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The Model
In the sequel,
e (2,G,G,P) is a filtered probability space,
e The process W is a G Brownian motion with natural filtration IF,
e 7 is a (G-stopping time,

e We assume G =F V H

t
o M, =H; — / (1 — Hs)Asds is the compensated (P, G)-martingale.
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1. Two default free assets, one defaultable asset
1.1 Two default free assets, one total default asset

1.2 Two default free assets, one defaultable with recovery

2. Two defaultable assets
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Two default-free assets, one defaultable asset

We present a particular case where there are two default-free assets

e the savings account Y'! with constant (or deterministic) interest rate r
e an asset with dynamics

dY? = Y72 (g ¢dt + oo dWy)

where the coeflicients us, 09 are G-adapted processes
e a defaultable asset

dy;? = Ki(ﬂ?»,tdt + 03,4 dWy + K3 dMy)

where the coeflicients u3, 03, k3 are G-adapted processes with k3 > —1.



Our aim is to hedge defaultable claims. As we shall establish, the case
of total default for the third asset (i.e. k3 = —1) is different from the
others.



Two default-free assets, a total default asset

Assume that Y3 is a defaultable asset with zero recovery, so that

dy,t! = rYldt,
dYy? = Y7 (uadt + o2 dWy),
dY;? = Y (usdt + o5dW, — dMy).

that Y1 = Y*/Y! are martingales is
d@‘gt — Lth|Qt y

where

st — Lt_(thWt —|— Ctht)
The unknown processes 6 and ¢ in the Radon-Nikodym density of QQ

with respect to P satisty the following equations

o — 1+ o020, = 0,
3 —r+o36; —AG = 0, fort<T.
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Hence, the unique solution is

r— U2
02

0 =

(A = ILL3—T+0'3T_M2, fort <7
02

as soon as ¢ > —1.
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Under Q, the processes

t
Wt* = Wt—/ est
0

t t
M= Mt—/ (1—H8)>\8§8ds:Ht—/ (1= H)M\ds
0 0

where
A= (14 G)

are G-martingales.
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Here, our aim is to hedge survival claims (X,0,7), i.e. contingent
claims of the form X1, where X € Frp.
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Here, our aim is to hedge survival claims (X,0,7), i.e. contingent
claims of the form X1, where X € Frp.

The price of the contingent claim is

Cy = G_T(T_t)]EQ(XﬂT<T‘gt)
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Here, our aim is to hedge survival claims (X,0,7), i.e. contingent
claims of the form X 17, where X € Fr.

The price of the contingent claim is

Cy = G_T(T_t)]EQ(XﬂT<T‘gt)

The hedging strategy consists of a triple ¢!, ¢!, ¢> such that
6;Y; =Cr, e + Yy =0

and which satisfies the self financing condition.
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PDE Approach

We are working in a model with constant (or Markovian) coefficients

dY, = Yrdt
dY? = Y7 (uqdt + oodWy)
dY;? = Y7 (usdt + o3dW; — dM;) .

In other terms, o; = o;(¢,Y;?,Y;?, Hy).
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PDE Approach

We are working in a model with constant (or Markovian) coefficients

dY, = Yrdt
dY? = Y7 (uqdt + oodWy)
dY;? = Y7 (usdt + o3dW; — dM;) .

In other terms, o; = o;(¢,Y;?,Y;?, Hy).

Let C(t,Y?,Y? H;) be the price of the contingent claim G(YZ, Y2, Hr)
and A\* be the risk-neutral intensity of default.
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Then,
0:C(t,y2,Y3;0) + ry202C(t, y2, y3; 0) + 7y305C (L, y2,y3; 0) — rC(¢, y2, y3; 0)

3
1 x
+3 Z 0i0;3Yiy;0i;C (L, y2, ys; 0) + A" C(¢, y2,0;1) = 0
ihj=2

where 7 = r + \*
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Then,
0:C(t,y2,Y3;0) + ry202C(t, y2, y3; 0) + 7y305C (L, y2,y3; 0) — rC(¢, y2, y3; 0)

