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Objectives

1. Valuation of Credit Default Swaps
2. Hedging of Defaultable Claims with a CDS
3. Hedging of First-to-Default Claims with CDSs

4. Hedging of Basket Credit Derivatives with CDSs



Credit Default Swaps
Defaultable Claims
A generic defaultable claim (X, A, Z, 7) consists of:

1. A promised contingent claim X representing the payoff
received by the owner of the claim at time 7', if there was no default

prior to or at maturity date T'.
2. A process A representing the dividends stream prior to default.

3. A recovery process Z representing the recovery payoff at time of

default, if default occurs prior to or at maturity date 7'

4. A default time 7, where the use of the term default is merely a

convention.



Dividend Process

The dividend process D describes all cash flows associated with a

defaultable claim (except for the initial price of a claim at time 0).

Definition 1 The dividend process D of a defaultable claim
(X, A, Z,7) maturing at T equals, for everyt € [0,T],

Dy = XWromlip oof(t) + /

(1— H,)dA, + / Z, dH,.
10,1]

10,t]

Note that the process D has finite variation on [0, T].



Ex-dividend Price

The ex-dividend price S; of a defaultable claim is aimed to represent
the current value at time ¢ of all dividend payments occurring during
the time period |t, T'.

Let the process B represent the savings account.

Definition 2 The ex-dividend price process S associated with the

)

dividend process D satisfies, for every t € [0,T],

S, = B, Eg- (/ B 'dD,
J¢,T]

where Q* 1s a spot martingale measure.



Cumulative Price

The cumulative price §t is aimed to represent the current value at time
t of all dividend payments occurring during the period |¢, T] under the
convention that they were immediately reinvested in the savings

account.

Definition 3 The cumulative price process S associated with the

dividend process D satisfies, for every t € [0,T],

§t:BtEQ*</ quldDu gt):St+ﬁt
]0,T]

where lA?t equals

D; = Bt/ B;'dD,, Vtelo,T].
10,1



Credit Default Swap

Definition 4 A (stylized) credit default swap with a constant rate K
and recovery at default is a claim (0, A, Z,7), where Z =9 and
At = —Kt.

e An F-predictable process 0 : [0, T] — R represents the default

protection stream.

e A constant k represents the CDS spread. It defines the fee leg,

also known as the survival annuity stream.

Lemma 1 The ex-dividend price of a CDS maturing at T equals

gt) ~ Eo- (n{tq}ﬁ;((f AT) —t) ‘ gt)

where Q* 1s a spot martingale measure and B = 1.

St(’%) — EQ* (]l{t<T§T}5T




Hazard Process Approach
Standing assumptions:

e The default time 7 is a non-negative random variable on (£2,G, Q*),

where Q* is a spot martingale measure.
e The default process H; = ll;,<;, generates the filtration H.

e Weset G =IFVH, sothat G; = F; V 'H;, where F is a reference
filtration.

e We define the risk-neutral survival process G; as
Gt :Q*{T >t‘ft}

e We assume that the hazard process I' equals

¢
Ft:—lnGt:/ Yo dU
0

where 7 is the default intensity.
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Ex-dividend Price of a CDS

Recall that the survival process G; satisfies
t
Gy =Q{r > t|F} :exp(—/ ’yudu).
0

We make the standing assumption that Eg-

dr| < o0.

Lemma 2 The ex-dividend price at time t € [s,T] of a credit default

swap started at s, with rate k and protection payment 0, at default,
equals

1 t T .
St(/{) — a EQ* (/t 5u dGu — ’{/t Gu du ‘ Ft) — ]l{t<7'} St(’{>

where Sy(k) is the pre-default ex-dividend price.
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Market CDS Rate

The market CDS rate is defined similarly as the forward swap rate in a
(default-free) interest rate swap.

Definition 5 The T-maturity market CDS rate k(t,T) at time t is the

level of a CDS rate k for which the values of the two legs of a CDS are
equal at time t.

By assumption, k is an Fi-measurable random variable.

The T-maturity market CDS rate s(t,T) is given by the formula

g ( [T 6, dG,, | ]—“t)

k(t,T) = — Eq. <ftT G du| ]__t)

, Vtel0,T].

We fix a maturity date 1T', and we shall frequently write x; instead of
k(t,T).
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Single Name: Deterministic Default Intensity

Ex-dividend Price of a CDS
Standing assumptions:

e Assume that F is trivial, and the survival function G(t) satisfies

G(t)=Q"{r >t} =exp ( -~ /Otv(u) du).

e We postulate that the default protection ¢ : [0,7] — R is

deterministic.

