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We consider the dynamic control problem of attaining a target position at a
finite time T , while minimizing a linear-quadratic cost functional depending
on the position and speed. We assume that the coefficients of the linear-
quadratic cost functional are stochastic processes adapted to a Brownian
filtration. We provide a probabilistic solution in terms of two coupled back-
ward stochastic differential equations possessing a singularity at the terminal
time T . We verify optimality of the candidate control by using a penaliza-
tion argument. Special cases for which the problem has explicit solutions are
discussed. Finally we illustrate our results in financial applications, where
we derive optimal trading strategies for closing financial asset positions in
markets with stochastic price impact and non-zero returns.

1 Introduction

We consider the control problem of attaining a target position at some finite time horizon
T . We allow only for position paths Xt, t ∈ [0, T ], that are absolutely continuous, and
we interpret the derivative Ẋt as the position speed. We suppose that a position path
entails costs that depend linear-quadratically on the position X and the position speed
Ẋ. The linear-quadratic cost functional is assumed to have random coefficients, modeled
as stochastic processes γ, π and η that are progressively measurable with respect to a
Brownian filtration on some probability space. The coefficient processes satisfy some nice
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integrability conditions specified in Section 2 below. Moreover, η and γ are nonnegative.
The cost functional to be minimized is given by

J(X) = E

[∫ T

0

(
γtX

2
t + πtẊt + ηtẊ

2
t

)
dt

]
. (1)

Our goal is to find the position process X that minimizes the costs (1) among all pro-
gressively measurable processes attaining a given target at time T . For simplicity we
first assume that XT = 0 a.s. We refer to Section 3.2 for how to incorporate stochastic
terminal state constraints.

We choose a probabilistic approach, based on a maximum principle, in order to solve
the control problem. We show that one can characterize the associated value func-
tion and the optimal control in terms of two backward stochastic differential equations
(BSDEs). One of the BSDEs satisfies the dynamics

dYt =

(
Y 2
t

ηt
− γt

)
dt+ ZtdWt, (2)

where W is a Brownian motion, and possesses the singular terminal condition

lim
t↗T

Yt =∞. (3)

BSDEs with singular terminal conditions have been first studied by Popier in [12] and
[13]. In [2] singular BSDEs have been employed for solving the control problem of
minimizing the costs (1) without the linear term πẊ. More precisely, the objective
functional imposed in [2] is given by

J̄(X) = E

[∫ T

0

(
γt|Xt|p + ηt|Ẋt|p

)
dt

]
, (4)

for some power p > 1. It is shown that the value function and the optimal control can
be characterized in terms of the solution process of a BSDE with a singular terminal
condition. By introducing a linear component in the objective functional, the optimal
control and the value function can no longer be characterized in terms of a single BSDE.
For the case p = 2, there exists a probabilistic characterization in terms of a system of
two coupled BSDEs. The aim of the present paper is to show this.

A variant of the stochastic control problem of minimizing the cost functional J̄ has
been studied by Graewe, Horst and Séré in [7]. Position paths are allowed to be dis-
continuous at jump times of a Poisson process. The coefficients η and γ are Markov
processes. Under a non-vanishing volatility assumption the authors establish existence
and uniqueness of a classical solution to the associated HJB equation. In [6] these
results are extended beyond the Markovian framework by using backward stochastic
partial differential equations with singular terminal conditions.

The paper is organized as follows. In Section 2 we describe the precise model setup
and present the main result, stated in Theorem 2.4. In Section 3 we illustrate the main
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result in two economic applications. The first application is concerned with the optimal
closure of a financial asset position in a market with a stochastic price impact. We
can derive optimal trading rates by directly appealing to Theorem 2.4. In the second
application we consider an agent aiming at building up an asset position, e.g. for risk
management purposes, but not knowing the precise target at the beginning. We assume
that the agent learns the target position gradually up to time T . We show that one can
reduce the control problem with an uncertain target to a problem with position target
0.

Section 4 is devoted to a penalized version of our control problem: position controls
are no longer required to attain the target, but any deviation entails extra costs weighted
with a factor L. Letting the weight factor L tend to infinity, allows us, in Section 5, to
perform the verification for the control problem with the target constraint and to prove
the main result.

2 The main result: the optimal control in terms of
coupled BSDEs

Fix a deterministic, finite time horizon 0 < T < ∞. Let d ∈ N and (Wt)t∈[0,T ] a d-
dimensional Brownian motion on a probability space (Ω, P,F). Let (Ft)t∈[0,T ] denote
the filtration generated by (Wt)t∈[0,T ] and completed by the P -null sets. We denote by
A(x) the set of all progressively measurable processes X : Ω× [0, T ]→ R with absolutely
continuous paths that start in X0 = x ∈ R and satisfy E[sup0≤t≤T |Xt|4] < ∞. The set
of controls, denoted by A0(x), consists of all processes in A(x) that additionally meet
the terminal state constraint XT = 0 a.s.

