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Several Defaults

5



Several Defaults, no reference filtration
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General setting

We assume that two default times are given: τi, i = 1, 2

We introduce the joint survival process G(u, v): for every u, v ∈ R+,

G(u, v) = Q(τ1 > u, τ2 > v)

We write

∂1G(u, v) =
∂G

∂u
(u, v), ∂12G(u, v) =

∂2G

∂u∂v
(u, v).

We assume that the joint density f(u, v) = ∂12G(u, v) exists. In other
words, we postulate that G(u, v) can be represented as follows

G(u, v) =
∫ ∞

u

(∫ ∞

v

f(x, y) dy
)
dx.
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We compute conditional expectation in the filtration G = H1 ∨ H2:

• For t < T

P(T < τ1|H1
t ∨H2

t ) = 11t<τ1

P(T < τ1|H2
t )

P(t < τ1|H2
t )

= 11t<τ1

(
11t<τ2

P(T < τ1, t < τ2)
P(t < τ1, t < τ2)

+ 11τ2≤t
P(T < τ1|τ2)
P(t < τ1|τ2)

)
= 11t<τ1

(
11t<τ2

G(T, t)
G(t, t)

+ 11τ2≤t
P(T < τ1|τ2)
P(t < τ1|τ2)

)

• The computation of P(T < τ1|τ2) can be done as follows:

P(T < τ1|τ2 = v) =
P(T < τ1, τ2 ∈ dv)

P(τ2 ∈ dv)
=
∂2G(T, v)
∂2G(0, v)

hence, on the set τ2 < T ,

P(T < τ1|τ2) =
∂2G(T, τ2)
∂2G(0, τ2)
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Value of credit derivatives

We introduce different credit derivatives

A defaultable zero-coupon related to the default time τi delivers 1
monetary unit if τi is greater that T : Di(t, T ) = EQ∗(11{T<τi}|H1

t ∨H2
t )

We obtain

D1(t, T ) = 11{τ1>t}

(
11{τ2≤t}

∂2G(T, τ2)
∂2G(t, τ2)

+ 11{τ2>t}
G(T, t)
G(t, t)

)
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A contract which pays R1 is one default occurs before T and R2 if the
two defaults occur before T :

CDt = EQ∗(R111{0<τ(1)≤T} +R211{0<τ(2)≤T}|H1
t ∨H2

t )

= R111{τ(1)>t}

(
G(t, t) −G(T, T )

G(t, t)

)
+R211{τ(2)≤t} +R111{τ(1)≤t}

+R211{τ(2)>t}

{
It(0, 1)

(
1 − ∂2G(T, τ2)

∂2G(t, τ2)

)
+ It(1, 0)

(
1 − ∂1G(τ1, T )

∂1G(τ1, t)

)
+It(0, 0)

(
1 − G(t, T ) +G(T, t) −G(T, T )

G(t, t)

)}
where by

It(1, 1) = 11{τ1≤t,τ2≤t} , It(0, 0) = 11{τ1>t,τ2>t}

It(1, 0) = 11{τ1≤t,τ2>t} , It(0, 1) = 11{τ1>t,τ2≤t}
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More generally, some easy computation leads to

EQ∗(h(τ1, τ2)|Ht) = It(1, 1)h(τ1, τ2)+It(1, 0)Ψ1,0(τ1)+It(0, 1)Ψ0,1(τ2)+It(0, 0)Ψ0,0

where

Ψ1,0(u) = − 1
∂1G(u, t)

∫ ∞

t

h(u, v)∂1G(u, dv)

Ψ0,1(v) = − 1
∂2G(t, v)

∫ ∞

t

h(u, v)∂2G(du, v)

Ψ0,0 =
1

G(t, t)

∫ ∞

t

∫ ∞

t

h(u, v)G(du, dv)
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The process

M1,1
t = H1

t −
∫ t∧τ1

0

λ(s)ds

where λ(s) = f(s)
G(s) = ∂1G(s,0)

G(s,0) is an H1-martingale.