In that case, the ex-dividend price at time ¢t € [0,T] of a CDS with the

spread k and protection payment §(7) at default equals

Si(k) = Ngpery %t) (/t d(u) dG(u) — /ﬁl/t G(u) du) = len Sy (k).
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Market CDS Rate

e The T-maturity market CDS rate x(¢,7T") solves the following

equation
T
/ 5(u) dG(u) + K(t, T) / Glu
t

e We thus have, for every ¢ € [0, T],

Ji" 8(w) dG(u)
fT G(u) du

t

k(t,T) = —

e We fix a maturity date T, and we write briefly x(¢) instead of
k(t,T).

e In addition, we assume that all CDSs with different starting dates

have a common recovery function 0.
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Market CDS Rate: Special Case

Assume that §(¢) = § is constant, and F(t) =1 — e " for some

constant default intensity v > 0 under Q*.

The ex-dividend price of a (spot) CDS with rate x equals, for every
t e |0,T],

St(k) = Lypery (07 — K)y (1 - B_W(T_t))-

The last formula yields (s, T) = d~ for every s < T, so that the

market rate k(s,T) is here independent of s.

As a consequence, the ex-dividend price of a market CDS started at
s equals zero not only at the inception date s, but indeed at any
time t € [s,T], both prior to and after default).

Hence, this process follows a trivial martingale under Q*.
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Price Dynamics of a CDS

The following result furnishes risk-neutral dynamics of the ex-dividend
price of a CDS with spread x and maturity 7.

Proposition 1 The dynamics of the ex-dividend price S¢(k) on [s,T]
are

dSi(k) = =S;_ (k) dM; + (1 — Hy)(k — §(t)v(t)) dt

where the H-martingale M under a spot martingale measure Q* is

given by the formula

t
0

Prior to default, we have
43,(k) = Su(k) () dt + (1 — 6(8)(1)) dt.

At default, the ex-dividend price process jumps to 0.

16



Replication of Defaultable Claims
We assume that the following two assets are traded:
e a CDS with maturity U > T,
e the constant savings account B = 1 (this is not restrictive).

Let ¢V, ¢! be an H-predictable processes and let C': [0,7T] — R be a
function of finite variation with Cy = 0.

Definition 6 We say that (¢,C) = (¢°, ¢*, C) is a trading strategy
with financing cost C if the wealth process V (¢, C'), defined as

Vi(9,C) = ¢} + ¢y Si(w),
where Si(k) is the ex-dividend price of a CDS at time t, satisfies
dVi(¢, C) = ¢y (dSi(k) + dDy) — dC(t)
where D 1s the dividend process of a CDS.
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Recall that a generic defaultable claim (X, A, Z, 7) consists of
1. a promised claim X,
2. a function A representing dividends stream,
3. a recovery function Z,

4. a default time 7.

Definition 7 A trading strategy (¢, C) replicates a defaultable claim
(X, A, Z, 7) if:

1. the processes ¢ = (¢°, d) and V (¢, C) are stopped at 7 AT,
2. C(t Nt)=A(T At) for every t € [0,T],

3. we have Voar(¢,C) =Y, where the random variable Y equals

Y = X1 oy + Z(7)Lr <1y
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Risk-Neutral Valuation of a Defaultable Claim

e Let us denote, for every t € [0, T,

Z(t) = ﬁ (XG(T) - /t Z(u) dG(u))

Aft) = % | Gwaaw)

e Let m and 7 be the risk-neutral value and the pre-default

and

risk-neutral value of a defaultable claim, so that m; = Iy 7(¢) for
t e [0,T].

e Let 7 stand for the risk-neutral cumulative value

7, :BtEQ*(/ B-1dD, gt).
Jo.7]

e It is clear that w(0) = 7(0) = 7(0).
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Price Dynamics of a Defaultable Claim

Proposition 2 The pre-default risk-neutral value of a defaultable claim
(X, A, Z,T) equals
()= Z(t) + A(t)
and thus
dr(t) = ~(t)(w(t) — Z(t)) dt — dA(2).

Moreover
dmy = —7(t—)dM; — ~v(t)(1 — Hy) Z(t) dt — dA(t A\ T)

and
dmy = (Z(t) — 7(t—)) dM;.
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Replication of a Defaultable Claim

Proposition 3 Assume that the inequality §t(/£) # 0(t) holds for every
t e [0,T].

