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Preliminary Remarks

These notes are a child of my e�orts to gain a deeper understanding of professor
Ankirchner's lectures on Mathematical Finance. A surely not the worst method
of doing so is to go through one's own written notes, try to understand every
argument and line of thought, and prepare a readable account of all these elab-
orations � in brief, to make a set of lecture notes and run the risk of presenting
them to others. My wish is, of course, that they may be helpful to these oth-
ers, so that in this way the trouble of composing them may, at least, yield some
additional bene�ts.

Since these notes have not yet been revised by professor Ankirchner, every word
in them are within my full responsibility. The more I thank him for his trust
that they be reasonably meaningful and close to his lectures, and his readiness
to make them available on the web.

I have tried to capture as far as possible the spirit and contents of the lectures
and to accurately re�ect what has been written on the blackboard, the way it
was written on the blackboard, and (a much more di�cult task) what has been
spoken. This is what is set here in the notes in normal type. At various places I
had the impression that some more elaborations and reminders could be helpful;
these ramblings have been set in small type. So what is set in normal type here
should be a best approximation of what has been presented in the lectures.

This version is surely not in �nal form, so for some time to come these notes will
be updated every now and then. Therefore, everyone interested should have have
a look at the web site from time to time:

http://www.uni-bonn.de/~tkruse/teaching/Math_Finance_1213/MathFin.pdf

Questions, suggestions. or critical annotations are welcome. Please mail

MathFin@web.de
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CHAPTER 1

The Value at Risk

Usually, �nancial institutions measure the risk of loss in their portfolios with the
so�called value�at�risk :

De�nition. Let α ∈ (0, 1) . The value�at�risk at level α of a portfolio, denoted
V@Rα , is the smallest c ∈ R such that the probability of the loss over a given
time period (typically 10 trading days) to exceed c is not larger than 1− α .

For this, we need to specify a probability space; the loss will then be a random
variable w.r.t. this probability space. More precisely, then, let the loss be a
random variable L on a probability space (Ω,F , P ) . Then

V@Rα(L) := inf { c ∈ R | P [L > c] 6 1− α } .
Let FL(x) := P [L 6 x] be the distribution function of L . Note that

V@Rα(L) = inf { c ∈ R | FL(c) ≥ α }
and so is nothing else but the α�quantile of L , i.e. there is a percentage of 100α%
cases in which the loss over the given time period is less than c . Indeed, we have

P [L > c] = 1− FL(c) 6 1− α i� F (c) ≥ α .

Consider a portfolio consisting of just one �nancial asset with price dynamics
given by the SDE

(∗) dSt = µStdt+ σStdWt

where µ ∈ R (�drift rate�), σ > 0 (�di�usion rate� or �volatility�), and (Wt)t≥0 a
Brownian Motion.

Recall that we can explicitely solve this SDE: If the initial condition is S0 > 0 ,
the current price, then

St = S0 eσWt+(µ−σ2/2)t , t ∈ R+

(often called Geometric Brownian Motion).

In order to refresh the needed prerequisites for these lectures, let us recapitulate how to do so.
First note that the global Lipschitz conditions for our SDE are trivially ful�lled, so we know
by the general theory that there exists a unique strong solution for any given initial condition.
So it is only a matter of �nding one.

For this, let α ∈ R and de�ne the process Xt := e−αt St ; then St = eαtXt , and

dSt = α eαtXtdt+ eαt dXt ,
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so that the SDE (∗) becomes

α eαtXtdt+ eαt dXt = µ eαtXtdt+ σ eαtXtdWt

or

dXt = (µ− α)Xtdt+ σXtdWt

with initial condition X0 = S0 > 0 . Thus putting α := µ , this SDE simpli�es to

dXt = σXtdWt .

Naively, one would proceed as

dXt

Xt
= d logXt = σdWt = d(σWt) ,

concluding

Xt = S0 eσWt ,

but this conclusion is wrong. The reason is provided by the celebrated Itô formula: as soon
as a process has non�vanishing quadratic variation, a further quadratic term creeps up into its
di�erential introducing additional terms.

Excursion: The wondrous world of the Itô formula

Recall the simplest instance of Itô's formula from Stochastic Analysis. Let U ⊆ R be open,X =
(Xt)t≥0 a continuous semi�martingale with values in U , and f ∈ C2(U) a twice continuously
di�erentiable function; then, for all 0 6 s 6 t

(∗∗) f(Xt)− f(Xs) =

t∫
s

f ′(Xu) dXu +
1

2

t∫
s

f ′′(Xu) d〈X〉u ,

where the �rst integral on the RHS is Itô`s celebrated stochastic integral, and the second
one is a Riemann�Stieltjes�integral w.r.t. the quadratic variation process 〈X〉 of X (which
is pathwise of bounded variation thus making the RS�integral meaningful). It has become
standard, and useful, to write such integral identities as identities between formally de�ned
�stochastic (or Itô) di�erentials�; for a process X its stochastic di�erential dX is de�ned as
a map on the set of all intervals [s, t] , 0 6 s 6 t , mapping the interval [s, t] to the random
variable Xt − Xs (we are considering real valued stochastic processes with parameter space
[0,∞)). Thus

dX([s, t]) := Xt −Xs .

Before introducing the so�called Itô Calculus recall that the inde�nite stochastic integral is
itself a stochastic process which, in general, cannot be de�ned pathwise but requires a sophis-
ticated involved closing construction which provides it at one stroke, so to speak, as a fully
established stochastic process. A standard denotation for this process is X • Y , where the
process X is called the integrand and Y the integrator (see [18], p. 179, De�nition 4.31);
the notation is meant to emphasize the bilinear character of the so�de�ned integral. The Itô
Calculus emerges by introducing the following two rules: If X,Y are processes, de�ne

a) XdY := d(X • Y ) ;
b) dXdY := d〈X,Y 〉 .

To understand rule a), note the analogy with the calculus of di�erential forms and Stokes'
Theorem (or the Fundamental Theorem of Calculus). For just this heuristic moment here we
now write X(t) in place of Xt to keep the notation more symmetric. If we de�ne a null chain

2



Chapter 1. The Value at Risk

to be a �nite formal linear combination c0 :=
∑
i ciPti with ci ∈ Z, Pt an abstract point

corresponding to t ∈ R+, and put X(c0) :=
∑
i ciX(ti), then

dX([s, t]) := X(∂[s, t]) ,

where we de�ne the boundary ∂ of the interval [s, t] as the null chain ∂[s, t] := Pt − Ps (from
now on we write Xt again). If we therefore de�ne an Itô di�erential to be a �nite formal sum
D :=

∑
iX

idY i and have an equation D([s, t]) = Zs − Zt for a process Z, it is natural to call
Z the integral of D and to write

Z =:

∫
D , Zt − Zs =

(∫
D

)
t

−
(∫

D

)
s

=:

t∫
s

D .

This then leads to the notation (put D := XdY and Z := X • Y ):

X • Y =:

∫
X dY , (X • Y )t − (X • Y )s =:

t∫
s

X dY

Thus our de�nition in a) of the Itô di�erential XdY reads in this notation

XdY = d

∫
XdY

since both sides, interpreted as functions on intervals [s, t], yield the same value (X • Y )t −
(X •Y )s. In this notation, of course, this equation is not feasible for a de�nition of XdY , since
the de�niens on the RHS containes the de�niendum on the LHS, but it nicely demonstrates
that the operations d and

∫
are inverse to each other.

To summarize, there is a close formal analogy to the Exterior Calculus:

� in the Exterior Calculus, the proper objects to integrate are di�erential forms, not
functions, and the di�erentiation operator d � the exterior derivative � is precisely
so de�ned as to make Stokes' Theorem true in the simple case of ntegrating over
rectangular objects (and hence in general);

� in the Itô Calculus, the proper objects to integrate are Itô di�erentials, not sto-
chastic processes, and the di�erentiation operator is precisely so de�ned as to make
Stokes' Theorem true in the simple case of integrating over intervals (note that Itô
di�erentials correspond to 1�forms, so we are in the 1�dimensional case, and Stokes'
Theorem is just the Fundamental Theorem of Calculus).

All these elaborations are pretty formal and without real content, but turn out to establish an
e�ective formalism, where e�ective formalism means that applying stolidly the rules leads to
correct results without the need of thinking and along the way reduces the risk of error.

Unfortunately, more often than not one �nds notation like

XdY ([s, t]) =

t∫
s

X dY =

t∫
s

Xu dYu ,

where the RHS is, in principle, to be repudiated. This notation appears frequently for at least
two reasons. The �rst is, that after the fact, i.e. after having established the stochastic integral,
it is given, although not de�nable, as the limit of pathwise de�ned Riemann�Stieltjes sums,

3



S. Ankirchner Mathematical Finance Bonn WS 2012/13

where the limit has to be taken stochastically (see [18], Satz 4.43):

(♠)
t∫
s

X dY = st� limn→∞

n∑
i=1

Xs+(i−1)h(Ys+ih − Ys+(i−1)h) , h :=
t− s
n

,

and the notation with the subscript u is a remnant of that. The second, more signi�cant,
reason is that one wants to keep track of the variables during calculations (e.g. when applying
the chain rule) and to be able to write integrals like

∫
Xtdt in place of

∫
Xd idR+ . All in all

experience shows that keeping the variables explicit during computations supports clarity and
narrows down the cluttering of notation. Therefore we too will stick to this habit.

In this way, one succeeds in introducing the notion of di�erential, even though most interesting
stochastic processes have paths which are nowhwere di�erentiable almost surely, and with this
formalism, Itô's formula (∗∗) then takes the concise form

(∗ ∗ ∗) df(X)t = f ′(Xt)dXt +
1

2
f ′′(Xt)d〈X〉t .

There results a formalism based on Itô's formula which is known as Itô Calulus, which is
the stochastic counterpart to classical Integral and Di�erential Calculus, and which lies at the
foundation of Stochastic Analysis.

End of the excursion

Now the above naive ansatz inspires to apply Itô's formula to logXt :

d logXt =
1

Xt
dXt −

1

2X2
t

d〈X〉t .

(here one might object that we do not know, at this stage, if Xt will always be positive.
Regarding X2

t instead of Xt reduces this objection to the question if Xt does not vanish (since
due to logX2 = 2 logX the computations below are not a�ected). Although this is true, we do
not know this at this stage, but it su�ces that our ruminations will produce a candidate for
the solution, which we will prove to be one by other means.)

We have dXt = σXtdWt , hence d〈X〉t = d〈X,X〉t = dXtdXt = σ2X2
t dWtdWt = σ2X2

t d〈W,W 〉t
= σ2X2

t d〈W 〉t = σ2X2
t dt, and plugging all this into the last equation gives

d logXt = σdWt −
1

2
σ2dt = d

(
σWt −

1

2
σ2t

)
,

and so
Xt = S0 eσWt−σ2t/2 ,

or
St = S0 eσWt+(µ−σ2/2)t .

In this way, we have found how the solution should look like. To verify that it is indeed a
solution, write

St = f(Yt) , Yt :=

(
µ− 1

2
σ2

)
t+ σWt ,

where f(y) := S0 ey . Applying Itô's formula to f , there comes

dSt = S0 eYt dYt +
1

2
S0 eYt d〈Y 〉t = StdYt +

1

2
Std〈Y 〉t .

Now dYt = (µ− σ2/2)dt+ σdWt and 〈Y 〉t = σ2t ; there comes

dSt =

(
µ− 1

2
σ2

)
Stdt+ σStdWt +

1

2
σ2Stdt = µStdt+ σStdWt

4
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as desired.

Throughout the lecture, let

Φ(x) :=
1√
2π

∫ x

−∞
e−z

2/2 dz .

Lemma 1.1. Let L = −N(ST −S0) be the loss on a portfolio consisting of N ≥ 0
asset shares, where T > 0 (typically T = 10/252, 10 trading days over 252 trading
days a year). Then

(1.1) V@Rα = −NS0

(
e−aσ

√
T+(µ−σ2/2)T −1

)
,

where a is such that Φ(a) = α , i.e. the α�quantile of the standard normal
distribution.

Proof. Let q be the RHS of (1.1). Then

P [L > q]

= P
[
−N

(
S0 eσWT+(µ−σ2/2)T −S0

)
> −N

(
S0 e−aσ

√
T+(µ−σ2/2)T −S0

)]
= P

[
eσWT+(µ−σ2/2)T < e−aσ

√
T+(µ−σ2/2)T

]
= P

[
σWT < −aσ

√
T
]

= P
[
WT/
√
T < −a

]
and so, since WT/

√
T is normally distributed around 0 with variance 1 ,

= Φ(−a) = 1− Φ(a) = 1− α ,

hence the result. QED

Now let us have a look at short positions.

Lemma 1.2. Let L = N(ST −S0) be the loss of a short position of N ≥ 0 shares.
Then

V@Rα = NS0

(
eaσ
√
T+(µ−σ2/2)T −1

)
.

The proof is analogous to the proof of Lemma 1.1.

Remark. Note that the V@R of a short position is not equal to the V@R of
the corresponding long position. Reason: Geometric Brownian Motion is log�
normal distributed, and this distribution is not symmetric around the median
(�Skewness� of the log�normal distribution). �
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Commonly, one uses an even simpler linear approximation. Typically

T =
10

252
≈ 0.004

and so is very small, so the Taylor development gives a good approximation:

e−aσ
√
T+(µ−σ2/2)T

= 1− aσ
√
T +

(
µ− σ2/2

)
T +

1

2

(
−aσ
√
T +

(
µ− σ2/2

)
T
)2

+ · · ·

= 1− aσ
√
T +

(
µ− σ2/2 + a2σ2

)
T +O(T 3/2)

If we use only the
√
T�term, we obtain the following linear approximations.

For a long position:

`V@Rα(−N(ST − S0)) = NS0aσ
√
T .

For a short position:

`V@Rα(N(ST − S0)) = NS0aσ
√
T .

Remark. 1) Contrary to V@R, `V@R is the same for short and long positions.

2) Assume L is Gaussian, i.e. L = S0σWT . Then

V@Rα(L) = V@Rα(S0σ
√
TX) = S0σ

√
Ta = `V@Rα(±(ST − S0))

where X is N (0, 1) .

3) Let α, β ∈ (0, 1) , Φ(a) = α , Φ(b) = β , and T, U > 0 . Then

`V@Rα(±N(SU − S0)) =
b

a

√
U√
T
`V@Rα(±N(ST − S0)) .

V@R for �nancial derivatives

Portfolios can contain �nancial contracts that are not liquidly traded so that you
do not have market prices for them. So you must determine their value by other
means, i.e. from other asset prices (Example: Options).

Suppose that the value of a �nancial contract at time t is given by F (St) , where
St is the price of the underlying (= reference asset).

Lemma 1.3. Let F be strictly increasing and L = −(F (ST )− F (S0)) . Then

(1.2) V@Rα(L) = F (S0)− F (S0 − V@Rα(−(ST − S0))) .

Proof. Let q be the RHS of (1.2). Then

P [L > q] = P [−(F (ST )− F (S0)) > q]

= P [F (ST ) < F (S0 − V@Rα(−(ST − S0)))]

= P [ST < S0 − V@Rα(−(ST − S0))]

6
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= P [−(ST − S0) > V@Rα(−(ST − S0))]

= 1− α

which implies q = V@Rα(L) . QED

Let us assume F ∈ C∞ be strictly increasing. The Taylor approximation of F
around S0 implies that

V@Rα(− (F (ST )− F (S0)))

= F ′(S0) V@Rα(−(ST − S0)) +
1

2
F ′′(S0) V@Rα(−(ST − S0))2 + · · ·

The �rst derivative of F w.r.t. the underlying price S is usually called Delta. We
write ∆(S) = F ′(S) . With this notation, we have the ∆�approximation of the
V@R:

V@Rα(−(F (ST )− F (S0))) ≈ ∆(S0) V@Rα(−(ST − S0)) .

The approximation including the 2nd derivative is called ∆�Γ�approximation .

V@R of a portfolio

Usually a portfolio contains many (maybe hundreds) assets which are heavily
correlated. How does one obtain a risk estimate for those?

Let F (S1
t , . . . , S

d
t ) be the value of a portfolio depending on d risk factors. For

simplicity we assume that S := (S1
t , . . . , S

d
t ) is Gaussian with mean (S1

0 , . . . , S
d
0)

and covariance matrix C = (cij) , i.e. cij = cov(S1
T , . . . , S

d
T ) .

Now we make a Taylor expansion; we get the ∆�approximation

−(F (ST )− F (S0)) ≈ −
d∑
i=1

∂F

∂xi
(S1

0 , . . . , S
d
0)(SiT − Si0) =: L .

Let ∆i :=
∂F

∂xi
(S1

0 , . . . , S
d
0) . The sum of centered Gaussian distributions is again

a centered Gaussian distribution. So L is normally distributed with mean zero
and variance

σ2
L =

∆1
...

∆d

>C
∆1

...
∆d


which implies

V@Rα(L) = σLa

with a the α�quantile of the standard normal distribution.

This last formula comes about as follows. Let L be a random variable with mean µ and
variance σ2 . Then the random variable X := (L− µ)/σ has mean 0 and variance 1. Then

P [X > c] = P [L > µ+ σc]

7
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implies
V@Rα(L) = µ+ σV@Rα(X) .

Now suppose the loss L is N (µ, σ2)�distributed. Then the random variable X is N (0, 1)�
distributed. Since the V@Rα is nothing but the α�quantile, we have V@Rα(X) = Φ−1(α) = a .
Hence

V@Rα(L) = µ+ σa ,

which explains the above formula.

Remark. As a practical remark one may say that this is a simple formula with
high practical relevance; in particular, it applies to very large portfolios.

8



CHAPTER 2

The One-Period (Asset Price) Model

We consider a �nancial market with d+ 1 assets (stocks, bonds, . . . ). Denote the
price vector at time t = 0 as

π0, . . . , πd ≥ 0

and the corresponding price system as

(π0, . . . , πd) ∈ Rd+1
+ .

The prices at time t = 1

S0, . . . , Sd ≥ 0

are not known before t = 1. We model them as non-negative random variables
on a probabilitiy space (Ω,F , P ). Throughout we assume that S0 is the price of
a bond with �xed interest rate r ≥ 0. To simplify notation we assume that

π0 = 1 and S0 = 1 + r .

Further, we assume S1, . . . , Sd will be risky assets depending on scenarios ω ∈ Ω.
We employ the following notation:

π = (1, π) = (π0, . . . , πd)

S = (1, S) = (S0, . . . , Sd) .

At time t = 0 an investor chooses a portfolio (= a vector of positions)

ξ = (ξ0, ξ) = (ξ0, . . . , ξd) ∈ Rd+1
+

(which is not random). The interpretation is:

ξi = number of shares of asset i in the
investor's portfolio.

We allow the ξi to be negative: If ξ0 < 0, then the investor is taking a loan at
t = 0, and has to pay back |ξ0| (1 + r) at time t = 1. If ξi < 0 for some 1 6 i 6 d,
then the investor is short selling asset i at time t = 0.

We can de�ne the value of a portfolio: The value of the portfolio ξ at time 0 is
the scalar product

(2.1) ξ · π =
d∑
i=0

ξiπi = ξ0 + ξ · π ,

9
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and the value of the portfolio ξ at time 1 is the scalar product

(2.2) ξ · S =
d∑
i=0

ξi§i = ξ0(1 + r) + ξ · S .

We now make the following de�nition which is of paramount importance in what
follows.

De�nition. A portfolio ξ ∈ Rd+1 is called an arbitrage opportunity i� it has the
following three properties:

(i) ξ · π 6 0 ;
(ii) ξ · S ≥ 0 P�a.s. ;
(iii) P

[
ξ · S > 0

]
> 0 .

Lemma 2.1. The following statements are equivalent:

(1) There exist arbitrage opportunities .
(2) There exists a vector ξ ∈ Rd such that

ξ · S ≥ (1 + r)ξ · π
and

P [ξ · S > (1 + r)ξ · π] > 0 .

(3) Let Y :=
S

1 + r
− π be the vector of �discounted gains� (an Rd�valued

random variable). Then there exists a vector ξ ∈ Rd such that

ξ · Y ≥ 0 P -a.s.

and
P [ξ · Y > 0] > 0 .

Proof. (1) =⇒ (2): Let ξ be an arbitrage opportunity. Then, by (2.1) and
(2.2)

ξ · π = ξ0 + ξ · π 6 0 ,

ξ · S = ξ0(1 + r) + ξ · S > 0 P�a.s.

This implies that ξ · S ≥ (1 + r)ξ · π P�a.s. Moreover, if ξ · S > 0 , then
ξ · S > (1 + r)ξ · π . Hence,

P [ξ · S > (1 + r)ξ · π] > P
[
ξ · S > 0

]
> 0 .

(2) =⇒ (3): If (2) holds, then so does (3) with the same ξ by de�nition of
Y , since ξ · Y ≥ (>) 0 ⇐⇒ ξ · S ≥ (>) (1 + r)ξ · π .
(3) =⇒ (1): Put ξ0 := −ξ · π and ξ := (ξ0, ξ) . Then the claim is that ξ is
an arbitrage opportunity. Indeed, we have

(i) ξ · π = ξ0 + ξ · π = 0 because of (2.1) and the de�nition of ξ0

10
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(ii) ξ · S = (1 + r)ξ0 + ξ · S because of (2.2)

= (1 + r)ξ0 + (1 + r)(ξ · Y + ξ · π) by the de�nition of Y

= (1 + r)(ξ0 + ξ · Y + ξ · π)

= (1 + r)(ξ · Y + ξ · π)

= (1 + r)(ξ · Y )

≥ 0 P�a.s. by assumption,

and so, since, as we have just seen, ξ · S = (1 + r)(ξ · Y ) for this special ξ ,

(iii) P
[
ξ · S > 0

]
= P [ξ · Y > 0] > 0 by assumption.

In this way, we see that the properties (i) � (iii) of the de�nition of an arbitrage
opportunity do indeed hold. QED

This lemma shows that absence of arbitrage is equivalent to the following property
of the market: Any investment in risky assets yielding with positive probability
a higher pro�t than an investment in the risk�free bond must entail a downside
risk.

Our next aim: To show the equivalence of absence of arbitrage and existence of a
so�called risk�neutral measure (this equivalence is known as FFToAP, the First
Fundamental Theorem of Asset Pricing).

De�nition. A probability measure P ∗ on (Ω,F) is called risk�neutral i�

E
∗
[
Si

1 + r

]
= πi , 0 6 i 6 d

(where E∗ denotes expectation w.r.t. P ∗) .

We de�ne

P := {P ∗ | P ∗ is a risk�neutral probability measure with P ∗ ∼ P } .
What does the equivalence �∼� mean? Recall the de�nition of absolute continuity
and equivalence of two probability measures on (Ω,F): One has

Q� P :⇐⇒ ∀A ∈ F : (P [A] = 0 =⇒ Q [A] = 0)

(�Q is absolutely continuous w.r.t. P �), and then

De�nition. Q ∼ P :⇐⇒ Q� P and P � Q

(�Q and P are equivalent measures�). In other words, Q and P are equivalent
measures i� they have the same null sets. Note that two equivalent probability
measures de�ne the same notion of arbitrage opportunities and so of arbitrage�
freeness, a remark which will be important in the sequel.

There is the following famous result:

11
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Radon�Nikodym Theorem. If P � Q , then P has a density w.r.t. Q , i.e.
there exists a random variable X ≥ 0 with X ∈ L1(Q) such that

∀A ∈ F : P [A] =

∫
A

X dQ .

The density X is usually denoted by
dP

dQ
and called the Radon�Nikodym de-

rivative of P w.r.t. Q .

Theorem 2.2. (�First Fundamental Theorem of Asset Pricing�, FFToAP) The
(one�period) market model is arbitrage�free i� P 6= ∅ . In this case, there exists

a P ∗ ∈ P with bounded density
dP ∗

dP
.

For the proof of this theorem we need the following version of the �Separating
Hyperplane Theorem� in Rn , n ∈ N :

Lemma 2.3. Let C ⊆ Rn be a non�empty convex set with 0 6∈ C . Then there
exists a vector η ∈ Rn such that η · x ≥ 0 for all x ∈ C , and with η · x0 > 0 for
at least one x0 ∈ C . If infx∈C ‖x‖ > 0 , then there exists an η ∈ Rn such that
infx∈C η · x > 0 .

I want to give some lines of explanation regarding the name for this result. Recall that a
hyperplane in a vector space V is a proper linear subspace of maximal dimension, i.e. of
codimension 1. Alternatively, it is the kernel of a nontrivial linear form. If V is a �nite
dimensional Euclidean vector space, the linear forms correspond in a one�to�one fashion to the
vectors in V by mapping x ∈ V to the linear form ϕx given by scalar multiplication with x,
i.e. ϕx(y) := x · y for all y ∈ V ; clearly, then, the non�trivial linear forms correspond to the
nonzero vectors x ∈ V \ {0}, and the hyperplanes are just the subsets

H = Hx = { y ∈ V | x · y = 0 } ,

for some x ∈ V \ {0}, i.e. the orthogonal complements Rx⊥ of lines. Here we may assume
‖x‖ = 1; then x is called the positive unit normal vector corresponding to Hx.

If H is a hyperplane, the complement V \H consists of two connected components, which are
nonempty, open and convex. This can be seen as follows. Choose an x ∈ V \{0}, where w.l.o.g.
we may assume ‖x‖ = 1, such that H = Hx = { y ∈ V | x · y = 0 }. Then V = H+ ∪H− with

H± := { y ∈ V | x · y ≷ 0 }

called the two open half spaces de�ned by H; note that no one is prefered over the other and
that they can only be distinguished after an x has been chosen. For any y0, y1 let [y0, y1] :=
{ yλ := λy0 + (1− λ)y1 | λ ∈ [0, 1] } be the closed line segment joining y0 and y1; then it is
immediate that for y0, y1 ∈ H± one has [y0, y1] ⊆ H±, whence both H± are convex and thus
connected. On the other hand, let y± ∈ H±; then, given any continuous path γ : [0, 1] −→ V
joining y+ and y−, the continuous map t 7→ x · γ(t) on [0, 1] has to vanish at some t0, whence
γ(t0) ∈ H and so V \H cannot be connected. By given x, H+ is called the positive open half
space with unit normal vector x, which then is said to point into the interior of H+.

12
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Similarly, there are the two closed half spaces de�ned by H,

H≥0(60) := H± := { y ∈ V | x · y ≥ 0(6 0) } .

These clearly are closed, and, in fact, the closures of the corresponding open half spaces, and
also connected and convex, but not disjoint. Note that any one of the four half spaces H±, H±
determines the three others. Any of them determines, and is determined by, a unit normal
vector x. In this way, open or closed half spaces correpond in a one�to�one fashion to points
of the unit sphere in V .

The content of the lemma can then be interpreted geometrically by saying that any convex set
not containing 0 is contained in a closed half space and so separated from the points of the
opposite open half space by its boundary, which is a hyperplane, whence the name �Separating
Hyperplane Theorem�. The second statement then is if the convex set has positive distance
from 0 it is, in fact, contained in an open half space.

Proof. I �rst prove the second statement. Let C be the closure of C ; note
that C is convex, too (if x, y ∈ C, choose sequences (xk)k∈N, (yk)k∈N in C with
xk → x, yk → y ; then, for any α ∈ [0, 1] , αxk + (1 − α)yk → αx + (1 − α)y) .
Choose y ∈ C with ‖y‖ = infx∈C ‖x‖ .

This is possible by the following reasoning. Take any x0 ∈ C. Then ‖x0‖ > 0. The set
B := B (0; ‖x0‖) ∩ C is nonempty and compact, and infx∈C ‖x‖ = infx∈C ‖x‖ = infx∈B ‖x‖.
Since B is compact, there is y ∈ B ⊆ C with ‖y‖ = infx∈B ‖x‖.

Now, if x ∈ C , we have for all α ∈ [0, 1] that αx+ (1− α)y is in C , and so

‖y + α(x− y)‖2 = ‖αx+ (1− α)y‖2 ≥ inf
z∈C
‖z‖2 = inf

z∈C
‖z‖2 = ‖y‖2

which implies

2αy · (x− y) + α2‖x− y‖2 ≥ 0 .

Suppose α 6= 0 ; dividing by α and letting α→ 0 gives

y · (x− y) ≥ 0

i.e.

x · y ≥ ‖y‖2 > 0 .

So η := y does the job.

Regarding the �rst statement, a proof for this can be found in Appendix A1 of
[12]. QED

The idea of proof for the �rst statement in loc. cit. consists of reducing it to the proven second
statement by making slight shifts to C as to make the distance to 0 positive. Then the second
case applies, and each shift gives a separating hyperplane for the slightly shifted C. Taking
a sequence of shifts approaching 0 gives a sequence of half spaces and so a sequence of unit
vectors on the unit sphere; since this sphere is compact, there exists a convergent subsequence,
and the limit unit vector is then the positive unit normal vector for a half space satisfying the
requirements of the �rst statement of the lemma.

