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T.R. Bielecki, S. Crépey, M. Jeanblanc and M. Rutkowski 2

Contents

1 Introduction 3
1.1 General Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Primary Market Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Game Options 4
2.1 Payoffs of a Game Option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Valuation of a Game Option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Defaultable Game Options and Convertible Securities 7
3.1 Defaultable Game Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 Convertible Securities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4 Convertible Bonds 11
4.1 Covenants of a Convertible Bond . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2 Convertible Bonds without Call Notice Period . . . . . . . . . . . . . . . . . . . . . . 13
4.3 Convertible Bonds with a Positive Call Notice Period . . . . . . . . . . . . . . . . . . 13
4.4 Reduced Convertible Bonds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.5 Valuation of a Convertible Bond upon Call . . . . . . . . . . . . . . . . . . . . . . . 15

5 Decompositions of Convertible Securities 15
5.1 Spread and Implied Volatility of a Convertible Bond . . . . . . . . . . . . . . . . . . 16
5.2 Decompositions of Cash Flows of a Convertible Security . . . . . . . . . . . . . . . . 16
5.3 Price Decompositions of a Convertible Security . . . . . . . . . . . . . . . . . . . . . 18
5.4 Price Decompositions of a Reduced Convertible Bond . . . . . . . . . . . . . . . . . 19

6 Conclusions 21
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1 Introduction

1.1 General Motivation

It is widely acknowledged (see, for instance, [13, 21, 24]) that a convertible bond has a natural
interpretation as a defaultable bond supplemented with an option to exchange this defaultable bond
for a given number κ of shares. Thus, convertible bonds are often advertised as products with upside
potential and limited downside risk. However, after years of steady growth, the market of convertible
bonds has suffered an unprecedented drawback in April–May 2005. Many hedge funds closed their
convertible bond positions, while new convertible bond issues became more and more rare. This was
largely due to persistently low credit default swap (CDS) spreads and low volatilities that limited
the potential benefit of convertible bond arbitrage, and to regulatory changes that made financing
by means of convertible bond a less attractive alternative to straight bond financing than before. In
addition, some practitioners blamed this crisis on inadequate understanding of the product, that let
people think for a while that convertible bonds were a win-win mixture to both issuers and holders,
up to the point where disappointment changed their mind the other way around. So, many actors
in the equity-to-credit universe closed their positions after the unexpected simultaneous rise in the
General Motors CDS spreads and stock price in May 2005 (cf. [25]). Associated with this lack of
understanding, deficiency of convertible bond software caused unexpected losses, which hastened
sell-off of convertible bonds.

In this paper, we attempt to shed more light on the mathematical modeling of convertible bonds,
thus continuing the previous research presented, for instance, in [1, 3, 11, 13, 15, 21, 22, 23, 24]. In
particular, we consider the problem of the decomposition of a convertible bond into bond component
and option component. This decomposition is indeed well established in the case of an ‘exchange
option’, when the conversion can only occur at maturity (see [21]). However, it was not yet studied
in the case of a real-life convertible bond.

More generally, we shall consider generic defaultable game options (GO), and convertible securities
(CS), encompassing defaultable convertible bonds (and also more standard American or European
options) as special cases. Moreover, we shall examine such contracts in a general framework of a
fairly general market model in which prices of primary assets are assumed to follow semimartingales
(see [12] or [15]) and the random moment of default is exogenously given.

1.2 Main Results

The main result of this work is Theorem 5.1, which furnishes a rigorous decomposition of the
arbitrage price of a CS. In particular, it allows us to give a definite meaning to commonly used
terms, such as: the spread and the implied volatility of a convertible bond (see Definition 5.1).

As a prerequisite, we provide in Theorem 3.1 a characterization of the set of ex-dividend arbitrage
prices of a GO in terms of related Dynkin games, based on Kallsen and Kühn [15, Theorem 2.9].

This paper provides theoretical underpinning for a more extensive research continued in Bielecki
et al. [5, 6], where more specific market models are introduced, and more explicit valuation and
hedging results are established. In [5], we derive valuation results for a GO in the framework of
a default risk model based on the hazard process, and we provide a characterization of minimal
super-hedging strategies of a GO within the default intensity set-up through solutions of doubly
reflected backward stochastic differential equations. In [6], we introduce a Markovian jump-diffusion
model of credit risk, and we analyze the related variational inequalities.

1.3 Primary Market Model

We assume throughout that the evolution of the primary market can be modeled in terms of stochas-
tic processes defined on a filtered probability space (Ω,G,P), where the filtration G = (Gt)t∈R+

satisfies the usual conditions. Here, we denote by P the statistical (objective) probability measure.
We assume that the primary market is composed of the savings account B and of a finite non-null
number d of risky assets, such that, given a finite horizon date T > 0:
– the discount factor process β, that is, the inverse of the savings account B, is a G-adapted, finite
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variation, continuous, positive and bounded process;
– the risky assets are G-semimartingales with càdlàg sample paths.

A primary risky asset with price process Xi may pay dividends whose cumulative value process,
denoted by Di, is assumed to be a G–adapted, càdlàg and finite variation process. Given the price
Xi, we define the cumulative price X̂i of the asset as

X̂i
t := Xi

t + D̂i
t, (1)

where D̂i
t := Bt

∫
[0,t]

βudD
i
u. In the financial interpretation, D̂i

t represents the current value at time
t of all dividend payments of the asset over the period [0, t], under the assumption that all dividends
are immediately reinvested in the savings account.

Let (Xt)t∈[0,T ], (DX
t )t∈[0,T ] and (X̂t)t∈[0,T ] denote the Rd-valued price, cumulative dividend and

cumulative price processes of the primary risky assets. A G-predictable trading strategy (ζ0, ζ) built
on the primary market has the wealth process Y given as (denoting the transposition operator by T):

Yt = ζ0
tBt + ζT

t Xt, t ∈ [0, T ]. (2)

Accounting for dividends, we say that a portfolio (ζ0, ζ) is self-financing whenever it satisfies, for
t ∈ [0, T ],

dYt = ζ0
t dBt + ζT

t (dXt + dDX
t ),

or, equivalently,
d(βtYt) = ζT

t d(βtX̂t). (3)

In (3), we recognize the standard self-financing condition for a trading strategy (ζ0, ζ) in non
dividend paying primary risky assets (call them the equivalent non-dividend-paying synthetic assets)
with price vector X̂. In view of this equivalence, the following definition is natural.

Definition 1.1 We say that (Xt)t∈[0,T ] is an arbitrage price for our primary market with dividend-
paying assets, if and only if (X̂t)t∈[0,T ] is an arbitrage price for the equivalent market with non-
dividend-paying synthetic assets, in the sense that (X̂t)t∈[0,T ] satisfies the standard No Free Lunch
with Vanishing Risk (NFVLR) condition of Delbaen and Schachermayer [12].

Then, by application of the main theorem in [12], we have that (Xt)t∈[0,T ] is an arbitrage price
for the primary market if and only if there exists a probability measure Q ∼ P for which βX̂ is a
G-martingale transform (also called σ-martingale, see [12]) under Q. In the sequel, we assume that
(Xt)t∈[0,T ] is an arbitrage price for the primary market, and we denote by M the set of risk-neutral
measures on the primary market, defined as the set of probability measures Q ∼ P for which βX̂ is
a G-martingale transform under Q.

2 Game Options

2.1 Payoffs of a Game Option

As it is well known (see, for instance, Kifer [17]), a convertible bond with no call notice period can
be formally seen as a special case of the so-called game option, which was introduced in Kifer [17]
(see also Kallsen and Kühn [15]).

Let 0 (respectively T ) stand for the inception date (respectively the maturity date) of a game
option. For any t ∈ [0, T ], we write Gt

T to denote the set of all G-stopping times with values in [t, T ].

Definition 2.1 A game option is a contract with the terminal payoff at time τp ∧ τc given by, as
seen from the perspective of the holder,

1{τp≤τc}Lτp + 1{τp>τc}Uτc , (4)

where τp, τc ∈ G0
T are stopping times under the control of the holder and the issuer of a game option

respectively. Additionally, a game option pays dividends with process D, a G-adapted, càdlàg,
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real-valued process with finite variation. The put payoff process L = (Lt)t∈[0,T ] and the call payoff
process U = (Ut)t∈[0,T ] are G-adapted, càdlàg, R ∪ {+∞}-valued processes, such that L ≤ U and
LT = UT . Moreover, defining the cumulative payoffs of a game option with dividends as the processes
L̂ := L+ D̂ and Û := U + D̂, where D̂t := Bt

∫
[0,t]

βu dDu, we assume that there exists a constant c
such that

−c ≤ βtL̂t for t ∈ [0, T ]. (5)

We refer to τc (respectively τp) as the moment of call (respectively put) of a game option.