3
1 x
+3 Z 0i0;3Yiy;0i;C (L, y2, ys; 0) + A" C(¢, y2,0;1) = 0
ihj=2

where 7 = r + \* and

1
0C(ty2; 1) + ry20:0(t Y23 1) + 50545025 C (1,423 1) = rC (L, 23 1) = 0
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Then,

0:C(t,y2,Y3;0) + ry202C(t, y2, y3; 0) + 7y305C (L, y2,y3; 0) — rC(¢, y2, y3; 0)

3
1
+ 5 E 0:0;4:Y;0i;C(t,y2,ys3;0) + A*C(t,y2,0;1) =0
1,j=2

where 7 = r + \* and
1
0C(ty2; 1) + ry20:0(t Y23 1) + 50545025 C (1,423 1) = rC (L, 23 1) = 0
with the terminal conditions

C(T,y2,y3;0) = G(y2,y3;0), C(T,y2;1) = G(y2,0;1).
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The replicating strategy ¢ forY is given by formulae

G YL = —AC(t):=—C(t,Y720;1) +C(t, Y72, Y5 0)
3

0207Y) = —AC(t)+ ) Y/ 0:0,C(t)
1=2

oY, = Ct)— Y7 — Y.
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The replicating strategy ¢ forY is given by formulae

$;Yy = —AC(t):=—-C(t,Y70;1) + C(t, Y7, Y ;0)
3

0207Y) = —AC(t)+ ) Y/ 0:0,C(t)
1=2

6 Y, = Ct) = ¢}y — @Yy

Note that, in the case of survival claim, C(t,Y;?,0;1) = 0 and
7Y =C(t, Y2, Y2 ;0) for every t € [0,T].

21



The replicating strategy ¢ forY is given by formulae

$;Yy = —AC(t):=—-C(t,Y70;1) + C(t, Y7, Y ;0)
3

0207Y) = —AC(t)+ ) Y/ 0:0,C(t)
1=2

6 Y, = Ct) = ¢}y — @Yy

Note that, in the case of survival claim, C(t,Y;?,0;1) = 0 and
¢}Y? = C(t, Y2 ,Y? :0) for every t € [0,T]. Hence, the following
relationships holds, for every t < 7,

oY =C(t, Y2, Y720), oV +¢7Y7 =0.
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The replicating strategy ¢ forY is given by formulae

$;Yy = —AC(t)=-C(t,Y7,0;1) 4+ C(t, Y72 Y2 ;0)
3

027Y) = —AC(t)+ ) Y] 0:0,C(t)
1=2

oY, = Ct) = ¢}y — Yy

Note that, in the case of survival claim, C(¢,Y;?,0;1) = 0 and
¢}Y? = C(t, Y2 ,Y? :0) for every t € [0,T]. Hence, the following

relationships holds, for every ¢t < 7,
6Y) = C(t.Y2,Y0), &Y, + 67y =0.

The last equality is a special case of the balance condition. It
ensures that the wealth of a replicating portfolio falls to 0 at default

time.
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Example 1

Assume that A\* is a constant. Consider a survival claim
Y =1lireny g(Y?). Tts pre-default pricing function
C'(t,y2,y3;0) = CI(t,y2) where C9 solves
1
0:CY(t,y;0) + rydxC(t, y;0) + §0§y282209(t, y;0) — rC(t,y;0)
CIT,y;0) = g(y)

|
-

The solution is
O (ty) = T OO (1, ) = AT €02 (1),

where C™9-2 is the price of an option with payoff ¢(Y7) in a BS model

with interest rate r and volatility os.
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Example 2

Consider a survival claim of the form
Y = GOV Vi He) = Ligenyo(V)
Then the pre-default pricing function C9(-;0) is
C9(t, ya,y3;0) = CT9 (L, y3)

where C*93(t,y) is the price of the contingent claim g(Y7) in the
Black-Scholes framework with the interest rate o and the volatility

parameter equal to os.
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Two default-free assets, one defaultable asset with
Recovery, PDE approach

Let the price processes Y, Y2 Y3 satisfy

dy," = rYl'dt
dY? = Y2(uadt + oodWy)
dY? = Y2 (usdt + o3dW, + ksdM,)

with oo # 0. Assume that k3 # 0, kg3 > —1.