13
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For reasons of promoting diversity, I want to give an alternative proof from scratch, hence not
based on the second statement, which is more geometric in spirit. We proceed in several steps.

Step 1. (This is also the �rst step of the proof in loc. cit.) Recall that a subset of a vector space
V is called a�ne i� with any two di�erent points it contains the line though these points. This
is equivalent to saying that with any points a0, a1, . . . , an it contains the a�ne combinations∑n
i=0 λiai,

∑n
i=0 λi = 1. For any subset S ⊆ V , the a�ne hull Aff(S) is the smallest a�ne

subspace of V containing S. Since an arbitrary intersection of a�ne subspaces is an a�ne
subspace, this is the intersection of all a�ne subspaces containing S. Since any such subspace
must contain all a�ne combinations on points of S, there follows

Aff(S) = {
∑n
i=0 λiai | n ≥ 0 , a0, . . . , an ∈ S ,

∑n
i=0 λi = 1 } .

We call a convex set C ⊆ V regular i� Aff(C) = V (this is not standard terminology); note
that a regular convex set is, in particular, nonempty. It is then su�cient to prove the lemma
for regular convex sets. For suppose C is not regular and nonempty (otherwise there is nothing
to prove). Then C is regular in the a�ne subspace Aff(C) generated by C. By applying a
suitable translation we may assume Aff(C) = Lin(C), the linear hull of C, while keeping the
condition 0 6∈ C.

Let now V := Rn. By choosing appropriate coordinates we may further assume Lin(C) =
Rm ⊆ Rn. Then if the lemma holds for C ⊆ Rm, it yields η ∈ Rm which then is also good for
Rn.

Step 2. We now show that it su�ces to assume that C is open. We begin by noting the
equivalences

(i) C is regular;
(ii) C contains a nondegenerate simplex;
(iii) the interior C◦ of C is not empty.

(i) =⇒ (ii): Recall that elements a0, a1, . . . , am in V are called a�nely independent if∑m
i=0 λiai = 0 and

∑m
i=0 λi = 0 together imply that λi = 0, i = 0, 1, . . . ,m. A nondegenerate

n�simplex < a0, a1, . . . , an > in V is de�ned to be the convex hull of n+ 1 a�nely independent
points a0, a1, . . . , an, where n = dimV . Now if C is convex and Aff(C) = V , C must contain
n + 1 a�nely independent points, n = dimV . But since C is convex, it must contain their
convex hull.

(ii) =⇒ (iii): De�ne the standard n�simplex ∆n ⊆ Rn as

∆n :=< e0, e1, . . . , en > := Conv {e0, e1, . . . , en}

where e1, . . . , en are the standard unit vectors, e0 := 0, and Conv denotes the convex hull. This
is a nondegenerate n�simplex. Given a nondegenerate n�simplex Σ :=< a0, a1, . . . , an >, there
is a unique a�ne map sending ei to ai, i = 0, 1, . . . , n and hence ∆n to Σ. This map necessarily
is an a�ne isomorphism and so, in particular, a homeomorphism under which interior points
of ∆n and Σ correspond. But surely

∆◦n = {x = (x1, . . . , xn) | xi > 0 for all i and
∑n
i=1 xi < 1 } 6= ∅ .

(iii) =⇒ (i): Let x ∈ C◦ be an interior point of C. By linearly translating C we may assume
x = 0. Let ε > 0 be such that B (0; ε) ⊆ C (the open ball taken w.r.t. any accomodating norm).
Then the vectors εe1/‖e1‖, . . . , εen/‖en‖ are in C, and they generate Rn. So C is regular, and
the equivalence of (i) � (iii) is proved.

14
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We now come to the crucial point, which allows the reduction of the proof of the separation
theorem to open convex sets. First some notation. Choose any norm on Rn and let

B := B (0; 1) := {x ∈ Rn | ‖x‖ < 1 }
be the unit ball. One then has

∀x ∈ Rn ∀r ∈ R+ : B (x; r) = x+ rB .

For any y0, y1 ∈ Rn and λ ∈ R we put yλ := (1 − λ)y0 + λy1. De�ne the closed line segment
[y0, y1] to be { yλ | λ ∈ [0, 1] }. The half open and open line segments [y0, y1), (y0, y1], and
(y0, y1) are de�ned in an analogous manner.

Lemma. Let C ⊆ Rn be a regular convex set. Let y1 ∈ C. Then for any y0 ∈ C◦ there holds
[y0, y1) ⊆ C◦.

Proof (see [31], Theorem 6.1). Given λ ∈ [0, 1) we want to �nd ε > 0 such that B (yλ; ε)
⊆ C. Note that for all ε > 0 we have y1 ∈ C + εB since y1 ∈ C. Then

B (yλ; ε) = yλ + εB = (1− λ)y0 + λy1 + εB ⊆ (1− λ)y0 + λ(C + εB) + εB

= (1− λ)

[
y0 + ε

1 + λ

1− λ
B

]
+ λC = (1− λ)B (y0; ε(1 + λ)/(1− λ)) + λC .

We have y0 ∈ C◦ by hypothesis, so there is δ > 0 with B (y0; δ) ⊆ C. So if we choose
ε := δ(1 − λ)/(1 + λ), we do indeed have B (yλ; ε) ⊆ (1 − λ)B (y0; δ) + λC ⊆ (1 − λ)C + λC
⊆ C. QED

Corollary. Let C ⊆ Rn be regular convex. Then C◦ and C are regular convex.

Proof. Let y0, y1 ∈ C◦. Then y1 ∈ C and so [y0, y1) ⊆ C◦ by the lemma, hence [y0, y1] ⊆ C◦,
which proves C◦ is convex. Since C◦ has a nonempty interior, as to say C◦, C◦ is regular
convex.

That C is convex has been shown above. Alternatively, note that

C =
⋂
ε>0

(C + εB) .

Now if C1, C2 are convex, so is C1 + C2; this is immediate from the de�nition. Hence C is an
intersection of convex sets and thus convex.

Since C
◦ ⊇ C◦, it is regular convex. QED

Corollary. Let C ⊆ Rn be regular convex. Then C ⊆ C◦ and so C = C◦. And C
◦ ⊆ C◦ and

so C
◦

= C◦.

Proof. Let y1 ∈ C. Since C is regular convex, there exists an y0 ∈ C◦. By the lemma,
[y0, y1) ⊆ C◦, which clearly implies y1 ∈ C◦. So C ⊆ C◦. On the other hand, C◦ ⊆ C, and so
C◦ ⊆ C.

For the second claim, let y1 ∈ C
◦
. Let again y0 ∈ C◦ ⊆ C

◦
. Since C is regular convex, so is

C and therefore so is C
◦
. Hence [y0.y1] ⊆ C

◦
. Since C

◦
is open, yλ = (1 − λ)y0 + λy1 is still

in C
◦
for λ > 1 su�ciently close to 1 and so in C. Then y1 = (1 − λ−1)y0 + λ−1yλ ∈ [y0, yλ)

and so in C◦ by the last lemma. So indeed C
◦ ⊆ C◦. On the other hand, C ⊆ C, and so

C◦ ⊆ C◦. QED

Now suppose Lemma 2.3 has been proved for open convex sets. Given any regular convex set
C, its interior C◦ is, by what has been said above, regular, convex, and open. So we have
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η ∈ Rn such that η · x ≥ 0 for all x ∈ C◦ and η · x0 > 0 for at least one x0 ∈ C◦. But since
the scalar product is continuous, we have η · x ≥ 0 for all x ∈ C◦ = C and so a forteriori for
all x ∈ C. And again a forteriori we have x0 ∈ C◦ ⊆ C with η · x0 > 0. The last claim follows
because, again for reasons of continuity, we have infx∈C◦ ‖x‖ = infx∈C◦=C ‖x‖ = infx∈C ‖x‖
and infx∈C◦ η · x = infx∈C◦=C η · x = infx∈C η · x.
Step 3. Before presenting the main construction step for the Separating Hyperplane Theorem,
we need the following preparatory fact.

Lemma. Let L ⊆ Rn be a proper linear subspace which is not a hyperplane. Then Rn \ L is
connected.

Proof. Let x0, x1 ∈ Rn \ L. If x1 − x0 ∈ L, no xλ ∈ [x0, x1] can be in L, for otherwise

xλ = (1− λ)x0 + λx1 = x0 + λ(x1 − x0) = (1− λ)(x0 − x1) + x1 ∈ L
would imply x0, x1 ∈ L. Thus the line segment [x0, x1] then is a path in Rn \ L joining x0

and x1.

If x1−x0 6∈ L, let p : Rn −→ L⊥ be the orthogonal projection onto the orthogonal complement
of L; then η := p(x1 − x0) 6= 0, and H := {x ∈ Rn | η · x = 0 } is a hyperplane contaning L.
Since Rn \ L is open there is δ > 0 with B (xi; δ) ⊆ Rn \ L, i = 0, 1, and so we can vary x0, x1

within these open balls without leaving their connected components, whence we may assume
x0, x1 6∈ H. Now H \ L 6= ∅; take y ∈ H \ L, and then the two line segments [x0, y] and [y, x1]
de�ne a path in Rn \ L joining x0 and x1. QED.

The following result now is the main construction step for the Separating Hyperplane Theorem:

Lemma. Let C ⊆ Rn be a nonempty open convex set. Let L ⊆ Rn be a linear subspace with
C ∩ L = ∅. Then either L is a hyperplane, or there exists a vector x ∈ Rn \ L such that
C ∩ (L+Rx) = ∅.

Proof. Consider the set

D := L+
⋃
λ>0

λC =
⋃

y∈L,λ>0

(y + λC) =
⋃
λ>0

λ(L+ C) .

(The geometric interpretation of this set is as follows. Since L and C are convex, so is L+C ; in
fact, L+C is the union of the translates of C with vectors in L. A cone in Rn is a subset closed
under the multiplication with positive scalars, and a convex cone is a cone which is convex.
With these notions D is the convex cone generated by L + C, i.e. the smallest convex cone
containing L+ C ([31], Corollary 2.6.1.))

Then

(?) D ∩ L = ∅ = D ∩ (−D) .

For the �rst equality, suppose we have x ∈ D ∩ L. Then x = y + λc with y ∈ L, c ∈ C, and
λ > 0. But then c = λ(x− y)−1 ∈ C ∩ L, contrary to the hypothesis. For the second equality,
suppose we would have x ∈ D ∩ (−D). Then

x = y+ + λ+c+ = y− − λ−c− with y± ∈ L, c± ∈ C, and λ± > 0 .

But then

c :=
λ+

λ+ + λ−
c+ +

λ−
λ+ + λ−

c− = y− − y+ ∈ C ∩ L

contrary to the hypothesis. So (?) holds true.

Now suppose L is not a hyperplane. We have D ∪ (−D) ⊆ Rn \ L, since D ∩ L = ∅. Both D
and −D are nonempty and open as unions of open sets (here we use that C is open). So, since
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Rn \ L is connected and D, −D are disjoint, we must have Rn \ L 6= D ∪ (−D), and so there
must be an x ∈ Rn \ L sucht that ±x 6∈ D.

Suppose there would be y ∈ L and λ ∈ R such that c := y + λx ∈ C. We cannot have λ = 0.
So x = −λ−1y+λ−1c would be such that either x ∈ D or −x ∈ D which contradicts the choice
of x. Hence C ∩ (L+Rx) = ∅. QED

Corollary. (Separating Hyperplane Theorem) Let C ⊆ Rn be a nonempty open convex set
with 0 6∈ C. Then there is a hyperplane H ⊆ Rn with C ∩H = ∅, or equivalently an open half
space H+ ⊆ Rn with C ⊆ H+.

Proof. The equivalence of both claimed properties are clear: if H is a hyperplane with
C ∩H = ∅, C must be contained in one of the two connected components of Rn \H since it is
connected, and these components are open half spaces; conversely, if C is contained in an open
half space H+, H := ∂H+ is a hyperplane with C ∩H = ∅.
To �nd a hyperplane H with C ∩ H = ∅, put L0 := {0} and use the last lemma iteratively
to build a �ag L0 ⊂ L1 ⊂ · · · ⊂ Li ⊂ · · · ⊂ Ln−1 of linear subspaces Li with dimLi = i and
C ∩ Li = ∅. Then H := Ln−1 provides the required properties. QED

Remark. The essence of the Separating Hyperplane Theorem is that if one orders the set of
convex subsets of Rn not containing 0 by inclusion, the maximal elements of this partially
ordered set are just the open half spaces. This continues to hold in in�nite dimensional real
vector spaces, where it can be proved similarly by using Zorn's Lemma, and then it constitutes
one of the many manifestations of the Hahn�Banach Theorem.

For the equivalence of the Separating Hyperplane Theorem with the Hahn�Banach Theorem
see [4].

Step 4.

Corollary. Lemma 2.3 holds true.

Proof. We need only to prove the �rst statement; the second statement has been taken care
of already above.

As explicated under Step 2 it su�ces to prove Lemma 2.3 for C nonepty open. By the last
corollary (Separating Hyperplane Theorem) we can �nd an open half space H+ with C ⊆ H+.
If η is the positive unit normal vector cooresponding to H+ we have η · x > 0 for all x ∈ C and
therefore also infx∈C η · x ≥ 0. This proves the �rst statement. QED

Now we can start the proof of Theorem 2.2.

Proof of Theorem 2.2. Let us start with the simple direction � ⇐= �. Assume we
have P ∗ ∈ P . Let ξ ∈ Rd+1 be such that ξ·S ≥ 0 P�a.s. and P

[
ξ · S > 0

]
> 0 .

Since P ∗ ∼ P by assumption, we have also ξ·S ≥ 0 P ∗�a.s. and P ∗
[
ξ · S > 0

]
>

0 . Hence, E∗
[
ξ · S

]
> 0 . Now observe that

ξ · π =
d∑
i=0

ξiE∗
[
Si

1 + r

]
=

1

1 + r
E
∗ [ξ · S] > 0 .

Thus, the third de�ning property of an arbitrage opportunity can never be satis-
�ed.
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The other direction � =⇒ � is a little more complicated. Let

Y i :=
Si

1 + r
− πi , 1 6 i 6 d

and set
Y := (Y 1, . . . , Y d) (�discounted gains�).

According to Lemma 2.1 (3) the market is arbitrage�free i� the following impli-
cation holds true:

(2.3) ∀ ξ ∈ Rd : ξ · Y ≥ 0 P�a.s. =⇒ ξ · Y = 0 P�a.s. .

Thus it is enough to show the implication

(2.3) =⇒ ∃P ∗ ∈ P :
dP ∗

dP
bounded.

First, assume that the net gains Y i are integrable, i.e. Y ∈ L1(P ) , or, equiva-
lently, E [‖Y ‖] <∞ . Let

Q := {Q | Q is a probability measure with Q ∼ P and
dQ

dP
bounded }.

Write
E
Q [Y ] := (EQ

[
Y 1
]
, . . . ,EQ

[
Y d
]
) ∈ Rd

which is de�ned for any Q ∈ Q . Now introduce

C := {EQ [Y ] | Q ∈ Q} .
Then C is a convex set in Rd . Indeed, for Q1, Q2 ∈ Q and α ∈ [0, 1] we have

αEQ1 [Y ] + (1− α)EQ2 [Y ] = E
Qα [Y ]

with Qα := αQ1 + (1− α)Q2 . Notice that Qα ∈ Q as

∀α ∈ (0, 1) , ∀A ∈ F : Qα [A] = 0 ⇐⇒ Q1 [A] = 0 ∧ Q2 [A] = 0 ,

and
dQα

dP
= α

dQ1

dP
+ (1− α)

dQ2

dP
is a bounded density for Qα w.r.t. P . So C is convex.

We want to show there exists a risk�neutral measure equivalent to P . Observe
that the construction of C is such that 0 ∈ C corresponds just to those measures
Q ∈ Q which satisfy

(2.4) EQ
[
Y i
]

= E
Q

[
Si

1 + r

]
−EQ

[
πi
]

= E
Q

[
Si

1 + r

]
−πi = 0 , 1 = 1, . . . , d

and so to the risk-neutral measures with bounded densities (note thatEQ [πi] = πi

since the πi are deterministic). We want to pin down such a measure and argue
by contradiction; i.e. we want to show that the assumption that such a measure
does not exist contradicts our hypothesis of arbitrage�freeness. So we assume
0 6∈ C and will show that then (2.3) is not satis�ed. By Lemma 2.3, there exists
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ξ ∈ Rd such that ξ · x ≥ 0 for all x ∈ C and ξ · x0 > 0 for at least one x0 ∈ C .
Thus, for this ξ :

(2.5) ∀Q ∈ Q : ξ ·EQ [Y ] ≥ 0

and

(2.6) ∃Q0 ∈ Q : ξ ·EQ0 [Y ] > 0 .

But, for any Q taking expectations is a linear operation, and so

ξ ·EQ [Y ] =
d∑
i=1

ξiEQ
[
Y i
]

=
d∑
i=1

E
Q
[
ξiY i

]
= E

Q

[
d∑
i=1

ξiY i

]
= E

Q [ξ · Y ] ,

and so EQ0 [ξ · Y ] > 0 . Since Q0 ∼ P , this implies P [ξ · Y > 0] > 0 .

Next we show that ξ ·Y ≥ 0 P�a.s.; this, together with P [ξ · Y > 0] > 0 , then
shows that (2.3) is not satis�ed. To this end, let A := {ξ · Y < 0} ; we are going
to show that P [A] = 0 . For n ≥ 2 de�ne

ϕn :=

(
1− 1

n

)
1A +

1

n
1Ac

(where for any set X the symbol 1X denotes its characteristic function), and
let Qn be the measure with density (2.7). Now 0 < ϕn 6 1 , and so Qn ∈ Q .
Moreover, by the very choice of ξ (see (2.5)) ,

(2.7) 0 6 ξ ·EQn [Y ] = E
Qn [ξ · Y ] =

1

E [ϕn]
E [ϕn(ξ · Y )] .

Assume P [A] > 0 , then the RHS of (2.7) converges, by Lebesgue's Dominated
Convergence Theorem (here we use E [‖Y ‖] <∞) , to

1

P [A]
E
[
1{ξ·Y < 0}ξ · Y

]
< 0

as n→∞ , which contradicts (2.7) . Therefore, P [A] = 0 , so (2.3) cannot hold,
and the market has arbitrage opportunities, contrary to our hypothesis.

Finally, we drop the assumption that Y ∈ L1(P ) . There exists a probability
measure Q ∼ P with Y ∈ L1(Q) ; for example choose Q so that

dQ

dP
=

c

1 + ‖Y ‖
with c−1 := E [1 + ‖Y ‖] .

By the �rst part (with Q playing the part of P ) there exists P ∗ ∼ Q with
dP ∗

dQ

bounded and E∗ [Y i] = 0 , i = 1, . . . d . What we need to check is that
dP ∗

dP
is

also bounded; but
dP ∗

dP
=
dP ∗

dQ

dQ

dP
is bounded as a product of bounded densities. QED
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De�nition. The return R(ξ) of a portfolio ξ ∈ Rd+1 is de�ned by

R(ξ) :=
ξ · S − ξ · π

ξ · π
.

The next lemma tells that, amongst other things, under a risk�neutral measure
the expected return is equal to the interest rate:

Lemma 2.4. Let the market model be arbitrage�free and ξ ∈ Rd+1 such that
ξ · π 6= 0 . Let P ∗ ∈ P . Then

1) Under any risk�neutral measure P ∗ , the expected return of a portfolio ξ
equals the risk�free return:

E
∗ [R(ξ)

]
= r ;

2) Under any a probability measure Q ∼ P with EQ [‖S‖] <∞ the expected
return of a portfolio ξ is given by

E
Q
[
R(ξ)

]
= r − covQ

(
dP ∗

dQ
,R(ξ)

)
.

Proof. 1) One has

R(ξ) =
ξ · S − ξ · π

ξ · π
=
ξ · S
ξ · π

− 1 =
1

ξ · π
ξ · S − 1

and so, since ξ · π is deterministic,

E
∗ [R(ξ)

]
=

1

ξ · π
E
∗ [ξ · S]− 1 = (1 + r)− 1 = r .

2) One has

r = E
∗ [R(ξ)

]
= E

Q

[
dP ∗

dQ
R(ξ)

]
= covQ

(
dP ∗

dQ
,R(ξ)

)
+EQ

[
R(ξ)

]
.

This �nishes the proof. QED

We now turn to �nancial derivatives. Here is a list of examples.

Forward contract (or simply forward)

= agreement between two parties to buy or sell an asset at a speci�ed
future T at a price K agreed on today. Usually there is an asset�
dependent cash �ow only at T :

Buyer : receives the asset, pays K;
Seller : receives K, delivers the asset.

Within our one�period model: If T = 1 , then a forward on asset i provides the
random payo� Si −K at time 1 .
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Call option

= the right, but not the obligation, to buy an asset at a future date T
at an agreed price K, the strike price.

Within our one�period model: If T = 1 , then the call option provides the payo�
(Si −K)+ (here x+ := max(x, 0)) .

Put option

= the right, but not the obligation, to sell an asset at a future date T
for an agreed price K.

Within our one�period model: If T = 1 , then the value of the put at time 1 is
given by (K − Si)+ .

Basket option

= option on a basket of assets. Example: Let S1, . . . , S30 be the DAX
stock prices. DAX at time 1 =

∑30
i=1 αiS

i (αi = weights). Such a
�call on the DAX� has the payo� (α · S −K)+ .

For other examples see [21].

Derivatives involve claims that can be made if certain outcomes occur; so the
claims are random. We make a precise mathematical de�nition of such �contin-
gent claims� (within our one�period model):

De�nition. A contingent claim is a random variable C on (Ω,F) such that
0 6 C <∞ P�a.s.

Remark. We assume non�negativity for mathematical convenience only.

We extend our �nancial market by a contingent claim C . Let πC be the price
for C at time 0 . We set πd+1 := πC and Sd+1 := C .

De�nition. πC ∈ R+ is called an arbitrage�free price if the extended market
model ((π0, . . . , πd+1), (S0, . . . , Sd+1)) is arbitrage�free.

We denote the set of arbitrage�free prices by Π(C) .

Theorem 2.5. Let the original market be arbitrage�free, i.e. P 6= ∅ with P the
set of risk�neutral measures for the original market model. Then Π(C) is not
empty and satis�es

(2.8) Π(C) =

{
E
∗
[

C

1 + r

] ∣∣∣∣ P ∗ ∈ P s.t. E∗ [C] <∞
}
.

Proof. �⊆� : Let πC be an arbitrage�free price. Then the extended market
model is arbitrage�free, and by Theorem 2.2 (FFToAP) there exists a risk�neutral

measure P ∗ ∼ P with πi = E
∗
[
Si

1 + r

]
i = 0, . . . , d and E∗

[
C

1 + r

]
= πC . In

particular, P ∗ ∈ P , and so πC belongs to the RHS of (2.8).
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�⊇� : Let C be such that E∗ [C] < ∞ and πC = E
∗
[

C

1 + r

]
for some P ∗ ∈ P .

Then P ∗ is risk�neutral for the extended market model. Again by FFToAP the
extended market model is arbitrage�free, and so, by de�nition, πC belongs to the
LHS of (2.8).

So we have the equality (2.8), and there remains to show that Π(C) is not empty.
For this, we have, for a given contingent claim C , to exhibit a risk�neutral

measure P ∗ for the original market model such that E∗
[

C

1 + r

]
< ∞ . For this,

let P̃ ∼ P be a new probability measure with E∼ [C] < ∞ (where E∼ denotes

taking expectation under P̃ ) ; for instance, one can take P̃ with density

dP̃

dP
:=

c

1 + C
where c−1 := E

[
1

1 + C

]
.

Since arbitrage�freeness is preserved under change to an equivalent measure, the
original market model remains arbitrage�free under P̃ . By FFToAP (Theorem

2.2) there exists P ∗ ∈ P with
dP ∗

dP
bounded. Then

E
∗ [C] = E

∼
[
dP ∗

dP
C

]
<∞

since

E
∼ [C] = E

[
cC

1 + C

]
= cE

[
C

1 + C

]
<∞ .

Therefore, πC := E
∗
[

C

1 + r

]
is an element of Π(C) . QED

Let us have a closer look at bounds for the arbitrage�free prices. De�ne the
arbitrage bounds

π↓(C) := inf Π(X) , π↑(C) := sup Π(C) .

Theorem 2.6. Let the original market be arbitrage�free, i.e. P 6= ∅ with P the
set of risk�neutral measures for the original market model. Then

(2.9)

π↓(C) = inf
P ∗∈P

E
∗
[

C

1 + r

]
= max

{
m ∈ [0,∞)

∣∣∣∣ ∃ξ ∈ Rd : m+ ξ · Y 6 C

1 + r
P�a.s.

}
and

(2.10)

π↑(C) = sup
P ∗∈P

E
∗
[

C

1 + r

]
= min

{
m ∈ [0,∞]

∣∣∣∣ ∃ξ ∈ Rd : m+ ξ · Y ≥ C

1 + r
P�a.s.

}
,
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where Y is the vector of �discounted net gains� in the original model.

Proof. (We prove (2.9) only; the proof of (2.10) is completely analogous and
can be found in [12], p. 18 �. With the same argument they, in turn, omit the
proof of (2.9), so our treatment here nicely complement theirs.)

Denote by M the set of m ∈ [0,∞) for which there exists ξ ∈ Rd such that

m+ξ ·Y 6 C

1 + r
P�a.s. For m ∈M and P ∗ ∈ P we have, by taking expectations

m 6 E∗
[

C

1 + r

]
and so, in particular,

supM 6 inf
P ∗∈P

E
∗
[

C

1 + r

]
.

Thus we obtain

(2.11) supM 6 inf
P ∗∈P

E
∗
[

C

1 + r

]
6 inf

P ∗∈P:E∗[C]<∞
E
∗
[

C

1 + r

]
= π↓(C) .

What we want to show is that the equalities are, in fact, an equalities, and that
supM is indeed attained for some element of M .

Pick a number m < π↓(C) . Then m is not an arbitrage�free price for C . So
there exists an arbitrage opportunity in our extended market model, where C
is an additional tradable asset with price m, i.e. there exists, by Lemma 2.1,
(ξ, ξd+1) ∈ Rd+1 such that

(2.12) ξ · Y + ξd+1

(
C

1 + r
−m

)
≥ 0 P�a.s.

and

(2.13) P

[
ξ · Y + ξd+1

(
C

1 + r
−m

)
> 0

]
> 0 .

For P ∗ ∈ P with E∗ [C] <∞ we have

E
∗ [ξ · Y ] = ξ ·E∗ [Y ] = 0

since E∗ [Y ] = 0 because of (2.4). Hence, by taking expectations in (2.12):

(2.14) ξd+1

(
E
∗
[

C

1 + r

]
−m

)
≥ 0 .

Suppose ξd+1 = 0 . Then (2.12) yields ξ · Y ≥ 0 P�a.s. Because the original
model is arbitrage�free, this implies ξ · Y = 0 P�a.s. (Lemma 2.1 (3)). But this

contradicts (2.13). Therefore, ξd+1 6= 0 . Since E∗
[

C

1 + r

]
−m > 0 , we conclude
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that strict inequality holds in (2.14) and that ξd+1 > 0 . The inequality (2.12)
implies

1

ξd+1
(ξ · Y ) ≥ m− C

1 + r
P�a.s.

Hence, by rearranging terms

m+ ζ · Y 6 C

1 + r
P�a.s.

where we have introduced the vector

ζ := − 1

ξd+1
ξ ∈ Rd .

Therefore m ∈M . We thus have shown

m < π↓(C) =⇒ m ∈M
and so

π↓(C) = sup {m < π↓(C)} 6 supM

and so the inequalities in (2.11) are all equalities.

We �nally have to show that supM is indeed attained by some m∞ ∈ M . The
corresponding fact for π↑(C) is proved in [12], p. 20. The proof in the case of
π↓(C) is analogous and goes through mutatis mutandis. QED

Remark. 1) For an interpretation of this theorem see the remark after Theorem 2.7 below.

2) The fact that supM is attained by some m∞ ∈ M is, loosely speaking, due to the fact
that membership of M is de�ned by a non�strict inequality which is preserved under taking
suprema. For a detailed proof that it is indeed the case, we need the notion of an irredundant,
or non�redundant, market model:

De�nition. An arbitrage�free market model is called irredundant i� ξ · S = 0 implies ξ = 0,
i.e. if the random variables S0, . . . , Sd are linearly independent.