Remarks 2.1 (i) The case of dividend-paying game options is not explicitly treated in Kifer [17] or
Kallsen and Kühn [15]. However, we shall see shortly that all the results in [15] can be immediately
extended to this situation.
(ii) In [15], the payoff processes L and U are implicitly assumed to be specified in relative terms
with respect to a certain numeraire. In the present work, we prefer to make explicit the presence of
the discount factor β.
(iii) Kallsen and Kühn [15] postulate that the lower payoff process L is non-negative. However,
as long as the process L is bounded from below, all their results are applicable, by a simple shift
argument.
(iv) One can deduce from (4) that we impose the priority of τp over τc, in the sense, that the terminal
payment equals Lτp (rather than Uτp) on the event {τp = τc}. We thus follow here Kallsen and Kühn
[15], from which we will deduce Proposition 2.1 below. Note, however, that in the general context
of game options, this assumption is known to be essentially immaterial, in the sense, that is has no
bearing neither on the price of a game option nor on the optimal stopping rules (cf. [17]).

Since we wish also to deal with the practically important case of a convertible bond with a
positive call notice period, we need also to introduce a more general concept of an extended game
option.

Definition 2.2 An extended game option with time constraints (g, h) is a contract with the terminal
payoff occurring either at time τ1, if {τp ≤ τc}, or at time τ2, if {τp > τc}, and given by, as seen
from the perspective of the holder,

1{τp≤τc}Lτ1 + 1{τp>τc}Uτ2 , (6)

where τp, τc ∈ G0
T are stopping times under the control of the holder and the issuer of an extended

game option respectively, and τ1, τ2 ∈ {τp, τc}. Moreover, on the event {τp ≤ τc} we have τc ≤ g(τp)
and on the event {τc < τp} we have τp ≤ h(τc), where the Borel functions g, h : [0, T ] → [0, T ]
are such that g(t) ≥ t, h(t) ≥ t for t ∈ [0, T ]. Additionally, a game option pays dividends with
cumulative process D, a real-valued, G-adapted, càdlàg process with finite variation. Finally, the
terminal payoff processes L = (Lt)t∈[0,T ] and U = (Ut)t∈[0,T ] are G-adapted, càdlàg processes taking
values in R ∪ {+∞}.

In this rather abstract situation, we still find it convenient to refer to τc (respectively τp) as
the moment of call (respectively put) of an extended game option. Thus dividends are paid while
the option is alive, and if the contract is put by the holder prior to being called by the issuer (i.e.,
when τp ≤ τc) then the holder receives a terminal payment Lτ1 at time τ1; otherwise, a terminal
payment Uτ2 is received at time τ2. We may formally distinguish four classes of extended game
options, corresponding to τ1 = τ2 = τp, τ1 = τ2 = τc, τ1 = τp and τ2 = τc, or τ1 = τc and τ2 = τp,
respectively. The third class — for the choice of admissible functions g and h given as g(t) = h(t) = T
for t ∈ [0, T ] — corresponds to game options as defined above. Therefore, a game option can be
seen as a special case of an extended game option.

2.2 Valuation of a Game Option

The concept of an arbitrage price of a game option can be introduced in various ways. Kallsen and
Kühn [15] make the distinction between a static and a dynamic approach. The former point of view
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corresponds to the assumption that only a buy-and-hold strategy in the derivative asset is allowed,
whereas the primary assets can be traded dynamically. In the latter approach, it is assumed that
a derivative asset becomes liquid and negotiable asset, so that it can be traded together with the
primary assets during the whole period [0, T ]. Consequently, in a dynamic approach, in order to
determine a price process of a derivative asset, it is postulated that the extended market, including
this derivative asset, remains arbitrage-free. In this work, we shall adopt the dynamic point of view.

For the formal definition of a (dynamic) arbitrage price process of a game option, we refer the
reader to Kallsen and Kühn [15, Definition 2.6]. As explained in [15], this definition is based on an
extension to markets containing game options of the No Free Lunch with Vanishing Risk condition,
introduced by Delbaen and Schachermayer [12, Definition 2.8], using the notion of an admissible
trading strategy involving primary assets and the game option. Without entering into details, let us
note that admissible strategies in this sense include, in particular, trading strategies in the primary
assets only, provided that the corresponding wealth process is bounded from below. The case of
dividend-paying primary assets and/or game option is not explicitly treated in [15]. However, the
results of [15] can be applied to the case of dividend-paying primary assets and/or game option by
resorting to the transformation of prices into cumulative prices described in Section 1.3, and that
we already used to characterize no-arbitrage prices in our primary risky market with dividends.

As a reality check of pertinency of Kallsen and Kühn’s definition of an arbitrage price of a game
option and of our extension to the case of dividend-paying assets, we show in forthcoming papers
[5, 6] that in more specific models, in which we are able to identify well determined processes as
arbitrage prices in the sense of this definition, these processes can alternatively be characterized as
minimal super-hedging prices.

We decided not reproduce here the full statement of Definition 2.6 in [15], since it is rather
technical and will not be explicitly used in the sequel. To proceed, it will be enough for us to make
use of the following characterization of an arbitrage price.

We are interested in studying a problem of time evolution of an arbitrage price of a game option.
Therefore, we shall formulate the problem in a dynamic way by allowing for any time t ∈ [0, T ]
to serve as the contract’s initiation date. Given t ∈ [0, T ] and stopping times τp, τc ∈ Gt

T , let the
ex-dividend cumulative cash flow of the game option at time t stand for the Gτ -measurable random
variable θt such that

βtθt(τp, τc) := βτ D̂τ − βtD̂t + βτ

(
1{τ=τp}Lτp

+ 1{τ<τp}Uτc

)
,

with τ = τp∧ τc. We shall see shortly that θt(τp, τc) represents the terminal cash flow paid at time τ
of a non-dividend paying game option equivalent to the original game option with dividends. Note
that the random variable θt(τp, τc) is not Gt-measurable for t < T . It is only Gτ -measurable. This
is, of course, expected, since it represents payments occurring between t and τ.

Proposition 2.1 (By application of Kallsen and Kühn [15, Theorem 2.9]) If a process (Xt,Θt)t∈[0,T ]

satisfies the following two conditions:
(i) Θ is a G-semimartingale, and
(ii) there exists Q ∈ M such that Θ is the Q-value process of the Dynkin game related to the game
option, in the sense that

esssupτp∈Gt
T
essinfτc∈Gt

T
EQ

(
θt(τp, τc)

∣∣Gt

)
= Θt (7)

= essinfτc∈Gt
T
esssupτp∈Gt

T
EQ

(
θt(τp, τc)

∣∣Gt

)
, t ∈ [0, T ] ,

then (X,Θ) is an (ex-dividend) arbitrage price for the extended market composed of the primary
market and the game option. Moreover, the converse holds true under the following integrability
condition:

sup
Q∈M

EQ

(
sup

t∈[0,T ]

L̂t

∣∣∣G0

)
<∞, a.s. (8)

Recall that the fact that the Dynkin game has a (conditional) value at time t means that we
have equality between the lower value of the game, corresponding to the left-hand side of (7), and
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the upper value, as given by its right-hand side. It is well known that the lower value of a game is
always less or equal to the upper value, but they do not need to coincide, in general. For general
results on Dynkin games, see, for instance, Dynkin [14], Kifer [18], Lepeltier and Maingueneau [20].

Proof of Proposition 2.1. By definition of prices in markets with dividends, (Xt,Θt)t∈[0,T ] is an
arbitrage price for the extended market with dividends, if and only if (X̂t, Θ̂t)t∈[0,T ] is an arbitrage
price for the equivalent extended market without dividends, where Θ̂t := Θt + D̂t. Now, by an
application of Kallsen and Kühn [15, Theorem 2.9], under condition (8) (which is actually only
used for the converse part of the Theorem), this is equivalent to the fact that βX̂ is a G-martingale
transform under some P-equivalent probability measure Q, and that Θ̂ is a G-semimartingale equal to
the Q-value of the Dynkin game without dividends and with terminal payoffs L̂ and Û . Specifically,
Θ̂ satisfies, for t ∈ [0, T ],

esssupτp∈Gt
T
essinfτc∈Gt

T
EQ

(
θ̂t(τp, τc)

∣∣Gt

)
= Θ̂t (9)

= essinfτc∈Gt
T
esssupτp∈Gt

T
EQ

(
θ̂t(τp, τc)

∣∣Gt

)
with θ̂t(τp, τc) = θt(τp, τc) + D̂t, or equivalently,

βtθ̂t(τp, τc) = βτ

(
1{τ=τp}L̂τp + 1{τ<τp}Ûτc

)
.

