is a continuous process and let A be an

F-predictable bounded process of finite variation. Then for every t < s

EQ</ (1 — Hu) dAu (jt> — ]1{7->t} EQ(/ GA?_A"? dAu
(Z,s] t

(t,s]
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Defaultable Assets

Let B(t,T) be the price at time t of a default-free bond paying 1 at

maturity 1" satisfies
T
B(t,T) = E@(exp ( — / Ts ds) ).7-}).
t

The market price D(t,T) of a defaultable zero-coupon bond with
maturity 7' is

T
D(t,T) = E (]1{T<T}exp / rsds ‘Qt
t

T
— ]1{'r>t}E@ exp / Ts + )\Q ds |Ft)
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Recovery paid at Maturity

We consider a contract which pays Z, at date T, if 7 <T" where Z is an
F-adapted process and no payment in the case 7 > T'. We also assume

that the interest rate is null.
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Recovery paid at Maturity

We consider a contract which pays Z, at date T, if 7 <T" where Z is an
F-adapted process and no payment in the case 7 > T'. We also assume
that the interest rate is null. The price at time ¢ of this contract is

St — E(ZT]]-TST|gt) — ZT]lTSt + ]1t<TE(ZT]1t<T§T|gt)
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Recovery paid at Maturity

We consider a contract which pays Z, at date T, if 7 <T" where Z is an
F-adapted process and no payment in the case 7 > T'. We also assume
that the interest rate is null. The price at time ¢ of this contract is

St — E(ZT]]-TST|gt) — ZT]lTSt + ]1t<TE(ZT]1t<T§T|gt)

T
Zo oy + My el E(/ 7,6 M A du|Fy)
/
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Recovery paid at Maturity

We consider a contract which pays Z, at date T, if 7 <T" where Z is an
F-adapted process and no payment in the case 7 > T'. We also assume
that the interest rate is null. The price at time ¢ of this contract is

St — E(ZT]]-TST|gt) — ZT]lTSt + ]ltSTE(ZTIlt<T§T|gt)

T
Zo oy + My el E(/ 7,6 M A du|Fy)
/

¢ ¢
— / Z,dH, + L (th —/ Zue_A“)\udu>
0 0

where m# = E(fOT Zye M \,dul|F) and Ly = Myor eM
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Recovery paid at Maturity

We consider a contract which pays Z, at date T, if 7 <T" where Z is an
F-adapted process and no payment in the case 7 > T'. We also assume
that the interest rate is null. The price at time ¢ of this contract is

St = E(ZNicr|Gy) = Z ey + 14 E(Z N r 17| Ge)

T
= Z;l,op+ Liepe™ E(/ Zue M Ay du| Fy)
t

t t
_ / Z.dH, + L <th— / Zue_A“)\udu)
0 0

where m? = E(fOT Zye M lydu|lF,) and Ly = Ny ePt are G

martingales.
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We assume here that F-martingales are continuous. From

dL; = —L;_dM; and integration by parts formula we deduce that

dS; = ZJ(dH; — \(1 — Hy)dt) — S;_dM, + Lydm?
= (Z;— Si—)dM; + Lidm?
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Recovery paid at Default

If the payment Z is done at time 7

St — ]]-t<TE(ZT]]‘t<T<T‘gt)
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Recovery paid at Default

If the payment Z is done at time 7

St — ]]-t<TE(ZT]]‘t<T<T‘gt)

t
= I, (mtz—/ Zue_A“)\udu>
0
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Recovery paid at Default

If the payment Z is done at time 7

St — ]]-t<TE(ZT]]‘t<T<T‘gt)

t
= I, (mtz—/ Zue_A“)\udu>
0

where mZ = E( [} Z,e~ ™ A dulFy).
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Recovery paid at Default

If the payment Z is done at time 7

St — ]]-t<TE(ZT]]‘t<T<T‘gt)

t
L (th —/ Zue_A“)\udu>
0

where m? = E(fOT Zye NN du|F;). In that case S; = 0 after default.

dSt — _Zt)\t(l — Ht)dt — St_th -+ Ltdth .
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Recovery paid at Default

If the payment Z is done at time 7

St — ]]-t<TE(ZT]]‘t<T<T‘gt)

t
L (th —/ Zue_A“)\udu>
0

where m? = E(fOT Zye NN du|F;). In that case S; = 0 after default.

dSt — _Zt)\t(l — Ht)dt — St_th -+ Ltdth .