This is not a real restriction: If the market model is redundant, i.e. if there is a S ∈ Rd+1 \ {0}
with ξ ·S = 0 I can express some Si linearly in terms of the other Sj as Si =

∑
j 6=i(ξ

j/ξi)Sj , and

then, by taking expectations, πi =
∑
j 6=i(ξ

j/ξi)πj , and so I can pass to a reduced arbitrage�free

market model where Si is a tradable contingent claim with unique arbitrage�free price πi. Then
one also has Y i =

∑
j 6=i(ξ

j/ξi)Y j . If we denote the quantities corresponding to the reduced
model by a prime we have the two sets

M := max

{
m ∈ [0,∞)

∣∣∣∣ ∃ζ ∈ Rd : m+ ζ · Y 6 C

1 + r
P�a.s.

}
and

M ′ := max

{
m′ ∈ [0,∞)

∣∣∣∣ ∃ζ ′ ∈ Rd−1 : m′ + ζ ′ · Y ′ 6 C

1 + r
P�a.s.

}
with Y ′ = (Y 1, . . . , Y i−1, Y i+1, . . . , Y d). Then M = M ′. Namely, suppose given m ∈ M ;
so we have ζ ∈ Rd with m + ζ · Y 6 C/(r + 1) P�a.s. Then ζ · Y = ζ ′ · Y ′ with (ζ ′)j =
ζj + ζi(ξj/ξi) for j 6= i; hence there is ζ ′ ∈ Rd−1 with m + ζ ′ · Y ′ 6 C/(r + 1) and so
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m ∈ M ′. Conversely, if m′ ∈ M ′, take ζ ′ ∈ Rd−1 with m′ + ζ ′ · Y ′ 6 C/(r + 1) and put
ζ := ((ζ ′)1, . . . , (ζ ′)i−1, 0, (ζ ′)i, . . . , (ζ ′)d−1), then ζ ′ · Y ′ = ζ · Y which shows m′ ∈M .

After �nitely many steps I thus arrive at an irredundant equivalent arbitrage�free market model
of which the given one is an arbitrage�free extension with the same set M .

So we may assume our market model is irredundant. Since C ≥ 0, we have −∞ < supM . Let
(mn)n∈N be a sequence in M with mn ↑ m∞ := supM . For each n choose ξn ∈ Rd with

(∗) mn + ξn · Y 6
C

r + 1
P�a.s.

Then the sequence (ξn)n∈N is bounded. For suppose it were not. After eventually passing to a
subsequence, we may assume limn→∞ ξn = ∞ and ‖ξn‖ 6= 0 for all n. Consider the sequence
(ηn)n∈N with ηn := ξn/‖ξn‖; since this sequence is bounded, we may, after again eventually
passing to a subsequence, assume that it converges to a vector η which then has ‖η‖ = 1. On
the other hand, by (∗) ,

mn

ξn
+ ηn · Y 6

π↓(C)

ξn
+ ηn · Y 6

C

‖ξn‖(r + 1)
P�a.s.

for all n. Passing to the limit n → ∞ yields η · Y 6 0 or (−η) · Y ≥ 0, hence by arbitrage�
freeness (−η) · Y = 0 and so by irredundacy −η = 0, which contradicts ‖η‖ = 1. Therefore
the sequence (ξn)n∈N is bounded, and so we may, after eventually passing to a subsequence,
assume it is convergent to a vector ξ, say. From (∗) we then get in the limit n→∞

m+ ξ · Y 6 C

r + 1
P�a.s.

which shows that indeed supM = m∞ ∈M .

The FFToAP (Theorem 2.2) settled the question of existence of risk�neutral
measures. Our next aim is to settle the question of uniqueness, which will lead
to the SFToAP (Secound Fundamental Theorem of Asset Pricing).

De�nition. A contingent claim C is attainable (or replicable) if there is a port-
folio ξ ∈ Rd+1 such that C = ξ ·S P�a.s. Then ξ is called a replicating portfolio.

We next show that in arbitrage�free markets attainable claims have a unique
arbitrage�free price.

Theorem 2.7. Let the (original) market be arbitrage�free, C a contingent claim.
Then

(1) if C is attainable, there is a unique arbitrage�free price; in fact,

(2.15) Π(C) =
{
ξ · π

}
where ξ is a replicating portfolio. In particular, π↓(C) = π↑(C) is the
unique arbitrage�free price for C ;

(2) if C is not attainable, then

(2.16) π↓(C) < π↑(C)
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and

(2.17) Π(C) = (π↓(C), π↑(C)) .

In particular, neither π↓(C) nor π↑(C) is an arbitrage�free price for C .

Proof. (1) is in fact quite simple. Let ξ be a replicating portfolio for C , so
that C = ξ · S . Then for P ∗ ∈ P

E
∗
[

C

1 + r

]
= E

∗
[
ξ · S
1 + r

]
= ξ ·E∗

[
S

1 + r

]
= ξ · π

independent of P∗ . (Note that, in particular, this result implies that the arbitra-
ge�free price of an attainable claim C is independent of the choice of a replicating
portfolio. This is readily con�rmed: Let ζ be another replicating portfolio for C ,
so that C = ζ · S = ξ · S and so (ξ − ζ) · S = 0 . Then for P ∗ ∈ P by taking
expectations

0 = E
∗ [(ξ − ζ) · S

]
= (ξ − ζ) ·E∗

[
S
]

= (1 + r)(ξ − ζ) · π

and so ξ · π = ζ · π .)
(2) is more involved. Notice that for any contingent claim the set Π(C) is an in-
terval (this follows from Theorem 2.5: Since convex combinations of risk�neutral
measures are again risk�neutral measures, Π(C) is convex). Now suppose C is
not attainable. We show that π↓ := π↓(C) , π↑ := π↑(C) 6∈ Π(C) ; this then
implies Π(C) = (π↓, π

↑) .

By Theorem 2.6 there exists ξ ∈ Rd such that

π↓ + ξ · Y 6 C

1 + r
P�a.s.

Assume that

π↓ + ξ · Y =
C

1 + r
P�a.s. ,

i.e. that

P

[
π↓ + ξ · Y =

C

1 + r

]
= 1 ;

we will derive a contradiction. Let

ξ := (π↓ − ξ · π, ξ) ∈ Rd+1 ,

then

ξ · S = (π↓ − ξ · π)(1 + r) + ξ · S = (1 + r)(π↓ + ξ · Y ) = C P�a.s.

which means that C is attainable, in contradiction to the assumption. Hence

(2.18) P

[
π↓ + ξ · Y <

C

1 + r

]
> 0 .
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But this allows to construct an arbitrage opportunity: Let

ζ := (ξ · π − π↓,−ξ, 1) ∈ Rd+2 ;

then ζ is an arbitrage opportunity in the extended market with πd+1 := π↓ and
Sd+1 := C . For this, let us check the three de�ning properties of an arbitrage
opportunity:

ζ · (π, πd+1) = ξ · π − π↓ − ξ · π + π↓ = 0 ,

so the �rst property is OK. Further,

ζ · (S,C) = (ξ · π − π↓)(1 + r)− ξ · S + C

= (1 + r)

(
−π↓ − ξ · Y +

C

1 + r

)
≥ 0 P�a.s.

which accounts for the second property. Further

P
[
ζ · (S,C) > 0

]
= (1 + r)P

[
−π↓ − ξ · Y +

C

1 + r

]
> 0

because of (2.18). So everything is OK and ζ is an arbitrage opportunity, as
claimed.

This shows π↓ is not an arbitrage�free price, i.e. π↓ 6∈ Π(C) . Similarly, one shows
that π↓ 6∈ Π(C) . QED

Remark. With these de�nitions and results it is possible to throw some light on the meaning
of Theorem 2.6. For givenm ∈ [0,∞) considerm+ξ ·Y as a contingent claim, the outcome of an
initial investment m plus the result of subsequent trading according to a strategy manifesting
itself in the portfolio ξ. It has the unique arbitrage�free price m. The assertions of Theorem
2.6 are then described in [12] as follows (Remark 1.32):

[Theorem 2.6] (numbering here and subsequently adapted to our text
B.M.) shows that π↑(C) is the lowest possible price of a portfolio ξ with

ξ · S ≥ C P�a.s.

Such a portfolio is often called a �superhedging strategy� or �superreplica-
tion� of C, and the identities for π↓(C) and π↑(C) obtained in [Theorem

2.6] are often called superhedging duality relations. When using ξ, the
seller of C would be protected against any possible future claims of the buyer
of C. Thus, a natural goal for the seller would be to �nance such a super-
hedging strategy from the proceeds of C. Conversely, the objective of the
buyer would be to cover the price of C from the sale of a portfolio η with

η · S 6 C P�a.s.

which is possible if and only if π ·η 6 π↓(C). Unless C is an attainable pay-
o�, however, neither objective can be ful�lled by trading C at an arbitrage-
free price, as shown in [Theorem 2.7 above]. Thus, any arbitrage-free price
involves a trade-o� between these two objectives.
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De�nition. An arbitrage�free market model is called complete i� every contin-
gent claim is attainable.

This is a very strong property, but we will see that it holds in some important
models (binomial model, Black�Scholes model).

Observe that we always have for the set V of possible portfolio values:

V =
{
ξ · S

∣∣ ξ ∈ Rd+1
}
⊆ L1(Ω, σ(S), P ∗)) ⊆ L1(Ω,F , P ∗) = L1(Ω,F , P ) ,

the last equality because of P ∗ ∼ P . In general, the inclusions are strict, but
we will see that in complete markets these are equalities. We need an auxiliary
result.

De�nition. An event A ∈ F is called an atom (in F) i� P [A] > 0 , and for all
B ∈ F , B ⊆ A either P [B] = 0 or P [B] = P [A] .

Lemma 2.8. For all p ∈ [0,∞]

dimLp(Ω,F , P )

= sup {n ∈ N | ∃A1, . . . , An partition of Ω ∀i : Ai ∈ F , P [Ai] > 0 } .

Proof. 1. Let A1, . . . , An be a partition of Ω with Ai ∈ F P [Ai] > 0 for
all i . Then the characteristic functions 1A1 , . . . ,1An are linearly independent in
Lp(Ω,F , P ) for all p , and hence dimLp(Ω,F , P ) ≥ n .

2. If the RHS = ∞ then there is nothing to show. So we may assume the
RHS is �nite, n0, say. So n0 is the supremum. Then there exists a partition
A1, . . . , An0 with Ai ∈ F and P [Ai] > 0 for all i . Since n0 is maximal, all the Ai
must be atoms, otherwise the partition could be strictly re�ned. Moreover, any
Z ∈ Lp(Ω,F , P ) is constant on Ai P -a.s. for all i , hence

Z =

n0∑
i=1

ci1Ai

with ci the P�a.s. constant value of Z|Ai . This means that 1A1 , . . . ,1An is a
basis of Lp(Ω,F , P ) . QED

Now we are ready for

Theorem 2.9. (�Second Fundamental Theorem of Asset Pricing�, SFToAP) An
arbitrage�free market model is complete i� there exists exactly one risk�neutral
measure, i.e. i� |P| = 1 . In this case, dimL0(Ω,F , P ) 6 d+ 1 .

Proof. � =⇒ �: Let A ∈ F . Take C := 1A . Since the market model is
complete, C is attainable, say with replicating strategy ξ . Then, by Theorem
2.7, (1)

P ∗ [A] = E
∗ [C] = (1 + r)ξ · π

independent of P ∗ . So any two risk�neutral measures are equal.
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� ⇐= �: Let |P| = 1 . Let C be a bounded contingent claim. Then Π(C) contains
only one element, and Theorem 2.7, (2) does not hold. Thus, C is attainable.
This implies

L∞(Ω,F , P ) ⊆ V
and so

dimL∞(Ω,F , P ) 6 d+ 1 .

Lemma 2.8 implies that there are at most d + 1 atoms in F , and consequently
L∞(Ω,F , P ) = L0(Ω,F , P ) i.e. any random variable is bounded.

So any contingent claim is attainable. QED

Remark 2.10. Notice that in the proof of � =⇒ � we needed only that every
bounded contingent claim is attainable. Therefore, a market is complete i� every
bounded contingent claim is attainable. �

So this was the one�period model. Let us now generalize it to the multi�period
model.
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CHAPTER 3

The Multi�Period (Asset Price) Model

Topics of this section are:

� fundamental theorems for the multi�period model;
� dynamic hedging of �nancial derivatives.

Literature: [12], Chapter 5.

First, we recall some de�nitions from Stochastics. We �x a time horizon T ∈ N
and a probability space (Ω,F , P ) .

De�nition. A family (Ft)t∈{0,1,...,T} of σ�algebras in F is called a �ltration if

F0 ⊆ F1 ⊆ · · · ⊆ FT ⊆ F ,
i.e. if each Ft is a σ�subalgebra of F for all t ∈ {0, 1, . . . , T} and Ft ⊆ Ft+1

for all t ∈ {0, 1, . . . , T − 1} . In this case, (Ω,F , (Ft), P ) is called a �ltered
propbability space.

De�nition. Let (E, E) be a measurable space. A family of random variables
X = (Xt)t∈{0,1,...,T} with values in E (i.e. measurable maps Xt : Ω −→ E) is
called a stochastic process.

De�nition. Let (Ω,F , (Ft), P ) be a �ltered propbability space. A stochastic
process (Xt)t∈{0,1,...,T} is called adapted if for all t ∈ {0, 1, . . . , T} Xt is Ft�
measurable.

A stochastic process (Yt)t∈{1,...,T} is called predictable if Yt is Ft−1�measurable for
all t ∈ {1, . . . , T} .

The Multi-Period Model

We consider a �nancial market with one non�risky asset and d risky assets. Trad-
ing times are 0, 1, . . . , T . Let (Ω,F , (Ft), P ) be a �ltered propbability space. For
all 1 6 i 6 d and t ∈ {0, 1, . . . , T} let Sit be a non�negative random variable
on (Ω,F) . We interpret Sit as the price of asset i at time t . The price of the
non�risky asset is supposed to be

S0
t = (1 + r)t , t ∈ {0, 1, . . . , T}

(which is a simpli�cation, but a very convenient one), where r is the interest rate.
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The Rd+1�valued stochastic process

St = (S0
t , St) = (S0

t , . . . , S
d
t ) , t ∈ {0, 1, . . . , T}

will be refered to as the price process. The �ltration (Ft) is considered as the
information �ow. Throughout we assume that (St) is adapted to (Ft) .
To simplify notation we further assume that F0 is trivial, i.e. for all A ∈ F0 we
have P [A] = 0 or P [A] = 1 .

By a trading strategy (or portfolio strategy) we mean any Rd+1�valued predictable
stochastic process

ξt = (ξ0
t , ξt) = (ξ0

t , . . . , ξ
d
t ) , t ∈ {1, . . . , T} .

Interpretation

ξit = # shares of asset i in the investor's portfolio between t−1
and t;

ξitS
i
t−1 = value of position in asset i at time t − 1 (after remixing

the portfolio);
ξitS

i
t = value of position in asset i at time t (before remixing).

Value of the portfolio ξt

at time t− 1 : ξt · St−1 =
∑d

i=0 ξ
i
tS

i
t−1 (after remixing) ;

at time t : ξt · St =
∑d

i=0 ξ
i
tS

i
t (before remixing) .

In other words, the value of the portfolio at time t−1 after all investments at time
t− 1 are done is ξt ·St−1 , which changes in the period from t− 1 to t into ξt ·St ,
upon which the portfolio is rearranged at time t with resulting value ξt+1 · St .

De�nition. A trading strategy ξ is called self��nancing if

ξt · St = ξt+1 · St , 1 6 t 6 T

�Remix the portfolio without changing its value�.

The value process of a trading strategy is de�ned by

V0 := ξ1 · S0 and Vt := ξt · St , 1 6 t 6 T .

V0 is sometimes refered to as the initial capital.

Lemma 3.1. A self��nancing strategy ξ = (ξ0, ξ) with value process V = (Vt) is
uniquely determined by ξ and the initial capital V0 .

Proof. For any strategy ξ we have V0 = ξ1 ·S0 . You can rewrite this equation:

V0 = ξ0
1 + ξ1 · S0

and so
ξ0

1 = V0 − ξ1 · S0 .
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Suppose ξt−1 , and hence Vt−1 , are already determined. The self��nancing con-
dition mplies

Vt−1 = ξt−1 · St−1 = ξt · St−1 = ξ0
t (1 + r)t−1 + ξt−1 · St−1

and so

ξ0
t =

1

(1 + r)t−1
(Vt−1 − ξt−1 · St−1) .

QED

De�nition. A self��nancing trading strategy is called an arbitrage opportunity
if the associated value process V = (Vt) satis�es

(i) V0 6 0 P�a.s. ;
(ii) VT ≥ 0 P�a.s. ;
(iii) P [VT > 0] > 0 .

Next we show that the market is arbitrage�free, i.e. there are no arbitrage oppor-
tunities in the sense of the above de�nition) i� there are no arbitrage opportunities
for each single trading period.

Lemma 3.2. The following statements are equivalent:

(a) there exists an arbitrage opportunity;
(b) there exists a time point t , 1 6 t 6 T , and η ∈ (L0(Ω,F , (Ft), P ))d

such that

η · St ≥ (1 + r)η · St−1 P�a.s.

and

P [η · St > (1 + r)η · St−1] > 0 ;

(c) same as (b) with η ∈ (L∞(Ω,F , (Ft), P ))d

(d) there exists an arbitrage opportunity ξ = (ξ0, ξ) with bounded ξ and
V0 = 0 .

proof. (a) =⇒ (b): Let ξ an arbitrage opportunity. Then V0 6 0 , VT ≥ 0 ,
and P [Vt > 0] > 0 . Let

t := min { k | Vk ≥ P�a.s. and P [Vk > 0] > 0 } .
Observe that t ∈ {1, . . . , T} and that Vt−1 6 0 P�a.s. or P [Vt−1 < 0] > 0 .

First case: Vt−1 6 0 P�a.s. Then

ξt · St−1 = ξt−1 · St−1 = Vt−1 6 0 P�a.s.

hence
ξt · St︸ ︷︷ ︸
≥0

≥ (1 + r) ξt · St−1︸ ︷︷ ︸
60

P�a.s.
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and
P
[
ξt · St > (1 + r)ξt · St−1

]
> 0 .

Now you can forget bars: the �rst terms of ξt · St and (1 + r)ξt · St−1 coincide,
since S0

t = (1 + r)St−1 . Thus, there comes

ξt · St ≥ (1 + r)ξt · St−1 P�a.s.

and
P [ξt · St > (1 + r)ξt · St−1] > 0 ,

and so η := ξt does the job.

Second case: P [Vt−1 < 0] > 0 . Let η = (η0, η) := ξt1{Vt−1<0} .. Then

η · St−1 = Vt−11{Vt−1<0} by the self��nancing condition

6 0 P�a.s.

and P
[
η · St−1 < 0

]
> 0 . We further observe

η · St = Vt1{Vt−1<0} ≥ 0

which implies
η · St ≥ (1 + r)η · St−1 P�a.s.

and
P
[
η · St > (1 + r)η · St−1

]
> 0 ,

Again, one may forget about the bars, as above.

(b) =⇒ (c): Let η be as in (b), and de�ne

η(n) := η1{|η|6n} , n ∈ N .

Then
η(n) · St ≥ (1 + r)η(n) · St−1 P�a.s.

Choosing n large enough yields the result, since

lim
n→∞

P
[
η(n) · St > (1 + r)η(n) · St−1

]
= P [η · St > (1 + r)η · St−1]

simply by the σ�additivity of P .

(c) =⇒ (d): Let t and η be as in (c). De�ne a strategy ξ by

ξt := η , ξk := 0 for k 6= t .

By Lemma 3.1, ξ and V0 uniquely determine a self��nancing strategy.ξ = (ξ0, ξ) .
It is straightforward to show that ξ is an arbitrage opportunity.

(c) =⇒ (a): This is trivial QED

We now turn to risk�neutral measures; these will be those measures which turn
the price�processes into martingales. Recall their de�nition:

De�nition. Let (Ω,F , (Ft), Q) be a �ltered probabbility space. A stochastic pro-
cess M = (M)t∈{0,...,T} is called a martingale (w.r.t. Q and (Ft)) if
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(1) M is adapted;
(2) EQ [|Mt|] <∞; for all t ∈ {0, . . . , T} ;
(3) EQ [Mt|Fs] = Ms for all 0 6 s 6 t 6 T .

Remark 3.3. In the de�nition of martingales, one can replace (3) with the prop-
erty

(3') EQ [Mt|Ft−1] = Mt−1 for all 1 6 t 6 T .

Proof. (3) =⇒ (3'): clear.

(3') =⇒ (3): Let 0 6 s < t 6 T . By the tower property of conditional
expectations

E
Q [Mt|Fs] = E

Q
[
E
Q [Mt|Ft−1] |Fs

]
= E

Q [Mt−1|Fs]
and the claim follows by induction.

De�nition. A probability measure Q on a �ltered probability space (Ω,F , (Ft), P )
is called a risk�neutral (or martingale measure) if it is trivial on F0 and if the
discounted price processes Sit/S

0
t , 1 6 i 6 d , are martingales w.r.t. Q .

A martingale measure P ∗ is called an equivalent martingale measure (EMM) if
P ∗ ∼ P . The set of all EMMs will be denoted by P .

We next study value processes under martingale measures. We start with the
following

Lemma 3.4. Let ξ = (ξ0, ξ) be a self��nancing trade strategy. Then the associ-
ated discounted value process Dt := Vt/S

0
t satis�es

Dt = V0 +
t∑

k=1

ξk ·
(
Sk
S0
k

− Sk−1

S0
k−1

)
= Dt−1 + ξt ·

(
St
S0
t

− St−1

S0
t−1

)
.

In particular, Dt depends only on ξ and V0 .

Proof. Write Dt as a telescoping sum

Dt = (Dt −Dt−1) + (Dt−1 −Dt−2) + · · ·+ (D1 −D0) +D0

=

(
ξt ·

St
S0
t

− ξt−1 ·
St−1

S0
t−1

)
+ · · ·+ V0

=

(
ξt ·

St
S0
t

− ξt ·
St−1

S0
t−1

)
+ · · ·+ V0

because ξ is self��nancing

= ξt ·
(
St
S0
t

− St−1

S0
t−1

)
+ · · ·+ V0 .

which accounts for the �rst equality. The second equality is a direct consequence
of the �rst one. QED
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Theorem 3.5. Let Q be a probability measure, trivial on F0 . Suppose that
E
Q [|St|] <∞ for all 0 6 t 6 T . Then the following statements are equivalent:

(a) Q is a martingale measure;
(b) for all self��nancing strategies ξ = (ξ0, ξ) with ξ bounded we have that

the associated discounted process Dt is a Q�martingale;
(c) for all self��nancing strategies ξ = (ξ0, ξ) with ξ bounded we have that

E
Q [DT ] = V0 .

Proof. (a) =⇒ (b): Let |ξ| 6 C . By Lemma 3.4 we have

Dt = V0 +
t∑

k=1

ξk ·
(
Sk
S0
k

− Sk−1

S0
k−1

)
.

By the triangle inequality

|Dt| = |V0|+ |C|
t∑

k=1

(
|Sk|
S0
k

+
|Sk−1|
S0
k−1

)
,

so since all |Sk| ∈ L1(Q) , we obtain Dt ∈ L1(Q) .

There remains to show the martingale property. We have, again by Lemma 3.4

Dt+1 = Dt + ξt+1 ·
(
St+1

S0
t+1

− St
S0
t

)
;

hence by taking conditional expectations w.r.t. Ft

E
Q [Dt+1| Ft ] = Dt + ξt+1 ·

(
St+1

S0
t+1

− St
S0
t

)
;

= E
Q [Dt| Ft ] +EQ

[
ξt+1 ·

(
St+1

S0
t+1

− St
S0
t

)∣∣∣∣ Ft ]
= E

Q [Dt| Ft ] + ξt+1 ·EQ
[(

St+1

S0
t+1

− St
S0
t

)∣∣∣∣ Ft ] .
But Dt is Ft�measurable, hence EQ [Dt| Ft ] = Dt . The discounted price pro-
cesses Stt/S

0
t are, by assumption, martingales under Q , the second term vansihes,

and we are left with

E
Q [Dt+1| Ft ] = Dt

whence Dt is a martingale under Q .

(b) =⇒ (c): By assumption, Q is trivial on F0 :

D0 = E
Q [DT | F0 ] = E

Q [DT ] .

Since D0 = V0 , we are done.
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(c) =⇒ (a): We have to show that

E
Q

[
St
S0
t

∣∣∣∣ Ft−1

]
=
St−1

S0
t−1

for 1 6 i 6 d and 1 6 t 6 T .

Fix any i with 1 6 i 6 d . Let η ∈ L∞(Ω,Ft−1, Q) and de�ne a strategy ξ via

V0 := 0

ξjk =

{
η : j = i and k = t ;

0 : for all j 6= i or k 6= t .

Let

Dt = η

(
Sit
S0
t

−
Sit−1

S0
t−1

)
be the associated discounted value process. By (c)

E
Q

[
η

(
Sit
S0
t

−
Sit−1

S0
t−1

)]
= V0 = 0 .

This shows that

E
Q

[
Sit
S0
t

∣∣∣∣ Ft−1

]
=
Sit−1

S0
t−1

(choose η := 1B , B ∈ Ft−1). QED

We can now come to the main result of this section:

Theorem 3.6. (First Fundamental Theorem of Asset Pricing, FFToAP) The
multi�period market model is arbitrage free i� P 6= ∅ , i.e. there exists an equiva-
lent risk�neutral measure. In this case, there exists a P ∗ ∈ P such that dP ∗/dP
is bounded.

Proof. � ⇐= � (the simple direction.) Let P ∗ ∈ P be a risk�neutral measure
and let ξ be a self��nancing strategy with ξ bounded. Suppose V0 = 0 and VT ≥ 0
P�a.s. According to Lemma 3.2 it is enough to show that VT = 0 P�a.s.

Start with the following observation: VT ≥ 0 P ∗�a.s. as well, since P ∗ ∼ P
and so both measures have the same null sets. By Theorem 3.5 (c) E∗ [VT ] =
(1 + r)TE∗ [DT ] = (1 + r)TV0 = 0 . Hence VT = 0 P ∗�a.s. and so VT = 0 P�a.s.,
again because P ∗ ∼ P .

� =⇒ � (the hard direction.) A general proof can be found in [12] (our problem
here is that in our approach the multi�period model is not just a succession of one�
period models, since in our one�period model the start prices are deterministic,
whereas [12] treats the more general case). We are going to prove this direction
under the assumption that for each time t , 0 6 t 6 T , there exists a �nite
partition At = {A1, A2, . . .} of Ω where every Ai is an atom in Ft . Notice that
on each atom A in Ft the price St is P�a.s. constant.
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i) Let A be an atom in Ft (t �xed). Let π = πA ∈ Rd be such that St = π P�a.s.
Due to Lemma 3.2, any ξ ∈ Rd satis�es

1Aξ · St+1 ≥ (1 + r)1Aξ · St P�a.s.

Consequently, with PA [•] := P [•|A] :=
P [• ∩ A]

P [A]
:

ξ · St+1 ≥ (1 + r)ξ · St PA�a.s.

and so
ξ · St+1 = (1 + r)ξ · St PA�a.s. ,

since, as remarked above, the prices are P�a.s. constant on each atom.

By Lemma 2.1 we obtain that there are no arbitrage opportunities in the single�
period model with probabilitiy measure PA and prices π and St+1 .

ii) By Theorem 2.2 (the First Fundamental Theorem of Asset Pricing in

the single�period case) there exists a probability measure P̃A
t ∼ PA such that

E
P̃At [St+1] = (1 + r)π and

dP̃A
t

dP
bounded.

Our task is now to glue all these local measures together. For this, de�ne, for
each t, a stochastic kernel µt : Ω×Ft+1 −→ [0, 1] by

µt(ω,B) :=
∑
A∈At

1A(ω)P̃A
t [B] .

With these kernels we perform an iterative construction of a risk�neutral measure
P ∗ ∼ P as follows.

Let P ∗0 := P on F0 .

Suppose that P ∗t is de�ned on (Ω,Ft) such that

• P ∗t ∼ P on Ft with bounded density
dP ∗t
dP

;

• the discounted price processes

(
Sik
Si0

)
06k6t

are P ∗t �martingales for all

1 6 i 6 d .

De�ne for B ∈ Ft+1

P ∗t+1 [B] :=

∫
Ω

µt(ω,B) dP ∗t

Then we have

• P ∗t+1 = P ∗t on Ft ;

• P ∗t+1 ∼ P on Ft+1 with bounded density
dP ∗t+1

dP
;
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• the discounted price processes

(
Sik
Si0

)
06k6t+1

are P ∗t+1�martingales for all

1 6 i 6 d .

For the �rst point, let B ∈ Ft ; then

µt(ω,B) :=
∑
A∈At

1A(ω)P̃A
t [B] =

∑
A∈At:

P [A∩B]=P [A]

1A(ω) = 1B(ω) P ∗t �a.s. ,

which implies P ∗t+1 [B] = P ∗t [B] .