It now suffices to observe that (9) is equivalent to (7). 2

This very general result essentially reduces the study of an arbitrage price of a game option to
the study of the value, under a risk-neutral measure Q, of the corresponding Dynkin game, with the
issuer playing the role of the minimizer and the holder being the maximizer. Note that this result
covers in particular the case of American options and European options, as we now see.

Definition 2.3 An American option is a game option with Ut = ∞ for t ∈ [0, T ). A European
option is an American option such that

βtL̂t ≤ βT L̂T , t ∈ [0, T ]. (10)

By applying Proposition 2.1, we deduce that the Q-value Θ̂t of an American option becomes the
essential supremum with respect to stopping times τp ∈ Gt

T , specifically,

Θ̂t = esssupτp∈Gt
T

EQ
(
θ̂t(τp, T )

∣∣Gt

)
= Bt esssupτp∈Gt

T
EQ

(
βτp
L̂τp

∣∣Gt

)
,

whereas for a European option it reduces to the following conditional expectation

Θ̂t = EQ
(
θ̂t(T, T )

∣∣Gt

)
= Bt EQ

(
βT L̂T

∣∣Gt

)
.

A natural question arises whether it is possible to generalize Proposition 2.1 to the case of an
extended game option. We shall not address this pertinent issue at this stage of our research, but
we shall rather focus on specific subclasses of game options (convertible securities and, as a special
case, convertible bonds with no call notice period) and extended game options (convertible bonds
with a positive call notice period).

In the situation of Proposition 2.1, we shall briefly say in the sequel that (Θt)t∈[0,T ] is an arbitrage
price for the game option, whenever (Xt,Θt)t∈[0,T ] is an arbitrage price for the extended market
consisting of the primary market and the game option.

3 Defaultable Game Options and Convertible Securities

In this section, we introduce fairly general subclasses of game options, namely defaultable game
option and defaultable convertible securities (GO and CS, for short), which encompass as special
cases such financial instruments as convertible bonds, which will be discussed in some detail in
Section 4.1 below, or convertible preferred stocks, as well as defaultable American or European
options.
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3.1 Defaultable Game Options

Let an R+∪{∞}-valued G-stopping time τd represent the default time of a reference entity. In broad
terms, a defaultable game option (GO) is a game option with the following cash flows that are paid
by the issuer of the contract and received by the holder of the contract:
– a put payment Lt made at the put time t = τp (chosen by the holder), given that τp ∈ [t, τc∧τd∧T ];
the rules governing the determination of the amount Lt are specified in the contract;
– a call payment Ut made at time t = τc (chosen by the issuer), given that τc ∈ [t, τp ∧ τd ∧ T );
moreover, the call time may be subject to the constraint that τc ≥ τ̄ , where τ̄ is the lifting time
of the call protection; the rules governing the determination of the amount Ut are specified in the
contract,
– a dividend stream Dgo

t , subject to rules specified in the contract,
– a payment at maturity ξ made at time T provided that T < τd and T ≤ τp ∧ τc.

The contract is terminated at default time, modelled as the R+ ∪ {∞}-valued G-stopping time
τd. In particular, there are no more cash flows related to this contract after the default time. In
this setting the dividend stream D additionally includes a possible recovery payment made at the
default time.

Of course, there is also a cash flow, namely the purchasing price of the contract, which is paid
at the initiation time by the holder and received by the issuer.

Let H denote the default indicator process Ht = 1{τd≤t}, where the R+∪{∞}-valued G-stopping
time τd represents the default time of the reference entity.

Definition 3.1 A defaultable game option (GO) is a game option with cumulative put and call
payoff processes L̂go = (L̂go

t )t∈[0,T ] and Ûgo = (Ûgo
t )t∈[0,T ] given by

L̂go
t = D̂go

t + 1{τd>t}
(
1{t<T}Lt + 1{t=T}ξ

)
, (11)

Ûgo
t = D̂go

t + 1{τd>t}
(
1{t<T}Ūt + 1{t=T}ξ

)
, (12)

where:
– D̂go

t = Bt

∫
[0,t]

βu dD
go
u , where the dividend process Dgo = (Dgo

t )t∈[0,T ] equals

Dgo
t =

∫
[0,t]

(1−Hu) dCu +
∫

[0,t]

Ru dHu ;

here, the coupon process C = (Ct)t∈[0,T ] is a G-adapted càdlàg process with bounded variation, and
the recovery process R = (Rt)t∈[0,T ] is a real-valued, G-adapted process;
– the put/conversion payment process L = (Lt)t∈[0,T ] is a G-adapted, real-valued, càdlàg process;
– the process Ū = (Ūt)t∈[0,T ] equals

Ūt = 1{t<τ̄}∞+ 1{t≥τ̄}Ut,

where the lifting time of a call protection is modeled as a given stopping time τ̄ ∈ G0
T , and where the

call payment U = (Ut)t∈[0,T ] is a G-adapted, real-valued, càdlàg process, such that Lt ≤ Ūt for t ∈
[0, τd ∧ T ), or equivalently,

Lt ≤ Ut for t ∈ [τd ∧ τ̄ , τd ∧ T ) ; (13)

– the payment at maturity ξ is a GT -measurable real random variable, such that LT ≤ ξ ≤ UT .

Gt
T denoting as above the set of all G-stopping times with values in [t, T ], for any t ∈ [0, T ], let

also Ḡt
T stand for {τ ∈ Gt

T ; τ ∧ τd ≥ τ̄ ∧ τd}, where the lifting time of a call protection of a GO, τ̄ ,
is given in G0

T . Note that in the case of a GO, given the specification (11)-(12) of L̂go and Ûgo with
Ūt = 1{t<τ̄}∞+ 1{t≥τ̄}Ut, condition (9) can be rewritten as

esssupτp∈Gt
T
essinfτc∈Ḡt

T
EQ

(
π(t; τp, τc)

∣∣Gt

)
= Πt (14)

= essinfτc∈Ḡt
T
esssupτp∈Gt

T
EQ

(
π(t; τp, τc)

∣∣Gt

)
, t ∈ [0, T ] ,
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where for t ∈ [0, T ] and (τp, τc) ∈ Gt
T × Ḡt

T , the ex-dividend cumulative cash flow of a GO is given by

βtπt(τp, τc) := βτ D̂
go
τ − βtD̂

go
t + 1{τd>τ}βτ

(
1{τ=τp<T}Lτp

+ 1{τ<τp}Uτc
+ 1{τ=T}ξ

)
,

with τ = τp ∧ τc. We thus have the following Theorem, as a consequence of Proposition 2.1.

Theorem 3.1 If a process Π is a G-semimartingale and if there exists Q ∈ M such that (14) is
verified, then Π is an arbitrage price for the GO with ex-dividend cumulative cash flow π. Moreover,
the converse holds true provided

sup
Q∈M

EQ

(
sup

t∈[0,T ]

L̂go
t

∣∣∣G0

)
<∞ , a.s. (15)

Remarks 3.1 (i) So the restriction that the issuer of GO is prevented from making a call on some
random time interval [0, τ̄), where τ̄ ∈ G0

T (cf. the non-mathematical description of a GO above), is
implicitly enforced in Definition 3.1 by putting Ūt = ∞ on the random interval [0, τ̄).
(ii) Note that πt(τp, τc) = 0 for any t ≥ τd. Therefore an (ex-dividend) arbitrage price of a GO is
necessarily equal to 0, for t ≥ τd. In what follows, an arbitrage price associated with a risk-neutral
measure Q will be called the Q-price of a GO.
(iii) In view of our formulation of the problem, the put or call decisions may take place after the
default time τd. Nevertheless, the discounted cumulative payoff processes βL̂go and βÛgo are constant
on the set {t ≥ τd} (note that the processes Dgo and βD̂go are stopped at τd). Thus, effectively, the
GO game is stopped at the default time τd, unless the decision to stop it was already made prior to
τd.

Definition 3.2 We also have the companion concepts of American GO (AO) and European GO
(EO), namely, GO that are American or European options in the sense of Definition 2.3. An AO,
namely a GO with Ū = ∞, can equivalently be seen as a non-callable GO, namely a GO with
τ̄ = T . It is also worth noting that when Dgo has bounded variation on [0, T ] and ξ is bounded from
below, an AO becomes an EO provided that L is chosen to be a negatively large enough constant
(depending on the other data of the AO). In the special case where ξ is bounded from below and
from above, such an EO will be referred to as an elementary security (ES).