We aim at finding the control that minimizes the objective functional (1). We need
to specify the conditions imposed on the coefficient processes γ, π and η. We assume
that γ, π and η are progressively measurable with respect to (Ft)t∈[0,T ]. Moreover, to
specify some integrability conditions, we introduce the following spaces of processes. For
i = 1, 2 and t ≤ T

Mi(0, t) = Li(Ω× [0, t],P , P ⊗ Leb)

where Leb is the Lebesgue measure and P denotes the σ-algebra of (Ft)-progressively
measurable subsets of Ω× [0, T ]. Throughout we make the following assumption.

Assumption 2.1. a) The processes η and γ are nonnegative (this guarantees that
the cost functional J is convex).

b) η, γ ∈M2(0, T ) and E

[(∫ T
0

1
η2s
ds
)4]

<∞.

c) π is a semimartingale with semimartingale decomposition

πt = π0 + bt +

∫ t

0

ψtdWt,
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such that π0 is a real, E

[(∫ T
0
ψ2
t dt
)4]

<∞ and E

[(∫ T
0
|dbt|

)8]
<∞1.

Assumption 2.1 guarantees that J(X) is defined for any X ∈ A0(x). Indeed, the

expectation E
[∫ T

0

(
γtX

2
t + ηtẊ

2
t

)
dt
]

is defined (possibly taking the value +∞). More-

over, the integral
∫ T
0
πtẊtdt exists and has finite expectation. To show this, note that the

paths of X ∈ A0(x) are absolutely continuous, and hence have finite variation on [0, T ].

Since every path of π is bounded, we further obtain that the integral
∫ T
0
|πtẊt|dt is finite,

a.s. Integration by parts yields
∫ T
0
πtẊtdt = πTXT − π0X0 −

∫ T
0
Xtdπt. Consequently,

E

[∣∣∣∣∫ T

0

πtẊtdt

∣∣∣∣] ≤ |π0X0|+ E

[∣∣∣∣∫ T

0

Xtdπt

∣∣∣∣]

≤ |π0X0|+ E

[
sup
t∈[0,T ]

|Xt|2
] 1

2

E
[
(πT − π0)2

] 1
2 <∞.

We now define the value function

v(x) = inf
X∈A0(x)

J(X). (5)

We give a purely probabilistic solution of the control problem (5) in terms of two pro-
cesses (Y, Z) satisfying

dYt =

(
Y 2
t

ηt
− γt

)
dt+ ZtdWt (6)

with singular terminal condition

lim
t↗T

Yt =∞. (7)

We first recall the notion of a solution of a BSDE with singular terminal condition in
the style of [12].

Definition 2.2. We say that a pair of progressively measurable processes (Y, Z) with
values in R× Rd solves the BSDE (6) with singular terminal condition ξ if it satisfies

(i) for all 0 ≤ s ≤ t < T : Ys = Yt −
∫ t
s

(
Y 2
r

ηr
− γr

)
dr −

∫ t
s
ZrdWr;

(ii) for all 0 ≤ t < T : E
[
sup0≤s≤t |Ys|2 +

∫ t
0
|Zr|2dr

]
<∞;

(iii) limt↗T Yt =∞, a.s.

In [2] the following existence result is established.

1Here |dbt| denotes the integral with respect to the absolute variation of the path b.
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Proposition 2.3. There exists a minimal2 solution (Y, Z) of the BSDE (6) with limt↗T Yt =
∞.

Proof. See [2, Theorem 1.2].

Let (Y, Z) be the minimal solution of (6) and (7). Moreover, let Ht = exp
(
−
∫ t
0
Ys
ηs
ds
)

.

From [2] we know that H ∈ A0(1) is optimal in (5) if π = 0. Define

Ut = −1

2
E

[∫ T

t

Hs

Ht

dπs

∣∣∣∣Ft] , (8)

for t ∈ [0, T ).
Observe that U can be understood as a solution to a BSDE. Indeed, U satisfies

limt↗T Ut = 0 and evolves according to the dynamics

dUt =
1

2
dπt +

YtUt
ηt

dt− Φt

2Ht

dWt (9)

on [0, T ), where the process Φ ∈ M2(0, T ) is the integrand of the martingale represen-

tation of E
[∫ T

0
Hsdπs|Ft

]
.

We next define a control process that will turn out to be the optimal one. Let X̂ be
the pathwise solution of the ODE

˙̂
Xt = − 1

ηt

(
Ut + YtX̂t

)
, (10)

with initial condition X̂0 = x. Notice that X̂t = Ht

(
x−

∫ t
0

Us
Hsηs

ds
)

.

The next theorem summarizes the main findings of the paper. It shows that the value
function and the optimal control are determined by the solution of the two coupled
differential equations (6) and (9).

Theorem 2.4. The strategy X̂ belongs to A0(x) and is optimal in (5). Moreover, we
have

v(x) = Y0x
2 + (2U0 − π0)x− E

[∫ T

0

U2
s

ηs
ds

]
.

We prove Theorem 2.4 in Section 5. In the following section we give an interpretation
of Problem (5) and Theorem 2.4 in the context of optimal trade execution.

3 Application to optimal trade execution

Control problems of the type (5) arise when economic agents have to close or build
up, during a fixed time span [0, T ], an asset position in a market with stochastic price
impact. We illustrate the application in the following subsections.