To elucidate this rather condensed derivation, �rst note that for all events B we have PA [B] =

PA [A ∩B] , which is equivalent to B \A being a PA�null set; moreover, since P̃At is equivalent
to PA , it has the same null events and hence the same a.s.�events as PA, and so for all events

B we have that B \A is also a P̃At �null set, hence P̃
A
t [B] = P̃At [A ∩B] . For the same reasons,

if A is an atom in Ft w.r.t P , A is also an atom in Ft w.r.t P̃At . Now, if A is an atom in Ft w.r.t
P , it follows that PA is deterministic on Ft, i.e. for all B ∈ Ft one has either PA [B] = 0 or

PA [B] = 1 , and so P̃At is deterministic on Ft, too, so for all B ∈ Ft we have either P̃At [B] = 0

or P̃At [B] = 1 , and P̃At [B] = 1 i� PA [B] = P [B|A] = 1 i� P [A ∩B] = P [A] . There follows
the second equality (the �rst one is a mere de�nition).

For the last equality put

C :=
⋃
{A ∈ At | P [A ∩B] = P [A] } ;

the claim is then P ∗t [1B 6= 1C ] = 0 . Now

{1B 6= 1C} = {1B = 1 , 1C = 0} ∪ {1B = 0 , 1C = 1} = (B \ C) ∪ (C \B)

Since P ∗t ∼ P on Ft by the induction hypothesis, and Ft is a σ�algebra, we have that B , C , and
hence B \C and C \B all belong to Ft , and it su�ces to show that P [B \ C] = P [C \B] = 0 .
This is equivalent to P [C] = P [B ∩ C] = P [B] .

For simplicity, put A′t := {A ∈ At | P [A ∩B] = P [A] } . Note that, by hypothesis, the A ∈ At
are mutually disjoint. Then

P [C] = P

 ⋃
A∈A′t

A

 =
∑
A∈A′t

P [A] =
∑
A∈A′t

P [A ∩B]

= P

 ⋃
A∈A′t

(A ∩B)

 = P

 ⋃
A∈A′t

A

 ∩B
 = P [C ∩B] .

Further note that, since either P [A ∩B] = P [A] or P [A ∩B] = 0 , we have
∑
A∈At\A′t

P [A ∩B]

= 0 and so

P [C ∩B] = P

 ⋃
A∈A′t

A

 ∩B
 = P

 ⋃
A∈A′t

(A ∩B)

 =
∑
A∈A′t

P [A ∩B]

=
∑
A∈At

P [A ∩B] = P

[ ⋃
A∈At

(A ∩B)

]
= P

[( ⋃
A∈At

A

)
∩B

]
= P [B]

and we are done.
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The second point follows from the induction hypothesis and the de�nition of P ∗t+1.

Again one may feel the need for some more explanation. Let B ∈ Ft+1 ; we then have to show
that P ∗t+1 [B] = 0 i� P [B] = 0 . Now

P [B] =
∑
A∈At

P [A ∩B] =
∑
A∈At

PA [B]P [A]

Since P [A] > 0 for all A ∈ A by de�nition of an atom, we have that P [B] = 0 i� PA [B] = 0
for all A ∈ At .

On the other hand,

P ∗t+1 [B] : =

∫
Ω

µt(ω,B) dP ∗t =
∑
A∈At

∫
Ω

1AP̃
A
t [B] dP ∗t

=
∑
A∈At

P̃At [B]

∫
Ω

1A dP
∗
t =

∑
A∈At

P̃At [B]P ∗t [A]

Since P ∗t ∼ P on Ft by the induction hypothesis, we have P ∗t [A] > 0 for all A ∈ At . Hence

P ∗t+1 [B] = 0 i� P̃At [B] = 0 for all A ∈ At .

But P̃At was chosen to be equivalent to PA . Thus indeed P ∗t+1 [B] = 0 i� P [B] = 0 .

Finally, we can write

P ∗t+1 [B] =
∑
A∈At

P̃At [B]P ∗t [A] =
∑
A∈At

P ∗t [A]

∫
Ω

1B dP̃
A
t

=
∑
A∈At

P ∗t [A]

∫
Ω

1B
dP̃At
dPA

dPA =

∫
Ω

{∑
A∈At

P ∗t [A]
dP̃At
dP

.
1

P [A]

}
1B dP

So
dP ∗t+1

dP
=
∑
A∈At

P ∗t [A]
dP̃At
dP

1

P [A]

and we have to show this function on Ω is bounded. But, by assumption, the A ∈ At form a
partition of Ω , so each ω ∈ Ω is contained in exactly one A , and so it su�ces to show that

there is a common bound to all summands. Now, by the induction hypothesis,
dP ∗t
dP

is bounded

on all of Ω , so there is β ∈ R+ such that P ∗t [C] 6 βP [C] for all events C . Therefore,

∀A ∈ At : P ∗t [A]
dP̃At
dP

1

P [A]
6 β

dP̃At
dP

Each Radon�Nikodym derivative dP̃At /dP , A ∈ At , is bounded, and since by assumption
there are only �nitely many of them, they have a common bound, and we are done.

Now to the third and last point. For B ∈ Ft we compute

E
P ∗t+1

[
1B

Sit+1

S0
t+1

]
=

1

S0
t+1

∫
1B(ω′)Sit+1(ω′)P ∗t+1 [dω′]

=
1

S0
t+1

∫∫
1B(ω′)Sit+1(ω′)µt(ω, dω

′)P ∗t [dω]
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=
1

S0
t+1

∫∫  ∑
A∈A(Ft)

1B(ω′)Sit+1(ω′)1A(ω)P̃A
t [dω′]

 P ∗t [dω]

=
1

S0
t+1

∫  ∑
A∈A(Ft)

1A(ω)

∫
1B(ω′)Sit+1(ω′)P̃A

t [dω′]

 P ∗t [dω]

=
1

S0
t+1

∫
1B(ω)

 ∑
A∈A(Ft)

1A(ω)EP̃
A
t
[
Sit+1

] P ∗t [dω]

as 1B is Ft�measurable and so P = P̃A
t �a.s. constant on the Ft�atoms A ; hence

it can be pulled out of the P̃A
t �integral

=
1

S0
t

∫
1B(ω)

 ∑
A∈A(Ft)

1A(ω)πA,i

 P ∗t [dω]

since by ii) above EP̃
A
t

[
Sit+1

]
= (1 + r)πA,i and S0

t+1 = (1 + r)S0
t

=
1

S0
t

E
P ∗t
[
1BS

i
t

]
which establishes the desired martingale properties.

Now that the above three points are settled, performing the iteration over t until
T implies that P ∗ := P ∗T is an EMM. QED

De�nition. A random variable C ≥ 0 on (Ω,F , P ) is called a contingent claim .

We next illustrate this notion by giving some common examples of contingent
claims which are traded on the market.

Payo�s of frequently traded options:

1) Call option on asset i with strike price K ∈ R+ and maturity T :

Ccall = (SiT −K)+ .

2) Put option on asset i with strike price K ∈ R+ and maturity T :

Cput = (K − SiT )+ .

3) The payo� of an Asion option depends on the average price of the underlying
asset

Siav =
1

T + 1

T∑
k=0

Sik .

Asian options o�er protection against decreasing resp. increasing average prices:
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Examples: Asian call (Siav −K)+ ;
Asian put (K − Siav)+ .

4) Barrier option The right to exercise the option is linked to whether the un-
derlying crosses a barrier level before maturity.

Barrier options � o�er protection against more speci�c events;
� are cheaper than options without barriers.

We have 4 main (basic) types of barier options:

up�and�in: price of the underlying moves up and crosses an upper
barrier =⇒ option is activated;

up�and�out: price of the underlying moves up and crosses an upper
barrier =⇒ option is knocked out;

Note that sum of up�and�in + up�and�out = call.

down�and�in: price of the underlying moves down and crosses a lower
barrier =⇒ option is activated;

down�and�in: price of the underlying moves down and crosses a lower
barrier =⇒ option is knocked out.

Example: payo� of an up�and�in call:

C =

{
(SiT −K)+ if max06t6T S

i
T ≥ B

0 else.

De�nition. A contingent claim is attainable if there exists a self��nancing trad-
ing strategy ξ with ξT · ST = C P�a.s. In this case, ξ is said to replicate C .

In the remainder of this section it is assumed that P 6= ∅ , i.e. our market model
is arbitrage�free.

De�nition. Let C be a contingent claim. An adapted stochastic process Sd+1 =
(Sd+1

t )t∈[0,T ] is called an arbitrage�free price process of C if Sd+1
T = C and the

extended model (S0, S1, . . . , Sd+1) admits no arbitrage.

Proposition 3.7. Let C be an attainable contingent claim, and let Vt be the value
process associated to the replicating strategy ξ . Then Vt is the only arbitrage�free
price of C at time t , 0 6 t 6 T .

Proof. (The idea of the proof is very clear once you think of it in eco-
nomic terms.) Let (Sd+1

t ) be an arbitrage�free price process of C . Assume
P
[
Sd+1
t > Vt

]
> 0 ; we will derive a contradiction from this. De�ne a portfolio

as follows: For k > t let

ζ0
k : =

(
ξ0
k +

1

S0
t

(
Sd+1
t − Vt

))
1{Sd+1

t >Vt} ;
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ζk : = ξk1{Sd+1
t >Vt} ;

ζd+1
k : = −1{Sd+1

t >Vt} .

For k 6 t let

(ζk, ζ
d+1
k ) : = 0

(i.e. if the price of the contingent claim is too high, you sell it and put the value
into the riskless asset). Observe that (ζ, ζd+1) is self��nancing:

ζt+1 · St + ζd+1
t+1 · Sd+1

t =
(
ξt+1 · St︸ ︷︷ ︸
=ξt·St=Vt

+
(
Sd+1
t − Vt

)
− Sd+1

t

)
1{Sd+1

t >Vt}

=
(
Vt + (Sd+1

t − Vt)− S:t
d+1
)
1{Sd+1

t >Vt}
= 0

= ζt · St + ζd+1
t · Sd+1

t .

After time t , ζ remains self��nancing since ζ0 is not further modi�ed then. More-
over,

ζT · ST + ζd+1
T · Sd+1

T =

(
ξT · ST︸ ︷︷ ︸

=C

+
S0
T

S0
t

(
Sd+1
t − Vt

)
− C

)
1{Sd+1

t >Vt}

= (1 + r)T−t
(
Sd+1
t − Vt

)
1{Sd+1

t >Vt}
≥ 0 , and > 0 with positive probability.

Thus (ζ, ζd+1) is an arbitrage opportunity in the extended market, a contradic-
tion. So Sd+1

t 6 Vt P�a.s.

Now we have to show the reverse inequality. This time the price of the contingent
claim is too low. Similarly what has been done above, you now buy the contingent
claim and so set up again an arbitrage opportunity, hence Sd+1

t ≥ Vt P�a.s.
The following Proposition, then, together with the FFToAP implies that Sd+1

t is
indeed an arbitrage�free price process of C. QED

Next we show that the discounted arbitrage�free value process of V = (Vt) is a
martingale w.r.t. any EMM.

Proposition 3.8. Let C be an attainable claim. Then C is integrable w.r.t. any
EMM P ∗ ∈ P . Moreover, the value process associated to the replicating strategy
ξ satis�es

Vt =
1

(1 + r)T−t
E
∗ [C|Ft] , 0 6 t 6 T .

In particular, the discounted value process Dt := Vt/S
0
t is a nonnegative P ∗�

martingale.
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Proof. Let ξ = (ξ0, ξ) replicate C

1. Show via backward induction: Dt ≥ 0 P�a.s. for all 0 6 t 6 T . First,
Dt = C/S0

T ≥ 0 P�a.s. Suppose Dt ≥ 0 P�a.s. Then, by Lemma 3.4,

Dt−1 = Dt − ξt ·
(
St
S0
t

− St−1

S0
t−1

)
≥ −ξt ·

(
St
S0
t

− St−1

S0
t−1

)
.

The idea is to take conditional expectations. Since we do not know if ξt is
integrable, we cut it o�: Let

ξnt := ξt1{|ξ|6n} , n ∈ N .

Then ξnt is bounded, and

Dt−11{|ξ|6n} = E
∗ [Dt−11{|ξ|6n}

∣∣ Ft−1 ] ≥ −ξnt ·E∗
[(

St
S0
t

− St−1

S0
t−1

)∣∣∣∣Ft−1

]
.︸ ︷︷ ︸

= 0 P�a.s. by martingale property

Letting n ↑ ∞ yields Dt−1 ≥ 0 P�a.s.

2. Show for 0 6 t 6 T : E∗ [Dt| Ft−1 ] = Dt−1 .

(Notice: Conditional expectations can be de�ned for nonnegative random vari-
ables that are not necessarily integrable by cutting o� and taking limits via
monotone convergence.)

On the event {|ξt| 6 n} we have

E
∗ [
1{|ξ|6n}Dt

∣∣ Ft−1 ]− 1{|ξ|6n}Dt−1

= E
∗
[
ξnt ·

(
St
S0
t

− St−1

S0
t−1

)∣∣∣∣Ft−1

]
= ξnt ·E∗

[(
St
S0
t

− St−1

S0
t−1

)∣∣∣∣Ft−1

]
= 0 .

Again, by letting n ↑ ∞ , we get E∗ [Dt| Ft−1 ] = Dt−1 .

3. Show intgrability by a forward recursion. First, D0 ∈ R+ is the value of the
replicating portfolio at time t = 0 , so D0 is integrable.

Let Dt be integrable for some t with 0 6 t 6 T − 1 . Then

E
∗ [Dt+1] = E

∗ [E∗ [Dt+1| Ft ]] = E
∗ [Dt] .

Now 1. � 3. prove Proposition 3.8. QED

We now turn to contingent claims that are not necessarily attainable.

Notation: Let Π(C) be the set of all t = 0 components of arbitrage�free price
processes of C .
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Since F0 is trivial, we can identify Π(C) with a subset of R+ . As in the one�
period case, we denote

(3.1) π↓(C) := inf Π(C) , π↑(C) := sup Π(C) .

Theorem 3.9. We have

(3.2) Π(C) =

{
E
∗
[
C

S0
T

] ∣∣∣∣ P ∗ ∈ P s.t. E∗ [C] <∞
}
.

Moreover, Π(C) 6= ∅ , and

π↓(C) = inf
P ∗∈P

E
∗
[
C

S0
T

]
, π↑(C) = sup

P ∗∈P
E
∗
[
C

S0
T

]
.

Proof. 1. �⊆� : Let πC ∈ Π(C) an arbitrage�free price at time t = 0 , i.e. there
exists an arbitrage�free process (Sd+1

t ) of C with Sd+1
0 = πC . By Theorem 3.6,

there exits an EMM P ∗ of the model (S0, . . . , Sd+1) . In particular, P ∗ is an EMM
for the non�extended model (S0, . . . , Sd) , so P ∗ ∈ P , and E∗ [C/S0

t ] = πC .

�⊇� : Let Sd+1
t := (1 + r)−(T−t)

E
∗ [C| Ft ] for P ∗ ∈ P with E∗ [C] < ∞ . Then

Sd+1
0 /S0

t is a P ∗�martingale. So P ∗ is an EMM for the extended model, and by
Theorem 3.6 , (S0, . . . , S

d+1) is arbitrage�free. Therefore, E∗ [C/S0
T ] = Sd+1

0 ∈
Π(C) .

2. We now show that Π(C) 6= ∅ . Let

dP̃

dP
:= c · 1

1 + C
with c−1 := E

∗
[

1

1 + C

]
.

The non�extended model is arbitrage�free w.r.t P̃ . By Theorem 3.6 there exists
P ∗ ∈ P such that dP ∗/dP is bounded (the set P , originally de�ned by the initial

measure P is equal to P de�ned by the measure P̃ , since only the null sets
matter). Note that

E
∗ [C] = E

P̃

[
dP ∗

dP̃
C

]
= E

P

[
dP ∗

dP̃

cC

1 + C

]
<∞ .

Hence E∗ [C/S0
T ] ∈ Π(C) .

3. The relation

π↓(C) = inf
P ∗∈P

E
∗
[
C

S0
T

]
follows from (3.1). The relation

π↑(C) = sup
P ∗∈P

E
∗
[
C

S0
T

]
needs a bit of work. If E∗ [C] < ∞ for all P ∗ ∈ P the statement follows again
from (3.1).

Suppose E∞ [C] =∞ for some P∞ ∈ P . We then have to show that π↑(C) =∞ .
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Let b ∈ R+ and choose n ∈ N such that

E
∞ [C ∧ n] > (1 + r)T b .

Now C ∧ n is a contingent claim, and we let Sd+1
t be its price process:

Sd+1
t :=

1

(1 + r)T−t
E
∞ [C ∧ n| Ft ] .

The model (S0, . . . , Sd+1) possesses an EMM, namely P∞ , and hence is arbitrage�

free. Let P̂ ∈ P with Ê [C] <∞ , which exists since Π(C) 6= ∅ . Since P∞, P̂ ∈ P ,

we have P∞ ∼ P̂ . Then, by Theorem 3.6, there exists P ∗ ∼ P̂ with dP ∗/dP̂
bounded and such that P ∗ is an EMM for the extenden model (S0, . . . , Sd+1) .

The boundedness of dP ∗/dP̂ guarantees E∗ [C] < ∞ . This implies that π :=
E
∗ [C/S0

T ] belongs to Π(C) . Finally,

π =
1

S0
T

E
∗ [C] >

1

S0
T

E
∗ [C ∧ n] =

1

S0
T

E
∗ [Sd+1

T

]
= Sd+1

0 > b .

Since b was arbitrary, this shows π↑(C) =∞ . QED

Remark 3.10. As for the one�period model one can show that if a contingent
claim C is not attainable then

π↓(C) < π↑(C) and Π(C) = (π↓(C), π↑(C)) .

In particular, the boundaries are not arbitrage�free prices (see [12], Thm. 5.32).

De�nition. An arbitrage�free model is called complete if every contingent claim
is attainable.

Proposition 3.11. (a) For an arbitrage�free model to be complete it su�ces that
every bounded contingent claim is attainable.

(b) If the model is complete, there exists a partition of Ω into at most (d + 1)T

atoms in F .

Proof. 1. Suppose that every bounded contingent claim is attainable. Notice
that any 1A , A ∈ F , can be replicated then. I.e., 1A can be written as a sum of
FT�measurable random variables. Thus FT = F .

We show the conclusion of (b) via induction on T :

T = 1 : By Remark 2.10 the market is complete (one�period case) and Lemma
2.8 + Theorem 2.9 imply that there exists a partition of Ω into at most d + 1
atoms.

T − 1 → T : Suppose that the conclusion in (b) holds true in the model up to
time T − 1 . Besides, let C ≥ 0 be bounded and FT�measurable, and let ξ be
a replicating strategy. Then C = ξT · ST . Note that ξT is FT�measurable and
hence P�a.s. constant on any atom A ∈ FT−1 . This implies

dimL∞(Ω,FT , P [•|A]) 6 d+ 1 .
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since on A one has essentially a one�period model. Lemma 2.8 implies that
(Ω,FT , P [•|A]) has at most d + 1 atoms. Applying the induction hypothesis
yields that (Ω,FT , P )has at most (d+ 1)T atoms.

2. Suppose that every bounded contingent claim is attainable. Then, by the
1. part, there are at most (d + 1)T atoms in FT . Consequently, every random
variable on (Ω,F , P ) is bounded, which further implies that any contingent claim
is attainable, i.e. the market is complete. QED

Theorem 3.12. (Second Fundamental Theorem of Asset Pricing) An arbitrage�
free model is complete if and only if |P| = 1 .

Proof. � =⇒ � Let A ∈ F . Then C := 1A is attainable, say by the replicating
strategy ξ . Let Vt be the associated value process. Then, by Proposition 3.7, V0

is the only arbitrage�free price of C at time 0 . Thus

P ∗ [A] = E
∗ [1A] = (1 + r)TE∗

[
C

S0
T

]
= (1 + r)TV0

by Theorem 3.2 (note that {V0} = Π(C) = {E∗ [C/S0
T ] | P+ ∈ P }) . So there is

at most one risk�neutral measure, and since there exists al leat one, we conclude
|P| = 1 .

� ⇐= � Let C be a contingent claim Then Π(C) contains exactly one element. By
Remark 3.10, if C is not attainable, then Π(C) = (π↓(C), π↑(C)) , which cannot
consist of a single element. So C is attainable. QED
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CHAPTER 4

The Binomial Option Pricing Model (BOPM)

This is a model �rst proposed by [5] and therefore also called the Cox�Ross�
Rubinstein model (CRR model), a discrete version of the celebrated continuous
Black�Scholes model.

The BOPM is a more speci�c model than the general multi�period model in
Section 3. �More speci�c� means there are more assumptions. These additional
assumptions are:

• only one risky asset with price process denoted by St = S1
t ;

• between t and t + 1 the price moves up or down by a constant factor u
resp. d , where 0 < d < u :

St+1 =

{
uSt with probability p

dSt with probability 1− p .

The price process can be described by a binomial tree.

· · ·

u2S0

uS0 · · ·

S0 udS0

dS0 · · ·

d2S0

· · ·

At time T there are T+1 nodes; the binomial tree is recombining (T+1
in place of 2T nodes, which makes things much more tractable).

Precise de�nition of the underlying probability space: Let

Ω := {u, d}T = {ω = (ω1, . . . , ωT ) | ωi ∈ {u, d} } .
We denote by

Yt(ω) := ωt
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the projection onto the t�coordinate, 1 6 t 6 T .

Let S0 ∈ R+ the price at time 0 , and

St = S0

t∏
i=1

Yi for 1 6 t 6 T .

De�ne Ft := σ(S0, . . . , St) 0 6 t 6 T , and observe that

F0 = {∅,Ω} ;

Ft = σ(Y1, . . . , Yt) for 1 6 t 6 T ;

FT = P (Ω) .

Throughout assume that P is a probability measure on F = FT with P [{ω}] > 0
for all ω ∈ Ω .

If d < 1 + r < u we can de�ne an EMM as follows. Let

p∗ :=
(1 + r)− d
u− d

,

and for ω ∈ Ω

(4.1) P ∗ [{ω}] := (p∗)k(1− p∗)T−k ,
where k is the number of coordinates in ω equal to u , hence T − k the number
of coordinates in ω equal to d .

Notice that P ∗ is the T�fold product of the measure µ on {u, d} with µ [{u}] = p∗

and µ [{d}] = 1− p∗ .
Moreover, P ∗ is the unique measure for which P ∗ [Yt = u] = p∗ , 1 6 t 6 T , and
Y1, . . . , YT are independent.

Now the claim is that P ∗ is indeed an EMM. In fact,

E
∗
[
St+1

1 + r

∣∣∣∣Ft ] =
St

1 + r
E
∗ [Yt+1| Ft ]

=
St

1 + r
E
∗ [Yt+1] since Yt is independent of Ft

=
St

1 + r
(p∗u+ (1− p∗)d)

=
St

1 + r

(
1 + r − d
u− d

u+
u− 1− r
u− d

d

)
= St .

In particular, this shows that d < 1 + r < u is su�cient for the BOPM to be
arbitrage�free. Actually, this condition is also necessary:

Theorem 4.1. The BOPM is arbitrage�free if and only if d < 1 + r < u . In this
case, the POBM is complete, and the only EMM is given by equation (4.1).
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Proof. � ⇐= � : This has been shown above.

� =⇒ � : Let the BOPM be arbitrage�free. Then there exists an EMM, Q , say.
The martingale property implies

E
Q

[
St+1

1 + r

∣∣∣∣Ft ] = St , 0 6 t 6 T − 1 .

Besides, we have

E
Q

[
St+1

1 + r

∣∣∣∣Ft ] =
St

1 + r
E
Q [Yt+1| Ft ]

and hence

1 + r = E
Q [Yt+1| Ft ]

= E
Q
[
u1{Yt+1=u} + d1{Yt+1=d}

∣∣ Ft ]

= uQ [Yt+1 = u|Ft] + d (1−Q [Yt+1 = u|Ft]) .
Thus there must hold

(4.2) Q [Yt+1 = u|Ft] =
1 + r − d
u− d

.

Since Q is equivalent to P , we have 0 < Q [Yt+1|Ft] < 1 . This entails d < 1+r <
u . This proves � =⇒ � .

It remains to show completeness if the model is arbitrage�free. To this end
observe that (4.2) implies that Yt+1 is independent of Ft w.r.t. Q . This implies
that Y1, . . . , YT are independent w.r.t Q , and so Q must be the product measure,
i.e. Q = P ∗ with P ∗ de�ned as in (4.1). There follows |P| = 1 , and so the BOPM
is complete by the SFToAP. QED

In the remainder of this section we assume d < 1 + r < u . Denote the EMM by
P ∗ .

Next: Arbitrage�free pricing of contingent claims (de�ned in the sense of Section
3).

First notice that for any contingent claim C there exists a function h : RT
+ −→ R

such that
C = h(S0, . . . , ST ) .

Proposition 4.2. Let C = h(S0, . . . , ST ) be a contingent claim. The value pro-
cess Vt of a strategy ξ replicating C (or, equivalently, the only arbitrage�free price
process of C) satis�es

Vt = vt(S0, . . . , St)

where

vt(x0, . . . , xt) =
1

(1 + r)T−t
E
∗ [h(x0, . . . , xt, xtYt+1, . . . , xtYt+1 · · ·YT )] .

For the proof, we need a lemma:
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Lemma 4.3. Let X = (X1, . . . , Xm) and Y = (Y1, . . . , Yn) be random vectors
such that σ(X1, . . . , Xm) is independent of σ(Y1, . . . , Yn) . Let Φ : Rm+n −→ R

be such that that E [Φ(X, Y )] <∞ and suppose that ϕ(x) := E [Φ(x, Y )] is de�ned
for any x ∈ Rm . Then

E [ Φ(X, Y )| σ(X1, . . . , Xm) ] = ϕ(X) .

Proof. Exercise. QED

Proof of Proposition 4.2 By Proposition 3.8 we have for 0 6 t 6 T :

Vt =
1

(1 + r)T−t
E
∗ [h(S0, . . . , ST )| Ft ]

=
1

(1 + r)T−t
E
∗ [h(S0, . . . , St, StYt+1, StYt+1Yt+2, . . . , StYt+1 · · ·YT )| Ft ] .

Since Yt+1, Yt+2, . . . YT are independent of Ft = σ(S0, . . . , St) , we have, by Lemma
4.3,

Vt = vt(S0, . . . , St) .

QED

Proposition 4.4. Let C = h(S0, . . . , ST ) be a contingent claim. The deter-
ministic functions vt de�ned in Proposition 4.2 satisfy the following backward
recursion:

vT (x0, . . . , xT ) = h(x0, . . . , xT ) ;

and, for t < T :

vt(x0, . . . , xt) =
1

1 + r
[p∗vt+1(x0, . . . , xt, xtu) + (1− p∗)vt+1(x0, . . . , xt, xtd)] .

Proof. The martingale property of the discounted value process of Vt replicating
C implies

1

1 + r
E
∗ [Vt+1| S0 = x0, . . . , St = xt ]

= E
∗ [Vt| S0 = x0, . . . , St = xt ]

= vt(x0, . . . , xt) .

On the other hand,

E
∗ [Vt+1| S0 = x0, . . . , St = xt ]

= p∗vt+1(x0, . . . , xt, xtu) + (1− p∗)vt+1(x0, . . . , xt, xtd) ,

which yields the result. QED

Now let us have a look at a speci�c contingent claim: A call option.
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Example. The value function of a call C = (ST −K)+ (European call) satis�es

vt(x0, . . . , xt) = vt(xt) =
1

(1 + r)T−t
E
∗ [(xtYt+1 · · ·YT −K)+

]
=

1

(1 + r)T−t

T−t∑
k=0

(
T − t
k

)
︸ ︷︷ ︸

# of up�movements

(p∗)k(1− p∗)T−k(xtukdT−k −K)+

Simpli�cation: Let

a := minimal number of up�movements such that xtu
adT−t−a > K (�the

option is in the money�).

Then the option value at time t is given by

vt(xt) =
1

(1 + r)T−t

T−t∑
k=0

(
T − t
k

)
︸ ︷︷ ︸

# of up�movements

(p∗)k(1− p∗)T−k(xtukdT−k −K)+

How to calculate replicating strategies? The answer is given by

Theorem 4.5. Let C = h(S0, . . . , ST ) be a contingent claim. The strategy ξ =
(ξ0, ξ) replicating C satis�es

ξt = ∆(S0, . . . , St−1)

where

∆(x0, . . . , xt−1) =
vt(x0, . . . , xt−1, uxt−1)− vt(x0, . . . , xt−1, dxt−1)

uxt−1 − dxt−1

.