The process S; + fot Zs(1 — Hs)Asds is a martingale.
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Price and Hedging a defaultable call

The savings account Y;" = 1, a risky asset with risk-neutral dynamics
dY; = Yi;odW; and a DZC of maturity T" with price D(t,T) are traded.
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Price and Hedging a defaultable call

The savings account Y;" = 1, a risky asset with risk-neutral dynamics
dY; = Yi;odW; and a DZC of maturity T" with price D(t,T) are traded.
The reference filtration is that of the Brownian motion W.
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Price and Hedging a defaultable call

The savings account Y;" = 1, a risky asset with risk-neutral dynamics
dY; = Yi;odW; and a DZC of maturity T" with price D(t,T) are traded.
The reference filtration is that of the Brownian motion I¥. Then,

l)(t7 T) = Lt@(T > T‘ft) = Ltmt

with my — Q(T > T|ft) == E(G_AT|Ft), Lt = ]175<7- GAt.
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Price and Hedging a defaultable call

The savings account Y;" = 1, a risky asset with risk-neutral dynamics
dY; = Yi;odW; and a DZC of maturity T" with price D(t,T) are traded.
The reference filtration is that of the Brownian motion I¥. Then,

l)(t7 T) = Lt@(T > T‘ft) = Ltmt

with my — Q(T > T|ft) == E(G_AT|Ft), Lt = ]175<7- GAt.
The price of a defaultable call with payoff 17— (Y — K)T is

Cy = E(HT<’T(YT — K)+|gt) — ﬂt<T€AtE(€_AT (YT - K)ﬂ}_t)
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Price and Hedging a defaultable call

The savings account Y;" = 1, a risky asset with risk-neutral dynamics
dY; = Yi;odW; and a DZC of maturity T" with price D(t,T) are traded.
The reference filtration is that of the Brownian motion I¥. Then,

l)(t7 T) = Lt@(T > T‘ft) = Ltmt

with my — Q(T > T|ft) == E(G_AT|Ft), Lt = ]175<7- GAt.
The price of a defaultable call with payoff 17— (Y — K)T is

Cy = E(HT<’T(YT — K)+|gt) — ﬂt<T€AtE(€_AT (YT - K)ﬂ}_t)

Y

with m) = E(e 7 (Y — K)T|F).
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Price and Hedging a defaultable call

The savings account Y;" = 1, a risky asset with risk-neutral dynamics
dY; = Yi;odW; and a DZC of maturity T" with price D(t,T) are traded.
The reference filtration is that of the Brownian motion I¥. Then,

l)(t7 T) = Lt@(T > T‘ft) = Ltmt

with my — Q(T > T|ft) == E(G_AT|Ft), Lt = ]175<7- GAt.
The price of a defaultable call with payoff 17— (Y — K)T is

Cy = E(HT<’T(YT — K)+|gt) — ﬂt<T€AtE(€_AT (YT - K)ﬂ}_t)

Y

with m) = E(e 27 (Y — K)*|F;), hence

dC; = Lydm; —my L,_dM,
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In the particular case where ) is deterministic, m; = e ™7 and
dm; = 0. Therefore, D(t,T) = m;L; = L;e~*7 and

dD(t,T) = mydLy = —myLy_dM, = —e A L,_dM, .
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In the particular case where ) is deterministic, m; = e ™7 and
dm; = 0. Therefore, D(t,T) = m;L; = L;e~*7 and

dD(t,T) = mydLy = —myLy_dM, = —e A L,_dM, .
Furthermore,
m) = e ME(Yr — K)T|F) =e A1CY

where CY is the price of a call in the Black Scholes model.
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In the particular case where ) is deterministic, m; = e ™7 and
dm; = 0. Therefore, D(t,T) = m;L; = L;e~*7 and