Remarks 3.2 Consider a defaultable coupon-paying bond with (positive or negative) bounded
coupons, bounded recovery payoff, and a (finite or at least bounded from below and from above)
face value. Such a bond can be formally treated as an ES, provided that we take Ū = ∞ and we
additionally introduce the constant process L which makes the inequality βtL̂go

t ≤ βT L̂go
T hold for

every t ∈ [0, T ]. Of course, the choice of L is somewhat arbitrary, in the sense that L will not appear
explicitly in the valuation formula for the bond (see part (ii) in Theorem 3.2).

We shall now apply Theorem 3.1 in order to characterize arbitrage prices of an AO and a EO.

Theorem 3.2 (i) If a process Π̄ = (Π̄t)t∈[0,T ] is a G-semimartingale and if there exists Q ∈ M
such that

Π̄t = esssupτp∈Gt
T

EQ
(
π̄t(τp)

∣∣Gt

)
, t ∈ [0, T ],

where the ex-dividend cumulative cash flow π̄t(τp) of an AO can be represented as follows, for t ∈
[0, T ] :

βtπ̄t(τp) = βτp
D̂go

τp
− βtD̂

go
t + 1{τd>τp}βτp

(
1{τp<T}Lτp

+ 1{τp=T}ξ
)
,

then Π̄ is an arbitrage price of the related AO. Moreover, the converse holds true provided (15) is
satisfied.
(ii) If there exists Q ∈M such that

Φt = EQ(φt | Gt), t ∈ [0, T ],
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where the ex-dividend cumulative cash flow φt of an EO can be represented as follows, for t ∈ [0, T ] :

βtφt = βT D̂
go
T − βtD̂

go
t + 1{τd>T}βT ξ , (16)

then the process Φ = (Φt)t∈[0,T ] is an arbitrage price of the related EO. Moreover, the converse holds
true provided

sup
Q∈M

EQ

(
L̂go

T

∣∣∣G0

)
<∞ a.s. (17)

where we recall that L̂go
T = D̂go

T + 1{τd>T}ξ.

Proof. Since an AO and an EO are special cases of a GO, their ex-dividend cumulative cash flows
are given by the general formula of Theorem 3.1. By saying that they can be represented as π̄t(τp)
and φt, respectively, we mean that for the valuation purposes the general payoff πt(τp, τc) can be
reduced to either π̄t(τp) or φt. Note that consistently with the notation, π̄t(τp) does not depend on
τc and φt is independent of τp and τc.

Part (i) of the theorem follows by a straightforward application of Theorem 3.1. To prove part
(ii) we observe that

βtΦt = EQ(βtφt | Gt) = EQ(βT D̂
go
T + 1{τd>T}βT ξ | Gt)− βtD̂

go
t ,

and thus Φ given by (16)is a G-semimartingale. 2

3.2 Convertible Securities

Let us now introduce the concept of a convertible security (CS) with underlying S, a financial
contract that can be situated somewhere between a GO and a much more specific convertible bond,
which will be discussed in some detail in Section 4 below. Let S denote one of the primary risky
assets, called the underlying to a CS. In broad terms, a convertible security (CS) with underlying S,
is a GO such that:
– the put payment Lt represents in fact a put/conversion payment Lt made at the put/conversion
time t = τp; usually, payment Lt depends on the value St of the underlying asset, and corresponds
to the right of the holder of the CS to convert it to a fixed number of units of this asset – hence the
name of convertible – or to receive a predetermined cash flow;
– conversion is typically still possible at default time τd or at maturity time T , if the CS is still alive
at these times.

The specific nature of CS payements motivates the following definition.

Definition 3.3 A defaultable convertible security (CS) with underlying S, is a GO such that the
processes R,L and the random variable ξ satisfy the following inequalities, for some positive reals
a, b, c:

−c ≤ Rt ≤ a ∨ bSt, t ∈ [0, T ],
−c ≤ Lt ≤ a ∨ bSt, t ∈ [0, T ], (18)
−c ≤ ξ ≤ a ∨ bST .

In the case of a CS, D̂go will be renotd as D̂cs. Let L̂cs denote the cumulative put payoff of a
CS. Given our assumptions, we have for (modified) positive reals a, b :

L̂cs
t ≤ a ∨ bSt∧τd

, t ∈ [0, T ] (19)

so that in the case of a CS, the following condition enforces (15):

sup
Q∈M

EQ

(
sup

t∈[0,T∧τd]

St

∣∣∣G0

)
<∞ , a.s. (20)

Also note that an ES (cf. Definition (3.2)) is a special case of a CS.
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4 Convertible Bonds

We shall now address the issue of arbitrage valuation of a convertible bond with real-life features,
including the call notice period. As will be explained in Section 4.4, it is rather difficult to directly
value a convertible bond with a positive call notice period, since it does not fulfill conditions of the
definition of a game option, in general. To circumvent this difficulty, we shall introduce the concept
of a reduced convertible bond (RB), that is, a convertible bond whose value upon call is exogenously
given as a certain stochastic process, so that we can assume, without loss of generality, that the
bond has no call notice period. Since an RB is a special case of a CS, hence a GO, the valuation
results in the previous sections are directly applicable to a reduced convertible bond.

4.1 Covenants of a Convertible Bond

To describe the covenants of a typical convertible bond (CB), we introduce the following additional
notation:
N̄ : the par (nominal) value,

ccb
t : the continuous coupon rate, a G-adapted bounded process,

Ti, ci, i = 0, 1, . . . ,K: the coupon dates T0, . . . , TK are deterministic fixed times with T0 = 0 (for
notational convenience) and TK−1 < T ≤ TK ; the coupon amounts ci are GTi−1-measurable
and bounded, for i = 1, 2, . . . ,K, and c0 = 0,

At: the accrued interest at time t, specifically,

At =
t− Tit−1

Tit
− Tit−1

cit ,

where it is the integer satisfying Tit−1 ≤ t < Tit
; in view of our assumptions on the coupons,

the process (At)t∈[0,T ] is càdlàg and G-adapted,

R̄t: the recovery process on the CB upon default of the issuer at time t, a F-predictable bounded
process,

κ : the conversion factor,

Rcb
t = R̄t ∨ κSt : the effective recovery process,

Dcb
t : the cumulative dividend process (to be specified below),

ξcb = N̄ ∨ κST +AT : the payoff at maturity,

P̄ ≤ C̄ : the put and call nominal payments, respectively,

δ ≥ 0 : the length of the call notice period (see the detailed description below),

tδ = (t+ δ) ∧ T : the end date of the call notice period started at t.

We shall now present a detailed description of specific CB covenants. Let us consider a CB at
any date t ∈ [0, T ] at which it is still alive. Then we have the following provisions:
put/conversion provision – at any time τp ∈ [t, τc ∧ τd ∧ T ], where τc is a stopping time under the

discretion of the issuer, the bond holder may convert a CB to κ shares of equity. In addition,
at any time τp ∈ [t, τc ∧ τd ∧ T ), and possibly also at τc if τc < τd ∧ T , the holder may put
(return) the bond to the issuer for a nominal put payment P̄ pre-agreed at time of issuance.
Only one of the two above decisions may be executed. Since the bond holder is also entitled to
receive a relevant accrued interest payment, the effective put/conversion payment collected in
case of put or conversion (depending on which one is more favorable to the holder) at time τp
(if τp < T ) equals Lcb

τp
= P̄ ∨ κSτp

+ Aτp
, where κ denotes the conversion ratio. The effective

put payment in case τp = T is considered separately (see the promised payment below).

call provision – the issuer has the right to call the bond at any time τc ∈ [t, τp ∧ τd ∧T ), where τp is
a random time under the discretion of the holder, for a nominal call payment C̄ pre-agreed at
time of issuance. More precisely, there is a fixed call notice period δ ≥ 0 (typically, one month)
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such that if the issuer calls the bond at time τc, then the bond holder has either to redeem
the bond for C̄ or convert the bond into κ shares of stock, at any time u at its convenience in
[τc, τ δ

c ], where τ δ
c = (τc + δ)∧ T . Accounting for accrued interest, the effective call/conversion

payment to the holder at time u is C̄ ∨ κSu +Au.

call protection – typically, a CB also includes call protections, either hard or soft. For instance, the
issuer’s right to call a CB early becomes active only after a certain period of time has lapsed
since the original issue date. A CB, which can’t be called under any circumstances during
the initial time period [0, T̄ ), is subject to hard call protection. Alternatively, a CB that is
non-callable unless the stock price reaches a certain predetermined level, say S̄, is subject to
soft call protection. The introduction of the stopping times τ̄ in G0

T , and of the associated
class Ḡt

T ⊆ Gt
T , allows one to model quite general kinds of call protections. So hard call

protections correspond to τc ∈ Ḡt
T with τ̄ = T̄ , and standard soft call protections to τc ∈ Ḡt

T

with τ̄ = inf{t ∈ R+ ; St ≥ S̄} ∧ T .

promised payment – the issuer agrees to pay to the bond holder, at any coupon date Ti prior to
default time τd and to τp ∧ τc ∧T , a bounded coupon amount ci. He also agrees to pay the par
value N̄ at the maturity date T , provided that T < τd and T ≤ τp ∧ τc. Since the bond holder
may still convert at time T , we define the effective payment at maturity as ξcb = N̄ ∨κST +AT ;
it is collected at time T if the CB is still alive at T .

recovery structure at default – it is assumed throughout that in the case of default at time τd ≤
τp ∧ τc ∧ T , the effective recovery Rcb

τd
= R̄τd

∨ κSτd
is recovered. Indeed, we assume that the

CB can still be converted at default time τd.