Proof. Recall that
ξt ·
(
St − St−1

)
= Vt − Vt−1

since ξ is self��nancing. If Yt = u , this means

ξ0
t

(
S0
t − S0

t−1

)
+ ξt (uSt−1 − St−1) = vt(S0, . . . , St−1, uSt−1)− vt−1(S0, . . . , St−1) ,

and if Yt = d ,

ξ0
t

(
S0
t − S0

t−1

)
+ ξt (dSt−1 − St−1) = vt(S0, . . . , St−1, dSt−1)− vt−1(S0, . . . , St−1) .

Subtracting the second equation from the �rst gives

ξt(uSt−1 − dSt−1) = vt(S0, . . . , St−1, uSt−1)− vt(S0, . . . , St−1, dSt−1)

and hence the result. QED

Remark. 1) ∆(x0, . . . , xt−1) is called the Delta of the contingent claim C at
time t . Notice that the Delta is a di�erence quotient. In the continuous case
(�Black�Scholes model�) this will go over into a di�erential quotient.

Interpretation: Sensitivity of the option's value w.r.t. the price of the underlying.
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2) V0 = v0(S0) and ξt = ∆t(S0, . . . , St−1) uniquely determine a self��nancing
strategy called delta hedge. It is the only strategy replicating C . �

Corollary 4.6. Let C = (ST −K)+ , and let vt(x) be the arbitrage�free value of
C at time t conditioned on St = x . Then the Delta satis�es

∆t(x) =
vt(ux)− vt(dx

(u− d)x
.

Proof. Immediate fro Thm. 4.5. QED

u2x

ux"!
# 

x udx

dx"!
# 

d2

v2(u2x)

v1(ux)"!
# 

v0(x) v2(udx)

v1(dx)"!
# 

v2(d2)

The encircled quantities are needed for the calculation of ∆1 .

Pseudo�algorithm for calculating the value of Delta of a call

at time t = 0:

x = price at time 0

# price vector at time T

S(T, 0) = xdT

for j = 1 : T
S(T, j) = S(T, j − 1) ∗ u/d

end

# option value at time T

for j = 0 : T
C(T, j) = max(S(T, j)−K, 0)

end

# recursion

for t = T − 1 : −1 : 0
for j = 0 : t

C(T, j) = [p∗(t+ 1, j + 1) + (1− p∗)C(t+ 1, j))] /(1 + r)
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S(t, j) = S(t+ 1, j)/d
end
if t = 1 then

delta = (C(1, 1)− C(1, 0))/(S(1, 1)− S(1, 0))
end

end

# results

C(0, 0) = option value
delta = the Delta of C

Remark. At �rst sight, it does not seem necessary to develop computer programs
for pricing European options, since we have explicit formulas. However, the full
power of this algorithm is revealed when studying American options, i.e. options
that can be exercises at any time before maturity. In this case, there are no closed
formulas, but a few simple changes in the above code make it work as well. �

Remark. For the use of the binomial model in practice, one has to estimate the
parameters u and d . This is done by putting

u := exp

(
σ

√
T

N

)
, d :=

1

u
= exp

(
−σ
√
T

N

)
where σ is taken from statistical data of standard options, which are liquidly
traded so that one has market prices; the choice of σ is then made such that
Cmodel(σ) = Cmarket , i.e. that when I plug σ into the option�pricing formula of
the model I get the observed market price.

The above choices of u and d are motivated by what they become in the contin-
uous limit model by taking shorter and shorter trading periods; as we will see
later, this will be the Black�Scholes model. �

Next (and last) aim of this section: Explicit price formulas for barrier options.
We �rst introduce some auxiliary random variables:

Ci(ω) :=

{
+1 if ωi = u

−1 if ωi = d
, 1 6 i 6 T ;

Zt :=
t∑
i=1

Ci , 1 6 t 6 T .

From now on assume P is given as

P [{ω}] =
1

|Ω|
= 2−T , ω ∈ Ω ,
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i.e. is such that Z = (Zt) is the simple random walk in Z under P .

In addition, we assume d = u−1 . Then the price satis�es

St(ω) = S0

t∏
i=1

Yi(ω) = S0u
∑t
i=1 Ci(ω) = S0u

Zt(ω) .

Observe that there holds

Zt + t

2
= # up movements until time t ,

and that this random variable is binomially distributed, and hence

P [Zt = k] = P

[
Zt + t

2
=
k + t

2

]
=


(

t

(k + t)/2

)
2−t k + t even

0 k + t odd .

Lemma 4.7. (Re�ection Principle) For all k ∈ N and l ≥ 0 we have

(a) P

[
max

06k6T
Zt ≥ k , ZT = k − l

]
= P [ZT = k + l] ;

(b) P

[
max

06k6T
Zt = k , ZT = k − l

]
=

2(k + l + 1)

T + 1
P [ZT = k + l + 1] .

Proof. (a) : We have, for k, l ∈ N

P [ZT = k + l] = P

[
ZT + T

2
=
T + k + l

2

]
;

P [ZT+1 = k + l + 1] = P

[
ZT+1 + T + 1

2
=
T + 2 + k + l

2

]
.

For k ∈ N let

τ(ω) := inf { t ≥ 0 | Zt(ω) = k } ∧ T .

For any ω , let Φ(ω) := (ω1, . . . , ωτ(ω),
1

ωτ(ω)+1

, . . . ,
1

ωT
) . Then Φ is a bijection

from

Ak,l : =

{
ω ∈ Ω

∣∣∣∣ max
06t6T

Zt(ω) ≥ k , ZT (ω) = k − l
}

onto

Bk,l : = {ω ∈ Ω | max
06t6T

Zt(ω) > k , ZT (ω) = k + l

}
= {ZT = k + l} ,

hence P [Ak,l] = P [Bk,l] , and so (a) .

(b) : 1st case � T + k + l not even. Then both sides of (b) are zero.
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2nd case � T + k + l even. Then, for j :=
T + k + l

2
:

P

[
max
06t6T

Zt = k , ZT = k − l
]

= P

[
max
06t6T

Zt ≥ k

]
− P

[
max
06t6T

Zt ≥ k + 1

]
= P [ZT = k + l]− P [ZT = (k + 1) + (l + 1)]

= 2−T
(
T

j

)
+ 2−t

(
T

j + 1

)
= 2−T

[
T !

(T − j)!j!
− T !

(T − j − 1)!(j + 1)!

]
= 2−T

T !

(T − j − 1)!j!

[
1

T − j
− 1

j + 1

]
= 2−T

T !

(T − j − 1)!j!

2j + 1− T
(T − j)(j + 1)

= 2−T
(T + 1)!

(T + j)!(j + 1)!

2j + 1− T
T + 1

= 2P

[
ZT+1 + T + 1

2
= j + 1

]
k + l + 1

T + 1

= P [ZT+1 = k + l + 1]
2(k + l + 1)

T + 1
.

QED

Remark 4.8. Notice that

dP ∗

dP
(ω) =

P ∗ [{ω}]
P [{ω}]

= 2T (p∗)(ZT (ω)+T )/2(1− p∗)(−ZT (ω)+T )/2 .

We will need this formula in the sequel. �

Lemma 4.9. (Value of an up�and�in call) Consider the up�and�in call

C =

{
(ST −K)+ if max

06t6T
St ≥ B ;

0 else ,

where B = S0u
k > S0 ∨K for some k ≥ 1 . Let

lk := sup { l | 2l − T 6 k } .
Then the arbitrage�free price E∗ [C/S0

T ] satis�es

E
∗
[
C

S0
T

]
=

1

(1 + r)T

[ lk∑
l=k

(S0u
2l−T −K)+(p∗)l(1− p∗)T−l

(
T

k − l + T

)
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+
T∑

l=lk+1

(S0u
2l−T −K)+(p∗)l(1− p∗)T−l

(
T

l

)]
.

Proof. Using St = S0u
Zt ≥ S0u

k and Remark 4.8, we can write

E
∗ [C] = E

∗ [(ST −K)+
1{maxSt≥B}

]
=

T∑
l=0

P [maxZt ≥ k , ZT = 2l − T ] 2T (p∗)l(1− p∗)T−l(S0u
2l−T −K)+

For l 6 lk , we have

P [maxZt ≥ k , ZT = 2l − T︸ ︷︷ ︸
k−(k−2l+T )

]

= P [ZT = k + (k − 2l + T )] (Re�ection Principle)

= P [ZT = 2k − 2l + T ]

= P

[
ZT + T

2
= k − l + T

]

=


2−T

(
T

k − l + T

)
if k 6 l ;

0 else.

For l > lk , we have

P [maxZt ≥ k︸ ︷︷ ︸
redundant

, ZT = 2l − T ] = P [ZT = 2l − T ] = 2−T
(
T

l

)
.

The result follows QED

Yet another one:

Lemma 4.10. (Value of a lookback put with �oating strike) Let

C := max
06t6T

St − ST .

Then

E
∗
[
C

S0
T

]
= −S0+

+
S0

(1 + r)T

T∑
k=0

uk

{
lk∑
l=k

(p∗)l(1− p∗)T−l 2(k − l) + T + 1

T + 1

(
T + 1

k − l + T + 1

)}
,

where lk := sup { l | 2l − T 6 k } .
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Proof. The proof is not di�cult once one has found an intelligent way to
implement the Re�ection Principle. One has

E
∗
[
C

S0
T

]
=

1

(1 + r)T
E
∗
[

max
06t6T

St

]
− S0

and

E
∗
[

max
06t6T

St

]
=

T∑
k=0

S0u
kP ∗

[
max
06t6T

Zt = k

]
.

Note that

P ∗
[

max
06t6T

Zt = k

]
=

T∑
l=0

P ∗
[

max
06t6T

Zt = k , ZT = 2l − T
]

=
T∑
l=0

2T (p∗)l(1− p∗)T−lP
[

max
06t6T

Zt = k , ZT = 2l − T
]

by Remark 4.8.

Now for l 6 lk (using Part (b) of the Re�ection Principle)

P [ max
06t6T

Zt = k , ZT = 2l − T︸ ︷︷ ︸
k−(k−2l+T )

]

=
2(k + 1 + k − (2l − T ))

T + 1
P [ZT+1 = k + 1 + k − (2l − T )]

= 2
2(k + 1 + k − (2l − T ))

T + 1
P

[
ZT+1 + T + 1

T + 1
=

2k − 2l + 2T + 2

2

]

=


2

2(k − l) + T + 1

T + 1

(
T + 1

k − l + T + 1

)
2−T−1 : k 6 l ;

0 : else.

This implies the statement of the Lemma QED

This is the last example for an exotic option within the BOPM which I have
prepared. Now we turn to American Options.
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Pricing and Hedging American Options in the BOPM

Throughout let (Ω,F , (Ft)t=0,1...,T , P ) be a �ltered probability space. First recall
some results from martingale theory.

Proposition and De�nition 5.1. (Doob decomposition) Let Y = (Yt) be an
adapted stochastic process with Yt ∈ L1(P ) , 0 6 t 6 T . Then there eists a unique
decomposition

(5.1) Yt = Mt − At
such that M = (Mt) is a P�martingale, A = (At) is predictable and A0 = 0 .
This decomposition is called the Doob decomposition of (Yt) .

Proof. 1. Uniqueness: A0 := 0 is unique by de�nition. Suppose A0, . . . , At−1

are unique for some 0 6 t < T . Taking conditional expectation w.r.t Ft−1 in
(5.1) yields

E
∗ [Yt| Ft−1 ] = E

∗ [Mt| Ft−1 ]−E∗ [At| Ft−1 ] = Mt−1 − At
since (Mt) is a martingale and (At) predictable. On the other hand,

Yt−1 = Mt−1 − At−1 .

Subtracting from this equation its predecessor yields

Yt−1 −E∗ [Yt| Ft−1 ] = At − At−1

or

At = At−1 −E∗ [Yt − Yt−1| Ft−1 ]

is given uniquely by Y and At−1 . Therefore, by induction, the At are unique,
and so are the Mt = Yt + At .

2. Existence: One has no choice but to de�ne At recursively as

A0 : = 0 ;

At : = At−1 −E∗ [Yt − Yt−1| Ft−1 ] , 1 6 t 6 T .

Then put

Mt := Yt + At , 0 6 t 6 T .

It is then a straightforward induction to verify that (At) is predictable and (Mt)
a P�martingale. QED
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De�nition. A stochastic process X = (Xt)t=0,...,T is called a submartingale (resp.
a supermartingale) if

(1) X is adapted;
(2) Xt ∈ L1(P ) , 0 6 t 6 T ;
(3) for all 0 6 s 6 t 6 T : E [Xt| Fs ] ≥ Xs (resp. 6 Xs) .

(As mnemonic: A supermartingale implements a downward trend; �there is noth-
ing super about a supermartingale�.)

Lemma 5.2. Let X = (Xt) be an adapted process with Xt ∈ L1(P ) , 0 6 t 6 T .
Let Xt = Mt − At its Doob decomposition. Then

(a) Xt is a supermartingale i� At is non�decreasing ;
(b) Xt is a submartingale i� At is non�increasing .

Proof. (a): E [Xt −Xt−1| Ft−1 ] = −E [At − At−1| Ft−1 ] = −At +At−1 6 0 i�
At is non�decreasing.

(b): is completely analogous. QED

De�nition. An American contingent claim is a nonnegative adapted process C =
(Ct)t=0,...,T .

Example. American put Ct = (K − St)+ .

Now let us have a closer look at American options within the binomial model.
In the BOPM: for every American contingent claim (Ct) we can �nd measurable
functions ft : Rt

+ −→ R+ such that

Ct = ft(S1, . . . , St) .

To simplify notation, we only consider payo� functions of the form ft(x1, . . . , xt) =
ft(xt) , i.e. which do not depend on the past.

Question : How do we price an American option (ft(St))t=0,...,T within
the BOPM?

Let Vt := minimal capital required at time t to replicate the option.

Then, at time T :
VT = fT (ST ) .

At time T − 1 :

VT = fT−1(ST−1) ∨E∗
[
fT (ST )

1 + r

∣∣∣∣ FT−1

]
.

At time t < T :

Vt = ft(St) ∨E∗
[
Vt+1

1 + r

∣∣∣∣ Ft ] .
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Notice that Vt = vt(St) with vt : R −→ R a deterministic function satisfying the
recursion

vT (xT ) = fT (xT )

and

vt(xt) = ft(xt) ∨
1

1 + r
[p∗vt+1(uxt) + (1− p∗)vt+1(dxt)] , 0 6 t 6 T .

The discounted value process (Vt/S
0
t ) is the so�called Snell envelope of

(ft(St)/S
0
t ) under P

∗ .

So what is a Snell envelope? You can de�ne it for any adapted intgrable process:

De�nition. Let Y = (Yt) be an adapted process such that Yt ∈ L1(P ) , 0 6 t 6 T .
The Snell envelope U = (Ut) of Y under P is recursively de�ned by

UT := YT ;

and, for 0 6 t < T :
Ut := Yt ∨E [Ut+1| Ft ] .

Proposition 5.3. Let Y = (Yt) be an adapted process and Yt ∈ L1(P ) for all
0 6 t 6 T . The Snell envelope U = (Ut) of Y is the smallest supermartingale
dominating Y (i.e. U is a supermartingale with Ut ≥ Yt , 0 6 t 6 T , and

if Ũ = (Ũt) is a supermartingale with Ũt ≥ Yt , 0 6 t 6 T , then Ũt ≥ Ut ,
0 6 t 6 T ) .

Proof. 1. Ut−1 = Yt−1 ∨ E [Ut| Ft−1 ] ≥ E [Ut| Ft−1 ] , and so obviously U is a
supermartingale dominating Y .

2. Let Ũ = (Ũt) be a supermartingale with Ũt ≥ Yt , 0 6 t 6 T . Perform
backward induction on t :

t = T : ŨZ ≥ YT = UT .

t→ t− 1 : Assume that Ũt ≥ Ut . Then

Ũt−1 ≥ E
[
Ũt

∣∣∣ Ft−1 ] since Ũ is a supermartingale

≥ E [Ut| Ft−1 ] by the induction hypothesis.

Moreover, Ũt−1 ≥ Yt−1 by hypothesis, and so

Ũt−1 ≥ Yt−1 ∨E [Ut| Ft−1 ] = Ut−1 .

QED

The Snell envelope is then the answer to how to price American contingent
claims based on replication.

Question : How to hedge an American option (ft(St))t=0,...,T in the
BOPM?
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Lemma 5.4. Consider the BOPM. Let

∆t(xt−1) :=
vt(uxt−1 − vt(dxt−1))

(u− d)xt−1

, 1 6 t 6 T .

Let ξ = (ξ0, ξ) be the unique self��nancing strategy with initial capital v0(S0) and

ξt = ∆t(St−1) . Then the discounted value process (V ξ
t /S

0
t ) associated to ξ is the

martingale in the Doob decomposition of the discounted value process (vt(St)/S
0
t )

w.r.t. P ∗ .

Proof. Let

wt(xt) :=
1

1 + r

[
p∗vt+1(uxt) + (1− p+)vt+1(dxt+1)

]
(= the value of the American option at time t provided it is not exercised at
time t).

We explicitely compute the Doob decomposition of the value process associated
to an American option: Let

A0 := 0

and

At := At−1 +
[ft−1(St)− wt−1(St−1)]+

S0
t

for 1 6 t 6 T (note the numerator is just what you loose when not exercising the
option at time t − 1) . Then (At) is predictable and non�decreasing. Moreover,
let

Mt := v0(S0) +
t∑

k=1

{
vk(Sk)

S0
k

− wk−1(Sk−1)

S0
k−1

}
.

I claim M = (Mt) is a martingale. For this, note that

E

[
vk(Sk)

1 + r

∣∣∣∣ Fk−1

]
= wk−1(Sk−1)

which already shows that (Mt) is a P
∗�martingale.

We now want to show that Mt − At is indeed the Doob decomposition of
(vt(St)/S

0
t ) . Observe that v0(S0) = M0 − A0 , and

Mt −Mt−1 − At + At−1 =
vt(St)

S0
t

− wt−1(St−1)

S0
t−1

− [ft−1(St−1)− wt−1(St−1)]+

S0
t−1

=
vt(St)

S0
t

− wt−1(St−1) ∨ ft−1(St−1)

S0
t−1

=
vt(St)

S0
t

− vt−1(St−1)

S0
t−1

.
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By induction, then, this yields

vt(St)

S0
t

= Mt − At

is the Doob decomposition of the discounted value process of (St) .

It remains to show that
V ξ
t

S0
t

= Mt .

This is again done by induction on t .

t = 0 : M0 = v0(S0) = V ξ
0 .

t− 1→ t : By Lemma 3.4

V ξ
t

S0
t

−
V ξ
t−1

S0
t−1

= ∆t(St−1)

(
St
S0
t

− St−1

S0
t−1

)
.

Now we distinguish 2 cases:

1. case: St = uSt−1 . Then

∆t(St−1)

(
St
S0
t

− St−1

S0
t−1

)
= ∆t(St−1)(u− (1 + r))

St−1

S0
t

=
1

S0
t

u− (1 + r)

u− d︸ ︷︷ ︸
1−p∗

(vt(uSt−1)− vt(dSt−1)) (De�nition of ∆t)

=
vt(uSt−1)

S0
t

− 1

S0
t

(p∗vt(uSt−1) + (1− p∗)vt(dSt−1))

=
vt(uSt−1)

S0
t

− wt−1(St−1)

S0
t−1

.

2. case: St = St−1 . Then similarly

∆t(St−1)

(
St
S0
t

− St−1

S0
t−1

)
=
vt(dSt−1)

S0
t

− wt−1(St−1)

S0
t−1

.

There follows
V ξ
t

S0
t

−
V ξ
t−1

S0
t−1

= Mt −Mt−1

whick yields the result by induction. QED

What is the use of this lemma? It shows what is the minimal capital required to
replicate an American option in the BOPM:

Proposition 5.5. Consider the BOPM. Let ∆ , ξ and V ξ
t be de�ned as in Lemma

5.4. Then, for all 0 6 t 6 T , V ξ
t ≥ ft(St) .
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Moreover, if ξ is a self��nancing strategy such that the asociated value process
V ξ = (V ξ

t ) satis�es V ξ
t ≥ ft(St) for 0 6 t 6 T , then V ξ

0 ≥ v0(S0) , i.e. v0(S0) is
the minimal capital necessary at t = 0 to hedge the American option.

Proof. Lemma 5.4 implies V ξ
t ≥ ft(St) (since vt(St)/S

0
t 6 V ξ

t /S
0
t ) . This is the

�rst statement.

For the second statement, let ξ be the self��nancing strategy with V ξ
t ≥ ft(St) .

By Proposition 5.3:

V ξ
t

S0
t

≥ vt(St)

S0
t

,

since the RHS is the Snell envelope of ft(St) , and hence V ξ
0 ≥ v0(S0) . QED

We now change perspective from the seller to the buyer.

Question : What is the best time to exercise an American option?

De�nition. A map τ : Ω −→ {0, 1, . . . , T}∪{+∞} is called a stopping time i�
{T = t} ∈ Ft for all 0 6 t 6 T .

Remark. 1. There is an alternative de�nition of stopping times: τ : Ω −→
{0, 1, . . . , T} ∪ {+∞} is a stopping time i� {T 6 t} ∈ Ft for all 0 6 t 6 T .

Proof. {τ 6 t} =
⋃t
k=0 {τ = k} .

2. If σ and τ are stopping times, so are σ ∧ τ and σ ∨ τ .
Proof. {σ ∧ τ 6 t} = {σ 6 t} ∪ {τ 6 t} ∈ Ft ;

{σ ∨ τ 6 t} = {σ 6 t} ∩ {τ 6 t} ∈ Ft .

Notation: Let Y = (Yt) be a stochastic process. We write Y τ = (Y τ
t ) for the

stopped process, de�ned by

Y τ
t (ω) := Yt∧τ(ω)(ω) , 0 6 t 6 T .

Lemma 5.6. (Optional Sampling Theorem). Let M = (Mt) be an adapted pro-
cess such that Mt ∈ L1(P ) , 0 6 t 6 T . Then we have equivalences between

(a) M is a P�martingale;
(b) M τ is a P�martingale for any stopping time τ ;
(c) E [Mτ ] = E [M0] for all stopping times τ 6 T (here Mτ is the random

variable de�ned by Mτ (ω) := Mτ(ω)(ω)) .

Proof. (a) =⇒ (b): For 0 6 t 6 T − 1 we have

M τ
t+1 −M τ

t = 1{τ>t}(Mt+1 −Mt) .

What is enough to show is

E
[
M τ

t+1 −M τ
t

∣∣ Ft ] = 0 .
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But

E
[
M τ

t+1 −M τ
t

∣∣ Ft ] = E
[
1{τ>t}(Mt+1 −Mt)

∣∣ Ft ]

= 1{τ>t}E [Mt+1 −Mt| Ft ] since 1{τ>t} is Ft�measurable

= 0 .

(b) =⇒ (c): For a martingale M , we have, for any 0 6 s 6 t 6 T

E [Ms] = E [Ms| F0 ] = E [E [Mt| Fs ]| F0 ] = E [Mt| F0 ] = E [Mt] ,

and so, in particular, E [M0] = E [MT ] . Now, if τ is any stopping time, we have,
by hypothesis, that M τ is a martingale, hence E [M τ

0 ] = E [M τ
T ] . But M τ

0 = M0

and M τ
T = Mτ .

(c) =⇒ (a): We have to show: if t < T and A ∈ Ft , then E [1AMT ] =
E [1AMt] .

So let A ∈ Ft and de�ne

τ(ω) :=

{
t ω ∈ A ;

T ω 6∈ A .

Then τ is a stopping time. Note that

E [M0] = E [Mτ ] = E [1AMt] +E [1AcMT ] .

Besides,

E [M0] = E [MT ] = E [1AMT ] +E [1AcMT ] ,

and so E [1AMT ] = E [1AMt] , which is what we wanted to show. QED

Corollary 5.7. Let U = (Ut) be an adapted process, and Ut ∈ L1(P ) ,
0 6 t 6 T . Then U is a supermartingale i� U τ is a supermartingale for all
stopping times τ .

Proof. � ⇐= � : Take τ := T .

� =⇒ � : Employ the Doob decomposition and write U = M − A with M a
martingale and A non�decreasing. Then U τ = M τ − Aτ . By Lemma 5.6, M τ is
a martingale, Aτ is still non�decreasing, so this gives the Doob decomposition
of U τ , which thus tells us that U τ is a supermartingale. QED

Now we return to American options. In the remainder of this chapter we consider
the BOPM only. Let Ct = ft(Ct) , 0 6 t 6 T be the payo� of an American option,
and let Vt = vt(St) be the minimal capital needed at time t to replicate (Cs)t6s6T .

Some more notation. Let

T := { τ | τ is a stopping time with τ 6 T } .
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Think of T as the set of the holder's possible exercise dates. The optimal stopping
problem for the option holder is

Maximize E∗
[
Cτ
S0
τ

]
among all τ ∈ T .

We will see that

τ ∗ := inf { t ≥ 0 | Vt = Ct }
is one solution of the problem. Notice that τ ∗ 6 T , since VT = CT .

Theorem 5.8. τ ∗ solves the optimal stopping problem. More precisely,

V0 = E
∗
[
Cτ∗

S0
τ∗

]
= sup

τ∈T
E
∗
[
Cτ
S0
τ

]
.

Proof. Recall that Ut := Vt/S
0
t 0 6 t 6 T , is the Snell envelope of

(Ct/S
0
t ) . Let τ ∈ T . Then, by Proposition 5.3 and Corollary 5.7, U τ is a

P ∗�supermartingale, and hence

V0 = U0 ≥ E∗ [U τ
T ] = E

∗ [Uτ ] ≥ E∗
[
Cτ
S0
τ

]
which implies

V0 ≥ sup
τ∈T

E
∗
[
Cτ
S0
τ

]
.

To prove the statement it is therefore enough to show that E∗
[
Cτ∗

S0
τ∗

]
= V0 .

Let Ût := U τ∗
t . Then (Ût) is a P

∗�martingale:

E
∗
[
Ût+1

∣∣∣ Ft ] = E
∗
[
1{τ∗>t}Ût+1 + 1{τ∗6t}Ût+1

∣∣∣ Ft ]
= 1{τ∗>t}E

∗
[
Ût+1

∣∣∣ Ft ]+ 1{τ∗6t}E
∗
[
Ûτ∗
∣∣∣ Ft ]

= 1{τ∗>t}Ut + 1{τ∗6t}Uτ∗

= Ut∧τ∗ = Ût .

Therefore, since at τ ∗ , Vτ∗ = Cτ∗ ,

E
∗
[
Cτ∗

S0
τ∗

]
= E

∗ [Uτ∗ ] = E
∗
[
ÛT

]
= E

∗
[
Û0

]
= V0 .

QED

Remark. τ ∗ is not necessarily the only stopping time attaining sup
τ∈T

E
∗ [Cτ/S

0
τ ] .

Example: Let Ct := KS0
t . Then E

∗ [Cτ/S
0
τ ] = K for all τ ∈ T .
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De�nition. A stopping time τ̂ ∈ T is called optimal if

E
∗
[
Cτ̂
S0
τ̂

]
= sup

τ∈T
E
∗
[
Cτ
S0
τ

]
.

Proposition 5.9. τ̂ ∈ T is optimal i� Cτ̂ = Vτ̂ and U := V•∧τ̂/S
0
•∧τ̂ is a P ∗�

martingale. In particular, τ ∗ is the minimal optimal stopping time.

Proof. � ⇐= � : Let τ̂ ∈ T be such that Cτ̂ = Vτ̂ and U is a P ∗�martingale.
By Theorem 5.8

sup
τ∈T

E
∗
[
Cτ
S0
τ

]
= V0 = U0 = E

∗ [UT ] = E
∗
[
Vτ̂
S0
τ̂

]
= E

∗
[
Cτ̂
S0
τ̂

]
,

and so τ̂ is optimal.

� =⇒ � : If τ̂ is optimal, then

V0 = sup
τ∈T

E
∗
[
Cτ
S0
τ

]
= E

∗
[
Cτ̂
S0
τ̂

]
6 E∗

[
Vτ̂
S0
τ̂

]
6 V0 .

Since Cτ̂ 6 Vτ̂ , we have Cτ̂ = Vτ̂ P
∗�a.s. Moreover, for all τ ∈ T :

U0 ≥ E∗ [Uτ ] ≥ E∗ [UT ] = V0 = U0 .

Hence E∗ [Uτ ] = U0 . By Lemma 5.6, U is a martingale. QED
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CHAPTER 6

Convergence of Discrete Market Models to the
Black�Scholes Model

Literature: [12], 5.7, pp. 259-276.

Notation: N (µ, σ2) = normal distribution with mean µ and standard de-
viation σ .