We also assume that the model is Markov.
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The martingale
st — Lt_ (thWt —|— Ctht)

is an e.m.m. if

0, = 02_1(/12—”
3 —r+o30; +k3G; = 0, ont<T
s —r+o36; = 0, ont>rT

with the condition ¢ > —1. Hence

g3 —7r  H2—T
03 09

ont >r1

In the particular case where the coefficients are deterministic functions
of time, ( =0
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Under Q,
¢
0

is a G-martingale, with A\f = \;(1 + ()
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Then the price of a contingent claim Y = G(Y#,Y2, Hy) can be
represented as C(t,Y,?,Y;?; H;), where the pricing functions C(-;0) and
C'(-; 1) satisfy the following PDEs

0:C(t,y2,ys3; 1) +1y202C (T, y2,y3: 1) + 1y303C (¢, y2,y3;1) — rC(t,y2,y3; 1)

3
1
+5 .22 0;0;YiY;0i;C(t,y2,y3;1) = 0
)=
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Then the price of a contingent claim Y = G(Y#,Y2, Hy) can be
represented as C(t,Y,?,Y;?; H;), where the pricing functions C(-;0) and
C'(-; 1) satisfy the following PDEs

0:C(t,y2,ys3; 1) +1y202C (T, y2,y3: 1) + 1y303C (¢, y2,y3;1) — rC(t,y2,y3; 1)

3
1
+5 .22 0;0;YiY;0i;C(t,y2,y3;1) = 0
)=

and

0:C(t,y2,93;0) + ry202C(t, y2,93;0) + y3 (r — k3A") O3C(t, Y2, y3;0)
3
1
— rC(t,y2,93;0) + 5 Z 0:0;YiY;50i;C (L, Y2, ys;0)
i,j=2
+A(C(t, y2,y3(1 + k3); 1) — C(t,y2,93;0)) =0
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Then the price of a contingent claim Y = G(Y#,Y2, Hy) can be
represented as C(t,Y;?,Y;?; H;), where the pricing functions C(-;0) and
C'(-; 1) satisfy the following PDEs

0:C(t,y2,ys3; 1) +1Y202C(t,y2,y3: 1) + 1y305C (¢, y2,y3; 1) — rC(t,y2,y3; 1)

3
1
+ 5 '22 0;0;9iY;j0i;C (L, y2,y3;1) = 0
6=

and

0:C(t,y2,93;0) + ry202C(t, y2,93; 0) + y3 (r — k3A") O3C (¢, y2, y3;0)

3
1
= 1Ot Y2, 93:0) + 5 D 0i059iy;05C(t y2, s; 0)
=2

+ A (C(ta Y2, yS(l + KS); 1) - C(ta Y2, Y3, O)) =0
subject to the terminal conditions

C(T,y2,y3;0) = G(y2,¥3,0), C(T,y2,93;1) = G(y2,¥3,1).
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The replicating strateqy equals ¢ = (qﬁl, 2, ¢3)

3
1
2 2 3
= :0,C(t, Y Y H;_
on 02/4631@2 ("33;0y ( t s 1¢ t )
— 03 (C(taY;?’}/tg_(l T ’{3); 1) o C<t7Y;27Y;:3—;O)>) )
1
qb? — V3 (C(t,Y;Q,Y;S_(l _'_"433)31) —C(t,Yf,Yf_;O)),

and where ¢} is given by o1 Y, + 7Y + @7V = C.
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Example: constant coeflicients Consider a survival claim of the

form

Y = G<Y’1%7Y’1§7HT> — Il{T<7'}g(YvT§)

Then the post-default pricing function C9(-;1) vanishes identically,
and the pre-default pricing function CY9(-;0) solves

8t09(-;0) + Tygﬁgcg(';()) + Y3 (7“-/433)\) 8309(';0)

3
1
+ oS G050 (-50) — (r+ A)C(-50) = 0

ij=2
O (T7 Y2, Y3; 0) — g(y3)
Denote a = r — k3A and B = A(1 + k3).