2Minimality here means that if (Y ′, Z ′) is another pair of processes satisfying (6) and (7), then Yt ≤ Y ′t ,
a.s.
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3.1 Optimal closure of an asset position

Suppose that an agent has to close, up to time T , an initial position of x financial asset
shares in an illiquid market. For simplicity let x < 0. Assume that the agent can
choose among the position processes X ∈ A0(x), with Xt representing the agent’s asset
position at time t ∈ [0, T ]. Notice that the position satisfies X0 = x and XT = 0. One
can interpret Ẋt as the trading rate at time t ∈ [0, T ). A negative trading rate means
selling. We suppose that trading at a rate Ẋt creates a linear temporary price impact of
ηtẊt (cf. also with the seminal papers on optimal trade execution [5] and [1]). Let the
process π denote the asset’s uninfluenced mid-market price. Then the agent’s expected
costs from following a position strategy X ∈ A0(x) sum up to

E

[∫ T

0

(
πt + ηtẊt

)
Ẋtdt

]
.

The term E
[∫ T

0
γtX

2
t dt
]

in (5) can be interpreted as a measure of the risk due to

fundamental market movements. Indeed, suppose for a moment that the asset price
π is a Brownian motion with constant volatility σ > 0 and that the position process
X is deterministic. Then the variance of

∫ T
0
πtẊtdt = −X0π0 −

∫ T
0
Xtdπt is given by∫ T

0
σ2X2

t dt. One can interpret the functional E
[∫ T

0
γtX

2
t dt
]

also as an approximation

of the value-at-risk with stochastic risk aversion; for details we refer to [3] and [4].
We remark that linear quadratic cost functionals in optimal targeting problems are

used also by [8], [9].
Theorem 2.4 provides the position process minimizing the sum of expected execution

costs and risk. Besides, the optimal trading rate
˙̂
X is given by Equation (10). Notice

that the optimal trading rate decomposes into two parts. The first part, −U
η

, exploits
expected price returns over the trading period. Notice that it does not depend on the
current position X̂. Consequently, it does not necessarily vanish if the current position
is equal to zero. The second part of the optimal trading rate, −Y

η
X̂, can be ascribed to

the minimization of liquidity costs. It depends linearly on the current position X̂ and,
thus, does not contribute to the trading rate if there is no open position in the asset.
The singular terminal condition (7) ensures that the second part predominates in the
trading rate as the liquidation horizon approaches.

The interpretation of the first part, −U
η

, as an investment component of the trading
rate is confirmed by considering the case where the price process is a martingale, and
hence has zero returns. Indeed, if π is a martingale, then by the very definition we
have U = 0, and hence the first part of the optimal trading rate vanishes. The optimal
position is given by X̂ = xH. Moreover, Theorem 2.4 implies that v(x) = Y0x

2 − π0x.
Hence, the minimal costs v(x) for closing the initial position x decomposes into the
difference between the mark-to-market value of the initial position, π0x, and the term
Y0x

2. We remark that, if γ = 0 and both processes π and η are martingales, then it is

optimal to close the position at a constant rate, i.e.
˙̂
X t = xḢt = − x

T
(see [2, Section 4]).

We now consider again the general case, where the price process possibly possesses a
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drift. By Theorem (2.4) the term −v(0) = E
[∫ T

0
U2
s

ηs
ds
]

represents the maximal expected

revenues if there is no initial position in the asset. By exploiting the knowledge about
the drift of the price process π, the trader can generate nonnegative expected revenues

equal to E
[∫ T

0
U2
s

ηs
ds
]

by investing in the asset. In the case where π is a martingale we

have v(0) = 0.
The marginal increase in expected revenues generated by an infinitesimal small initial

position is given by −v′(0). By Theorem 2.4 we have −v′(0) = π0− 2U0. Performing an

integration by parts yields −v′(0) = −E
[∫ T

0
πsdHs

]
. Thus, −v′(0) equals the expected

revenues from trading at the uninfluenced price π according to the strategy H. As
mentioned above, the strategy H is optimal in the case without directional views. If η

is a martingale and γ = 0 we have dHs = −1/Tds and hence −v′(0) = E
[
1
T

∫ T
0
πsds

]
,

i.e. the marginal increase in expected revenue equals the expected average price over the
liquidation period.

In the following example, we present an explicit solution in a Markovian framework.

Example 3.1. (The price process evolves according to a geometric Brownian motion)
Assume that γ = 0 and that η is a martingale satisfying the Assumption 2.1. The asset’s
uninfluenced price process is a geometric Brownian motion with drift µ 6= 0 and volatility
σ > 0, i.e. π satisfies the dynamics

dπt = µπtdt+ σπtdWt,

with some positive initial value π0. It follows from [2, Corollary 4.6] that the minimal
solution to (6) and (7) is given by

Yt =
ηt

T − t
.

In particular, we have that Ht = 1− t
T

. It follows from the Definition (8) of U that

Ut = −1

2
µ

∫ T

t

T − s
T − t

E[πs|Ft]ds = −1

2
µπt

∫ T

t

T − s
T − t

eµ(s−t)ds

=
1

2
πt

(
1− 1

µ(T − t)
(
eµ(T−t) − 1

))
.