De�nition. A stochastic process W = (Wt)t∈R+ on a probability space (Ω,F , P )
is called a (standard) Brownian Motion (BM) if

(1) W0 = 0 ;
(2) its paths t 7→ Wt(ω) are continuous for P�a.e. ω ∈ Ω ;
(3) for any partition 0 = t0 < t1 < · · · < tn the increments Wt1 − Wt0 ,

Wt2 − Wt1 , . . . , Wtn − Wtn−1 are independent, and Wtk − Wtk−1
∼

N (0, tk − tk−1) for k = 1, . . . , n .

In the Black�Scholes model the price process of a risky asset is modeled as

St = S0 eσWt+(µ+r−σ2/2)t , t ≥ 0

where

σ : is called the volatility, i.e. the standard deviation of
the log�returns

log

(
St+1

St

)
=in distribution N (µ+ r − σ2/2, σ2) ;

µ : is called the drift rate;
r : the continuously compounded interest rate.

In the discrete model: if F is the interest rate per period, then the value of 1 e
after n periods is equal to (1 + F )n e.

In the BS model: The future value of S0
0 =1 e is described by the ODE

dS0
t = rS0

t dt .

Observe that S0
t = ert . Continuous compounding corresponds to making the

compounding period arbitrary small:

lim
n→∞

(
1 +

rt

n

)n
= ert ,

71



S. Ankirchner Mathematical Finance Bonn WS 2012/13

historically one of the routes to de�ne the RHS already known to Euler and his
predecessors, and, conversely, if this de�nition has been accomplished by other
means, easily con�rmed, e.g. by l'Hospital's Rule (apply it to log(1 + rtx)/x
for x→ 0+ and then consider the case x = 1/n) .

Approximating the BS model with discrete market models

Consider a �nancial market with one risky and one non�risky aset. We �x a time
horizon T . For every N ∈ N we choose a discrete time model with N trading
periods of length T/N . Let rN ≥ 0 be the interest rate per period T/N . (The
main example to keep in mind: BOPM). Let

(S
(N)
k )06k6N the prices of the risky asset in the various T/N�models.

We de�ne the (relative) returns in the model N as

R
(N)
k :=

S
(N)
k − S(N)

k−1

S
(N)
k−1

, 1 6 k 6 N .

We assume that for every N the family of returns (R
(N)
k )16k6N is independent

w.r.t an EMM P ∗N .

Remark. By considering an appropriate product space we may de�ne all the
models on a single measure space and we may assume that P ∗N = P ∗ , one �xed
measure independent of N . �

We say that condition (C) is satis�ed if

(1) rN is such that limN→∞(1 + rN)N = erT ;

(2) there exists a number S0 > 0 such that S
(N)
0 = S0 for all N , and there

exist sequences (αN), (βN) such that

0 < αN 6 R
(N)
k 6 βN

and
lim
N→∞

αN = lim
N→∞

βN = 0 ;

(3) for σ2
N =

1

T

∑N
K=1 varP ∗(R

(N)
K ) we have limσ2

N = σ2 ∈ (0,∞) .

Remark. Note that (1) is equivalent to

(1') limN→∞NrN = rT .

Namely clearly limN→∞(1 + rN)N = erT i� limN→∞N log(1 + rN) = rT , but by
l'Hospital's Rule limN→∞ log(1 + rN)/RN = 1 .

Then we have
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Theorem 6.1. If condition (C) is satis�ed, then the distribution of S
(N)
N under

P ∗ converges weakly to the distribution of

ST = S0 eσWT+(r−σ2/2)T

(no drift since we are working under an EMM), i.e. to the log�normal distribution
with parameters log(S0) + (r − σ2/2)T and σ2T .

(Look at this as a kind of multiplicative Central Limit Theorem.)

Before embarking upon the proof of this theorem, we split some preparations
into several lemmas. First, we need the following variant of the Central Limit
Theorem CLT:

Lemma 6.2. For each natural number N ≥ 1 let V
(N)

1 , . . . , V
(N)
N be N indepen-

dent random variables on a probability space (Ω,F , P ) . Suppose that

(i) there exist γN with γN → 0 for N → ∞ and for all N
∣∣∣V (N)
k

∣∣∣ 6 γN

P�a.s. for all 1 6 k 6 N ;

(ii)
∑N

k=1E

[
V

(N)
k

]
−→ m as N →∞ ;

(iii)
∑N

k=1 varV
(N)
k −→ σ2 > 0 as N →∞ .

Then ZN :=
∑N

k=1 V
(N)
k

d−→ N (m,σ2) as N → ∞ (where
d−→ denotes conver-

gence in distribution) .

Proof. Stochastics Lectures. QED

Moreover, we need

Lemma 6.3. (Slutzky) Let (Xn)n≥1 , (Yn)n≥1 be sequences of random variables

such that Xn
d−→ X and Yn −→ 0 in probability. Then Xn + Yn

d−→ X .

Proof (Sketch). Recall that Xn
d−→ X i� E [f(Xn)] −→ E [f(X)] for all

f ∈ C0
b (R) (the bounded continuous functions). One can show that Xn

d−→ X
i� E [f(Xn)] −→ E [f(X)] for all f ∈ C0

b (R) which are uniformly continuous
(Exercise).

So let f ∈ C0
b (R) be uniformly continuous, and for ε > 0 let δ > 0 be such that

|x− y| 6 δ implies |f(x)− f(y)| 6 ε . Then

|E[f(Xn + Yn)− f(Xn)]|
6 E

[
|f(Xn + Yn)− f(Xn)|1|Yn|>δ

]
+E

[
|f(Xn + Yn)− f(Xn)|1|Yn|6δ

]
6 2‖f‖∞P [|Yn| > δ] + ε

−→ ε for n→∞ .
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But ε being arbitrary this yields

lim
n
E [f(Xn + Yn)] = lim

n
E [f(Xn)] = E [f(X)] ,

and hence the result. QED

Proof of Theorem 6.1. 1. We �rst show that

logS
(N)
N = logS

(N)
0 +

N∑
k=1

(
R

(N)
k − 1

2

(
R

(N)
k

)2
)

+ ∆N ,

with |∆N | 6 δ(αN , βN)
∑N

k=1

(
R

(N)
k

)2

and δ(α, β) −→ 0 as α, β → 0 .

Start by writing

S
(N)
N = S

(N)
0

N∏
k=1

S
(N)
k

S
(N)
k−1

= S
(N)
0

N∏
k=1

(1 +R
(N)
k )

and so

(6.1) log
(
S

(N)
N

)
= log

(
S

(N)
0

)
+

N∑
k=1

log
(

1 +R
(N)
k

)
We now try to estimate the log

(
1 +R

(N)
k

)
on the basis of (2) of condition (C).

To this end, we Taylor expand f(x) := log(1 + x) around x = 0 up to third
order:

f(x) = f(0) + f ′(0)x+
1

2
f ′′(0)x2 +

1

6
f ′′′(ϑx)x3 , 0 6 ϑ 6 1 ,

with

f ′(x) =
1

1 + x
, f ′′(x) = − 1

(1 + x)2
, f ′′′(x) =

2

(1 + x)3

and so

log(1 + x) = x− 1

2
x2 +

1

3

1

(1 + ϑx)3
.

Notice that for −1 < α 6 x 6 β∣∣∣∣13 1

(1 + ϑx)3

∣∣∣∣ 6 1

3

1

(1 + min(0, α))3
(|α| ∨ |β|) =: δ(α, β)

and so one can write

log(1 + x) = x− 1

2
x2 +R(x) , |R(x)| 6 δ(α, β)x2 .

Applying this estimate to the log
(

1 +R
(N)
k

)
in (6.1) clearly establishes the claim

at the start of this paragraph.
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2. ∆N −→ 0 in probability: One has, by taking expectations, and using E∗ [X2] =
varP ∗(X) + (E∗ [X])2 for any random variable X :

E
∗ [∆N ] 6 δ(αN , βN)

N∑
k=1

E
∗
[(
R

(N)
k

)2
]

= δ(αN , βN)
N∑
k=1

{
varP ∗

(
R

(N)
k

)
+
(
E
∗
[
R

(N)
k

])2
}

= δ(αN , βN)
{
σ2
NT +Nr2

N

}
(because of (3) of condition (C) and (1) of Lemma 2.4)

−→ 0 for N →∞ ,

the last conclusion because δ(αN , βN) −→ 0 , σ2
NT −→ σ2T and NrN −→ rT for

N →∞ . So ∆N converges indeed to 0 in probability.

In particular, we note for the record that we have computed

(6.2)
N∑
k=1

E
∗
[(
R

(N)
k

)2
]

=
N∑
k=1

{
varP ∗

(
R

(N)
k

)
+
(
E
∗
[
R

(N)
k

])2
}

= σ2
NT +Nr2

N .

3. By Lemma 6.3 it is enough to show that the distribution of

Z(N) :=
N∑
k=1

(
R

(N)
k − 1

2

(
R

(N)
k

)2
)

converges to N (rT − σ2T/2, σ2T ) . We do so by appealing to Lemma 6.2. So we
have to verify the three properties (i) � (iii).

Let V
(N)
k := R

(N)
k − 1

2

(
R

(N)
k

)2

. Then

(i):
∣∣∣V (N)
k

∣∣∣ 6 γN +
1

2
γ2
N with γN := |αN | ∨ |βN | . This is clear by point (2) of

condition (C).

(ii):
∑N

k=1E
∗
[
V

(N)
k

]
= NrN −

1

2
(σ2

N +Nr2
N) −→ rT − 1

2
σ2T . This follows from

N∑
k=1

E
∗
[
V

(N)
k

]
=

N∑
k=1

E
∗
[
R

(N)
k

]
− 1

2

N∑
k=1

E
∗
[(
R

(N)
k

)2
]
.

Now, as already remarked above, E∗
[
R

(N)
k

]
= rN in view of (1) of Lemma 2.4,

and so
∑N

k=1E
∗
[
R

(N)
k

]
= NrN . The second sum has just been computed in (6.2).
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(iii)
∑N

k=1 varP ∗(V
(N)
k ) −→ σ2T for N → ∞ . This is a little bit more involved.

Observe that for any random variable X we have

varP ∗

(
X − 1

2
X2

)
= E

∗

[(
X − 1

2
X2

)2
]
−E∗

[
X − 1

2
X2

]2

= E
∗
[
X2 −X3 +

1

4
X4

]
−E∗ [X]2 +E∗ [X]E∗ [X]2 − 1

4
E
∗ [X2

]2
= varP ∗(X)−E∗

[
X3
]

+
1

4
E
∗ [X4

]
+E∗ [X]E∗ [X]2 − 1

4
E
∗ [X2

]2
and so

N∑
k=1

varP ∗(V
(N)
k ) =

N∑
k=1

varP ∗(R
(N)
k )−

N∑
k=1

E
∗
[(
R

(N)
k

)3
]

+
1

4

N∑
k=1

E
∗
[(
R

(N)
k

)4
]

+
N∑
k=1

E
∗
[
R

(N)
k

]
E
∗
[(
R

(N)
k

)2
]

+
N∑
k=1

E
∗
[(
R

(N)
k

)2
]2

We will now see that all the sums involving higher and mixed terms will vanish:

For p ≥ 3 we have

N∑
k=1

E
∗
[∣∣∣R(N)

k

∣∣∣p] 6 γp−2
N

N∑
k=1

E
∗
[∣∣∣R(N)

k

∣∣∣2]︸ ︷︷ ︸
bounded by (6.2)

−→ 0 for N →∞ .

Moreover,

N∑
k=1

E
∗
[
R

(N)
k

]
E
∗
[(
R

(N)
k

)2
]

= rN(σ2
NT +Nr2

N) −→ 0 for N →∞

and, �nally, by Jensen's inequality,

N∑
k=1

E
∗
[(
R

(N)
k

)2
]2

6
N∑
k=1

E
∗
[(
R

(N)
k

)4
]
−→ 0 for N →∞ .

Thus,

lim
N→∞

N∑
k=1

varP ∗(V
(N)
k ) = lim

N→∞

N∑
k=1

varP ∗(R
(N)
k ) = σ2T ,

which is the end of the proof. QED

The next aim is to show one can apply this scaling procedure to the BOPM.
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Example. Suppose that the market in the Nth stage is a BOPM with interest
rate rN := rT/N . The up and down factors are supposed to be

uN := eσ
√

T
N , dN :=

1

uN
= e−σ

√
T
N

for a given �xed σ > 0 . These data determine the Nth model for each N . We
have to verify the three criteria constituting condition (C).

(1) We have

(1 + rN)N =

(
1 +

rT

N

)N
−→ erT for N →∞ ,

so (1) holds trivially by construction. Or, even simpler, (1') is satis�ed directly.

(2): By construction of the BOPM, we have that the returns R
(N)
k take either the

value uN − 1 or dN − 1 . Now observer that uN → 1 and dN → 1 and that hence
(2) is satis�ed.

(3): Under the EMM P ∗ the probability for an up movement has to be equal to

p∗N =
1 + rN − dN
uN − dN

;

the probability for a down movement then is 1− p∗N . The variance of the returns
then satis�es

varP ∗
(
R

(N)
k

)
= E

∗
[(
R

(N)
k

)2
]
−E∗

[
R

(N)
k

]2

= E
∗
[(
R

(N)
k

)2
]
− r2

N

= p∗N(uN − 1)2 + (1− p∗N)(1− dN)2 − r2
N

independent of k ; hence

(6.3)
N∑
k=1

varP ∗
(
R

(N)
k

)
= p∗NN(uN − 1)2 + (1− p∗N)N(dN − 1)2 −Nr2

N .

Now notice that limN→∞ p
∗
N = 1/2 . This follows from l'Hospital's Rule: Write

pN =
1 + rT/N − e−σ

√
T/N

eσ
√
T/N − e−σ

√
T/N

=
1 + rTx2 − e−σ

√
Tx

eσ
√
Tx− e−σ

√
Tx

, x2 :=
1

N
.

By L'Hospital, then,

lim
x↓0

1 + rTx2 − e−σ
√
Tx

eσ
√
Tx− e−σ

√
Tx

= lim
x↓0

2rTx+ σ
√
T e−σ

√
Tx

σ
√
T (eσ

√
Tx + e−σ

√
Tx)

=
1

2
.

Finally, notice that limN→∞N(uN − 1)2 = limN→∞N(dN − 1)2 = σ2T , again by
l'Hospital's Rule: Write

N(uN − 1)2 = N
(

eσ
√
T/N −1

)2

=

(
eσ
√
T/N −1

)2

(1/
√
N)2

=

(
eσ
√
Tx−1

)2

x2
, x2 :=

1

N
.
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and analogously

N(dN − 1)2 =

(
e−σ
√
Tx−1

)2

x2
.

Now one has to apply l'Hospital twice, i.e. one has to di�erentiate numerator
and denominator twice, to conclude

lim
x↓0

(
e±σ
√
Tx−1

)2

x2
= lim

x↓0

2(±1)2σ2T e±σ
√
Tx

2
= σ2T

so that

lim
N→∞

N(uN − 1)2 = lim
N→∞

N(dN − 1)2 = lim
x↓0

(
e±σ
√
Tx−1

)2

x2
= σ2T

as claimed. We so �nally get from (6.3)

lim
N→∞

N∑
k=1

varP ∗
(
R

(N)
k

)
=

1

2
σ2T +

1

2
σ2T − 0 = σ2T ,

and so (3) also holds.

Hence our scaled familiy of BOPMs satis�es condition (C) and Theorem 6.1 is
applicable.

It follows that the prices S
(N)
N in the BOPM converge to ST = S0 eσWT+(r−σ2/2) in

distribution under P ∗ , where WT ∼ N (0, T ) .

Do we have convergence of option prices? Consider a European option with

payo� f ∈ C0
b (R) . Convergence in distribution implies limN E

∗
[
f(S

(N)
N )

]
=

E
∗ [f(ST )] . Therefore, the arbitrage�free prices (1+rN)−NE∗

[
f(S

(N)
N )

]
converge

to e−rT f(ST ) , what we will de�ne as the Black�Scholes price of the option
with payo� f .

Remark. 1) Let St = S0 eσWt+(r−σ2/2)t . The discounted price process e−rt St =

S0 eσWt−σ2t/2 can be shown to be a martingale (e.g. by Itô's formula). Then the
BS price is the expectation of the option payo� under a measure that turns the
discounted risky asset price process into a martingale.

2) The payo� of a put option f(x) = (K − x)+ belongs to C0
b (R) . The payo� of

a call is unbounded. Nevertheless one can show that its arbitrage�free prices in
the discrete models converge to e−rT E∗ [(ST −K)+] (see [12]).

!! From now on, time will be R+ !!
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CHAPTER 7

The Black�Scholes Model

Literature: [24]

Throughout, let W be a BM de�ned on a probability space (Ω,F , P ) . Let F0
t :=

σ(Ws : s 6 t) , the σ�algebra generated by W up to time t . Let

N := {B | ∃A ∈ F : B ⊆ A , P [A] = 0 }
be the (completion of the) set of null sets of P . Recall that the �ltration Ft :=
F0
t ∨N satis�es the �usual conditions� (right continuous, containing N ).

Self��nancing Portfolios

Recall the Black�Scholes assumptions. There are two assets: A risk�free one
and a risky one. The price S0 of the non�risky asset serves as reference value
and is set to 1. It grows with constant interest rate r > 0 and hence satis�es the
ODE

dS0
t = rS0

t dt , S0
0 = 1 .

The price St of the risky asset is assumed to satisfy the SDE

dSt = µSt dt+ σSt dWt , S0 = x > 0 ,

where µ is the drift rate and σ the volatitlity.

We �x a time horizon T > 0 (think of the expiration date of an option). A
(trading) strategy is a pair of (Ft)�adapted stochastic processes ξ = (ξ0, ξ) on
[0, T ] such that

T∫
0

∣∣ξ0
t

∣∣ dt <∞ and

T∫
0

ξ2
t dt <∞ P�a.s.

Note that the integral processes
t∫

0

ξ0
u dS

0
u =

t∫
0

ξ0
ur eru du

and
t∫

0

ξu dS
0
u =

t∫
0

ξuµSu du+

t∫
0

ξuσSu dWu
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are well�de�ned on [0, T ] e.g. the dW�integral is well�de�ned because we have
t∫

0

ξ2
uσ

2S2
u du < ∞ P�a.s.

Interpretation

ξ0
t = # shares of the non�risky asset in the investor's portfolio

at time t;
ξit = # shares of the risky asset in the investor's portfolio at

time t.

As in the discrete case, we consider only self��nancing strategies which we de�ne
next.

De�nition. Let ξ = (ξ0, ξ) be a strategy. The associated value process is de�ned
by

(7.1) Vt := ξ0
t S

0
t + ξtSt .

De�nition. A strategy ξ = (ξ0, ξ) is called self��nancing if the associated value
process V = (Vt)t∈[0,T ] satis�es the SDE

(7.2) dVt = ξ0
t dS

0
t + ξt dSt .

Remark. Recall that in the discrete model of Section 3 a strategy is de�ned to
be self��nancing if

ξt+1 · St︸ ︷︷ ︸
after rebalancing the portfolio

= ξt · St︸ ︷︷ ︸
before rebalancing the portfolio

for t ∈ {0, 1, . . . , T − 1} .

In this case, this can be reformulated as

Vt − Vt−1 = ξ0(S0
t − S0

t−1) + ξt(St − St−1) , 1 6 t 6 T .

In other notation (where ∆ denotes the di�erence operator: ∆Xt = Xt −Xt−1 )

∆Vt = ξ0∆S0
t + ξt∆St , 1 6 t 6 T .

Letting ∆t ↓ 0 we get (7.2).

Lemma 7.1. Let ξ = (ξ0, ξ) be a strategy and V = (Vt)t∈[0,T ] the associated value

process. Then ξ is self��nancing i� V is a solution of the SDE

(7.3) dXt = ξt dSt + (Xt − ξtSt)r dt , X0 = V0 .

Proof. Notice that ξ0
t = Vt−ξtSt

S0
t

by the very de�nition of Vt . Therefore, the

self��nancing condition is equivalent to

dVt = ξt dSt +
Vt − ξtSt

S0
t

dS0
t = ξt dSt + (Vt − ξtSt) rdt

because of dS0
t = rSt0 dt . QED
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Corollary 7.2. A self��nancing strategy ξ = (ξ0, ξ) with value process V is
uniquely determined by ξ and V0 .

Proof. The SDE for V given by the last lemma is linear of �rst order and
therefore has a unique solution fo a given initial value V0 . So if X is this unique
solution, ξ0 is given by ξ0

t := Xt−ξtSt
S0
t

. QED

In the following we will often work with discounted processes. We de�ne the
discounted price process S̃ by S̃t := e−rt St , t ∈ [0, T ] .

Lemma 7.3. Let ξ = (ξ0, ξ) be a self��nancing strategy with value process V .
The discounted value process D := e−rt Vt satis�es

dDt = ξt dS̃t, .

Proof. This will be a consequence of the product rule of Stochastic Analysis.
This rule and Lemma 7.1 imply

e−rt Vt = V0 +

t∫
0

Vu d e−ru +

t∫
0

e−ru dVu

= V0 −
t∫

0

Vur e−ru du+

t∫
0

e−ru ξu dSu +

t∫
0

e−ru(Vu − ξuSu)r du

= V0 +

t∫
0

e−ru ξu dSu +

t∫
0

r e−ru ξuSu du .

Note that

dS̃t = d(e−rt St) = −r e−rt St dt+ e−rt dSt

and hence

e−rt Vt = V0 +

t∫
0

ξu dS̃u ,

hence the result, which is but another way of writing this. QED

Existence of an EMM

We will prove the existence of an EMM (Equivalent Martingale Measure) by
a classical result of Stochastic Analysis, Girsanov's Theorem, which we now
recall:
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Proposition 7.4. (Girsanov Theorem) Let (αt)06t6T be an adapted process

satisfying
T∫
0

α2
s ds <∞ P�a.s. and such that

Mt := exp

− t∫
0

αs dWs −
1

2

t∫
0

α2
s ds


is a martingale on [0, T ] (su�cient conditions for this to be the case are supplied
by Novikov's Theorem, e.g. it su�ces that α is bounded). Let Q be the measure
on FT de�ned by

(7.4) Q [A] :=

∫
1AMT dP , A ∈ FT .

Then Q is a probability measure with Q ∼ P , and for any P�martingale X the
process

(7.5) X̃t := Xt − 〈M,X〉t = Xt +

t∫
0

αs d〈Ws, X〉

is a Q�martingale with 〈X̃〉 = 〈X〉. In particular, W̃t := Wt +
t∫

0

αs ds is a

Brownian Motion under Q .

Proof. The proof is a standard topic in Stochastic Analysis lectures. QED

To throw some more light upon the mechanisms behind this theorem it might be helpul to
reformulate it in terms of the stochastic exponential. First, supposeX is a deterministic variable,
i.e. a function X : U −→ R de�ned on some open U ⊆ R. Then the function Y := exp (X)
satis�es the ODE dY = Y dX and is the unique solution of this ODE with initial value exp (X0).

Now let X be a continuous semimartingale and consider the process Y := exp (X). By Itô's
formula, Y satis�es

dY = Y dX +
1

2
d〈X〉

and we see that, as soon as X has nonvanishing quadratic variation, the usual exponential does
not have the property of obeying the simple SDE dY = Y dX. This leads to the following de�ni-
tion. The stochastic, or Doléans�Dade, exponential E (X) of a continuous semimartingale X
is de�ned to be the unique solution Y of the SDE dY = Y dX with initial value Y0 = exp (X0).

For this de�nition to make sense one must, of course, show that such a solution does indeed
exist and is unique. To �nd a candidate for the solution, we start with some heuristics. Given
such a solution Y , apply Itô's formula to log Y :

d log Y =
1

Y
dY − 1

2Y 2
d〈Y 〉

(this only makes sense if Y is strictly positive; although it will turn out that this is always the
case, we do not know this yet, and it is here where the heuristics comes into the play). Now
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dY = Y dX yields d〈Y 〉 = dY dY = Y 2dXdX = Y 2d〈X〉 , and plugging all this stu� into the
last equation gives

d log Y = dX − 1

2
d〈X〉 = d(X − 1

2
〈X〉)

leading to

Y = exp

(
X − 1

2
〈X〉

)
establishing our candidate. So we put

E (X) := Y := exp

(
X − 1

2
〈X〉

)
and have to show that Y is indeed a solution satisfying the requirements. Applying again ITO's
formula, this time to exp (Z) with Z := X − 1

2 〈X〉 (note that Y = exp (Z)):

dY = exp (Z) dZ +
1

2
exp (Z) d〈Z〉 = Y dZ +

1

2
Y d〈Z〉 .

But dZ = dX − 1
2d〈X〉 and 〈Z〉 = 〈X − 1

2 〈X〉〉 = 〈X〉 − 1
2 〈〈X〉〉 = 〈X〉 , since 〈〈X〉〉 = 0 .

Therefore

dY = Y dX − 1

2
Y d〈X〉+

1

2
Y d〈X〉 = Y dX .

Since, in addition,

Y0 = exp

(
X0 −

1

2
〈X〉0

)
= exp (X0)

because 〈X〉0 = 0, this establishes existence.

Uniqueness now is simple but somehow a bit tricky. Let Y be a solution of dY = Y dX with
Y0 = eX0 . Consider the process Y E (−X) and compute its di�erential by the product formula
(this is the �rst trick):

d(Y E (−X)) = dY E (−X) + Y dE (−X) + dY dE (−X)

= Y E (−X) dX − Y E (−X) dX − Y E (−X) dXdX

= −Y E (−X) d〈X〉 ,

since dY = Y dX and dE (−X) = −E (−X) dX. Hence the process Z := Y E (−X) satis�es
dZ = −ZdX. On the other hand, a solution of this SDE for Z is given by E (−〈X〉) = e−〈X〉.
Therefore we consider (this is the second trick):

d(Y E (−X) e〈X〉) = d(Y E (−X)) e〈X〉+Y E (−X) d e〈X〉+d(Y E (−X))d e〈X〉

= −Y E (−X) e〈X〉 d〈X〉+ Y E (−X) e〈X〉 dX + Y E (−X) e〈X〉 d〈X〉d〈X〉

= Y E (−X) e〈X〉 d〈〈X〉〉
= 0 ,

since 〈X〉 is of bounded variation. So Y E (−X) e〈X〉 is a constant, and putting t = 0 shows

this constant is 1. Hence Y E (−X) e〈X〉 = Y e−X−
1
2 〈X〉 e〈X〉 = Y e−X+ 1

2 〈X〉 = 1, whence

Y = eX−
1
2 〈X〉 = E (X). This establishes uniqueness.

After this trickery a little pondering reveals, of course, what has happened. Since E (X) =

eX−
1
2 〈X〉, its inverse is E (−X + 〈X〉) = e−X+ 1

2 〈X〉 and not just E (−X) as in the deterministic
case. So what we have computed is d(Y/E (X)) = 1, and we see what we have been going
through was just the same proof of uniqueness as in the classical Calculus, camou�aged by the
more complicatd Itô Calculus.
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In the same vein, one can de�ne the stochastic logarithm. If X is a strictly positive continuous
semimartingale, its stochastic logarithm L (X) is de�ned to be the unique solution of the SDE

dY =
1

X
dX , Y0 = logX0 .

This time, existence and uniqueness are no issue, since this SDE merely asserts, applying the
semantics of the Itô Calculus

Yt − Y0 =

t∫
0

1

X
dX , Y0 = logX0 ,

and so merely de�nes L (X) via

L (X)t := logX0 +

t∫
0

1

Xs
dXs .

More interesting is the relation of the stochastic logarithm L to the stochastic exponential E .
If Y = L (X), then dY = dX/X with Y0 = logX0, hence dX = XdY with X0 = eY0 and so
X = E (Y ). We thus have E (L (X)) = X. Moreover,

X = E (Y ) = eY−
1
2 〈Y 〉 = eY e−

1
2 〈Y 〉

and

d〈Y 〉 = dY dY =
1

X2
dXdX =

1

X2
d〈X〉

and so
eY = X e

1
2 〈Y 〉

or

Y = logX +

∫
1

2X2
d〈X〉 .

In other words, we get

L (X)t = logXt +

t∫
0

1

2X2
t

d〈X〉t ,

a much nicer formula than the de�ning formula above, since we no longer have a stochas-
tic integral here, but a nice well�behaved Riemann�Stieltjes�integral. The compatibility
with the above de�ning integral is an immediate application of Itô's formula. Finally, also
L (E (Y )) = Y since dX = XdY and X0 = eY0 i� dY = dX/X and Y0 = logX0. So E and L
are inverse to one another.

The stochastic exponential has the nice property of being a local martingale as soon as X is,
a property also not shared by the usual exponential. The same holds true for the stochastic
logarithm. This is because the Itô integral has the following decisive feature:

If X is a local martingale with values in the open set U ⊆ R and f ∈ C1(U) , then the Itô
integral

Mt :=

t∫
0

f(Xu) dXu

is a local martingale.