Let

λ̃1(t) = −∂1G(t, t)
G(t, t)

, λ1|2(t, s) = − f(t, s)
∂2G(t, s)

Then, the process

M1,G
t = H1

t −
∫ t∧τ1∧τ2

0

λ̃1(u) du−
∫ t∧τ1

t∧τ1∧τ2

λ1|2(u, τ2) du,

is a G-martingale.
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Copula

Copula Function

The concept of a copula function allows to produce various
multidimensional probability distributions with the same univariate
marginal probability distributions.

Definition 1 A function C : [0, 1]n → [0, 1] is a copula function if:

• C(1, . . . , 1, vi, 1, . . . , 1) = vi for any i and any vi ∈ [0, 1],

• C is an n-dimensional cumulative distribution function.

Examples of copulae:

• product copula: Π(v1, . . . , vn) = Πn
i=1vi,

• Gumbel copula: for θ ∈ [1,∞) we set

C(v1, . . . , vn) = exp

⎛⎝−
[

n∑
i=1

(− ln vi)θ

]1/θ
⎞⎠ .
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Sklar’s Theorem

Theorem 1

• For any cumulative distribution function F on Rn there exists a
copula function C such that

F (x1, . . . , xn) = C(F1(x1), . . . , Fn(xn))

where Fi is the ith marginal cumulative distribution function.

If, in addition, F is continuous then C is unique.

• Conversely, if C is an n-dimensional copula and F1, F2, . . . , Fn are
the distribution functions, then the function

F (x1, x2, . . . , xn) = C(F1(x1), F2(x2), . . . , Fn(xn))

is a n-dimensional distribution function with marginals
F1, F2, . . . , Fn.
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Survival Copula

• We can represent the joint survival function as some copula as well.

Since for standard uniform random variables U1, U2, . . . , Un, the
random variables Ũ1 = 1 − U1, Ũ2 = 1 − U2, . . . , Ũn = 1 − Un are
also uniform random variables.

• Hence we have

G(x1, x2, . . . , xn)

= P(X1 ≥ x1, X2 ≥ x2, . . . , Xn ≥ xn)

= P(F1(X1) ≥ F1(x1), . . . , Fn(Xn) ≥ Fn(xn))

= P(1 − F1(X1) ≤ 1 − F1(x1), . . . , 1 − Fn(Xn) ≤ 1 − Fn(xn))

= P(Ũ1 ≤ G1(x1), Ũ2 ≤ G2(x2), . . . , Ũn ≤ Gn(xn))

= C̃(G1(x1), G2(x2), . . . , Gn(xn))
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Multivariate Gaussian Copula

Let R be an n× n symmetric, positive definite matrix with Rii = 1 for
i = 1, 2, . . . , n, and let ΦR be the standardized multivariate normal
distribution with correlation matrix R

f(x) =
1

(2π)
n
2 |R| 12

exp
(
−1

2
x′R−1x

)
.

Definition 2 The multivariate Gaussian copula CR is defined as:

CR(u1, u2, . . . , un) = ΦR(Φ−1(u1),Φ−1(u2), . . . ,Φ−1(un))

where Φ−1(u) represents the inverse of the normal cumulative
distribution function.
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Archimedean Copulae

• Let f be the density of a positive random variable V , which is
called the mixing variable, and let

ψ(s) =
∫ ∞

0

e−svf(v) dv

be the Laplace transform of f . Let Fi be the c.d.f. of τi.

• We define the function Di as

Di(t) = exp
(− ψ−1(Fi(t))

)
.

• Then Di and Fi satisfy

Fi(t) = ψ(− lnDi(t)) =
∫ ∞

0

(Di(t))vf(v) dv.

The function (Di)v is a c.d.f. for any v ≥ 0.
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Archimedean Copulae

• The last formula shows that, conditionally on V = v, the
cumulative distribution function of τi is (Di)v.