Therefore, we can express the optimal trading rate
˙̂
X in feedback form depending on the

current price impact η, the current price π and the current position size x as follows

˙̂
X t(η, π, x) = −

(
π

2η

(
1− 1

µ(T − t)
(
eµ(T−t) − 1

))
+

x

T − t

)
. (11)

Let us take a closer look at Equation (11) in the case where µ > 0. If we take the limit

when T goes to infinity and all other parameters remain fixed, we have
˙̂
X ≥ 0. If the

liquidation period is long enough, it is optimal to buy the asset - no matter whether the
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current position is short or long - to benefit from a potentially higher price when selling
the asset at a later point in time. If we consider the limit x→∞ (x→ −∞) in (11), we

see that
˙̂
X ≤ 0 (

˙̂
X ≥ 0). If the current long (short) position in the asset is sufficiently

large it is optimal to sell (buy) the asset, in order to meet the liquidation constraint

X̂T = 0. Finally consider the case where the current price impact gets arbitrarily large

(η →∞). In this case we obtain
˙̂
X t → − x

T−t . This means that if trading becomes very
expensive, the investment part of the optimal trading rate vanishes and it is optimal to
close the position in a cost-minimizing way.

3.2 Targeting an uncertain position size

Consider an agent who has to build up an asset position up to time T , but only gradually
learns the precise target position to be reached. Think, e.g. of an airline company buying
on forward markets the kerosine it needs in two years. The precise amount of kerosine
that the company needs in two years depends on ticket sales, airplane utilization rates,
and other factors not known already today.

Formally, suppose that the target position is of the form
∫ T
0
λtdt, where λ is a pro-

gressively measurable process and E
(∫ T

0
|λt|dt

)4
< ∞. As in the previous subsection,

we denote by Xt the agent’s asset position size at time t ≤ T .
We denote by Aλ(x) the set all processes in A(x) that meet the terminal state con-

straint XT =
∫ T
0
λtdt, a.s. We now turn to the minimization problem

w(x) = min
X∈Aλ(x)

J(X) = min
X∈Aλ(x)

E

[∫ T

0

(
γtX

2
t + πtẊt + ηtẊ

2
t

)
dt

]
. (12)

We first show that we can reduce problem (12) to problem (5).

Lemma 3.2. A control X∗ ∈ Aλ(x) is optimal in (12) if and only if the control X̃∗ =
X∗ −

∫ ·
0
λsds ∈ A0(x) is optimal in

ṽ(x) = inf
X∈A0(x)

J̃(X) = min
X∈A0(x)

E

[∫ T

0

(
γtX

2
t + π̃tẊt + ηtẊ

2
t

)
dt

]
with

π̃t = πt + 2ηtλt −
∫ t

0

(
2γs

∫ s

0

λrdr

)
ds.

Proof. See Appendix.

By the previous lemma we can again use Theorem 2.4 for deriving the optimal control
for problem (12). As before, let (Y, Z) be the minimal solution of (6) and (7), and

Ht = exp
(
−
∫ t
0
Ys
ηs
ds
)

.
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Corollary 3.3. Assume that π̃ satisfies Property c) of Assumption 2.1. Let

Ũt = −1

2
E

[∫ T

t

Hs

Ht

dπ̃s

∣∣∣∣Ft] ,
and X̃ be the solution of the ODE (10) with U replaced by Ũ . Then X∗t = X̃t +

∫ t
0
λtdt

is the optimal control in (12).

Example 3.4. Assume that the price impact is constant ηt = η > 0 for all t ∈ [0, T ].
Moreover, suppose γ = 0 and that π is martingale. Assume that π̃ = π + 2ηλ satisfies
Assumption 2.1 c).

By Corollary 3.3 the optimal trading rate in (12) satisfies

Ẋ∗t = λt −
1

η

(
Ũt + YtX̃t

)
.

It follows e.g. from [2, Corollary 4.6] that the minimal solution Y to the BSDE (6) with
singular terminal condition (7) is given by Yt = η

T−t . In particular, we have Ht = 1− t
T

.
Using integration by parts we compute

Ũt = − 1

2Ht

E

[∫ T

t

Hsdπ̃s

∣∣∣∣Ft] = − η

Ht

E

[∫ T

t

Hsdλs

∣∣∣∣Ft]
= ηλt −

η

T − t
E

[∫ T

t

λsds

∣∣∣∣Ft] .
This yields

Ẋ∗t = − 1

T − t

(
X̃t − E

[∫ T

t

λsds

∣∣∣∣Ft]) .
Since X̃t = X∗t −

∫ t
0
λtdt, we obtain

Ẋ∗t = − 1

T − t

(
X∗t − E

[∫ T

0

λsds

∣∣∣∣Ft]) . (13)

Equation (13) shows that the following extension of the ”linear” trading strategy is also
optimal in the presence of volume uncertainty: Based on the information available at
time t the optimal trading rate is simply given by the ratio between the expected remaining
open position and the remaining liquidation time.