This is the key result motivating Itô's ansatz to the Stochastic Calculus via his integral and
making his integral superior to other notions of a stochastic integral. The reason for this
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favourable behaviour of the Itô integral can be seen from the formula (♠) on page 4: In the
usual approximating sums of the Riemann�Stieltjes integral the integrand may be evaluated
at any point of the subdivision intervals; in the approximating sums of the Itô integral, on the
contrary, the integrand must be evaluated at the left endpoints of the subdivision intervals, a
prescription known as the non�anticipating character of the Itô integral; its computation does
not lean on future knowledge, thus keeping the game fair. This feature makes the Itô integral
a perfect �t to the needs of Mathematical Finance in describing the value process of a hedging
strategy.

Since the SDE for X can be written

Yt = exp (X0) +

t∫
0

exp

(
Xt −

1

2
〈X〉t

)
d

(
X − 1

2
〈X〉

)
t

the above described key feature of the Itô integral implies that Y is a local martingale as soon
as X, hence X − 1

2 〈X〉 , is a local martingale.

This raises the question when it will be a martingale. This is equivalent to E (X)T being
the density of a probability measure, i.e. to E [E (X)T ] = 1, a question which often can be
surprisingly di�cult to decide. A su�ecient, but by no means necessary, criterion is provided
by the famous

Novikov Condition: If X is a martingale with E
[

1
2 〈X〉T

]
<∞ , then E (X) is a martingale.

With these preliminaries out of the way one may try to make the mechanics behind the Gir-
sanov Theorem a little bit more transparent. The �rst thing to note is that in the formulation

above there is a hidden stochastic exponential: If we put Xt := −
∫ t

0
αs dWs, we have 〈X〉t =∫ t

0
α2
s ds by the Itô formula and so we recognize Mt = E (X) as a stochastic exponential, and

as such it is a local martingale since X is (X is even a genuine martingale). The measure Q

can be alternatively characterized as being de�ned by the density
dQ

dP
:= E (X)T . Since this

density is clearly strictly positive, it is immediate that the measure Q is equivalent to P .

The next thing that arises is the question why the density considered to de�ne the new measure
is to come from a stochastic exponential and required to be a martingale. In fact, there is a
very general scheme behind this.

Suppose one is given a �ltered probability space (Ω,F , (Ft)t∈[0,T ], P ) and wants to analyze the
transition to an equivalent measure Q ∼ P . This equivalent measure Q then induces for all t
measures Qt := Q|Ft which are equivalent to Pt := P |Ft and so we get a family of random
variables Dt, i.e. a process D = (Dt)t∈[0,T ], by

Dt :=
dQt
dPt

, the density of Qt w.r.t. Pt .

The �rst clou here is that D is a martingale, since by construction for all s 6 t we have
Qt [As] = Qs [As] for all As ∈ Fs and so E [Dt| Fs ] = Ds by the construction of the conditional
expectation. This martingale is strictly positive.

Conversely, suppose one is given a strictly positive martingale D on the �ltered probability
space (Ω,F , (Ft), P ), then it de�nes a whole family of probability measures Qt via prescribing

their densities to be
dQt
dP

:= Dt. The fact that D is a martingale implies that Qt ∼ P |Ft
for all t and that all these measures are compatible in the sense that Qt|Fs = Qs for s 6 t,
hence de�ning a terminal measure Q := QT on the terminal σ�algebra FT = σ (

⋃
t Ft) which

is equivalent to P |FT . So we suppose FT = F from now on.
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So a measure change from P to an equivalent measure Q is the same as the giving of a strictly
positive martingale D w.r.t. to the �ltration (Ft). The next clou is then that a semimartingale
Y under P stays a semimartingale under Q, because the property of being a semimartingale
is stable under a change to an equivalent measure (see e.g. [18], beginning of 5.6, pp.249-
250); this is a highly nontrivial result, which shows amongst other things the feasibility of the
semimartingales as a class of integrators for stochastic integration. Therefore, the only change
that the measure change from P to Q can make to Y is to its Doob�Meyer decomposition

Yt = MP
t −APt = MQ

t −A
Q
t ,

and so one has

MQ
t = MP

t −Bt , AQt = APt −Bt
where Bt = AQt − APt , hence a process of bounded variation, and so 〈MQ〉 = 〈MP 〉 = 〈Y 〉; a
change to an equivalent measure can change the martingale part of a semimartingale only by
a process of bounded variation � a so�called drift part � and so cannot change the quadratic
variation of the semimartingale. Thus P� semimartingales stay Q�semimartingales, but P�
martingales get transformed into Q�martingales by shifting them by a drift and vice versa.
This is the gist of the Girsanov Theorem.

The �nal clou of the Girsanov theorem is that it succeeds in identifying this shift. In the
most general situation, if MP is a local P�martingale, it states that the shift B is given as

B =

∫
1

D
d〈Y,D〉 = 〈Y,L (D)〉 = 〈MP ,L (D)〉 ,

In particular, if MP is a local P�martingale, then

MQ := MP − 〈L (D) ,MP 〉

is a local Q�martingale with 〈MQ〉 = 〈MP 〉 which will be a Q�martingale if MP was a P�
martingale. Written with di�erentials this reads

dMQ = dMP − 1

D
d〈MP , D〉 equivalently dMP = dMQ +

1

D
d〈MP , D〉 .

If MP is a P�martingale, MQ is a Q�martingale, and so upon taking expectations w.r.t. Q,
theMQ�term drops out and we get that the term 1

Dd〈M
P , D〉 desribes the in�nitesimal change

of the expectation EQ
[
MP

]
w.r.t. Q, hence the name drift term.

The core of the argument actually is rather straightforward, but the full chain of arguments is
cluttered with technicalities. To give a bare outline, one starts with the plausible equivalence

M (local) Q�martingale ⇐⇒ D ·M (local) P�martingale

by establishing the Bayes formula: if X is a Q�integrable random variable, then for all 0 6
t 6 T

DtE
Q [X| Ft ] = E

P [DtX| Ft ] .

After that, the claim is just the product rule: we have,

d(D ·MQ) = dD ·MQ +D · dMQ + d〈D,MQ〉

= dD ·MQ +D ·
(
dMP − 1

D
〈D,MP 〉

)
+ d〈D,MQ〉

= dD ·MQ +D · dMP − d〈D,MP 〉+ d〈D,MQ〉
= dD ·MQ +D · dMP
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since d〈D,MQ〉 = d〈D,MP 〉 as MP and MQ di�er only by a process with locally bounded
variation. But d(D ·MQ) = dD ·MQ +D · dMP shows that D ·MQ is a (local) P�martingale.
So MQ is a (local) Q�martingale.

This has been so far the story from the perspective of a given probability measure Q equivalent
to P . In many applications it is just the other way round; one is given a semimartingale Y
and wants to construct an equivalent measure which transforms Y in a speci�c way, e.g. into
a solution of a speci�c SDE. Since the transformation of Y is determined by L (D) where D is
the density process of the sought�for measure Q w.r.t. the start measure P , one begins with a
process G � which we will call the Girsanov process � and requires G = L (D), i.e. D := E (G).
Since the process D should be a martingale in the end, the starting process G should at least
be a local martingale. One then has usually to verify the following two basic properties:

• The process E (G) should be a true martingale. This is equivalent with Q de�ned
by the density E (G)T being a probability measure, which, in turn, is equivalent to
E [E (G)T ] = 1. This can be surprisingly di�cult to verify.

• The transformed process Y − 〈G〉Y should have the desired properties w.r.t. Q, e.g.
be a martingale.

In this way, on a �ltered probability space, measure change processesD induced by a probability
measure Q equivalent to a given probability measure P and local P�martingales G such that
the stochastic exponential E (G) is a martingale correspond under G := L (D) and D := E (G).
In particular, this explains the presence of the stochastic exponential in the usual formulations
of the Girsanov Theorem.

Therefore, the setup of theGirsanov Theorem, which might look hermetic at �rst sight, reveals
itself as being the generic scenario for the change to an equivalent measure. In particular, if one
manages, given a semimartingale Y under a measure P , to �nd a G such that 〈G, Y 〉 matches
the drift part of Y , this drift part is annihilated under the new measure generated by G via the
density E (G), and Y turns into a martingale under the changed measure. This explains the
predominant role the Girsanov theorem plays in constructing martingale measures.

Finally, the above formulation in Proposition 7.4 describes the measure changes corresponding
to local martingales G under a BM. The structure of those local martingales is described in the
famous Itô Representation Theorem (see Proposition 7.8 and the subsequent comments with
the Propositions 7.8A. and 7.8B. below). From these result one sees that the required form of
Mt above is general, and I hope that this quite long elaborations have shed some light on the
question why the formulation of Proposition 7.4 is as given.

In the following let

ϑ :=
µ− r
σ

(ususally called the �market price of risk�)

Mt := e−ϑWt− 1
2
ϑ2t , 0 6 t 6 T .

Let P ∗ be de�ned by

P ∗ [A] :=

∫
1AMT dP , A ∈ FT

and put
Bt := Wt + ϑt .
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By Proposition 7.4 B = (Bt)t∈[0,T ] is a BM under P ∗ .

Proposition 7.5. The discounted price S̃ is a P ∗�martingale, and dS̃t = σS̃tdBt .

Proof. One computes

dS̃t : = d(e−rt St)

= −r e−rt Stdt+ e−rt dSt

= −r e−rt Stdt+ e−rt µStdt+ e−rt σStdWt

= (µ− r) e−rt Stdt+ σ e−rt StdWt

= ϑσ e−rt Stdt+ σ e−rt StdWt

= σ e−rt Std(ϑt+Wt)

= σS̃tdBt ,

and so the second claim holds true. It implies

S̃t = S0 eσBt−
1
2
σ2t ,

a GBM (Geometric Brownian Motion), and hence a (strict, not only local) mar-
tingale under P ∗ . QED

The choice of ϑ might appear to come out of the blue, but is, in fact, quite direct and natural
once one follows consequently the Girsanov setup as described in the comments immediately
following Proposition 7.4. Since the �ltration on our probability space is the one generated
by the presupposed BM W , we start with the Girsanov-martingale as a martinale w.r.t. the
given BM W ; by the Martingale Representation Theorem (Proposition 7.8 below) it must be

of the form Gt =
t∫

0

γs dWs and should have the properties

• the associated densitiy process

Mt := E (G)t = exp

 t∫
0

γs dWs −
1

2

t∫
0

γ2
s ds

 ,

which is a local martingale, should be a true martingale, so that P ∗ with dP ∗/dP :=
MT is a probability measure;

• under P ∗, the discounted price S̃t should be a martingale.

Now we have seen above that S̃t = e−rt St satis�es the SDE

S̃t = (µ− r)S̃tdt+ σS̃tdWt .

Under the Girsanov transformation with Gt the process W , which is a BM under P , gets
transformed into

Bt = Wt − 〈G,W 〉t = Wt −
t∫

0

γs ds .
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De�ne P ∗ by dP ∗/dP := MT . Under this measure P ∗, the SDE for S̃t becomes

dS̃t = (µ− r)S̃tdt+ σS̃td

Wt +

t∫
0

γs ds

 = (µ− r + σγt)S̃tdt+ σS̃tdWt

so that we see that, if we choose

γt := −µ− r
σ

= −ϑ i.e. Gt := −ϑWt ,

we get dS̃ = σS̃dB = S̃d(σB), hence S̃ = E (σB). In order to �nish, we have to show

• M := E (G) = E (−ϑW ) is a P�martingale: Since W is a local P�martingale, M is a
local P�martingale, and Novikov's Condition (see page 85) is trivially ful�lled, so
M is indeed a P�martingale;

• S̃ = E (σB) is a P ∗�martingale: sinceM is a P�martingale, B is a BM under P ∗ and

so S̃ is a local P ∗�martingale. But again Novikov's Condition is trivially ful�lled,

and so S̃ is a P ∗�martingale.

Hence P ∗ is an EMM.

As a byproduct, we get the solution given above:

S̃t = E (σB)t = eσBt− 1
2σ

2t = eσWt+(σϑ− 1
2σ

2)t ,

which is compliant with the solution for S given at the beginnng of the course (see page 1).

Note that this discussion reveals that the risk�neutral measure is unique. In the discrete case
this implies that the model under consideration is complete, so it suggests at least that the BS
model is complete; this will be the next topic of the course after we will have discussed the
issue of arbitrage�freeness.

It is, by the way, interesting to note that the Black�Scholes SDE retains it form under the
new measure P ∗:

dSt = rStdt+ σStdBt

which is immediately veri�ed on the basis of Bt = Wt + ϑt. The di�erence to the SDE under
the real�world measure P is that the drift rate µ, which is unobservable anyway, has been
transformed away by the Girsanov transformation and been replaced by the constant interest
rate r. This makes one think about the roles of a real�world measure and of an EMM in
modelling �nancial processes, and some helpful remarks concerning this can be found in [13],
Section 4, pp. 7-9.

Thus we have constructed an EMM. In the discrete case this would allow us to
conclude that the model is arbitrage�free, since in this case the existence of an
EMM and arbitrage�freeness are equivalent notions. In the continuous case this
is not quite so, and we are now going to see that we have to modify the notion
of being arbitrage�free, albeit in a way which is quite meaningful economically.

De�nition. A self��nancing strategy ξ is called admissible if the associated value
process V is bounded from below, i.e. if there exists c ∈ R such that Vt ≥ c , P�
a.s. for all t ∈ [0, T ] .
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Lemma 7.6. Let ξ be an admissible strategy with value process V = (Vt)t∈[0,T ] .
Then the discounted value process D = (Dt)t∈[0,T ] , Dt := e−rt Vt , is a P ∗�
supermartingale.

Proof. Note that by Lemma 7.3

dDt = ξt dS̃t = ξtσS̃t dBt

which immediately implies that D is a local martingale under P ∗ . Recall from
Stochastic Analysis that any non�negative local martingale withM0 ∈ R (i.e. M0

a deterministic point) is a supermartingale (this is a direct application of Fatou's
Lemma; if M0 is allowed to be random, counterexamples can be constructed).
Since D is bounded from below by assumption, it becomes non�negative by
adding a suitable constant; this shows that D is a P ∗�supermartingale. QED

De�nition. A self��nancing strategy ξ = (ξ0, ξ) is called an arbitrage opportu-
nity if the associated value process V satis�es

(i) V0 6 0 ;
(ii) VT ≥ 0 P�a.s. ;
(iii) P [VT > 0] > 0 .

Proposition 7.7. There are no admissible strategies that are arbitrage opportu-
nities.

Proof. . Let ξ be an admissible strategy. Assume that its associated value
process V satis�es VT ≥ 0 P�a.s. and P [VT > 0] > 0 . By Lemma 7.6 the
discounted value process Dt = e−rt Vt is a P

∗�supermartingale. Hence

V0 = D0 ≥ E∗ [DT ] > 0 ,

which shows that ξ cannot be an arbitrage opportunity. QED

We next give an example for a self��nancing strategy that is an arbitrage oppor-
tunity (and thus cannot be bounded from below).

Example. Let V0 := 0 and ζt :=
1

T − t
1

σS̃t
, t ∈ [0, T ) . De�ne a process on

[0, T ) via

Xt :=

t∫
0

ζu dS̃u =

t∫
0

1

T − u
dBu , t ∈ [0, T )

(note that the last integrand is square�integrable over any interval [0, t] with
t < T , but not over [0, T )). One can interpret Xt as a time�changed BM: Let

A(t) := 〈X〉t =

t∫
0

1

(T − u)2
du , t ∈ [0, T )
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the (pathwise de�ned) quadratic variation of X , and let a(t) := A−1(t) for t ∈
R+ . We put W̃t := Xa(t) and claim this is a BM. For this, use Lévy's Theorem:
If a local martingale M is such that 〈M〉t = t , then M is already a BM. Observe

that 〈W̃ 〉t = 〈X〉a(t) = A(a(t)) = t for all t ∈ R+ , and so Lévy's Theorem

implies that W̃ is indeed a BM under P ∗ . Let

τ := inf { t ≥ 0 | Xt = 1 }

and

γ := inf { t ≥ 0 | W̃t = 1
}
.

Recall that P ∗ [γ <∞] = 1 and E∗ [γ] =∞ . Since a(γ) = τ , we have P ∗ [τ < T ]
= 1 .

Now we can de�ne our arbitrage strategy. Let

ξt := ζt1[0,τ ](t) .

Note that
T∫
0

ξ2
u du < ∞ P�a.s. The quantities ξ and V0 = 0 uniquely de�ne a

self��nancing strategy ξ = (ξ0, ξ) by Corollary 7.2. Let V be the associated value
process. By Lemma 7.3

e−rT VT =

T∫
0

ξt dS̃t =

τ∫
0

1

T − u
dBu = Xτ = 1

P�a.s., and so P ∗�a.s., which implies that ξ is an arbitrage opportunity.

This kind of arbitrage possibility is a continuous cousin of a family of strategies in
discrete models known classically, in the case of gambling strategies, asmartingale
strategies, or martingales in brief. Originally, the term martingale referred to
the doubling strategy in a fair coin�tossing game, but then was applied to any
strategy which runs higher and higher risks in order to compensate for all former
losses (the origin of the term martingale has been a subject of much debate over
the years, without conclusive results, see [26]). It is the classical way into ruin,
but nevertheless again and again through the years people fall prey to one or the
other variant of this strategy, as did the guy who ruined the Barings Bank in
1995.

Proposition 7.7 implies that ξ is not admissible (it is an exercise to check this di-
rectly). In light of the above discussion the notion of admissibility is economically
meaningful; the ruin probability for these martingale strategies is 1, since the case
of arbitrary large resource needs will occur almost surely, and no one has limitless
resources. It makes therefore sense to consider only admissible strategies. �
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As said above, in the continuous case the existence of an EMM is not equivalent to arbitrage�
freeness as de�ned in the discrete case. This observation initiated the search for a notion
replacing arbitrage�freeness which would be equivalent to the existence of an EMM on one
hand and economically plausible on the other, and which would be valid in maximal generality.
This was the begin of a long and convoluted, but interesting, story, which ended for the time
being with the quite technical notion of �no free lunch with vanishing risk� of Delbaen and
Schachermayer see [6], [7] and [37]. A clear and lucid survey of this story can be found in
[33]; see also [8].

Completeness of the BM Model

Recall the Martingale Representation Theorem:

Proposition 7.8. (Martingale Representation Theorem for square integrable
Brownian martingales) Let Wt be a Brownian Motion on the �ltered probability
space (Ω,F , (Ft)t∈[0,T ], P ) , the �ltration (Ft)t∈[0,T ] being generated by W . Let
M = (Mt)t∈[0,T ] be a square�integrable P�martingale w.r.t. (Ft)t∈[0,T ] . Then

there exists an adapted process H = (Ht)t∈[0,T ] such that E
[∫ T

0
H2
s ds

]
<∞ and

Mt = M0 +

t∫
0

Hs dWs . t ∈ [0, T ] .

Proof. Stochastic Analysis lectures (e.g. [32], Theorem 2.5.2) or any generic
book on Stochastics (e.g. [28], p. 186, Theorem 43, or [18], Satz 5.37). QED

There are a couple or remarks to make here which will be useful in future comments.

1) This representation is unique in the sense that, if one has

Mt = M0 +

t∫
0

Hs dWs = M0 +

t∫
0

H̃s dWs ,

then H = H̃ P ⊗ λ�a.s., where H, H̃ are considered as maps Ω × [0, T ] → R and λ denotes
Lebesgue measure.

This is a special case of the following simple result:

Lemma. Let Wt be a Brownian Motion on the �ltered probability space (Ω,F , (Ft)t∈[0,T ], P ) ,
the �ltration (Ft)t∈[0,T ] being generated by W . Let α = (αt)t∈[0,T ] be an adapted process with

E

[∫ T
0
α2
s ds

]
<∞. If the integral process

∫
αdW vanishes P ⊗ λ�a.s., then so does α.

For the proof, just observe that the integral process has quadratic variation
∫
α2
s ds.

From this, uniqueness above follows easily since we have
t∫

0

(Hs − H̃s) dWs = 0 P ⊗ λ�a.s.
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2) There are two succesive generalizations which will be of importance in later comments.
The �rst one is that the Martingale Representation Theorem holds as above for general local
P�martingales:

Proposition. 7.8A. (Representation Theorem for local Brownian martingales) Let Wt be a
Brownian Motion on the �ltered probability space (Ω,F , (Ft)t∈[0,T ], P ) , the �ltration (Ft)t∈[0,T ]

being generated by W . Let M = (Mt)t∈[0,T ] be a local P�martingale w.r.t. (Ft)t∈[0,T ] . Then
M is continuous, and there exists a P ⊗ λ�almost unique adapted process H = (Ht)t∈[0,T ] such

that E
[∫ T

0
H2
s ds

]
<∞ and

Mt = M0 +

t∫
0

Hs dWs . t ∈ [0, T ] .

The references for the proof are as above.

In particular, since any Itô integral w.r.t. a BM is a local martingale (see ), this result
characterizes the local martingales under a BM.

Secondly, this generalizes to d�dimensional BMs:

Proposition. 7.8B. (Representation Theorem for local d�dimensional Brownian martingales)
Let Wt = (W 1

t , . . . ,W
d
t ) be a d�dimensional Brownian Motion on the �ltered probability space

(Ω,F , (Ft)t∈[0,T ], P ) , the �ltration (Ft)t∈[0,T ] being generated by W . Let M = (Mt)t∈[0,T ] be a
local P�martingale w.r.t. (Ft)t∈[0,T ] . Then M is continuous, and there exist a d�dimensional

P ⊗ λ�almost unique adapted processes Ht = (Ht)t∈[0,T ] such that E
[∫ T

0
‖H‖2 ds

]
<∞ and

Mt = M0 +

t∫
0

Hs · dWs = M0 +

d∑
i=1

t∫
0

Hs
idW i

s . t ∈ [0, T ] ,

where H := (H1, . . . ,Hd) .

Again, the references for the proof are as above.

De�nition. In this section, by a contingent claim we mean an FT�measurable
random variable C ≥ 0 that is square�integrable w.r.t. P ∗ .

Theorem 7.9. For any contingent claim C there exists an admissible strategy
ξ = (ξ0, ξ) such that the associated value process is given by

Vt = e−r(T−t)E∗ [C|Ft] .

In particular, VT = C , i.e. ξ replicates C .

Proof. The Theorem is essentially a consequence of the Martingale Repre-
sentation Theorem. Let Mt := e−r(T−t)E∗ [C|Ft] . Then M is a martingale, in
fact a martingale which is square�integrable w.r.t P ∗. That M is a martingale
is immediate from the tower property of conditional expectations. That M is
square�integrable w.r.t. P ∗ follows since C is square�integrable w.r.t P ∗. The
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Martingale Representation Theorem then implies that there exists an adapted

process H with E∗
[∫ T

0
H2
s ds

]
<∞ and Mt = M0 +

∫ t
0
Hs dBs t ∈ [0, T ] .

Let

ξt :=
Ht

σS̃t
.

Moreover,let ξ = (ξ0, ξ) be the self��nancing strategy determined by V0 := M0

and ξ . Then the discounted value process Dt = e−rt Vt associated to ξ satis�es

Dt = D0 +

t∫
0

ξu dS̃u by Lemma 7.3

= D0 +

t∫
0

ξuσS̃u dBu by Proposition 7.5

= M0 +

t∫
0

Hu dBu

= Mt .

This implies

Vt = ertMt = e−r(T−r)E∗ [C|Ft] .
Why is ξ admissible? This is just one simple observation: since C ≥ 0 P�a.s.
and so P ∗�a.s., we have Vt ≥ 0 P ∗�a.s. and so P�a.s. QED

Next, I want to argue that the value of the replicating portfolio is the only
arbitrage�free price. So let C be a contingent claim and ξ = (ξ0, ξ) the replicating
process with value process Vt = ertMt = e−r(T−r)E∗ [C|Ft] . Suppose that the
claim is traded at a market price Mt 6= Vt at time t . Then we are now going to
show there exists an arbitrage opportunity. The general philosophy behind the
construction of such an arbitrage opportunity is, of course, to sell the claim when
the market price is too high (i.e. larger than Vt) and to buy when it is to low
(i.e. smaller than Vt) .

1 st case: Mt < Vt . Buy the claim at time t and sell the replicating portfolio. So
you hold

ζ0
u = −ξ0

u +
1

S0
t

(Vt −Mt) non�risky asset shares

ζu = −ξu risky asset shares

at u ∈ [t, T ] . Then

Portfolio value at t:

ζ0
t S

0
t + ζtSt +Mt = (−ξ0

t S
0
t + Vt −Mt) + (−ξtSt) +Mt
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= −ξ0
t S

0
t − ξtSt + Vt

= 0 .

Portfolio value at T :

ζ0
TS

0
T + ζtST +MT = ζ0

TS
0
T + ζtST + C

(since any other value of MT would lead to an immediate arbitrage opportunity
modifying the market price)

= (−ξ0
TS

0
T +

S0
T

S0
t

(Vt −Mt)) + (−ξTST ) + C

= −ξ0
TS

0
T − ξTST + C +

S0
T

S0
t

(Vt −Mt)

=
S0
T

S0
t

(Vt −Mt)

> 0 P�a.s.

and so we have arbitrage.

2 nd case: Mt > Vt . Sell the claim at time t and buy the replicating portfolio. So
you hold

ζ0
u = ξ0

u +
1

S0
t

(Mt − Vt) non�risky asset shares

ζu = ξu risky asset shares

at u ∈ [t, T ] . Similar calculations as above show:

Portfolio value at t: 0 .

Portfolio value at T :
S0
T

S0
t

(Mt − Vt) > 0 .

and so again we have arbitrage.

The upshot is that the value process Vt = e−r(T−t)E∗ [C|Ft] is the only candidate
for an arbitrage�free price process for C . And it is indeed an arbitrage�free price
process in the sense that in the extended market model (S0, S, V ) there are no
arbitrage opportunities. I will not give a formal proof of this statement which is
su�ciently parallel to the discrete case. The philosophy should be clear: one sets
up the extended market model, chooses an EMM P ∗ for the original model; then
P ∗ will be an EMM for the extended model i� the discounted value process of a
replicating portfolio is a P ∗�martingale.

As a �nal remark, note that the fact that P ∗ is an EMM for the extended model
(S0, S, V ) implies that there are no admissible strategies in the extended model
that are arbitrage opportunities (in the discrete case this was the easy part of
the FFToAP).
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De�nition. The BS�price (Black�Scholes�price) of a contingent claim C at
time t is de�ned by e−r(T−t)E∗ [C|Ft] .

Now the time has come for the famous Black�Scholes�formula.

Proposition 7.10. Let C = (ST −K)+, the payo� of a European call. Then the
BS�price of C at time t = 0 is

BS�call(S0, K, T, r, σ) = S0Φ(d1)− e−rT KΦ(d2)

where Φ is the distribution function of N (0, 1) and

d1 : =
log(S0/K) + (r + σ2/2)T

σ
√
T

d2 : =
log(S0/K) + (r − σ2/2)T

σ
√
T

= d1 − σ
√
T .

Proof. Note that
ST = S0 eσBT+(r−σ2/2)T .

Now recall that, if X : Ω −→ R is a random variable on a probability space (Ω,F , P ) and
f : R −→ R a measurable function, the expectation value E [f(X)] of the random variable
f(X) can be computed as an integral over R :

E [f(X)] =

∫
f dPX

where PX is the probability measure on the Borel measure space (R,B(R)) given by

∀A ∈ B(R) : PX [A] := P
[
X−1(A)

]
= P [X ∈ A] .

In particular, if PX is absolute continuous w.r.t. the Lebesgue measure on R with densitiy
function ϕX , one has

E [f(X)] =

∫
f(x)ϕX(x) dx .

In our case we have (ST −K)+ = f(X)+ with

f(x) = S0 eσ
√
Tx+(r−σ2/2)T −K

and

X :=
BT√
T

an N (0, 1)�distributed random variable.

Hence

E
∗ [(ST −K)+

]
=

∫ (
S0 eσ

√
Tx+(r−σ2/2)T −K

)+

ϕ(x)dx
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where ϕ(x) = (1/
√

2π) e−x
2/2 . Now

S0 eσ
√
Tx+(r−σ2/2)T ≥ K ⇐⇒ x ≥ − log(S0/K) + (r − σ2/2)T

σ
√
T

= −d2 .

Therefore

E
∗ [(ST −K)+

]
=

∞∫
−d2

(
S0 eσ

√
Tx+(r−σ2/2)T −K

)
ϕ(x)dx

=

d2∫
−∞

(
S0 e−σ

√
Tx+(r−σ2/2)T −K

)
ϕ(x)dx

= S0 erT
d2∫

−∞

e−σ
√
Tx−σ2T/2 e−x

2/2 1√
2π
dx−K

d2∫
−∞

e−x
2/2 1√

2π
dx

= S0 erT
d2∫

−∞

e−(x+σ
√
T )2/2 1√

2π
dx−K

d2∫
−∞

e−x
2/2 1√

2π
dx

= S0 erT
d2+σ

√
T∫

−∞

e−x
2/2 1√

2π
dx−K

d2∫
−∞

e−x
2/2 1√

2π
dx ,

whence the result. QED

Proposition 7.11. Let P = (K − ST )+, the payo� of a European put. Then the
BS�price of P at time t = 0 is

BS�put(S0, K, T, r, σ) = −S0Φ(−d1) + e−rT KΦ(−d2) .