Let ¢} = 51(7‘ At), where the function b1 : 0, T] — R is given by the
formula

Z(t) —m(t—)
5(t) — Si(k)
and let ¢ = Vi(¢, A) — ¢+ S;(k), where the process V (¢, A) is given by
the formula

b1 (t) =

, Vtelo,T],

Vi(d, A) = 7(0 >+/ F1(w) dSu(r) — A(t A7),

10,7 At]
Then the strategy (¢°, ¢*, A) replicates a defaultable claim (X, A, Z,T).
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Several Names: Deterministic Default Intensities
First-to-Default Intensities and Martingales

Assumptions and Objectives

Let 7q,..., 7, be default times of n reference entities.

Assume that:
1. The joint distribution of default times (7, ..., 7,) is known.

2. The protection payments at default are known functions of time,
number of defaults and names of defaulted entities.

3. Single-name CDSs for n reference entities are traded.

We will argue that it is possible to replicate a basket CDS with
single-name CDSs under mild technical assumptions of non-degeneracy
(a system of linear equations).

It suffices to consider the case of a first-to-default claim and then to use

the backward induction.
292



Default Times and Filtrations

e Let 74,70,...,7, be the default times associated with n names,

respectively.
o Let
F(ti,ta, ... tn) =Q (1 <t1,m0 <tg,..., 7 < to)
denote the joint distribution function of the default times

associated with the n names.

e For each 1 =1,2,...,n we define the default indicator process for

the ith credit name as H; = 1y <41 and the o-field
H: =o(H! :u < t).
e We write
G=H'VH*V---VH"

and
G =H'vV...vH'vH*T v...VH"

sothat G=G*VH' fori=1,2,...,n.
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First-to-Default Intensities

Definition 8 The ith first-to-default intensity is the function

~ 1 Q*t<m <t+h|m >t,...,75_1>t,T01>1,...,7, >1)

Ai(t) = lim —
Z() thh Q*(Tz’>t|7—1>t7"'7Ti—1>t77-7:‘|‘1>t7""7-n>t)

N RN
:%{%EQ (t<7'7;§t—|—h’7'(1) > 1),

Definition 9 The first-to-default intensity \ is defined as the sum
A=Y N, or equivalently, as the intensity function of the random

time (1) modeling the moment of the first default.
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First-to-Default Martingales

e Let \' be the G*-intensity of the ith default time. The process M*
given by the formula

t
Mg?:Hg?—/ (1—H)N du, YtecR,,
0

is known to be a G-martingale under Q*.

e A random time 71 is manifestly a G-stopping time. Therefore, for

each 1 =1,2,...,n, the process ]\/4\75, given by the formula
. . . t —~
My = Min; = Hir —/O Lir supi(u) du, Vie Ry,

also follows a G-martingale under Q*.

e Processes ]\/4\ ¢ are referred to as the basic first-to-default

martingales.
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Traded Credit Default Swaps

e As traded assets, we take the constant savings account and a family

of single-name CDSs with default protections 0; and rates ;.

e For convenience, we assume that the CDSs have the same maturity
T', but this assumption can be easily relaxed. The ith traded CDS
is formally defined by its dividend process

D;?:/ 5 (u) dHT — ri(t A7), Vte[0,T).
(0.1

e Consequently, the price at time ¢ of the ith CDS equals
S;(KJZ) — EQ* (ﬂ{t<7¢§T}5i(7—i) ’ Qt) — Ry E@* (ﬂ{t<n~} ((Tz/\T) —t) | (jt) .

e To replicate a first-to-default claim, we only need to examine the
dynamics of each CDS on the interval |0, 71y A T].
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The Value of a CDS at Default

e For any j # i, we define a function SZ| (k;),t € ]0,T], which
represents the ex-dividend price of the :th CDS at time ¢ on the
event {7(1) = 7; = t}.

e Formally, this quantity is defined as the unique function satisfying

]1{7(1>=Tj§T}S;(1)|j(/{") Lz, = TJ<T}ST(1)( i)
so that

]1{T<1><T}ST< 1) i) Z Liry= TJ<T}ST(1>IJ(“’L)
JFu

e Let m = 2. Then the function Sl|2(/<,1) t € 0,71, is the price of the
first CDS at time ¢ on the event {71) = 7 = t}.

Lemma 3 The function S})|2(/<:1), v € [0,T], equals

LS fluo)du [ du [ f(z,0) de
[ fuvyde 0 [T fwv)du

27
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Price Dynamics of the ith CDS
Proposition 4 The dynamics of the pre-default ex-dividend price
St(k;) are

~ ~

dSi (ki) = Ni(t) (Si (ki) = 6:()) dt+ Y Xj(t) (S (k) — S (k1)) dt + ks dt.