• Now we can define the joint cumulative distribution function of
default times τ1, τ2, . . . , τn by

F (t1, t2, . . . , tn) = P(τ1 ≤ t1, τ2 ≤ t2, . . . , τn ≤ tn) =

∫ ∞

0

n∏
i=1

(Di)
v(ti)f(v) dv

so that for any t1, t2, . . . , tn

P(τ1 ≤ t1, τ2 ≤ t2, . . . , τn ≤ tn |V = v) =

n∏
i=1

(Di)
v(ti) =

n∏
i=1

P(τi ≤ ti |V = v).

• The last equality shows that the default times are conditionally
independent given V = v.
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Archimedean Copulae

• Since
(Di)v(ti) = exp(−vψ−1(Fi(t)))

we conclude that

F (t1, t2, . . . , tn) =
∫ ∞

0

n∏
i=1

(Di)v(ti)f(v) dv = ψ
( n∑

i=1

ψ−1(Fi(ti))
)

• The copula of default times τ1, τ2, . . . , τn defined above is given by

C(u1, u2, . . . , un) = ψ(ψ−1(u1) + ψ−1(u2) + · · · ,+ψ−1(un)).

• The function C is called an Archimedean copula with generator
φ = ψ−1.
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Archimedean Copulae: Examples

• A standard example of an Archimedean copula is the Clayton
copula, where the mixing variable V has a Gamma distribution
with parameter 1/θ, where θ > 0.

• Hence we have

f(x) =
1

Γ(1/θ)
e−xx(1−θ)/θ

and ψ−1(s) = s−θ − 1 so that ψ(s) = (1 + s)−1/θ.

• Now we can find

C(u1, u2, . . . , un) = (u−θ
1 + u−θ

2 + · · · + u−θ
2 − n+ 1)−1/θ

and Di(t) = exp(1 − Fi(t)−θ).

• Another classic example of an Archimedean copula is the Gumbel
copula, which is generated by ψ(s) = exp(−s1/θ).
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Gaussian Copula

• Gaussian copulae have become an industry standard for CDO and
credit portfolio modelling, despite of several drawbacks.

• Assume that the marginal cumulative distribution functions
F1, F2, . . . , Fn of default times τ1, τ2, . . . , τn are known.

• Let (X1, X2, . . . , Xn) Gaussian vector with zero means, unit
variances, and covariance matrix Σ, and set τi = F−1

i (Φ(Xi)) for
i = 1, . . . , n, where F−1

i denotes the generalized inverse of Fi and Φ
is the standard Gaussian distribution function, so that

P(τi ≤ t) = P(Φ(Xi) ≤ Fi(t)) = Fi(t)

or
τi = inf{t ∈ R+ : χi(t) ≥ Xi}, i = 1, 2, . . . , n,

where χi(t) = Φ−1(Fi(t)) (and P(τi ≤ t) = Fi(t)).
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Comparison with Intensity-Based Model

• If FXi
is a continuous function for every i then

τi = inf {t ∈ R+ : FXi
(χi(t)) ≥ FXi

(Xi)} = inf {t ∈ R+ : Gi(t) ≤ Ũi}

where (Ũ1, Ũ2, . . . , Ũn) with Ũi = 1 − FXi
(Xi) are random variables

with uniform marginal distributions (not independent) and
Gi(t) = 1 − FXi

(χi(t)) = 1 − P{τi ≤ t}.
• This representation of the one-factor copula model allows for easy

comparison with the intensity-based model in which

τi = inf {t ∈ R+ : Gi
t ≤ Ui}

where (U1, U2, . . . , Un) are independent uniformly distributed
random variables and G1, G2, . . . , Gn are non-increasing default
countdown processes (not independent, in general).
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One-Factor Gaussian Copula

• A one-factor Gaussian copula is the multivariate Gaussian
copula corresponding to the joint distribution of the vector
(X1, X2, . . . , Xn) where

Xi = ρiV +
√

1 − ρ2
i Yi

where V and Y1, Y2, . . . , Yn are independent standard Gaussian
random variables and 0 ≤ ρi ≤ 1 for i = 1, 2, . . . , n.

• Then we can get (recall that τi = F−1
i (Φ(Xi)))

P(τi ≤ t |V ) = Φ

(
−ρiV + Φ−1(Fi(t))√

1 − ρ2
i

)
.

• The case ρ1 = . . . = ρn = 0 corresponds to independent defaults,
whereas ρ1 = . . . = ρn = 1 represents the co-monotonic case.
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Student t Copula

• Let us denote Vi =
√
WXi and Xi = ρiV +

√
1 − ρ2

i Yi where
V, Y1, Y2, . . . , Yn are independent N(0, 1) random variables.
W is independent of X1, X2, . . . , Xn and has the inverse gamma
distribution with parameter ν

2 .

• Let tν denote the c.d.f. of the Student t distribution with ν degrees
of freedom.

• We set τi = F−1
i (tν(Vi)), so that

P(τi ≤ t |V,W ) = Φ

(
−ρiV +W− 1

2 t−1
ν (Fi(t))√

1 − ρ2
i

)
.

• The default times τ1, τ2, . . . , τn are thus modelled from the vector
(V1, V2, . . . , Vn) with marginal distributions governed by a Student t
distribution with ν degrees of freedom.

• The Gaussian copula can be seen as the limit of Student t copulae
when ν tends to infinity.

27



Lévy Copulae

Let X,Y (i) be independent Lévy processes with same law and such that

E(X1) = 0,Var(X1) = 1

We set Xi = Xρ + Y
(i)
1−ρ.

By properties of Lévy processes, Xi has the same law as X1 and

Cor(Xi, Xj) = ρ

28



Loss Process

Let Lt =
∑n

i=1(1 −Ri)11τi≤t be the loss process.

Questions:

• Law of Lt?

• The top-down approach starts from top, that is, it starts with
modeling of evolution of the portfolio loss process subject to
information structure G. Then, it attempts to “decompose” the
dynamics of the portfolio loss process down on the individual
constituent names of the portfolio, so to deduce the dynamics of
processes Hi.

• The bottom-up approach takes as G the filtration generated by
process H = (H1, . . . , Hn) and possibly a factor process Z.
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Collateralized debt obligations (CDO)

The loss process is

Lt =
n∑

i=1

Hi
t

Let A0 = 0 < · · · < Ak < · · · < A� = n.
We denote by Dk = Ak and Uk = Ak+1 the lower and upper attachment
points for the kth tranche and by κk

0 the corresponding spread. It is
convenient to introduce the percentage loss process

Qt =
1
n

n∑
i=1

Hi
t =

N0 −Nt

N0
,

where N0 = n is the number of credit names in the reference portfolio
and Nt = N0 −

∑n
i=1H

i
t is the residual protection. Finally, denote by

Ck = Ak+1 −Ak = Uk −Dk the width of the kth tranche.
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Purchasing one unit of the kth tranche at time 0 generates the following
discounted cash flows

Premium leg = κk
0

J∑
j=1

B0

Btj

Nk
tj
,

where Nk
t is the residual tranche protection at time t, that is,

Nk
t = N0

(
Ck − min

(
Ck, max (Qt −Dk, 0)

))
.

The discounted cash flows of the protection leg are

Protection leg = (1 − δ)
n∑

i=1

B0

Bτi

Hi
T 11{Dk<Qτi

≤Uk}.
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Several Defaults: reference filtration
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Conditionally Independent Defaults

Canonical Construction

• Let Γi, i = 1, . . . , n be a given family of F-adapted, increasing,
continuous processes, defined on a probability space (Ω̂,F,P), with
Γi

0 = 0 and Γi
∞ = ∞.