(Mnemonic: Just reverse all the signs.)

Proof. Amounts to a calculation entirely analogous to the one performed in
the proof of Proposition 7.10. QED

Another method of proof appeals to

Proposition 7.12. (Put�Call�Parity)

BS�put(S0, K, T, r, σ) = BS�call(S0, K, T, r, σ)− S0 + e−rT K .

Proof. Note that for any real number x one has x+ =
|x|+ x

2
. Hence

(−x)+ =
|−x| − x

2
=
|x| − x

2
=
|x|+ x

2
− x = x+ − x .

So we have
(K − ST )+ = (ST −K)+ − St +K ,
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and hence, upon taking expectations,

e−rT E∗
[
(K − ST )+

]
= e−rT E∗

[
(ST −K)+

]
− e−rT E∗ [ST ] + e−rT K

= BS�call(S0, K, T, r, σ)− S0 + e−rT K .

QED

Remark. The Put�Call�Parity holds true not only in the BS�model but also in
other models which are based on the same general principles (e.g. pricing based
on the no�arbitrage paradigm). It holds in such models, since otherwise there
would be � what else? � arbitrage opportunities.

The Black-Scholes-PDE

Let h : R+ −→ R+ be Borel�measurable. Suppose that there exists c, p > 0
such that h(x) 6 c(1 + xp) . Note that h(ST ) is square�integrable w.r.t. P ∗ and
hence a contingent claim. Let

Vt = e−r(T−t)E∗ [h(ST )|Ft]
be the BS�price of h(ST ) at time t .

Now, for any u, v ∈ [0, T ] such that u+ v ∈ [0, T ] there holds

Su+v = S0 eσBu+v+(r−σ2/2)(u+v)

= S0 eσ(Bu)+(r−σ2/2)u+σ(Bu+v−Bu)+(r−σ2/2)v

= S0 eσ(Bu)+(r−σ2/2)u eσ(Bu+v−Bu)+(r−σ2/2)v

= Su eσ(Bu+v−Bu)+(r−σ2/2)v .

In particular, we have for any t ∈ [0, T ] (putting u := t and v := T − t :)

ST = St eσ(BT−Bt)+(r−σ2/2)(T−t) .

Since the BM B has independent increments, Lemma 4.3 yields

Vt = e−r(T−t)E∗
[
h
(
St eσ(BT−Bt)+(r−σ2/2)(T−t)

)∣∣∣Ft ]
= v(t, St)

where

v(t, x) : = e−r(T−t)E∗
[
h
(
x eσ(BT−Bt)+(r−σ2/2)(T−t)

)]
a deterministic function. This deterministic function satis�es the following PDE:

Proposition 7.13. v belongs to C1,2([0, T ) × (0,∞)) ∩ C0,2([0, T ] × (0,∞)) and
solves the PDE

(7.6) vt(t, x) + rxvx(t, x) +
1

2
σ2x2vxx(t, x)− rv(t, x) = 0

98



Chapter 7. The Black�Scholes Model

with boundary condition

v(T, x) = h(x) .

(This PDE is sometimes referred to as the Black�Scholes PDE.)

Proof. The random variable

Zt := x eσ(BT−Bt)+(r−σ2/2)(T−t)

has densitiy ψt,x with

ψt,x(z) =
1√

2πσ2(T − t)
1

z
e
− (log(z)−m−log(x))2

2σ2(T−t)

where m = (r − σ2/2)(T − t) .

To see this, write

Zt = eσ(BT−Bt)+(r−σ2/2)(T−t)+log(x)

to conclude that Zt is logN (µ, τ2)�distributed, where

µ = (r − σ2/2)(T − t) + log(x) , τ = σ
√
T − t .

Therefore, Y := logZ has the distribution density

ϕY (y) = N (µ, τ2)(y) =
1√

2πτ2
e−(y−µ)2/(2τ2) .

Writing Zt = eY , the distribution function ΦZt turns out as

ΦZt
(z) = P ∗

[
eY 6 z

]
= P ∗ [Y 6 log(z)] =

log(z)∫
0

ϕY (y) dy =

z∫
0

1

x
ϕY (log(x)) dx

hence Zt has the distribution density

ψt,x(z) := ϕZt
(z) =

1

z
ϕY (log(z))

as claimed.

Note that

u(t, x) =

∞∫
0

h(z)
∂

∂x
ψt,x(z) dz

= −1

x

∞∫
0

h(z)
(log(z)−m− log(x))2

2σ2(T − t)
ψt,x(z) dz

is de�ned and �nite for all (t, x) ∈ [0, T ) × (0,∞) . This implies that we can
change di�erentiation and integration and so obtain vx(t, x) = u(t, x) .

Putting t := T in the de�nition of v(t, x) immediately shows the boundary con-
dition v(T, x) = h(x) . One can then show v(t, x) ∈ C0,2([0, T ]× (0,∞)) .
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The last claim follows from the fact that one can write v(t, x) = e−r(T−t)E∗ [h(Zt)] and that
the family (h(Zt))t∈[0,T ] is uniformly integrable due to the bound c(1 + xp) on h(x) . The Le-
besgue Dominated Convergence Theorem then implies limt↑T E

∗ [h(Zt)] = E∗ [h(ZT )] = h(x)
and so limt↑T v(t, x) = v(T, x) .

In many cases where h is given concretely, explicit computations may show directly that v(t, x)
has the stated continuity and di�erentiability properties. For this, one can use the expression
of v(t, x) as an expectation value given above and use the fact that BT − Bt is N (0, T − t)�
distributed:

v(t, x) = e−r(T−t)E∗ [h(Zt)] = e−r(T−t)E∗ [f(Yt)]

with

f(y) = h
(
x eσ

√
T−ty+(r−σ2/2)(T−t)

)
and

Yt =
BT −Bt√
T − t

an N (0, 1)�distributed random variable. Hence

er(T−t) v(t, x) = E
∗ [f(Yt)] =

∫
h
(
x eσ

√
T−ty+(r−σ2/2)(T−t)

)
ϕ(y)dy

where ϕ(y) = (1/
√

2π) e−y
2/2 .

Now we are in business. Let us consider the important example of a European call, i.e. h(x) :=
(x −K)+ . The computation of this integral then is virtually identical with the computation
done in the case of the BS-price at time t = 0 with S0 replaced by x and T replaced by T − t .
The outcome is

er(T−t) v(t, x) = x er(T−t)
d1∫
−∞

e−y
2/2 1√

2π
dy −K

d2∫
−∞

e−y
2/2 1√

2π
dy ,

with

d1 : =
log(x/K) + (r + σ2/2)(T − t)

σ
√
T − t

and

d2 : =
log(x/K) + (r − σ2/2)(T − t)

σ
√
T − t

= d1 − σ
√
T − t .

So there comes

v(t, x) = xΦ

(
log(x/K) + (r + σ2/2)(T − t)

σ
√
T − t

)
− er(T−t)KΦ

(
log(x/K) + (r − σ2/2)(T − t)

σ
√
T − t

)
.

which shows that v(t, x) ∈ C1,2([0, T )× (0,∞)) .

As an extra bonus we note that, because v(t, St) is the BS�price of a European call at time t ,
we get the following generalization of the Black�Scholes formula:
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Corollary. Let C = (ST −K)+, the payo� of a European call. Then the BS�price of C at time
t ∈ [0, T ) is

BS�call(St,K, T − t, r, σ) = StΦ(d1)− e−r(T−t)KΦ(d2)

where Φ is the distribution function of N (0, 1) and

d1 : =
log(St/K) + (r + σ2/2)(T − t)

σ
√
T − t

and

d2 : =
log(St/K) + (r − σ2/2)(T − t)

σ
√
T − t

= d1 − σ
√
T − t .

�

That vxx and vt are de�ned and continuous on [0, T )× (0,∞) can be shown in a
similar manner.

It remains to show that v satis�es (7.6). The Itô�formula for v(t, St) reads

v(t, St) = v(0, S0) +

t∫
0

vt(u, Su) du+

t∫
0

vx(u, Su) dSu +
1

2

t∫
0

vxx(u, Su) d〈S〉u

with 〈S〉 the quadratic variation process of S . Now the SDE de�ning S is

dSt = µSt dt+ σSt dWt

and by construction, Bt = Wt + ϑt , whence dWt = dBt − ϑdt . Therefore

dSt = µSt dt+ σSt (dBt − ϑdt) = (µ− σϑ)Stdt+ σStdBt

and so, in terms of B, the SDE for S reads

dSt = rStdt+ σStdBt .

The formal Itô Calculus gives

d〈S〉t = dSt dSt = r2S2
t dt dt+ 2rσS2

t dt dBt + σ2S2
t dBt dBt

= r2S2
t d〈t〉+ 2rσS2

t d〈t, B〉t + σ2d〈B〉t
and so

d〈S〉t = σ2S2
t dt

since 〈t〉 = 〈t, B〉t = 0, and 〈B〉t = t , a famous result of Lévy. Plugging these
formulas for dSt and d〈S〉t into Itô's formula yields

v(t, St) = v(0, S0) +

t∫
0

vt(u, Su) du+

t∫
0

vx(u, Su) (rSudu+ σSudBu)+
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+
1

2

t∫
0

vxx(u, Su)σ
2S2

u du

= v(0, S0) +

t∫
0

{
vt(u, Su) + rSuvx(u, Su) +

1

2
σ2S2

uvxx(u, Su)

}
du+

+

t∫
0

σSuvx(u, Su) dBu

Let Dt := e−rt v(t, St) . Then D is a P ∗�martingale. The Product Formula of
Itô Calculus yields

(7.7) Dt = e−rt v(t, St) = v(0, S0) +

t∫
0

au du+

t∫
0

e−rt σSuvx(u, Su) dBu

with

au = e−rt
{
vt(u, Su) + rSuvx(u, Su) +

1

2
σ2S2

uvxx(u, Su)− rv(u, Su)

}
We have

t∫
0

au du = Dt − v(0, S0)−
t∫

0

e−rt σSuvx(u, Su) dBu .

On the left hand side we have a process of bounded variation and hence with
vanishing quadratic variation. On the right hand side we have a local martingale;
this martingale, then, is to have vanishing quadratic variation, hence it has P ∗-

a.s. constant paths, so the process
•∫
0

au du has P
∗�a.s. constant paths, and taking

t = 0 it follows that this process has to vanish P ∗�a.s. This entails

(7.8) E
∗

 T∫
0

1{au 6=0} du

 = 0 .

Fubini's Theorem then implies that for Lebesgue�a.a. u ∈ [0, T ) we have
au = 0 P�a.s.

To see this, �rst note that the P ∗-a.s. vanishing of
•∫
0

au du means P ∗ [A] = 1 where A is the

event

A :=

∀ t :

t∫
0

au du = 0

 .
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Now consider the event

B :=


T∫

0

au du 6= 0

 .

Then surely A ⊆ Bc and so B ⊆ Ac , hence B is a null set w.r.t P ∗ . Then for any non�negative
bounded random variable X with {X 6= 0} ⊆ B we have E∗ [X] = 0 and (7.8) follows.

Fubini now entails

0 = E
∗

 T∫
0

1{au 6=0} du

 =

T∫
0

E
∗ [
1{au 6=0}

]
du =

T∫
0

P ∗ [au 6= 0] du

and so for Lebesgue�a.a. u ∈ [0, T ) there holds P ∗ [au 6= 0] = 0 , i.e. au = 0 P ∗�a.s.

Since the distribution of St is equivalent to the Lebesgue measure on (0,∞) and
v ∈ C1,2 , there follows that v must satisfy the equation (7.6) on [0, T )× (0,∞) .

To put some more �esh onto this meagre argumentative bone, de�ne, for any given u ∈ [0, T )
a function βu as

βu(x) = vt(u, x) + rxvx(u, x) +
1

2
σ2S2

t vxx(u, x)− rv(u, x) .

We then have au = e−rt βu(Su) and so βu(Su) = 0 P ∗�a.s. Since Su is log�normally distributed,
its distribution is equivalent to Lebesgue measure. But if X is a random variable whose
distribution is equivalent to Lebesgue measure, it must have dense image. Otherwise, there
would be a nonempty set U ⊆ R such that {X ∈ U} = ∅ and so P ∗ [X ∈ U ] = 0 contradicting
the fact that U has nonzero Lebesgue measure. Therefore βu = 0 on a dense subset of R ,
and since βu is continuous, we have βu = 0 everywhere. As this holds for all u , we get equation
(7.6)

QED

Proposition 7.14. Let ξ = (ξ0, ξ) be the admissible strategy that replicates C =
h(ST ) and so with value process Vt = e−r(T−t)E∗ [h(ST )| Ft ] . Then

ξt = vx(t, St) λ⊗ P�a.s.
with λ the Lebesgue measure on (R,B(R)) .

Proof. Recall that the discounted value process Dt := e−rt Vt satis�es

Dt = D0 +

t∫
0

ξuσS̃u dBu .

by Lemma 7.3 and Proposition 7.5 and so, in particular, is a P ∗�martingale as
an Itô�integral process w.r.t. a BM. From (7.7) in the proof of Proposition 7.13
above we get, because au = 0 :

Dt = D0 +

t∫
0

e−rt σSuvx(u, Su) dBu = D0 +

t∫
0

vx(u, Su)σS̃u dBu .

103



S. Ankirchner Mathematical Finance Bonn WS 2012/13

This implies
t∫

0

ξuσS̃u dBu =

t∫
0

vx(u, Su)σS̃u dBu .

But when two integral processes coincide, their integrands coincide; this follows
directly from the Lemma of the discussion on page 92 above. Hence the result.
QED

Remark. The quantity vx(u, Su) is called the delta of the contingent claim at
time t . Confer with the delta from Section 4: In the BOPM, the delta was a
di�erence quotient, namely

∆t(x) =
vt(ux)− vt(dx)

ux− dx
.

Since the BOPM approximates the BS�model and converges to it in the limit
when the time intervals go to zero, this di�erence quotient becomes a derivative,
and things �t together nicely.

Implied volatility

Let C be a contingent claim with BS�price at t = 0 given by e−rT E∗ [C] . For the
calculation of the BS�price one needs to specify the parameters r and σ . The
interest rate r can be derived from bond markets and so is not a big problem in
general (which is not quite true as it stands, but we leave it at that here).

How to choose σ? There are two approaches to this problem, one goes under the
name historical vola (where vola is a common abbrevation of the term volatility),
and the other under the name implied vola.

1. Historical vola. The vola can be estimated from historical data. E.g.
calculate the empirical std ( = standard deviation) of the log returns log(St1/St0),
log(St2/St1), . . . , where t0, t1, t2, . . . are trading days. Note that historical volatil-
ity is based on price movements of the underlying.

But in practice, one refrains from proceeding this way. Instead, one uses

2. Implied vola. The vola σ is derived (one also says calibrated) from
current market prices of liquidly traded plain vanilla options (this notion refers
to standard common options like calls and puts and the like, which are traded
by exchange, so you have a market price at any moment in time, in contrast to
more individual, complex derivatives, which usually are traded o��the�counter
(OTC), the exotic options). With these volatilities one can price the more exotic
options which are not traded by exchange. So implied volatility is, in contrast
to historical volatility, not based on price movements of the underlying, but of
other derivatives on the market.
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For a given plain vanilla option there exists only one value of σ such that the BS
price coincides with the market price. Why is this the case?

Lemma 7.15. (Vega of a call or put) Let c(σ) := BS�call(S0, K, T, r, σ) and
p(σ) := BSput(S0, K, T, r, σ) . Then

∂c

∂σ
=
∂p

∂σ
= S0Φ(d1)

√
T

where

d1 =
log(S0/K) + (r + σ2/2)T

σ
√
T

.

Proof. Straightforward. QED

(In particular, the lemma shows that the derivatives are positive, which means
that c and p grow with rising volatility. The economic rationale behind this
result is as follows. Options can be regarded as an insurance against capital
losses. Increase in volatility means higher risk, and as a consequence higher value
of the insurances c and p.)

The derivative of the option value w.r.t. the volatility is called vega (a �ctitious
greek letter, meant to be a cousin of gamma, delta, . . . , and member of the family
known in �nance as The Greeks). Note that the vega is positive.

De�nition. Let M be the market price of a call (or put) with maturity T and
strike K . A real σimp ∈ R+ is called implied volatility if

BS�call(S0, K, T, r, σ
imp) = M .

Remark. a) Notice that Lemma 7.15 implies that the implied vola is unique.

b) There is no closed form expression for σimp . The implied vola has to be
approximated numerically, e.g. with Newton's method (which is very fast; cue:
�quadratic convergence�). �

Suppose that for a �xed maturity T several calls are traded with strikes K1 <
K2 < · · · < Kn at market prices M(T,Kj) 1 6 j 6 n . For any strike Kj we

can calculate the implied volatility σimp
j , 1 6 j 6 n . In practice, the function

Kj 7→ σimp
j usually is not constant. One observes frequently one of two following

phenomena:

1) Volatility smile. Wikipedia's explanation is as follows:

(source http://en.wikipedia.org/wiki/Volatility_smile)

In �nance, the volatility smile is the pattern in which in- and out-of-the-
money options are observed to have higher implied volatilities than at-
the-money options. A graph of implied volatility vs. strike price for a
given expiry will form a upturned curve similar to the shape of a smile.
The pattern displays di�erent characteristics for di�erent markets and is
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believed to result from risk averse traders' valuations of the probability
of extreme price movements in the underlying instrument. Equity options
traded in American markets did not show a volatility smile before the Crash
of 1987 but began showing one afterwards.[1] The phenomenon is not fully
understood, and modeling the volatility smile is an active area of research
in quantitative �nance . . .

References
[1] John C. Hull, Options, Futures and Other Derivatives, 5th edition,

page 335

As a complement the following de�nition of the web site Dogs of the Dow :

(source http://www.investorglossary.com/volatility-smile.htm)

The options phenomena known as the volatility smile occurs when an at-
the-money option (ATM) exhibits a lower implied volatility than either
the in-the-money (ITM) or out-of-the-money (OTM) options. On a chart
plotting implied volatility on the vertical axis and strike price on the hor-
izontal axis, a u-shaped 'volatility smile' is formed. The volatility smile
is graphed for options with the same expiration date. The volatility smile
became more noticeable in equity and index options after the crash of 1987.
Prior to observing the post-1987 volatility smile, it was assumed that there
existed a constant and independent relationship between implied volatility
and the strike price of options; the volatility smile was therefore a direct
contradiction to one of the main assumptions in the Black Scholes Op-
tion Pricing Model. The presence of a volatility smile generally infers that
there is more demand by option traders for in-the-money and/or out-of-
the-money options rather than at-the-money options. The presence of a
volatility smile then implies that the extrinsic values of the ITM and OTM
options are greater than that of the ATM option. The volatility smile is
generally a result of an anticipated increase in market volatility. To hedge
against this expected volatility, traders are more likely to purchase and sell
OTM and ITM options rather than ATM options; this excess demand is
expressed by the shape of the volatility smile.

2) Volatility skew: Here, Wikipedia has to say the following (loc. cit.):

When implied volatility is plotted against strike price, the resulting graph
is typically downward sloping for equity markets, or valley-shaped for cur-
rency markets. For markets where the graph is downward sloping, such as
for equity options, the term "volatility skew" is often used. For other mar-
kets, such as FX options or equity index options, where the typical graph
turns up at either end, the more familiar term "volatility smile" is used.
For example, the implied volatility for upside (i.e. high strike) equity op-
tions is typically lower than for at-the-money equity options. However, the
implied volatilities of options on foreign exchange contracts tend to rise in
both the downside and upside directions. In equity markets, a small tilted
smile is often observed near the money as a kink in the general downward
sloping implicit volatility graph. Sometimes the term "smirk" is used to
describe a skewed smile.
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One also frequently observes that σimp varies with the time to maturity T .

Let M(T,K) be the market price of a call with maturity T and strike K . The
mapping (T,K) 7→ σimp(T,K) is called volatility surface. This is the crucial
object for option traders.

Since the vola surface usually is not constant, practitioners and researchers have
come up with models more general than the BS model (most of them containing
the BS model aa a special case). Within these more general models the option
price paradigm remains true: an arbitrage�free price of an option is equal to the
discounted expectation of its payo� under an EMM.

107





CHAPTER 8

The Local Volatility Model

The local volatility (LV) model is a generalization of the BS model. Again it will
be a complete model (I will not be going to prove this, I just state it), so there
exists exactly one EMM P ∗ . The risky asset price process is assumed to satisy
an SDE of the form

(8.1) dSt = rStdt+ Stσ(t, St)dBt , S0 ∈ (0,∞) .

Again, r > 0 is the interest rate and B a BM w.r.t. P ∗ . The function σ :
[0, T ]×R+ −→ R+ , called local volatitlity function, is assumed to be measurable
and bounded. Moreover, we suppose that x 7→ σ̃(t, x) := xσ(t, x) is Lipschitz�
continuous and satis�es a growth condition, so that the SDE (8.1) has a unique
strong solution with initial condition S0 (cf. Stochastic Analysis lectures). Note
that σ is given by a deterministic function and has no independent stochastics
of its own; the only stochastics also in this model enters only through the price
process S .

Lemma 8.1. The price process S is positive. Moreover, E∗
[
supt∈[0,T ] S

2
t

]
<∞ .

Proof. Note that the solution S to (8.1) satis�es

St = S0 exp

 t∫
0

σ(u, Su) dBu +

t∫
0

r − σ2(u, Su)

2
du

 ,

(semiexplicit solution formula for linear SDEs) and the RHS of this is positive
for all t ∈ [0, T ] .

In order to prove the second statement, put

Mt := exp

 t∫
0

σ(u, Su) dBu −
1

2

t∫
0

σ2(u, Su) du

 , t ∈ [0, T ] .

As a stochastic exponential, it is a priori a local martingale, but we can use
Novikov's Criterion to deduce it is, in fact, a martingale.

The intergral process Xt =
∫ t

0
σ(u, Su) dBu is, as an Itô integral, a local martingale, and has,

by the Itô formula, quadratic variation 〈X〉 =
∫ t

0
σ2(u, Su) du . Due to the growth conditions

imposed on σ , Novikov's Condition (see page 85) is satis�ed and so indeedMt as given above,
is a P ∗�martingale on [0, T ] .
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Now Doob's L2�inequality (an extremely strong and surprising result!) )implies

E
∗

[
sup
t∈[0,T ]

M2
t

]
6 4E∗

[
M2

T

]
.

Therefore,

E
∗

[
sup
t∈[0,T ]

S2
t

]
6 S2

0 e2rT
E
∗

[
sup
t∈[0,T ]

M2
t

]
6 4S2

0 e2rT
E
∗ [M2

T

]
.

QED

What is our aim? Our aim is to price options within the local volatility model.

Let h : R+ −→ R+ be the payo� function of a European option. Since there is
only one EMM, there is only one arbitrage�free price. This arbitrage�free price
of the option at t ∈ [0, T ] is given by

e−r(T−t)E∗ [h(ST )| Ft ]

with Ft = FBt ∨N , where FBt is the �ltration generated by the BM B completed
by the null sets N of P ∗ .

Next step: You want to characterize the arbitrage�free price in terms of a PDE
as in the BS model.

Theorem 8.2. Let v ∈ C1,2([0, T ) × (0,∞)) ∩ C0([0, T ] × (0,∞)) . Suppose that
vx is bounded on [0, T )× (0,∞) , and that v satis�es

(8.2)

{
vt + rxvx + 1

2
σ2(t, x)x2vxx − rv = 0 , ∀(t, x) ∈ [0, T )× (0,∞) ;

v(T, x) = h(x) ∀x ∈ (0,∞) (terminal condition).

Then v(t, St) = e−r(T−t)E∗ [h(ST )| FT ] .

Proof. The proof is very similar to the corresponding proof for the BS PDE in
the BS model, so I give only the steps.

The Itô formula and (8.2) imply

v(t, St) = v(0, S0) +

t∫
0

vx(u, Su)σ(u, Su)Su dBu +

t∫
0

rv(u, Su) du for t ∈ [0, T ) .

With the product formula, we further get

e−rt v(t, St) = v(0, S0) +Mt ,

where

Mt =

t∫
0

vx(u, Su)σ(u, Su)Su e−ru dBu for t ∈ [0, T ) .
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With Lemma 8.1 one can show that

E
∗

 T∫
0

v2
x(u, Su)σ

2(u, Su) e−2ru S2
u du

 <∞
and so Mt is a martingale on [0, T ) .

A priori MT does not have a meaning, but sinceMt is an L
2�bounded martingale,

it is uniformly integrable, and Lebesgue's Dominated Convergence Theorem
shows that

MT := lim
t↑T

Mt

exists and that (Mt)t∈[0,T ] is an L
2�martingale.

In particular, e−rt v(t, St) is an L2�martingale on [0, T ] (here we use continuity
of v in T ) . This implies

e−rt v(t, St) = E
∗ [ e−rT v(T, ST )

∣∣ Ft ] = E
∗ [ e−rT h(ST )

∣∣ Ft ] .

QED

If one wants, as illustrated by the last theorem, to apply the model in practice and
price options by numerically solving such PDEs, the next task before being able to
do so is to extract the form of the local volatility function σ from empirical data,
or, as one says, to calibrate the local volatility function. How to do so belongs to
the best kept secrets of the trade. So one can be sure that each bank involved
in the business has his own well�guarded method of calibration, and each time
a paper appears whose authorship can be traced back to a bank or some other
institution and which describes one method of calibration or the other, one can
rest assured that this institution meanwhile has switched to some other method
and the method described is no longer in use. Therefore, one can only give some
hints. Nevertheless, I will sketch a method which became popular twenty years
ago, just to give a taste of the matter. In the literature it goes under the heading
Dupire's formula and runs as follows. As in the case of implied volatility one
looks at plain vanilla options which are liquidly traded and hence have market
prices to extract from them the local volatility function which then, in turn, is
used to price more exotic options. So suppose there is a market call price C(T,K)
for any maturity T ≥ 0 and strike K > 0 . One can show that if C is �nice� (e.g.
su�ciently smooth), then

(8.3) σ(T,K) =

√√√√√√2

∂C

∂T
+ rK

∂C

∂K

K2
∂2C

∂K2

and this is Dupire's formula. It has been �rst derived by Bruno Dupire in 1994
(see [9]) from the Fokker�Planck and Kolmogorov equations, but under
somewhat blurry premises. The idea here is to determine C(T,K) from empirical
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data and then to use Dupire's formula to obtain the local volatility function. To
determine, or calibrate, C(T,K) can e.g. be done by a parametric ansatz: Model
C(T,K) by a polynomial of low degree and then adjust its coe�cients as to get
the optimal �t reproducing the empirical data. This, however, does not seem
to be the method exercised in practice; here one uses a link between the local
volatility function and the volatility surface describing BS�implied volatility; see
Jim Gatheral's book [17] and his lecture notes [15], [16] .

All in all, this calibration business is a very delicate and di�cult a�air and requires
�nancial engineers combining the theoretician's knowledge with the practitioner's
�nesse. Anyway, we now suppose the calibration done and now we are going to
use it.

Once we have calibrated σ(t, x) to current market prices of calls (and puts), we
can use the model for pricing exotic options (which are OTC). As an example,
consider an up�and�out call option with payo�

C = 1{∀u∈[0,T ] : Su<a}(ST −K)+ ,

where a > max {S0, K} .
To simplify the analysis, we assume in the following that

(∗) {∀u ∈ [0, T ] : Su < a} = {∀u ∈ [0, T ) : Su < a} P�a.s. .

We can obtain the arbitrage�free price of C by solving the following PDE:

(8.4)


vt + rxvx + 1

2
σ2(t, x)xvxx − rv = 0 ∀(t, x) ∈ [0, T )× (0,∞) ;

v(T, x) = (x−K)+ ∀x ∈ (0, a) ;

v(t, 0) = v(t, a) = 0 ∀t ∈ [0, T ] .

Theorem 8.3. Let v ∈ C1,2([0, T )× [0, a])∩ C0([0, T ]× (0, a)) . Let v be bounded
on [0, T ] × [0, a] and vx be bounded on [0, T ) × [0, a] . If v satis�es (8.4), then
v(0, S0) = e−rT E∗ [C] .

Proof. Introduce a stopping time

τn :=

(
T − 1

n

)
∧ inf { t ≥ 0 | St = a } .

Let Dt := e−rt v(t, St) . With Itô's formula one can show that Dt∧τn is a P ∗�
martingale. