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Objectives

1. Valuation of Credit Default Swaps

2. Hedging of Defaultable Claims with a CDS

3. Hedging of First-to-Default Claims with CDSs

4. Hedging of Basket Credit Derivatives with CDSs
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Credit Default Swaps

Defaultable Claims

A generic defaultable claim (X, A, Z, τ) consists of:

1. A promised contingent claim X representing the payoff
received by the owner of the claim at time T, if there was no default
prior to or at maturity date T .

2. A process A representing the dividends stream prior to default.

3. A recovery process Z representing the recovery payoff at time of
default, if default occurs prior to or at maturity date T .

4. A default time τ , where the use of the term default is merely a
convention.
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Dividend Process

The dividend process D describes all cash flows associated with a
defaultable claim (except for the initial price of a claim at time 0).

Definition 1 The dividend process D of a defaultable claim
(X, A, Z, τ) maturing at T equals, for every t ∈ [0, T ],

Dt = X11{τ>T}11[T,∞[(t) +
∫

]0,t]

(1 − Hu) dAu +
∫

]0,t]

Zu dHu.

Note that the process D has finite variation on [0, T ].
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Ex-dividend Price

The ex-dividend price St of a defaultable claim is aimed to represent
the current value at time t of all dividend payments occurring during
the time period ]t, T ].

Let the process B represent the savings account.

Definition 2 The ex-dividend price process S associated with the
dividend process D satisfies, for every t ∈ [0, T ],

St = Bt EQ∗
(∫

]t,T ]

B−1
u dDu

∣∣∣Gt

)
where Q∗ is a spot martingale measure.
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Cumulative Price

The cumulative price Ŝt is aimed to represent the current value at time
t of all dividend payments occurring during the period ]t, T ] under the
convention that they were immediately reinvested in the savings
account.

Definition 3 The cumulative price process S associated with the
dividend process D satisfies, for every t ∈ [0, T ],

Ŝt = Bt EQ∗
(∫

]0,T ]

B−1
u dDu

∣∣∣Gt

)
= St + D̂t

where D̂t equals

D̂t = Bt

∫
]0,t]

B−1
u dDu, ∀ t ∈ [0, T ].
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Credit Default Swap

Definition 4 A (stylized) credit default swap with a constant rate κ

and recovery at default is a claim (0, A, Z, τ), where Z = δ and
At = −κt.

• An F-predictable process δ : [0, T ] → R represents the default
protection stream.

• A constant κ represents the CDS spread. It defines the fee leg,
also known as the survival annuity stream.

Lemma 1 The ex-dividend price of a CDS maturing at T equals

St(κ) = EQ∗
(
11{t<τ≤T}δτ

∣∣∣Gt

)
− EQ∗

(
11{t<τ}κ

(
(τ ∧ T ) − t

) ∣∣∣Gt

)
where Q∗ is a spot martingale measure and B = 1.
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Hazard Process Approach

Standing assumptions:

• The default time τ is a non-negative random variable on (Ω,G, Q∗),
where Q∗ is a spot martingale measure.

• The default process Ht = 11{τ≤t} generates the filtration H.

• We set G = F ∨ H, so that Gt = Ft ∨Ht, where F is a reference
filtration.

• We define the risk-neutral survival process Gt as

Gt = Q∗{τ > t | Ft}.

• We assume that the hazard process Γ equals

Γt = − lnGt =
∫ t

0

γu du

where γ is the default intensity.
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Ex-dividend Price of a CDS

Recall that the survival process Gt satisfies

Gt = Q∗{τ > t | Ft} = exp
(
−
∫ t

0

γu du
)
.

We make the standing assumption that EQ∗ |δτ | < ∞.

Lemma 2 The ex-dividend price at time t ∈ [s, T ] of a credit default
swap started at s, with rate κ and protection payment δτ at default,
equals

St(κ) =
1
Gt

EQ∗

(
−
∫ T

t

δu dGu − κ

∫ T

t

Gu du
∣∣∣Ft

)
= 11{t<τ} S̃t(κ)

where S̃t(κ) is the pre-default ex-dividend price.
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Market CDS Rate

The market CDS rate is defined similarly as the forward swap rate in a
(default-free) interest rate swap.

Definition 5 The T -maturity market CDS rate κ(t, T ) at time t is the
level of a CDS rate κ for which the values of the two legs of a CDS are
equal at time t.

By assumption, κ is an Ft-measurable random variable.

The T -maturity market CDS rate κ(t, T ) is given by the formula

κ(t, T ) = −
EQ∗

(∫ T

t
δu dGu

∣∣Ft

)
EQ∗

(∫ T

t
Gu du

∣∣Ft

) , ∀ t ∈ [0, T ].

We fix a maturity date T , and we shall frequently write κt instead of
κ(t, T ).
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Single Name: Deterministic Default Intensity

Ex-dividend Price of a CDS

Standing assumptions:

• Assume that F is trivial, and the survival function G(t) satisfies

G(t) = Q∗{τ > t} = exp
(
−
∫ t

0

γ(u) du
)
.

• We postulate that the default protection δ : [0, T ] → R is
deterministic.

In that case, the ex-dividend price at time t ∈ [0, T ] of a CDS with the
spread κ and protection payment δ(τ) at default equals

St(κ) = 11{t<τ}
1

G(t)

(
−
∫ T

t

δ(u) dG(u) − κ

∫ T

t

G(u) du

)
= 11{t<τ} S̃t(κ).
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Market CDS Rate

• The T -maturity market CDS rate κ(t, T ) solves the following
equation ∫ T

t

δ(u) dG(u) + κ(t, T )
∫ T

t

G(u) du = 0.

• We thus have, for every t ∈ [0, T ],

κ(t, T ) = −
∫ T

t
δ(u) dG(u)∫ T

t
G(u) du

.

• We fix a maturity date T , and we write briefly κ(t) instead of
κ(t, T ).

• In addition, we assume that all CDSs with different starting dates
have a common recovery function δ.
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Market CDS Rate: Special Case

• Assume that δ(t) = δ is constant, and F (t) = 1 − e−γt for some
constant default intensity γ > 0 under Q∗.

• The ex-dividend price of a (spot) CDS with rate κ equals, for every
t ∈ [0, T ],

St(κ) = 11{t<τ}(δγ − κ)γ−1
(
1 − e−γ(T−t)

)
.

• The last formula yields κ(s, T ) = δγ for every s < T , so that the
market rate κ(s, T ) is here independent of s.

• As a consequence, the ex-dividend price of a market CDS started at
s equals zero not only at the inception date s, but indeed at any
time t ∈ [s, T ], both prior to and after default).

• Hence, this process follows a trivial martingale under Q∗.
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Price Dynamics of a CDS

The following result furnishes risk-neutral dynamics of the ex-dividend
price of a CDS with spread κ and maturity T .

Proposition 1 The dynamics of the ex-dividend price St(κ) on [s, T ]
are

dSt(κ) = −St−(κ) dMt + (1 − Ht)(κ − δ(t)γ(t)) dt

where the H-martingale M under a spot martingale measure Q∗ is
given by the formula

Mt = Ht −
∫ t

0

(1 − Hu)γ(u) du, ∀ t ∈ R+.

Prior to default, we have

dS̃t(κ) = S̃t(κ)γ(t) dt + (κ − δ(t)γ(t)) dt.

At default, the ex-dividend price process jumps to 0.
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Replication of Defaultable Claims

We assume that the following two assets are traded:

• a CDS with maturity U ≥ T ,

• the constant savings account B = 1 (this is not restrictive).

Let φ0, φ1 be an H-predictable processes and let C : [0, T ] → R be a
function of finite variation with C0 = 0.

Definition 6 We say that (φ, C) = (φ0, φ1, C) is a trading strategy

with financing cost C if the wealth process V (φ, C), defined as

Vt(φ, C) = φ0
t + φ1

t St(κ),

where St(κ) is the ex-dividend price of a CDS at time t, satisfies

dVt(φ, C) = φ1
t

(
dSt(κ) + dDt

)− dC(t)

where D is the dividend process of a CDS.
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Recall that a generic defaultable claim (X, A, Z, τ) consists of

1. a promised claim X,

2. a function A representing dividends stream,

3. a recovery function Z,

4. a default time τ .

Definition 7 A trading strategy (φ, C) replicates a defaultable claim
(X, A, Z, τ) if:

1. the processes φ = (φ0, φ1) and V (φ, C) are stopped at τ ∧ T ,

2. C(τ ∧ t) = A(τ ∧ t) for every t ∈ [0, T ],

3. we have Vτ∧T (φ, C) = Y , where the random variable Y equals

Y = X11{τ>T} + Z(τ)11{τ≤T}.
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Risk-Neutral Valuation of a Defaultable Claim

• Let us denote, for every t ∈ [0, T ],

Z̃(t) =
1

G(t)

(
XG(T ) −

∫ T

t

Z(u) dG(u)

)
and

Ã(t) =
1

G(t)

∫
]t,T ]

G(u) dA(u).

• Let π and π̃ be the risk-neutral value and the pre-default
risk-neutral value of a defaultable claim, so that πt = 11{t<τ}π̃(t) for
t ∈ [0, T ].

• Let π̂ stand for the risk-neutral cumulative value

π̂t = Bt EQ∗
(∫

]0,T ]

B−1
u dDu

∣∣∣Gt

)
.

• It is clear that π(0) = π̃(0) = π̂(0).
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Price Dynamics of a Defaultable Claim

Proposition 2 The pre-default risk-neutral value of a defaultable claim
(X, A, Z, τ) equals

π̃(t) = Z̃(t) + Ã(t)

and thus
dπ̃(t) = γ(t)(π̃(t) − Z(t)) dt − dA(t).

Moreover

dπt = −π̃(t−) dMt − γ(t)(1 − Ht)Z(t) dt − dA(t ∧ τ)

and
dπ̂t = (Z(t) − π̃(t−)) dMt.
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Replication of a Defaultable Claim

Proposition 3 Assume that the inequality S̃t(κ) 	= δ(t) holds for every
t ∈ [0, T ].

Let φ1
t = φ̃1(τ ∧ t), where the function φ̃1 : [0, T ] → R is given by the

formula

φ̃1(t) =
Z(t) − π̃(t−)

δ(t) − S̃t(κ)
, ∀ t ∈ [0, T ],

and let φ0
t = Vt(φ, A) − φ1

t St(κ), where the process V (φ, A) is given by
the formula

Vt(φ, A) = π̃(0) +
∫

]0,τ∧t]

φ̃1(u) dŜu(κ) − A(t ∧ τ).

Then the strategy (φ0, φ1, A) replicates a defaultable claim (X, A, Z, τ).
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Several Names: Deterministic Default Intensities

First-to-Default Intensities and Martingales

Assumptions and Objectives

Let τ1, . . . , τn be default times of n reference entities.

Assume that:

1. The joint distribution of default times (τ1, . . . , τn) is known.

2. The protection payments at default are known functions of time,
number of defaults and names of defaulted entities.

3. Single-name CDSs for n reference entities are traded.

We will argue that it is possible to replicate a basket CDS with
single-name CDSs under mild technical assumptions of non-degeneracy
(a system of linear equations).

It suffices to consider the case of a first-to-default claim and then to use
the backward induction.
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Default Times and Filtrations

• Let τ1, τ2, . . . , τn be the default times associated with n names,
respectively.

• Let
F (t1, t2, . . . , tn) = Q∗(τ1 ≤ t1, τ2 ≤ t2, . . . , τn ≤ t2)

denote the joint distribution function of the default times
associated with the n names.

• For each i = 1, 2, . . . , n we define the default indicator process for
the ith credit name as Hi

t = 11{τi≤t} and the σ-field
Hi

t = σ(Hi
u : u ≤ t).

• We write
G = H1 ∨ H2 ∨ · · · ∨ Hn

and
Gi = H1 ∨ · · · ∨ Hi−1 ∨ Hi+1 ∨ · · · ∨ Hn

so that G = Gi ∨ Hi for i = 1, 2, . . . , n.
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First-to-Default Intensities

Definition 8 The ith first-to-default intensity is the function

λ̃i(t) = lim
h↓0

1
h

Q∗(t < τi ≤ t + h | τ1 > t, . . . , τi−1 > t, τi+1 > t, . . . , τn > t)
Q∗(τi > t | τ1 > t, . . . , τi−1 > t, τi+1 > t, . . . , τn > t)

= lim
h↓0

1
h

Q∗(t < τi ≤ t + h | τ(1) > t).

Definition 9 The first-to-default intensity λ̃ is defined as the sum
λ̃ =

∑n
i=1 λ̃i, or equivalently, as the intensity function of the random

time τ(1) modeling the moment of the first default.
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First-to-Default Martingales

• Let λi be the Gi-intensity of the ith default time. The process M i

given by the formula

M i
t = Hi

t −
∫ t

0

(1 − Hi
u)λi

u du, ∀ t ∈ R+,

is known to be a G-martingale under Q∗.

• A random time τ(1) is manifestly a G-stopping time. Therefore, for
each i = 1, 2, . . . , n, the process M̂ i, given by the formula

M̂ i
t := M i

t∧τ(1)
= Hi

t∧τ(1)
−
∫ t

0

11{τ(1)>u}λ̃i(u) du, ∀ t ∈ R+,

also follows a G-martingale under Q∗.

• Processes M̂ i are referred to as the basic first-to-default
martingales.
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Traded Credit Default Swaps

• As traded assets, we take the constant savings account and a family
of single-name CDSs with default protections δi and rates κi.

• For convenience, we assume that the CDSs have the same maturity
T , but this assumption can be easily relaxed. The ith traded CDS
is formally defined by its dividend process

Di
t =

∫
(0,t]

δi(u) dHi
u − κi(t ∧ τi), ∀ t ∈ [0, T ].

• Consequently, the price at time t of the ith CDS equals

Si
t(κi) = EQ∗

(
11{t<τi≤T}δi(τi)

∣∣Gt

)−κi EQ∗
(
11{t<τi}

(
(τi∧T )−t

) ∣∣Gt

)
.

• To replicate a first-to-default claim, we only need to examine the
dynamics of each CDS on the interval [0, τ(1) ∧ T ].
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The Value of a CDS at Default

• For any j 	= i, we define a function Si
t|j(κi), t ∈ [0, T ], which

represents the ex-dividend price of the ith CDS at time t on the
event {τ(1) = τj = t}.

• Formally, this quantity is defined as the unique function satisfying

11{τ(1)=τj≤T}Si
τ(1)|j(κi) = 11{τ(1)=τj≤T}Si

τ(1)
(κi)

so that

11{τ(1)≤T}Si
τ(1)

(κi) =
∑
j �=i

11{τ(1)=τj≤T}Si
τ(1)|j(κi).

• Let m = 2. Then the function S1
t|2(κ1), t ∈ [0, T ], is the price of the

first CDS at time t on the event {τ(1) = τ2 = t}.
Lemma 3 The function S1

v|2(κ1), v ∈ [0, T ], equals

S1
v|2(κ1) =

∫ T

v
δ1(u)f(u, v)du∫∞
v

f(u, v) du
− κ1

∫ T

v
du
∫∞

u
f(z, v) dz∫∞

v
f(u, v) du

.
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Price Dynamics of the ith CDS

Proposition 4 The dynamics of the pre-default ex-dividend price
S̃i

t(κi) are

dS̃i
t(κi) = λ̃i(t)

(
S̃i

t(κi)− δi(t)
)
dt +

∑
j �=i

λ̃j(t)
(
S̃i

t(κi)−Si
t|j(κi)

)
dt + κi dt.

The cumulative ex-dividend price of the ith CDS stopped at τ(1) satisfies

Ŝi
t(κi) = Si

t(κi)+
∫ t

0

δi(u) dHi
u∧τ(1)

+
∑
j �=i

∫ t

0

Si
u|j(κi) dHj

u∧τ(1)
−κi(τ(1)∧t),

and thus

dŜi
t(κi) =

(
δi(t) − S̃i

t−(κi)
)
dM̂ i

t +
∑
j �=i

(
Si

t|j(κi) − S̃i
t−(κi)

)
dM̂ j

t .
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Replication of First-to-Default Claims

Definition 10 A first-to-default claim (an FTDC, for short) on a
basket of n credit names is a defaultable claim (X, A, Z, τ(1)), where

1. X is a constant amount payable at maturity if no default occurs,

2. A : [0, T ] → R with A0 = 0 is a function of bounded variation
representing the dividend stream up to τ(1),

3. Z = (Z1, Z2, . . . , Zn), where a function Zi : [0, T ] → R specifies the
recovery payment made at the time τi if the ith firm was the first
defaulted firm, that is, on the event {τi = τ(1) ≤ T}.
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Pricing of an FTDC

Proposition 5 The pre-default risk-neutral value of an FTDC equals

π̃(t) =
n∑

i=1

Ψi(t)
G(1)(t)

+
1

G(1)(t)

∫ T

t

G(1)(u) dA(u) + X
G(1)(T )
G(1)(t)

where

Ψi(t) =
∫ T

ui=t

∫ ∞

u1=ui

. . .

∫ ∞

ui−1=ui

∫ ∞

ui+1=ui

. . .

∫ ∞

un=ui

Zi(ui)F (du1, . . . , dui−1, dui, dui+1, . . . , dun).
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Price Dynamics of an FTDC

Proposition 6 The pre-default risk-neutral value of an FTDC satisfies

dπ̃(t) =
∑
i=1

λ̃i(t)
(
π̃(t) − Zi(t)

)
dt − dA(t).

Moreover, the risk-neutral value of an FTDC satisfies

dπt =
n∑

i=1

(Zi(t) − π̃(t−)) dM̂ i
u − dA(τ(1) ∧ t),

and the risk-neutral cumulative value π̂ of an FTDC satisfies

dπ̂t =
n∑

i=1

(Zi(t) − π̃(t−)) dM̂ i
u.
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Self-financing Strategies with CDSs

• Consider a family of single-name CDSs with default protections δi

and rates κi.

• For convenience, we assume that they have the same maturity T ;
this assumption can be easily relaxed.

Definition 11 A trading strategy φ = (φ0, φ1, . . . , φn), in assets
(B, S1(κ1), . . . , Sn(κn)) is self-financing with financing cost C if its
wealth process V (φ), defined as

Vt(φ) = φ0
t +

n∑
i=1

φi
tS

i
t(κi),

satisfies

dVt(φ) =
n∑

i=1

φi
t

(
dSi

t(κi) + dDi
t

)− dCt,

where Si(κi) is the ex-dividend price of the ith CDS.
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Standing Assumption

• We assume that det N(t) 	= 0 for every t ∈ [0, T ], where

N(t) =

⎡⎢⎢⎢⎢⎢⎣
δ1(t) − S̃1

t (κ1) S2
t|1(κ2) − S̃2

t (κ2) . Sn
t|1(κn) − S̃n

t (κn)

S1
t|2(κ1) − S̃1

t (κ1) δ2(t) − S̃2
t (κ2) . Sn

t|2(κn) − S̃n
t (κn)

. . . .

S1
t|n(κ1) − S̃1

t (κ1) S2
t|n(κ1) − S̃2

t (κ1) . δn(t) − S̃n
t (κn)

⎤⎥⎥⎥⎥⎥⎦
• Let φ̃(t) = (φ̃1(t), φ̃2(t), . . . , φ̃n(t)) be the unique solution to the

equation
N(t)φ̃(t) = h(t)

where h(t) = (h1(t), h2(t), . . . , hn(t)) with hi(t) = Zi(t) − π̃(t−).
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Replication of an FTDC

Proposition 7 Let the functions φ̃1, φ̃2, . . . , φ̃n satisfy for t ∈ [0, T ]

φ̃i(t)
(
δi(t) − S̃i

t(κi)
)

+
∑
j �=i

φ̃j(t)
(
Sj

t|i(κj) − S̃j
t (κj)

)
= Zi(t) − π̃(t−).

Let φi
t = φ̃i(τ(1) ∧ t) for i = 1, 2, . . . , n and

φ0
t = Vt(φ, A) −

n∑
i=1

φi
tS

i
t(κi), ∀ t ∈ [0, T ],

where the process V (φ, A) is given by the formula

Vt(φ, A) = π̃(0) +
n∑

i=1

∫
]0,τ(1)∧t]

φ̃i(u) dŜi
u(κi) − A(τ(1) ∧ t).

Then the trading strategy (φ, A) replicates an FTDC (X, A, Z, τ(1)).
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Final Remarks

In a single-name case:

• we first considered the case of a default time with a deterministic
intensity,

• we have shown that a generic defaultable claim can be replicated by
dynamic trading in a CDS and the savings account,

• the extension to the case of non-trivial reference filtration was not
presented.
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In a multi-name case:

• we first considered the case of a finite family of default times with
known joint distribution,

• the replicating strategy for a first-to-default claim was examined;
the method can be extended to kth-to-default claims,

• in the next step, the approach was extended to the case of a
reference filtration generated by a multi-dimensional Brownian
motion.
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