dD(t,T) = mydLy = —myLy_dM, = —e A L,_dM, .
Furthermore,
m) = e ME(Yr — K)T|F) =e A1CY

where CY is the price of a call in the Black Scholes model.
This quantity is CY = C¥ (,Y;) and satisfies dC} = A,dY; where A, is
the Delta-hedge (A; = 9,CY (t,Yy)).
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In the particular case where ) is deterministic, m; = e ™7 and
dm; = 0. Therefore, D(t,T) = m;L; = L;e~*7 and

dD(t,T) = mydLy = —myLy_dM, = —e A L,_dM, .
Furthermore,
m) = e ME(Yr — K)T|F) =e A1CY

where CY is the price of a call in the Black Scholes model.
This quantity is CY = C¥ (,Y;) and satisfies dC} = A,dY; where A, is
the Delta-hedge (A; = 9,CY (t,Yy)).

Ct = Ltmf = Il.t<7-€At€_ATCY<t,Y;5)

= Lie MCY(t,Y;) = D(t, T)CY (t,Y3)
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From
C, = D(t,T)C (t,Y3)

we deduce

dC, = e AM(LdCY +CYdLy) = e A (L AdY; — CY Li_dMy)
— €_AT (LtAtd)/;g — CtYLt_th)
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From
C, = D(t,T)C (t,Y3)

we deduce
dC, = e AM(LdCY +CYdLy) = e A (L AdY; — CY Li_dMy)
— €_AT (LtAtd)/;g — CtYLt_th)
Therefore, using that dD(¢t,T) = m;dL; = —e T L,_dM; we get

Cy
D(t,T)

dCy = e M L,AdY, + CYdD(t, T) = e M LA dY; + dD(t, T
t
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From
C, = D(t,T)C (t,Y3)

we deduce
dC, = e AM(LdCY +CYdLy) = e A (L AdY; — CY Li_dMy)
— €_AT (LtAtd)/;g — CtYLt_th)
Therefore, using that dD(¢t,T) = m;dL; = —e T L,_dM; we get

Cy

dCy = e ML, A dY; + CYdD(t,T) = e M LA dY; + D T)

dD(t,T)

hence, an hedging strategy consists of holding % DZCs.
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In the general case, one obtains

iCy =~ aD(,T) + I M, + Ly dmY
t — D(t,T) ) t— mt t t— t

An hedging strategy consists of holding D%‘T) DZCs.
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Intensity approach

45



In intensity based models, the default time 7 is a stopping time in a
given filtration G, representing the full information of the market.
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Definition of the intensity process

e The process (H; = 1.<;, t > 0) is a G-adapted increasing cadlag
process, hence a GG-submartingale, and there exists a unique
G-predictable increasing process A%, called the G-compensator,
such that the process

M, = H, — A}

is a G-martingale. The compensator satisfies A¥ = A%, _.

e The process A® is continuous if and only if 7 is a G-totally

inaccessible stopping time.
e If 7 is predictable, M, = H, — H;, =0

A predictable stopping time T’ is a stopping time such that there exists
a sequence of stopping times 7,, so that 1T}, <1 and T,, — T

A totally inaccessible stopping time is a stopping time so that
P(T = S) = 0 for any predictable stopping time S.
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e In intensity based models, it is generally assumed that A® is
absolutely continuous with respect to Lebesgue measure, i.e., that
there exists a non-negative G-adapted process (A\¥,¢ > 0) such that

t
Mt :Ht —/ )\(SGCZS
0

is a G-martingale.

e This process A\® is called the G-intensity rate and vanishes after

time 7, i.e.,
tAT t
M, = H, — / ACds = H, — / (1 — H)A\Sds.
0 0

e One gets, under some regularity assumption,

1 .1
A\E = }lbli% EQ(t <7<t+h|G)= }lbli% Eﬂ{t<7}(@(7— <t+ h|G),

when the limit (a.s.) exists.
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Pricing rule for conditional claims

For X € Gp, integrable,
Eo(XT7r<r|Gt) = Lgiary (Vi — Eo(Ilr<ry AVZ|Gy))
where the process V' is defined by:
Vi = M Eg(Xe M(G,) = M Eg(Xe Mar|Gy).

and where AV, denotes the jump of V at 7,ie., AV, =V, —V__.