We remark that [10] and [11] also deal with stochastic position targets: the authors
consider the problem of how to optimally follow a trading target in an illiquid market
with a non-temporary price impact depending on order sizes. In contrast to our model,
optimal controls are singular and are verified with BSDEs that have non-singular termi-
nal conditions.

The next two sections are devoted to prove Theorem 2.4. In the following section
we introduce a penalized version of our control problem and solve it by means of non-
singular BSDEs. In Section 5 we finally show Theorem 2.4.
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4 A penalized version of the problem

In this section we study the penalized problem

vL(x) = min
X∈A(x)

JL(X) = min
X∈A(x)

E

[∫ T

0

(
γtX

2
t + πtẊt + ηtẊ

2
t

)
dt+ LX2

T

]
(14)

without terminal state constraint.
We first state a sufficient condition for optimality (maximum principle).

Proposition 4.1. Let X ∈ A(x) be a strategy such that the process

MX
t = −πt − 2ηtẊt +

∫ t

0

2γsXsds (15)

is a local martingale satisfying the following two conditions:

1. For all Y ∈ A(x) the integral process
∫ ·
0
YtdM

X
t is a strict martingale

2. MX
T = 2LXT + 2

∫ T
0
γsXsds.

Then X is optimal in (14).

Proof. Let K ∈ A(x). Set θ = X −K. Using the convexity of x 7→ x2 we obtain∫ T

0

πt(Ẋt − K̇t) + ηt(Ẋ
2
t − K̇2

t )dt ≤
∫ T

0

(
πtθ̇t + 2ηtẊtθ̇t

)
dt

=

∫ T

0

(πt + 2ηtẊt)dθt =

∫ T

0

(−MX
t +

∫ t

0

2γsXsds)dθt

= θT (−MX
T +

∫ T

0

2γsXsds) +

∫ T

0

θtdM
X
t − 2

∫ T

0

θtγtXtdt

= −2LθTXT +

∫ T

0

θtdM
X
t − 2

∫ T

0

θtγtXtdt. (16)

By the very assumptions the process
∫ ·
0
θtdM

X
t is a martingale. We can take, therefore,

expectations in (16), and we obtain

E

[∫ T

0

(
πt(Ẋt − K̇t) + ηt(Ẋ

2
t − K̇2

t )
)
dt

]
= E

[
−2LθTXT − 2

∫ T

0

θtγtXtdt

]
≤ E

[
−L(X2

T −K2
T )−

∫ T

0

γt(X
2
t −K2

t )dt

]
,

which yields the claim.

Consider the coupled system of BSDEs

Y L
t = L−

∫ T

t

ZsdWs −
∫ T

t

(
(Y L

s )2

ηs
− γs

)
ds (17)

UL
t =

πT
2
−
∫ T

t

ΦsdWs −
1

2

∫ T

t

dπs −
∫ T

t

Y L
s U

L
s

ηs
ds (18)
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Remark 4.2. The process UL evolves according to similar dynamics as the process U
on [0, T ). Equation (18) arises from Equation (9) by replacing Y by Y L. The terminal
value UL

T , however, does not coincide with the terminal condition limt↗T Ut = 0.

We define a candidate optimal strategy XL as the pathwise solution of the ODE

ẊL
t = − 1

ηt

(
UL
t + Y L

t X
L
t

)
, (19)

with initial condition XL
0 = x.

Existence and uniqueness of a solution to the BSDE (17) is verified in [2]. Moreover,
we have that Y L

t ↗ Yt a.s. for every t < T . Observe that the pathwise ODE (19) and
the linear BSDE (18) are explicitly solvable. We have

XL
t = HL

t

(
x−

∫ t

0

UL
s

ηsHL
s

ds

)
where HL

t = exp
(
−
∫ t
0
Y Ls
ηs
ds
)

is the solution of the homogenous equation Ḣt = −Yt
ηt
Ht.

Moreover,

UL
t =

1

2
E

[
HL
T

HL
t

πT −
∫ T

t

HL
s

HL
t

dπs|Ft
]
,

which is well-defined by the assumptions imposed on π and since HL is positive and
pathwise nonincreasing. Observe that the candidate optimal solution XL is explicitly
expressed in terms of Y L.

The following Lemma provides some auxiliary moment estimates and convergence
results. The proof is given in the Appendix.

Lemma 4.3. The following expectations are finite: E[supt∈[0,T ] π
8
t ], E[supt∈[0,T ](U

L
t )2],

E[supt∈[0,T ] U
2
t ], supt∈[0,T ]E

[
(UL

t )8
]

and supt∈[0,T ]E [U8
t ].

Moreover, we have limL→∞ U
L
0 = U0 and limL→∞E

∫ T
0

(ULs )2

ηs
ds = E

∫ T
0

U2
s

ηs
ds.

Next, we show admissibility of the candidate optimal strategy.

Lemma 4.4. We have E[supt |XL
t |4] <∞. In particular, XL ∈ A(x).