It is typically assumed that P̄ ≤ N̄ ≤ C̄, which we also suppose in the following.

Remarks 4.1 (i) As specified above, at maturity the bond holder is allowed to convert, but not to
put, the bond. Some authors allow for a put decision at maturity date as well. In fact, allowing put
decisions at maturity would not change anything, as long as one supposes (as we do) that P̄ ≤ N̄ .
Indeed, if P̄ ≤ N̄ , we have NT = (N̄ ∨ κST ) +AT = (P̄ ∨ N̄ ∨ κST ) +AT .
(ii) It should be stressed that we do not consider the default decision to be a decision variable in
the sense of “optimal default” studied in corporate finance. In other words, the default time is
exogenously given random time, as opposed to call and put/conversion times. It would be possible
to extend our study by allowing for two possible times of default: the exogenous time τex

d chosen
by the nature, and the endogenous default time τen

d which is optimally chosen by the bond issuer.
Note that τen

d must not be identified with τc since call provisions are parts of the contract, whereas
the bankruptcy provisions are not.
(iii) An important issue in the valuation of a CB is the so-called dilution effect. Dilution is the fact
that the equity price may drop upon conversion, due to the sudden increase of the number of shares
in circulation [10]. In practice, the importance of this effect depends on the number of bond holders,
who decide to convert simultaneously. In our framework, we deal with a representative holder, who
is supposed to make optimal decisions. Therefore, the whole issue of the convertible bond will be
converted at the same time, so that a jump in the stock price upon conversion is expected. To
account for dilution, one could introduce a fractional loss 0 ≤ ν ≤ 1 of the stock price at put, so
that P̄ ∨ κSτp

= P̄ ∨ κ(1 − ν)Sτp−. However, in the abstract framework considered in this paper,
this would be immaterial.
(iv) A further possible covenant of a CB is resettability. Resettability means that to compensate
for fluctuations in S, the conversion ratio κ may depend on St in a particular way specified in the
bond indenture. It is straightforward to check that all the results in this paper remain valid, if one
assumes that κt = κ(St) for some bounded Borel function κ.
(v) There exist soft call protection clauses more sophisticated than the one mentioned above, such
as clauses preventing the issuer to call a CB unless the stock has been above a certain level for a
given amount of time. A soft call protection always introduces a certain path-dependency to the
valuation problem (cf. [2, 19]). However, we shall see that it does not complicate much the analysis
from a general point of view. Naturally, it makes computationally heavier the numerical resolution
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of the pricing variational inequalities in a Markovian model (see [6]).
(vi) In practice, coupons of a CB are purely discrete. However, frequently, in the literature on CBs or
in CB software pricing models, a simplifying assumption is made that coupons are paid continuously.
Here both forms of coupons are represented.
(vii) In practice, R̄ is generally specified as X̄Ȳ , where:
– the default claim process X̄ is specified in the indenture of a CB. Typically, X̄ is simply equal to
the bond par value, or the bond par value plus the accrued interest;
– the recovery rate process Ȳ depends on legal specifications, such as the seniority of the related
debt, etc. In practice, Ȳ tends to be lower in periods with more defaults. However, this statistical
observation holds under the real-world probability, with no obvious consequences under the market
pricing measure [4]. A common recovery assumption is the so-called face recovery assumption, which
means that X̄ is equal to N̄ and that Ȳ is a given constant (typically, Ȳ = 40% for investment grade
issues).
(viii) Upon default, the stock price process typically falls sharply. To account for this effect, one
should introduce, in a model for the stock process S, a fractional loss upon default 0 ≤ η ≤ 1, such
that Sτd

= (1 − η)Sτd− (see, for instance, [5]). However, in the abstract framework considered in
this paper, this particular feature of the stock price is irrelevant.

Definition 4.1 In accordance with the CB covenants, the dividend process Dcb of a CB is given
by the expression

Dcb
t =

∫ t∧τd

0

ccb
u du+

∑
0≤Ti≤t, Ti<τd

ci + 1{0≤τd≤t}R
cb
τd
, t ∈ [0, T ]. (21)

As in Section 3.1, we define the auxiliary process D̂cb representing the current value of past
dividends of a CB by setting

D̂cb
t = Bt

∫
[0,t]

βu dD
cb
u , t ∈ [0, T ].

Recall also that we write

Rcb
τd

= R̄τd
∨ κSτd

, Lcb
t = P̄ ∨ κSt +At, ξcb = N̄ ∨ κST +AT .

4.2 Convertible Bonds without Call Notice Period

Assume first that a CB has no call notice period, so that δ = 0.

Definition 4.2 A convertible bond with no call notice period is a convertible security with the
cumulative put and call payoff processes L̂ and Û given by the expressions

L̂cb
t = D̂cb

t + 1{τd>t}
(
1{t<T}L

cb
t + 1{t=T}ξ

cb
)
, (22)

Ûcb
t = D̂cb

t + 1{τd>t}
(
1{t<T}Ū

cb
t + 1{t=T}ξ

cb
)
, (23)

where we set
Ū cb

t = 1{t<τ̄}∞+ 1{t≥τ̄}(C̄ ∨ κSt +At), t ∈ [0, T ]. (24)

It is a routine task to check that the processes L̂cb and Ûcb satisfy all technical assumptions
stated in Section 3.1.

The arbitrage valuation of a CB with no call notice period is covered by Theorem 3.1. Therefore,
it remains to address the issue of valuation of convertible bonds with a positive call notice period.

4.3 Convertible Bonds with a Positive Call Notice Period

At the intuitive level, a convertible bond with a positive call notice period δ > 0 can be seen as a
contract involving the following decisions: the decision to call the bond by its issuer, the decision
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to put/convert a bond by its holder, provided that the bond was not yet called, and the decision to
put/convert the bond by its holder during the call notice period [t, t+δ], assuming that the bond has
been called at some date t. This rather loose description is made rigorous in the following definition.

Definition 4.3 A convertible bond with a positive call notice period is an extended game option
with cumulative payoff paid at τ, as seen from the perspective of the holder, given by

1{τp≤τc}L̂
cb
τp

+ 1{τp>τc}L̂
c
τp
, (25)

where τc, τp are G-stopping time under the control of the issuer and the holder respectively, and
τp ≤ (τc + δ) ∧ T on the event {τc < τp}. Moreover, L̂cb is given by (22) and L̂c is given by the
formula

L̂c
t = D̂cb

t + 1{τd>t}(C̄ ∨ κSt +At). (26)

Let us make few comments regarding the definition above.
On the one hand, is is worth noting that for δ = 0 the definition above formally excludes τp > τc,

so that formula (25) reduces to L̂cb
τp

. Consequently, for δ = 0, Definition 4.3 (which would be
inappropriate in this case) does not reduce to Definition 4.2.

On the other hand, in order to obtain the definition above, it suffices to set τ1 = τ2 = τp, g(t) =
T, h(t) = (t+ δ) ∧ T, L̂ = L̂cb and Û = L̂c in Definition 2.2 of an extended game option.

As already mentioned, we do not attempt here to directly value a convertible bond with a positive
call notice, in the sense that we do not adapt Proposition 2.1 to the case of extended game options.

4.4 Reduced Convertible Bonds

An alternative approach proposed in this work is based on a conjecture that the valuation of a
convertible bond with positive call notice period can be done recursively. In the first step, we shall
value this bond upon call. In the second step, we use this price as the payoff at call time of a CB
with no call notice period. This idea motivates the introduction of the following auxiliary concept.

Definition 4.4 A reduced convertible bond (RB) is a convertible security with the cumulative put
payoff process L̂cb given by (22) and the cumulative call payoff process Ûcb given by (23) with

Ū cb
t = 1{t<τ̄}∞+ 1{t≥τ̄}U

cb
t , t ∈ [0, T ],

where (U cb
t )t∈[0,T ] is a càdlàg process that is required to satisfy the following inequality

U cb
t ≥ C̄ ∨ κSt +At, t ∈ [0, T ]. (27)

The financial interpretation of the process U cb is that U cb
t represents the value of our reduced

convertible bond upon a call at time t. As we shall see in what follows, one of the major problems
arising here is that an arbitrage price of a CB upon call is not uniquely defined, unless we place
ourselves in the framework of a complete market model.

Note that the only difference between Definitions 4.2 and 4.4 is that the latter definition pos-
tulates that the process U cb is exogenous and satisfies inequality (27), whereas in the former this
process is given by equality (24). It is thus trivial to observe that a CB with no call notice period is
an RB. The same remark applies to a puttable bond (PB), that is, a CB with no call clause (formally,
we set τ̄ = T ; so a puttable bond is a special case of an AO).

Since an RB is a CS, hence a GO, in order to obtain a characterization of an arbitrage price of
an RB, it suffices to make use of Theorem 3.1, with the properly modified notation.

In the next section, we shall examine a method of interpreting and valuing a CB with positive
call notice period as an RB, based on an endogenous specification of the random variable U cb

t as
arbitrage price of a certain PB starting at time t.
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4.5 Valuation of a Convertible Bond upon Call

It follows from (25) and (26) (see also Kwok and Lau [19]) that when a convertible bond with a
positive call notice period is called at some date t, it is actually replaced by a puttable bond. This
particular puttable bond, which is referred to as the t-PB in what follows, is endowed with the same
characteristics as a considered CB, except that:
(i) the inception date of the t-PB is t, its maturity is tδ = (t + δ) ∧ T , and its nominal is equal to
the call payment C̄,
(ii) the coupon schedule of the t-PB is the trace on (t, tδ] of the coupon schedule of a CB,
(iii) the effective put/conversion payment of the t-PB is equal to the effective call/conversion payment
C̄ ∨ κSu +Au of a CB, at any date u ∈ [t, tδ).

In (ii), we excluded t from the coupon schedule of the t-PB, because any coupon falling at call
time is already paid to the bond holder via the CB.

Definition 4.5 A t-PB is a puttable bond with the inception date t, the maturity date tδ, and the
ex-dividend cumulative cash flow π̄t

u(τp), u ∈ [t, tδ], given by

βuπ̄
t
u(τp) = βτp

D̂cb
τp
− βuD̂

cb
u + 1{τd>τp} βτp

(
C̄ ∨ κSτp

+Aτp

)
,

where τp belongs to Gu
tδ , that is, τp is a G-stopping time taking values in [u, tδ].

As we already noted, any PB can be seen as an example of an AO and a CS. Hence we may
apply Theorem 3.2 and (19) in order to establish the following auxiliary result.

Proposition 4.1 Assuming (20), let us fix t ∈ [0, T ]. If (Π̄t
u)u∈[t,tδ] is an arbitrage-free price of the

t-PB, then Π̄t
t ≥ C̄ ∨ κSt +At, on the event {τd > t}.

Proof. By part (i) in Theorem 3.2, there exists Q ∈M such that

Π̄t
t = esssupτp∈Gt

tδ
EQ

(
π̄t

t(τp)
∣∣Gt

)
. (28)

By considering the specific stopping time τp = t in the left-hand side of (28), we obtain the inequality
Π̄t

t ≥ C̄ ∨ κSt +At on the event {τd > t}. 2

Assume that for any t ∈ [0, T ], the price process Π̄t is arbitrage-free. Since the price processes
(Π̄t

u)u∈[t,tδ] of t-PBs constitute a whole family of processes indexed by t ∈ [0, T ], this assumption
means that each of these price processes is arbitrage-free, in the sense of Definition 2.6 in [15].

It is not clear, however, whether the family of random variables Π̄t
t, t ∈ [0, T ], can be considered

as a well-defined càdlàg process. Let us make a bold assumption that this is indeed the case. Then
inequality (27) is manifestly satisfied by the process

U cb
t = 1{τd>t}Π̄t

t + 1{τd≤t}(C̄ ∨ κSt +At).

In this way, we implement our conjecture of reducing the valuation problem for a CB with a positive
call notice period to the already solved case of valuation of an RB.

5 Decompositions of Convertible Securities

We are ready to examine in more detail the optional features of convertible securities. To this end,
we first introduce in Section 5.2 the pertinent decompositions of cash flows and prices of convertible
securities with respect to some reference elementary security. In Section 5.4, we provide a (non-
unique) decomposition of a reduced convertible bond into a bond component and a game option
component. This representation allows us to give a definite meaning to commonly used terms of the
‘CB spread’ and the ‘CB implied volatility’ (see, for instance, Connolly [10]). To further motivate
this point, let us consider some relevant market data (data provided by courtesy of Credit Agricole,
Paris).
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5.1 Spread and Implied Volatility of a Convertible Bond

Table 1 provides market quotes on CBs issued by the three companies of the CAC40 (French stock
index) on May 10, 2005. The CB prices are Mid-Market Trading Euro Prices and CB implied
volatilities (CB IV) are Offer-Side Implied Volatilities. In accordance with the French convention for
quoting CBs, the bonds’ nominals in Table 1 have been scaled by a factor κ−1, so that the data in
Table 1 correspond to a conversion ratio κ equal to 1. For instance, the price of the scaled Alcatel
CB is equal to 17.42 euros. Immediate conversion would be for one share of stock priced at 8.39
euros, and the scaled nominal of the CB is equal to 16.18 euros.

CB Stock Price Nominal CB Price Credit Spread CB IV

Alcatel 4.75% Jan-11 8.39 16.18 17.42 135 bp 30.2%

Pinault 2.50% Jan-08 77.80 90.97 93.98 65 bp 21.5%

Cap Gemini 2.00 % Jun-09 25.25 39.86 41.80 65 bp 33.9%

Table 1: CB data on names of the CAC40 on May 10, 2005

For comparison, Table 2 shows market quotes on the closest listed option for each case considered
in Table 1. The ‘closest listed option’ means the listed vanilla option with strike and maturity as
close as possible to the scaled nominal and to the ‘CB expected life’, i.e. the most likely time of call,
put, conversion or default, as forecasted by financial analysts.

CB CB Expected Life Option Strike and Expiry Option IV

Alcatel 4.75% Jan-11 Oct-10 13.0 Dec-09 30.7%

Pinault 2.50% Jan-08 Nov-07 90.0 Dec-07 20.5%

Cap Gemini 2.00 % Jun-09 May-09 40.0 Dec-08 35.6%

Table 2: CBs and the closest listed options

Investors are expected to use the information in Tables 1 and 2 to assess relative value of CBs
and options, and to take positions as a consequence. For instance, in some circumstances traders
used to say that buying a CB is a ‘cheap way to buy volatility’. This means that in their view,
the option component of a CB is ‘cheaper’ (has a lower Black-Scholes implied volatility) than the
corresponding listed vanilla option. It is thus a bit surprising that, to the best of our knowledge,
the exact meaning of a ‘CB spread’ and a ‘CB implied volatility’ (CB IV in Table 1) has not been
discussed in the literature.

The decomposition of a CB into a bond and option components is well known in the ‘exchange
option’ case when the conversion can only occur at maturity and there are no put or call clauses [21],
but not in the general case of a defaultable CB with call and/or put covenants. In particular, at the
intuitive level, it seems plausible that the strike of the option embedded into a general convertible
bond is a floating strike equal to the current price of a defaultable bond. So, we conjecture that the
implied volatilities for convertible bonds, as given in Table 1, are not directly comparable with the
corresponding implied volatilities for the closest listed options, as given in Table 2. Of course, to
examine this conjecture, we need to formally define the implied volatility of a convertible bond.

5.2 Decompositions of Cash Flows of a Convertible Security

Let us consider a convertible security corresponding to the data set (Dcs, L, U, τ̄ , ξ), as specified by
Definition 3.3. Assume that we are given some reference elementary security, specifically, an ES in
the sense of Definition 3.2, with the ex-dividend cumulative cash flow given by the expression

βtφt = βT D̂
b
T − βtD̂

b
t + 1{τd>T}βT ξ

b, (29)

where the dividend process Db is supposed to have bounded variation on [0, T ] and the payment at
maturity ξb is assumed to be bounded. The first goal is to describe the cash flow of the portfolio
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obtained by combining the long position in the convertible security with the short position in the
reference ES (see formula (33) below).

Remarks 5.1 Assuming thatDcs is of bounded variation on [0, T ] and ξ is bounded, as the reference
elementary security for the CS we may take the CS contract stripped of its game features, that is,
the otherwise equivalent CS in which the only admissible decision times τp and τc are τp = τc = T .
This is not, of course, the only possible choice for the reference ES, but in many instances this will
be the most natural choice, provided that this reference security is indeed traded.

For any probability measure Q ∈ M, we define the process Φt = EQ(φt | Gt) for t ∈ [0, T ]. Note
that by part (ii) in Theorem 3.2, the process Φ is actually an arbitrage price for the ES, associated
with the probability measure Q, that is, the Q-price of the ES.

Lemma 5.1 (i) The ex-dividend cumulative cash flow of the CS can be decomposed as follows:

πt(τp, τc) = φt + ϕt(τp, τc), t ∈ [0, T ], (30)

where φt is given by (29), and thus it represents the ex-dividend cumulative cash flow of the reference
ES, and ϕt(τp, τc) is given by the formula

βtϕt(τp, τc) = βτ (D̂cs
τ − D̂b

τ )− βt(D̂cs
t − D̂b

t ) (31)

+ 1{τd>τ} βτ

(
1{τ=τp<T}

(
Lτp

− φτp

)
+ 1{τ<τp} (Uτc

− φτc
) + 1{τ=T}(ξ − ξb)

)
.

(ii) Let Q be any probability measure from M. Then we have

EQ(ϕt(τp, τc) | Gt) = EQ(ψt(τp, τc) | Gt), t ∈ [0, T ], (32)

where ψt(τp, τc) is defined by

βtψt(τp, τc) = βτ (D̂cs
τ − D̂b

τ )− βt(D̂cs
t − D̂b

t ) (33)

+ 1{τd>τ} βτ

(
1{τ=τp<T}

(
Lτp − Φτp

)
+ 1{τ<τp} (Uτc − Φτc) + 1{τ=T}(ξ − ξb)

)
.

Proof. The decomposition of cash flows stated in part (i) is straightforward. For part (ii), we recall
from the proof of part (ii) in Theorem 3.2 that

βtΦt = EQ(βT D̂
b
T + 1{τd>T}βT ξ

b | Gt)− βtD̂
b
t ,

and thus
βτp

Φτp
= EQ(βT D̂

b
T + 1{τd>T}βT ξ

b | Gτp
)− βτp

D̂b
τp

= EQ(βτp
φτp

| Gτp
) ,

where the first equality follows from Doob’s optional sampling theorem, and the second follows from
the definition of φ. Hence, by taking iterated conditional expectations, we obtain

EQ(1{τ<τd}1{τ=τp<T}βτφτp | Gt) = EQ

(
EQ

(
1{τp<τd}1{τ=τp<T}βτpφτp

∣∣Gτp

) ∣∣∣Gt

)
= EQ

(
1{τp<τd}1{τ=τp<T}βτp EQ

(
φτp

∣∣Gτp

) ∣∣∣Gt

)
= EQ

(
1{τ<τd}1{τ=τp<T}βτΦτp

∣∣Gt

)
where we have used the fact that the random variable 1{τp<τd}1{τ=τp<T}βτp

is Gτp
-measurable.

Using the same arguments, we also get βτc
Φτc

= EQ(βτc
φτc

| Gτc
) and thus

EQ(1{τ<τd}1{τ<τp}βτφτc
| Gt) = EQ

(
1{τc<τd}1{τ<τp}βτc

EQ
(
φτc

∣∣Gτc

) ∣∣∣Gt

)
= EQ

(
1{τ<τd}1{τ<τp}βτΦτc

∣∣Gt

)
.

It is now easily seen that equality (32) is valid. 2

Assume that we are given a CS and we have already chosen some reference ES. Then we define
the Q-exchange CS, as the CS with dividend process Dcs −Db, put payment L − Φ, call payment
U−Φ, call protection lifting time τ̄ , and payment at maturity ξ−ξb. In other words, the Q-exchange
CS is the CS with ex-dividend cumulative cash flow ψt(τp, τc) given by (33).
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Remarks 5.2 (i) Note that, for a given CS, the cash flow of the Q-exchange CS depends not only
on the choice of the reference ES, but also on the choice of a probability measure Q ∈ M, through
the definition of the Q-price process Φ of the ES.
(ii) Since the process Φ is an arbitrage price for the reference ES, the Q-exchange CS has the
financial interpretation as the game option to exchange the reference ES for either L or U (as seen
from the perspective of the holder), according to which player decides first to stop this game. This
interpretation is particularly transparent when the reference ES is specified as in Remarks 5.1, since
in that case (33) reduces to

βtψt(τp, τc) = 1{τd>τ} βτ

(
1{τ=τp<T}

(
Lτp

− Φτp

)
+ 1{τ<τp} (Uτc

− Φτc
)
)
. (34)

The contract with the cash flow given by the last formula can be seen as the pure game option
component of the CS.

5.3 Price Decompositions of a Convertible Security

We are now in the position to derive the price decomposition of a convertible security with respect
to some reference security. We assume that we are given a CS and the reference ES, as described in
the previous section. The following result follows easily from Theorem 3.1 and Lemma 5.1.

Theorem 5.1 Assuming (20), let Q ∈M be given and let Φ be the arbitrage Q-price of the reference
ES.
(i) If Π is an arbitrage Q-price for the CS then Ψ = Π−Φ is an arbitrage Q-price for the Q-exchange
CS.
(ii) If Ψ is an arbitrage Q-price for the Q-exchange CS then Π = Φ + Ψ is an arbitrage Q-price for
the CS.

Proof. Let us prove (i). Using (14) and (30), we obtain

Ψt = Πt − Φt = esssupτp∈Gt
T
essinfτc∈Ḡt

T
EQ

(
πt(τp, τc)

∣∣Gt

)
− EQ

(
φt

∣∣Gt

)
=

esssupτp∈Gt
T
essinfτc∈Ḡt

T
EQ

(
ϕt(τp, τc)

∣∣Gt

)
= esssupτp∈Gt

T
essinfτc∈Ḡt

T
EQ

(
ψt(τp, τc)

∣∣Gt

)
,

where the last equality is a consequence of (32). Moreover, the difference Ψ = Π − Φ is obviously
a G-semimartingale. Thus Ψ is an arbitrage Q-price for the Q-exchange CS, by the ‘if’ part of
Theorem 3.1. The proof of part (ii) is similar to that of part (i). 2

Let us stress that Ψ need not be positive, and thus Π need not be greater than Φ, in general.
We have, however, the following result.

Corollary 5.1 Under the assumptions of Theorem 5.1(i) or 5.1(ii), if the process Dcs − Db is
non-decreasing, U ≥ Φ on [τd ∧ τ̄ , τd ∧ T ), and ξ ≥ ξb then Ψ ≥ 0 and thus Π ≥ Φ.

Proof. Let us show that at any time t < τd ∧T such that Lt < Φt, exchanging the ES for the payoff
Lt is suboptimal for the holder of the Q-exchange CS. Towards this end, we define ψ̆t(τp, τc) by the
formula

βtψ̆t(τp, τc) = βτ (D̂cs
τ − D̂b

τ )− βt(D̂cs
t − D̂b

t )

+ 1{τd>τ} βτ

(
1{τ=τp<T}

(
Lτp

− Φτp

)+ + 1{τ<τp}
(
Uτc

− Φτc

)
+ 1{τ=T}(ξ − ξb)

)
and we denote Ğt

T = {τ ∈ Gt
T ; Lτ ≥ Φτ if τ < T}. For any τp ∈ Gt

T , the stopping time τ̆p, given by
the formula

τ̆p = 1{Lτp≥Φτp}τp + 1{Lτp<Φτp}T,

belongs to Ğt
T . Since the process Dcs−Db is non-decreasing we have that the process βt(D̂cs

t − D̂b
t ))

is non-decreasing as well. We assumed also that U ≥ Φ on [τd ∧ τ̄ , τd ∧ T ) and ξ ≥ ξb, so that the
following inequalities hold, for any τp ∈ Gt

T and τc ∈ Ḡt
T ,

ψt(τ̆p, τc) ≥ ψt(τp, τc), ψ̆t(τ̆p, τc) ≥ ψ̆t(τp, τc).
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Since obviously ψ̆t(τp, τc) = ψt(τp, τc) for any τp ∈ Ğt
T , we obtain

essinfτc∈Ḡt
T
esssupτp∈Gt

T
EQ

(
ψ̆t(τp, τc)

∣∣Gt

)
= essinfτc∈Ḡt

T
esssupτp∈Ğt

T
EQ

(
ψ̆t(τp, τc)

∣∣Gt

)
= essinfτc∈Ḡt

T
esssupτp∈Ğt

T
EQ

(
ψt(τp, τc)

∣∣Gt

)
= essinfτc∈Ḡt

T
esssupτp∈Gt

T
EQ

(
ψt(τp, τc)

∣∣Gt

)
and thus

Ψt = essinfτc∈Ḡt
T
esssupτp∈Gt

T
EQ

(
ψt(τp, τc)

∣∣Gt

)
= esssupτp∈Gt

T
essinfτc∈Ḡt

T
EQ

(
ψ̆t(τp, τc)

∣∣Gt

)
≥ 0.