Then, C9(t,1y2,y3;0) = T C*93(t,y3) where C*93(t,y) is the
price of the contingent claim ¢(Yr) in the Black-Scholes framework with

the interest rate a and the volatility parameter equal to os.
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Let C; be the current value of the contingent claim Y, so that
C, = ﬂ{t<7}€B<T_t)Ca’g’3(t,yg).

The hedging strategy of the survival claim is, on the event {t < 7},

¢3y3 _ _ie—B(T—t)COé,g,S(t Y3) _ _igt
t-t K3 A K3 Y
P = (Ve T0,000%n YR — o).
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Hedging of a Recovery Payoff
The price CY of the payoff G(YZ, Y3, Hr) = Lyr>,19(Y7) solves

:C9(- 3 1) + 1y, C9 (- ; )+502y2ayy09( )= rC9(:1) = 0

CYT,y;1) = g(y)

hence CY(t,y2,y3,1) = C™92(t,ys) is the price of g(Y#) in the model
Y1 Y?. Prior to default, the price of the claim solves

8,C9(0) + rygazcg( 0) + y3 (r — K3A) 93C9(-;0)

1
T3 Z 0i0jyiy;0i; C7(-;0) = (r + AN)CI(-50) = =ACY(t, y2; 1)
i,j=2
CQ(T, y279350) = 0

Hence — C9(t,ya,y3;0) = (1 — X=T)CM92(L, yo).

35



Two defaultable assets with total default

Assume that Y! and Y2 are defaultable tradeable assets with zero

recovery and a common default time 7.
dY; =Y} (udt + o;dWy — dM,),i = 1,2

Then
V' = IanY, Y9 =Y
with
dY; = Y (s + A\)dt + o;dWy),i = 1,2
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The wealth process V' associated with the self-financing trading strategy
(¢h, ¢*) satisfies for ¢ € [0, T]

t
vim vy (Vi [ etarzt)
0

v2,1 __ v2 /71
where Y, = Y7 /Y, .

Obviously, this market is incomplete, however, some contingent

claims are hedgeable, as we present now.
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Hedging Survival claim: martingale approach

A strategy (¢', $°) replicates a survival claim C' = X1, -7, whenever

we have
T
%, (V01 +/ 2 de’l) — X
0
for some constant ‘701 and some F-predictable process ¢?.

It follows that if o1 # 02, any survival claim C' = X1, -7y is

attainable.

Let @ be a probability measure such that f//f’l is an F-martingale under
(). Then the pre-default value U;(C') at time t of (X,0,7) equals

U/(C) =Y} Eg (X(VA ' 7).
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Example: Call option on a defaultable asset We assume that

Y,! = D(t,T) represents a defaultable ZC-bond with zero recovery, and
Y2 = H{KT}?E is a generic defaultable asset with total default. The
payoff of a call option written on the defaultable asset Y? equals

Cr = (Y3 — K)* = Lipery (V2 — K)

The replication of the option reduces to finding a constant x and an

F-predictable process ¢? that satisfy

~

T
x +/ o2 dy;t = (Y2 - K)*t.
0

Assume that the volatility o1 + — 02+ of Y21 is deterministic. Let
Fy(t,T) = Y2(D(t,T))™"
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The credit-risk-adjusted forward price of the option written on Y2

equals
Cr = YN (dy (Fa(t,T),t,T)) — KD(t, T)N (d_ (Fy(t, T),t,T)),

where N
Inf—InK =+ 30, T)
v(t,T)

d:l: (f) ta T) —
and

T
V2(4,T) = / (010 — 9.0)? .
t

Moreover the replicating strategy ¢ in the spot market satisfies for
every t € [0,T], on the set {t < 7},

o1 = —KN(d_(Fy(t,T),t,T)), ¢? =N (dy(Fa(t,T),t,T)).
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Hedging Survival claim: PDE approach

Assume that o1 # 05. Then the pre-default pricing function v satisfies
the PDE

9,C + y, (M1+)\—01M2_M1)810+y2 (u2+A—ag“2_“1>ago

02 — 01 02 — 01

1 —_
+ 5 (y%0%5110 + y505022C + 2y1y201028120> _ (Ml FA— oy 52 /;1) o
2 — U1

with the terminal condition C(T,y1,y2) = G(y1,y2).
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