Proof. For ease of notation we drop the superscript L and simply write X = XL in the

proof. Since Ht is nonincreasing we have |Xt| ≤ |x|+
∫ t
0

∣∣∣Usηs ∣∣∣ ds and hence

E

[
sup

0≤t≤T
|Xt|4

]
≤ 24

(
|x|4 + E

[(∫ T

0

∣∣∣∣Usηs
∣∣∣∣ ds)4

])
.

Moreover

E

[(∫ T

0

∣∣∣∣Usηs
∣∣∣∣ ds)4

]
≤

(
E

[∫ T

0

1

η2s
ds

]4) 1
2
(
E

[∫ T

0

U2
s ds

]4) 1
2

11



Jensen’s inequality and Lemma 4.3 imply

E

(∫ T

0

U2
s ds

)4

≤ T 3E

[∫ T

0

U8
s ds

]
<∞.

All in all, the estimates show that E
[
sup0≤t≤T |Xt|4

]
<∞.

Lemma 4.5. The process MXL
, defined as in (15), satisfies the Conditions 1. and 2.

from Lemma 4.1. In particular XL is optimal in (14).

Proof. To simplify notation we omit, throughout the proof, the superscript L and write
X = XL, U = UL, etc. Itô’s formula implies

dMX
t = −dπt + 2dUt + 2XtdYt + 2YtdXt + 2γtXtdt

= 2
YtUt
ηt

dt+ 2ΦtdWt + 2Xt

(
Y 2
t

ηt
− γt

)
dt+ 2XtZtdWt − 2Yt

Ut + YtXt

ηt
dt+ 2γtXtdt

= 2ΦtdWt + 2XtZtdWt,

and hence MX is a local martingale. We need to verify that
∫ ·
0
KtdM

X
t is a martingale

for every K ∈ A(x). To this end let Nt = 1
2

∫ t
0
KsdM

X
s =

∫ t
0
KsΦsdWs +

∫ t
0
KsXsZsdWs,

t ∈ [0, T ]. We show that E[〈N,N〉
1
2
T ] < ∞, which implies that N is a strict martingale

on [0, T ].
Notice that

√
x+ y ≤ 1 +

√
x+
√
y for all x, y ≥ 0. Therefore

E[〈N,N〉
1
2
T ] =

√
2

[
E

(∫ T

0

K2
t Φ2

tdt+

∫ T

0

K2
tX

2
t Z

2
t dt

) 1
2

]

≤
√

2

(
1 + E

[(∫ T

0

K2
t Φ2

tdt

) 1
2

]
+ E

[(∫ T

0

K2
tX

2
t Z

2
t dt

) 1
2

])
.

Notice that

E

[(∫ T

0

K2
t Φ2

tdt

) 1
2

]
≤ E

[(
sup

0≤t≤T
|Kt|

(∫ T

0

Φ2
tdt

) 1
2

)]

≤
(
E

[
sup

0≤t≤T
|Kt|2

]) 1
2
(
E

[∫ T

0

Φ2
tdt

]) 1
2

<∞.

Moreover

E

[(∫ T

0

K2
tX

2
t Z

2
t dt

) 1
2

]
≤ E

[
sup

0≤t≤T
|Kt||Xt|

(∫ T

0

Z2
t dt

) 1
2

]

≤
(
E

[
sup

0≤t≤T
|Xt|4

]) 1
4
(
E

[
sup

0≤t≤T
|Kt|4

]) 1
4
(
E

[∫ T

0

Z2
t dt

]) 1
2

<∞.

Finally, UT = πT/2 and YT = L imply that MX
T = 2LXT +

∫ T
0

2γsXsds.

12



We can also give a closed form representation of the value function vL.

Proposition 4.6. We have

vL(x) = Y L
0 x

2 + (2UL
0 − π0)x− E

[∫ T

0

(UL
s )2

ηs
ds

]
.

Proof. To simplify notation we omit again the superscript L. Set

Vt = YtX
2
t + (2Ut − πt)Xt − E

[∫ T

t

U2
s

ηs
ds

∣∣∣∣Ft]
and

Nt = E

[∫ T

0

U2
s

ηs
ds

∣∣∣∣Ft] .
Notice that one can show, with similar estimates as in the proof of Lemma 4.4, that

E
[∫ T

0
U2
s

ηs
ds
]
<∞. In particular N is a martingale.

The dynamics of V satisfy

dVt = X2
t dYt + 2YtXtẊtdt+ Ẋt(2Ut − πt)dt+Xt(2dUt − dπt) +

U2
t

ηt
dt− dNt

= X2
t

(
Y 2
t

ηt
− γt

)
dt+X2

t ZtdWt − 2YtXt
Ut + YtXt

ηt
dt

−Ut + YtXt

ηt
(2Ut − πt)dt+Xtdbt + 2Xt

YtUt
ηt

dt+ 2XtΦtdWt

−Xtdπt +
U2
t

ηt
dt− dNt

= −(γtX
2
t + πtẊt + ηtẊ

2
t )dt+X2

t ZtdWt + 2XtΦtdWt −XtψtdWt − dNt. (20)

We next show that the integral processes with respect to the Brownian motion are strict
martingales. Observe that

E

[(∫ T

0

(X2
t Zt)

2dt

) 1
2

]
≤ E

[
sup

0≤t≤T
|Xt|2

(∫ T

0

Z2
t dt

) 1
2

]

≤
(
E

[
sup

0≤t≤T
|Xt|4

]) 1
2
(
E

[∫ T

0

Z2
t dt

]) 1
2

<∞,

which shows that
∫ ·
0
X2
t ZtdWt is a martingale. Similary, one can show that

∫ ·
0
XtΦtdWt

and
∫ ·
0
XtψtdWt are martingales.