Using the intensity rate, the pricing rule becomes:

EQ(X]]'T<T|gt) — ]]'{t<T}EQ (Xe_ ftT A(S}dS

gt) - E@(]l{t<7§T} AVT|gt)
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Proof: Apply the integration by parts formula to the product U = V' L
(remark Ur = Lyp o X), with L, =1 — H,

dUt — (AVT) st + (Lt_dmt — %_th) )

(where dm; = e*tdY;, for Y; = e=*¢V}), which yields to
Ui = Eo(Licr<7 AV + Ur|G:).
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For example, whereas the price of a zero-coupon bond writes (if

Br = exp (— fot 7“st> denotes the savings account):
1

Gy gt) = Eg (6_ [ rads gt) ,

the price of a defaultable zero-coupon bond with no recovery and
. ﬂT<T
D (tv T) - BtE@

Br gt)
(e_ S (ro 23 )ds Qt) —Eq(l<r<ry AV,”|Gy)

B(t.T) = AiZo ( 5

notional 1 is:

= 11 Eg

where V,” = Eq(exp — fT/\TA ds|Gy).
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Density Approach
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We assume here that there exists a family of processes (a(u),u € RT)
such that

Gi(0) :=P(r > 0|F;) = /900 az(u)du

Note that, for any u, the process (a:(u),t > 0) is an F-martingale such
that [~ a¢(u)du = 1. One has

Gt Gt( ) (7' > t‘Ft)

We assume that G and «a does not vanish.
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e The Doob-Meyer decomposition of G is given by

/
Gy = 7, — / o, (u)du
0

where Z is the square-integrable martingale defined as

Z,—1- /Ot (a(u) — v (u)) du = E[/OOO v ()il .

e We define \; := Ogt(f). The process

t
H, — / (1 — Hy)Aods
0

is a G-martingale
e The multiplicative decomposition of G is given by

t t
Gy = nge Jo Xsds  where dn; = elo Asds 7.
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The G;-conditional expectation of f(7) is given by

E[f()|Ge] = ot (f) Lirssy + f(7) Lir<ny

where
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More generally, the G;-conditional expectation of any integrable

Fi ® o(7)-measurable r.v. Y;(7), is given by
E[Y:(7)|Ge]) = o (Vi) Lrsy + Yi(7) Tray

where

Ji~ Yi(u)ou(u)n(du)

AP (i) = -
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For any T' > t, let Y (0) be a function Fr ® B-measurable

Then,
E[YT(T)‘gt]ﬂ{TSt} — Y;ad(T, T)]l{rgt} dP — a.s..

where

E[Yr(0)ar(0)|F]

Y;tad(Tv 0) := Oét(e)

dP — a.s..

57



Assume that S = (gt,t < T) is an R™"? valued process constructed on
(2, A,P), SY denoting the saving accounts, and G is the natural
filtration generated by S.

We emphasize that P is a probability measure defined on A.

We denote by OF (§ ) the set of G-e.m.ms, i.e., the set of probability
measures Q defined on A, equivalent to P on A, such that the
discounted process (S;/SY,t < T) is a (G, Q)-local martingale.

In what follows, we assume that SY = 1.
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Assume that F is the natural filtration of the R®T!-valued process S
and that this market is complete. Let P* be an e.m.m. (the restriction
of P* to F is unique) For every X € M (G,P*), there exists two
G-predictable process 8 and v such that

dX; = %dgt + BedM;.

There exists a probability Q € ©%. (S) such that immersion property
holds under QQ
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If the market generated by .S is incomplete, we assume that the market

chooses an e.m.m. P*. We assume that a default sensitive asset S™12 is
traded.

~

There exists a unique G-e.m.m. Q €68, (5), that preserves Fr, i.e.,
EY (X7) =E* (X7),

for any Xt € L? (Fr).
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