We conclude that Πt = Φt + Ψt ≥ Φt. 2

5.4 Price Decompositions of a Reduced Convertible Bond

We shall now specialize our previous results to the case of a reduced convertible bond (hence, in
particular, to the case of a convertible bond without call notice period). We thus postulate that the
dividend process is of the form Dcb given by (21), that is,

Dcb
t =

∫ t∧τd

0

ccb
u du+

∑
0≤Ti≤t, Ti<τd

ci + 1{0≤τd≤t}R
cb
τd
, t ∈ [0, T ].

In order to provide the most pertinent price decomposition of the RB, we choose as the reference
instrument the ES with dividend process

Db
t =

∫ t∧τd

0

ccb
u du+

∑
0≤Ti≤t, Ti<τd

ci + 1{0≤τd≤t}R
b
τd
, t ∈ [0, T ],

that is, the ES with the same coupon process as the RB, and with Rb and ξb given as follows (see
Section 4.1):

Rb
t = R̄t, ξb = N̄ +AT . (35)

It is thus clear that

Rcb
t −Rb

t = (κSt − R̄t)+ ≥ 0, ξcb − ξb = (κST − N̄)+ ≥ 0.

So, in this case the reference security is the defaultable bond with ex-dividend cumulative cash flow
φt given by the expression

βtφt = βT D̂
b
T − βtD̂

b
t + 1{τd>T} βT ξ

b

=
∫ T∧τd

t

βuc
cb
u du+

∑
t<Ti≤T, Ti<τd

βTi
ci + 1{t<τd≤T} βτd

Rb
τd

+ 1{τd>T} βT ξ
b.

It is clear that this reference bond can be interpreted as the pure bond component of the RB, that
is, the RB stripped of its optional clauses. Therefore, we shall call it the bond embedded in the RB,
or simply the embedded bond. Given a probability measure Q ∈ M, the process Φt = EQ(φt | Gt) is
the Q-price of the embedded bond.

Since the RB and the embedded bond have the same coupon schedule, the Q-exchange CS is the
zero-coupon CS, with the ex-dividend cumulative cash flow ψt(τp, τc) given by the expression

βtψt(τp, τc) = 1{t<τd≤τ} βτd

(
Rcb

τd
−Rb

τd

)
(36)

+ 1{τd>τ} βτ

(
1{τ=τp<T}

(
Lcb

τp
− Φτp

)
+ 1{τ<τp}

(
Ū cb

τc
− Φτc

)
+ 1{τ=T}

(
ξcb − ξb

))
.

This particular Q-exchange CS will be referred to as the embedded game Q-exchange option. As
for any Q-exchange CS (see Section 5.2), the cash flow of the embedded game Q-exchange option
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depend on the choice of the probability measure Q through the definition of the price process Φ of
the embedded bond.

The embedded game Q-exchange option has the natural interpretation as a game option to
exchange the embedded bond for either Lcb or U cb, according to who decides first to stop this game.
In the case of default, the contract stipulates that the recovery payoffs of the RB and the embedded
bond are exchanged. Finally, if the embedded game contract is still alive at maturity date T , the
terminal payoffs are exchanged.

Let Π and Ψ stand for the arbitrage Q-price of the RB and the embedded game Q-exchange
option, respectively. Due to the game-theoretical features of the embedded option, Ψ need not be
positive and thus Π need not be greater than Φ, in general.

Theorem 5.1(i) or 5.1(ii) can be directly applied to this specification of an RB. Since an explicit
expression for the price decomposition of an RB with respect to the embedded bond is easy to
obtain, it is not reported here. The following result is worth stating, however.

Corollary 5.2 Consider an RB and the embedded bond with Rb and ξb given by (35). Then, under
the assumptions of Theorem 5.1(i) or 5.1(ii), in the special case of a zero-coupon RB (ccb = 0 and
ci = 0 for any i), assuming that the process β is non-increasing and that R̄ ≤ N̄ , we then have that
Ψ ≥ 0 and thus Π ≥ Φ.

Proof. Under the present assumptions we have by (27)

Φt ≤ N̄ ≤ C̄ ≤ U cb
t , τd ∧ τ̄ ≤ t < τd ∧ T,

so that the inequality Π ≥ Φ is an immediate consequence of Corollary 5.1. 2

Remarks 5.3 (i) The possibility of the negative value of Ψ is related to the fact that we consider a
callable RB, but as the reference security we choose the non-callable embedded bond. Hence, the
value of the reference bond can be greater than the call price at the moment of call of the callable
RB. In other words, the price of a callable and convertible bond can be either greater or less than
the price of an equivalent non-callable and non-convertible bond.

It thus would be interesting to take as the reference security the callable version of the embedded
bond. In that case, one would expect to have the positive value for the embedded game option,
since this game option should reduce to a vulnerable American option with non-negative payoffs at
default and at maturity.
(ii) Under the assumptions of Corollary 5.2, the reference zero-coupon bond is equivalent to a callable
zero-coupon bond with the same nominal value N̄ and call price C̄ ≥ N̄ (since in fact a callable zero-
coupon bond with the call price N̄ ≥ C̄ will never be called if interest rates are non-negative). By
contract, if we deal with a coupon-paying RB this argument breaks down, since now that assumption
N̄ ≥ C̄ does not ensure that the callable version of the reference bond will never be called.

We can now formulate the definition of the spread and the implied volatility of an RB.

Definition 5.1 Let us consider an RB, under the assumptions of Theorem 5.1(i) or (ii). By the
RB spread we mean the credit spread consistent with the price Φ for the embedded bond. By an
RB implied volatility we mean any Black–Scholes volatility of the stock price process S, which is
consistent with the price Ψ for the embedded game exchange option.

Remarks 5.4 (i) Note that it is not necessarily possible to map every possible arbitrage price
process for the game exchange option to a well-defined and unique Black-Scholes implied volatility
process.
(ii) The embedded game exchange option of an RB can be thought of as an equity option, but with
a floating strike, equal at any date t to the current value Φt of the embedded bond. This clarifies
the intuitive statements made at the beginning of this section, and confirms our conjecture that
the implied volatility of a CB (when properly defined) in Table 1 and the implied volatility for the
closest listed option in Table 2 are in fact of a quite different nature.
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6 Conclusions

As announced in the introduction, this note provides a theoretical underpinning for a more extensive
research continued in Bielecki et al. [5, 6], where more specific market models are introduced, and
more explicit valuation and hedging results are established. Some open problems remain, however.

Most notably, it is not clear whether it is possible to generalize Proposition 2.1 to the case of
extended game options, such as the ones that arise naturally in the study of real-life convertible
bond with positive call notice period. In the present paper and the follow-up works, we develop
an alternative approach based on a conjecture that the valuation of such a convertible bond can be
done recursively. However, this conjecture remains to be justified, in general.

One of the major problems arising in this context is that an arbitrage price of such a convertible
bond upon call is not uniquely defined, unless we work in the framework of a complete market
model. Consequently, it is not clear whether the pricing measures associated to arbitrage prices of
the convertible bond and of the embedded puttable bonds have to be the same, even if one assumes
that all the instruments involved are liquidly traded. In the same line of thinking, the decomposition
of a convertible bond as the portfolio comprising a bond and an option can only be used under an ad
hoc assumption that the same pricing measure is used to value the convertible bond, the embedded
bond and the embedded game exchange option. Since this is not a priori necessarily the case when
one deals with an incomplete market model, a further study of this issue is needed.

In subsequent papers [5, 6], we shall see how these various questions can be solved, in the context
of more specific market models.
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[23] Ŝırbu, M. and Shreve, S.: A two-person game for pricing convertible bonds. Working
paper, 2005.

[24] Tsiveriotis, K. and Fernandes, C.: Valuing convertible bonds with credit risk. Journal
of Fixed Income 8 (1998), 95–102.

[25] Zuckerman, G.: Hedge funds stumble even when walking – ‘Conservative’ wagers turn sour,
leading to fears of a shakeout; A one-two punch on a GM bet, Wall Street Journal, May 18,
2005.