Taking expectations in Equation (20) yields

E[VT ] = V0 − E
∫ T

0

(γtX
2
t + πtẊt + ηtẊ

2
t )dt.

Since VT = LX2
T , we have shown the claim.

13



5 Proof of Theorem 2.4

In this section we prove that the strategy X̂ is indeed optimal in the control problem (5).
For the reader’s convenience we briefly recall some definitions. The candidate optimal
strategy is given by

˙̂
Xt = − 1

ηt

(
Ut + YtX̂t

)
,

where Y is the minimal solution of the BSDE

dYt =

(
(p− 1)

Y 2
t

ηt
− γt

)
dt+ ZtdWt, lim

t↗T
Yt =∞

and U is given by

Ut = −1

2
E

[∫ T

t

Hs

Ht

dπs

∣∣∣∣Ft]
with Ht = e−

∫ t
0
Ys
ηs
ds.

We first verify that X̂ satisfies the integrability condition E
[
sup0≤t≤T |X̂t|4

]
<∞ and

the constraint X̂T = 0.

Lemma 5.1. We have X̂ ∈ A0(x).

Proof. The proof of E[supt |X̂t|4] < ∞ goes along the lines of the proof of Lemma 4.4.
Next we show that limt↗T Ht = 0, a.s. First observe that the process Y H +

∫ ·
0
γsHsds

is nonnegative local martingale. In particular, it is a nonnegative supermartingale and
thus possesses a limit as t ↗ T , a.s. Since limt↗T Yt = ∞, it must hold true that
limt↗T Ht = 0. (Confer also with the proof of Theorem 3.2. in [2]).

Notice that limt↗T
Ht
Hs

Us
ηs

= 0 and
∣∣∣HtUsHsηs

∣∣∣ ≤ ∣∣∣Usηs ∣∣∣, for Lebesgue-a.a. s ∈ [0, T ). Moreover

E
[∫ T

0

∣∣∣Usηs ∣∣∣ ds] <∞. Therefore, for P -almost all ω we have
∫ T
0

∣∣∣Usηs ∣∣∣ ds <∞. Dominated

convergence, therefore, implies

lim
t↗T

∫ t

0

HtUs
Hsηs

ds = 0.

This shows that X̂T = 0 P -a.s.

Proof of Theorem 2.4. First notice that from the very definition we have vL(x) ≤ v(x).
Next observe that

lim
L→∞

vL(x) = Y0x
2 + (2U0 − π0)x− E

[∫ T

0

U2
s

ηs
ds

]
. (21)

14



Indeed, from Proposition 4.6 we know

vL(x) = Y L
0 x

2 + (2UL
0 − π0)x− E

[∫ T

0

(UL
s )2

ηs
ds

]
.

Moreover we have by construction limL→∞ Y
L
0 = Y0. Lemma 4.3 guarantees the conver-

gence of the last two terms on the RHS, and hence (21).
We proceed by proving that

J(X̂) ≤ Y0x
2 + (2U0 − π0)x− E

[∫ T

0

U2
s

ηs
ds

]
. (22)

To this end we define

Vt = YtX̂
2
t + (2Ut − πt)X̂t − E

[∫ T

t

U2
s

ηs
ds

∣∣∣∣Ft] .
As in the proof of Proposition 4.6 one can show that

dVt = −(γtX̂
2
t + πt

˙̂
Xt + ηt

˙̂
Xt

2

)dt+ dLt, (23)

where L is a strict martingale on [0, T ). Taking expectations yields, for every t ∈ [0, T ),

V0 = E

[∫ t

0

(γsX̂
2
s + πs

˙̂
Xs + ηs

˙̂
Xs

2

)ds

]
+ E[Vt],

and hence

V0 ≥ E

[∫ t

0

(γsX̂
2
s + πs

˙̂
Xs + ηs

˙̂
Xs

2

)ds

]
+ E

[
(2Ut − πt)X̂t −

∫ T

t

U2
s

ηs
ds

]
. (24)

By monotone convergence we have

lim
t↗T

E

[∫ t

0

(γsX̂
2
s + ηs

˙̂
Xs

2

)ds−
∫ T

t

U2
s

ηs
ds

]
= E

[∫ T

0

(γsX̂
2
s + ηs

˙̂
Xs

2

)ds

]
.

Moreover, Lemma 4.3 ensures that the random variable supt∈[0,T ] |(2Ut − πt)X̂t| is inte-
grable. Therefore dominated convergence implies

lim
t↗T

E
[
(2Ut − πt)X̂t

]
= 0.