• Let (Ω̃, F̃ , P̃) be an auxiliary probability space with Ui, i = 1, . . . , n
mutually independent r.v’s uniformly distributed on [0, 1].

• We set
τi = inf { t ∈ R+ : Γi

t(ω̂) ≥ − lnUi(ω̃) }
on the product space

(Ω,G,Q) = (Ω̂ × Ω̃,F∞ ⊗ F̃ ,P ⊗ P̃).

• We endow the space (Ω,G,Q) with the full filtration G given as

G = F ∨ H1 ∨ · · · ∨ Hn.
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Conditional Independence

• Default times τ1, . . . , τn defined in this way are conditionally
independent with respect to F under Q.

This means that we have, for any t > 0 and any t1, . . . , tn ∈ [0, t],

Q{τ1 > t1, . . . , τn > tn | Ft} =
n∏

i=1

Q{τi > ti | Ft}.

• The process Γi is the F-hazard process of τi, for any s ≥ t,

Q{τi > s | Ft ∨Hi
t} = 11{τi>t} EQ

(
eΓ

i
t−Γi

s | Ft

)
.

• We have Q{τi = τj} = 0 for every i 
= j (no simultaneous defaults).
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Interpretation of Conditional Independence

• Intuitive meaning of conditional independence:

– the reference credits (credit names) are subject to common risk
factors that may trigger credit (default) events,

– in addition, each credit name is subject to idiosyncratic risks
that are specific for this name.

• Conditional independence of default times means that once the
common risk factors are fixed then the idiosyncratic risk factors are
independent of each other.

• Conditional independence is not invariant with respect to an
equivalent change of a probability measure.
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Correlated Stochastic Intensities

• Let the process for the default intensity of name i be given by

γi
t = ρi h0(t) + hi(t)

where
h0(t) = h0(X̃0

t )

and for i = 1, 2, . . . , n
hj(t) = hi(X̃i

t)

• The processes X̃0, X̃1, . . . , X̃n are independent components of the
factor process X̃ = (X̃0, X̃1, . . . , X̃n).

• Then the process h0 is referred to as the common intensity factor,
and the processes hi are called idiosyncratic intensity factors, since
they only affect the credit worthiness of a single obligor.
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Examples of Stochastic Intensities

• We can postulate that

γi
t = ρ̃i h0(t) + hi(t)

– where hi follows Vasicek’s dynamics

dhi(t) = κi(θi − hi(t)) dt+ σi dW
i
t

– or better, the CIR dynamics

dhi(t) = κi(θi − hi(t)) dt+ σi

√
hi(t) dW i

t .

• Note that we do not assume that ρ̃i belongs to [−1, 1].

37



Combined Approach

• We adopt the intensity-based approach, but we no longer assume
that the random variables U1, . . . , Un are independent.

• Assume that the c.d.f. of (U1, . . . , Un) is an n-dimensional copula C.

• Then the univariate marginal laws are uniform on [0, 1], but the
random variables U1, . . . , Un are not necessarily mutually
independent.

• We still postulate that they are independent of F, and we set

τi = inf { t ∈ R+ : Γi
t(ω̂) ≥ − lnUi(ω̃) }.

If we drop independence condition, then immersion property does
not hold, the intensity is no more obtained via Γ
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Combined Approach

• The case of default times conditionally independent with respect to
F corresponds to the choice of the product copula Π.

In this case, for t1, . . . , tn ≤ T we have

Q∗{τ1 > t1, . . . , τn > tn | FT } = Π(G1
t1 , . . . , G

n
tn

)

where we set Gi
t = e−Γi

t .

• In general, for t1, . . . , tn ≤ T we obtain

Q∗{τ1 > t1, . . . , τn > tn | FT } = C(G1
t1 , . . . , G

n
tn

)

where C is the copula function that was used in the construction of
τ1, . . . , τn.
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Survival Intensities

• Schönbucher and Schubert (2001) show that for arbitrary s ≤ t, on
the event {τ1 > s, . . . , τn > s} ,

Q∗{τi > t | Gs} = EQ∗

(
C(G1

s, . . . , G
i
t, . . . , G

n
tn

)
C(G1

s, . . . , G
n
s )

∣∣∣Fs

)
.