The cumulative ex-dividend price of the ith CDS stopped at T(1y satisfies

AN .

t

SZ(KJ'L) — Sz(li@)+/ 5 dHTZJ,/\T( )+Z/ SZ ulj K"L dHu/\’T(l) (T(l)/\t)7
0

J#1

and thus

dS (ki) = (5:(1) = Si_(r:)) AM{ + Y (S} (ki) — S}_(r:)) M.
J 70

28



Replication of First-to-Default Claims

Definition 10 A first-to-default claim (an FTDC, for short) on a
basket of n credit names is a defaultable claim (X, A, Z,7(1y), where

1. X 18 a constant amount payable at maturity if no default occurs,

2. A:|0,T] — R with Ay = 0 is a function of bounded variation
representing the dividend stream up to 71y,

3. Z = (Ly,Z9,...,Zy), where a function Z; : |0,T] — R specifies the
recovery payment made at the time 7; if the ith firm was the first
defaulted firm, that is, on the event {7; = 71y < T'}.
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Pricing of an FTDC

Proposition 5 The pre-default risk-neutral value of an FTDC equals

N Uit) Gy (T)
t)_zzl Goy(t) G(l) /G(l) )dA()+XG<1>()

where
Lz—t /ul =U4 /uz 1=U; Lz—}—l =U4 Ln—uz

F(duy,...,du;—1,du;, duiyq, ..., duy).
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Price Dynamics of an FTDC

Proposition 6 The pre-default risk-neutral value of an FTDC satisfies
=Y N (F(t) — Zi(t)) dt — dA(2).
i=1

Moreover, the risk-neutral value of an FTDC satisfies

n

dry =Y (Zi(t) — 7(t—)) M} — dA(r(1) A ),

i=1
and the risk-neutral cumulative value ™ of an FTDC satisfies

n

B =" (Z(t) — 7 () A,

1=1
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Self-financing Strategies with CDSs

e Consider a family of single-name CDSs with default protections §;
and rates ;.

e For convenience, we assume that they have the same maturity 1';
this assumption can be easily relaxed.

Definition 11 A trading strateqy ¢ = (¢°, o1, ..., "), in assets
(B, SY(k1),...,8™(kyn)) is self-financing with financing cost C if its
wealth process V(¢), defined as

Vilg) = &) + > 1S (),
1=1

satisfies

dVy(¢) =) ¢} (dSi(k:) + dD}) — dCy,
1=1

where S*(k;) is the ex-dividend price of the ith CDS.
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Standing Assumption

e We assume that det N(t) # 0 for every t € [0, 7], where

~

01(0) = 5 (1) SAu(nd) = BE(Ra) - Sih(ma) — S (k)
Ny | Siale) = 8Hm) 82 = S2s2) o Siale) B ()
| Shu () = Sim) 82, (60) = SFm) . 0u(8) = 5y ()

o Let g(t) — (51(”752@)7 T

equation

where h(t) = (hi(t), ha(t),

,571(15)) be the unique solution to the

~

N(t)o(t) = h(t)
o ha() with hi(t) = Zi(t) — 7(t—).
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Replication of an FTDC

Proposition 7 Let the functions 51, 52, e $n satisfy fort € [0,T]

Gi(t)(8:(t) — Si(ra)) + D 65 (8) (S, (k) — S (ry)) = Zilt) — 7 (t—).
JF#i

Let ¢t :57;(7(” At) fori=1,2,...,n and
b} = Vi(o, A Z%SZ ki), Yt €(0,T],

where the process V (¢, A) is given by the formula

Vi(o, A) = 7( +Z / St (ki) — ATy At).

0 ’7'(1) /\t

Then the trading strategy (¢, A) replicates an FTDC (X, A, Z, 11)).
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Final Remarks
In a single-name case:

e we first considered the case of a default time with a deterministic
intensity,

e we have shown that a generic defaultable claim can be replicated by
dynamic trading in a CDS and the savings account,

e the extension to the case of non-trivial reference filtration was not

presented.
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In a multi-name case:

e we first considered the case of a finite family of default times with

known joint distribution,

e the replicating strategy for a first-to-default claim was examined;
the method can be extended to kth-to-default claims,

e in the next step, the approach was extended to the case of a
reference filtration generated by a multi-dimensional Brownian

motion.
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