Notice that Lemma 4.3 implies that E supt∈[0,T ]

∣∣∣∫ t0 X̂sdπs

∣∣∣ < ∞. Appealing to domi-

nated convergence once more yields

E

[∫ t

0

πs
˙̂
Xsds

]
= E

[
X̂tπt − X̂0π0 +

∫ t

0

X̂sdπs

]
→ E

[
−X̂0π0 +

∫ T

0

X̂sdπs

]
= E

[∫ T

0

πs
˙̂
Xsds

]
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as t↗ T . All in all we obtain from Equation (24)

V0 ≥ E

∫ T

0

(γsX̂
2
s + πs

˙̂
Xs + ηs

˙̂
Xs

2

)ds = J(X̂).

By putting everything together we get

v(x) ≤ J(X̂) ≤ V0 = lim
L→∞

vL(x) ≤ v(x).

Every inequality is indeed an equality, and thus we have shown the theorem.

6 Appendix

Proof of Lemma 3.2. Let X ∈ Aλ(x) and set X̃ = X −
∫ ·
0
λsds ∈ A0(x). The result

follows from

J̃(X) = J(X̃) + E

[∫ T

0

(
γt

(∫ t

0

λsds

)2

+ λtπt + ηtλ
2
t

)
dt

]
. (25)

To prove Equation (25), first note that

J̃(X) = J̃(X̃ +

∫ ·
0

λsds)

= E

[∫ T

0

(
α̃tX̃t + γtX̃

2
t + (πt + 2ηtλt)

˙̃Xt + ηt
˙̃X2
t

)
dt

]
+E

[∫ T

0

(
γt

(∫ t

0

λsds

)2

+ λtπt + ηtλ
2
t

)
dt

]

with

α̃t = 2γt

∫ t

0

λsds.

By integration by parts we obtain∫ T

0

α̃tX̃tdt = −
∫ T

0

(∫ t

0

(
2γs

∫ s

0

λrdr

)
ds ˙̃Xt

)
dt,

which implies Equation (25).

Proof of Lemma 4.3. First observe that the Burkholder-Davis-Gundy inequality and As-
sumption 2.1 imply E[supt∈[0,T ] π

8
t ] <∞.

Moreover we have

|UL
t | ≤ E

[∣∣∣∣HL
T

HL
t

πT

∣∣∣∣+

∣∣∣∣∫ T

t

HL
s

HL
t

dbs

∣∣∣∣∣∣∣∣Ft] ≤ E

[
|πT |+

∫ T

0

|dbs|
∣∣∣∣Ft] (26)
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Then a further application of the Burkholder-Davis-Gundy inequality yields E[supt∈[0,T ](U
L
t )2] <

∞. Moreover, Equation (26) and Assumption 2.1 implyE
[
(UL

t )8
]
< C for some constant

C independent of t ∈ [0, T ]. The claims E[supt∈[0,T ] U
2
t ] <∞ and supt∈[0,T ]E [(Ut)

8] <∞
follow by similar arguments.

Next, fix t < T . We have
∣∣∣HL

T

HL
t
πT +

∫ T
t

HL
s

HL
t
dbs

∣∣∣ ≤ |πT |+∫ T0 |dbs| ∈ L1(P ). Moreover, by

monotone convergence limL→∞H
L
t = Ht. Then dominated convergence for conditional

expectations implies limL→∞ U
L
t = Ut.

For the last claim observe that

E

[∫ T

0

(UL
s − Us)2

ηs
ds

]
≤
(
E

[∫ T

0

1

η2s
ds

]) 1
2

(
E

[∫ T

0

(UL
s − Us)4ds

] 1
2

)
.

Moreover, there exist constants C1 and C2, depending only on T , such that

|UL
t − Ut|4 ≤ C1E

[∣∣∣∣HL
T

HL
t

∣∣∣∣4 |πT |4 +

(∫ T

t

∣∣∣∣HL
s

HL
t

− Hs

Ht

∣∣∣∣ |dbs|)4
∣∣∣∣∣Ft
]
,

and

E

∫ T

0

|UL
t − Ut|4dt ≤ C2E

[
|πT |4

∫ T

0

∣∣∣∣HL
T

HL
t

∣∣∣∣4 dt+

∫ T

0

(∫ T

t

∣∣∣∣HL
s

HL
t

− Hs

Ht

∣∣∣∣ |dbs|)4

dt

]
.

Notice that
∣∣∣HL

s

HL
t
− Hs

Ht

∣∣∣ ≤ 2 and limL→∞

∣∣∣HL
s

HL
t
− Hs

Ht

∣∣∣ = 0, for all t ≤ s < T . Thus domi-

nated convergence implies limL→∞E
∫ T
0

(ULs −Us)2
ηs

ds = 0, and hence the second result.
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[9] P. Kratz and T. Schöneborn. Portfolio liquidation in dark pools in continuous time.
To appear in Mathematical Finance, 2013.

[10] F. Naujokat and U. Horst. When to cross the spread? Trading in two-sided limit
order books. In Sonderforschungsbereich 649: Ökonomisches Risiko (SFB 649 Pa-
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