• Consequently, the ith intensity of survival equals, on
{τ1 > t, . . . , τn > t},

λi
t = γi

t G
i
t

∂

∂vi
lnC(G1

t , . . . , G
n
t ).

Here λi
t is understood as the limit

λi
t = lim

h↓0
h−1 Q∗{t < τi ≤ t+ h | Ft, τ1 > t, . . . , τn > t}.

40



Double Correlation

• We can postulate that

γi
t = ρ̃i h0(t) + hi(t)

where hi are governed by Vasicek’s dynamics

dhi(t) = κi(θi − hi(t)) dt+ σi dW
i
t ,

or by CIR dynamics

dhi(t) = κi(θi − hi(t)) dt+ σi

√
hi(t) dW i

t .

• We can combine this with the one-factor Gaussian copula for
U1, . . . , Un.

• The first case was studied by Van der Voort (2004) in the context
of basket CDSs and CDOs. The effect of intensity correlation is
much smaller than the effect of the default correlation.
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Density approach

A general framework is to assume that

P(τ1 > t1, . . . , τn > tn|Ft) =
∫ ∞

t1

. . .

∫ ∞

tn

αt(u1, . . . , un)du1 . . . dun
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Let n = 2 and τ = τ1 ∧ τ2, σ = τ1 ∨ τ2. F be the reference filtration and
G = F ∨ H. We also introduce Gi = F ∨ Hi, (i = 1, 2).

Let us consider the ordered default times

τ = τ (1) := min(τ1, τ2) and σ = τ (2) := max(τ1, τ2).

Let D(1) and D(2) be the associated filtrations of τ and σ respectively.
Let G(1) be the filtration F ∨ D(1) made right continuous and complete.
Let G(2) be obtained from F ∨ D(1) ∨ D(2) in a similar way. It is
important to note that G(2) is strictly included in G.
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The survival distribution of τ w.r.t F is given by

S
τ |F
t (θ1) := P(τ > θ1|Ft) =

∫ ∞

θ1

∫ ∞

u1

αt(u1, u2)du1du2 = St(θ, θ)

The F-density of τ is given by

α
τ |F
t (θ1) =

∫ ∞

θ1

αt(θ1, u2)du2, a.s..
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For any θ2, t ≥ 0, the G(1)-density of σ is given by

α
σ|G(1)

t (θ2) = 11{τ>t}

∫∞
t
αt(u, θ2)η1(du)

S
τ |F
t (t)

+ 11{τ≤t}
αt(τ, θ2)

α
τ |F
t (τ)

, a.s.. (0.1)
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Let YT (t1, t2;ω) be FT × B(R2) measurable. Then

E
[
YT (τ, σ) | G(2)

t

]
= 11{τ>t} q1t (T, YT )+11{τ≤t<σ} q2t (T, τ, YT )+11{σ≤t} q3t (T, τ, σ, YT )

where

q1t (T, YT ) =
E
[
αT,t(YT ) | Ft

]
αt,t(1)

, q2t (T, τ, YT ) =
E
[
α

(u1)
T,t (YT ) | Ft

]
α

(u1)
t,t (1)

∣∣∣
u1=τ

and

q3t (T, τ, σ, YT ) =
E
[
α

(u1,u2)
T (YT ) | Ft

]
α

(u1,u2)
t (1)

∣∣∣u1=τ
u2=σ

αT,t(YT ) :=
∫ ∞

t

du1

∫ ∞

u1

du2YT (u1, u2)αT (u1, u2)

α
(u1)
T,t (YT ) :=

∫ ∞

t

du2YT (u1, u2)αT (u1, u2),

α
(u1,u2)
t (Yt) := Yt(u1, u2)αt(u1, u2).
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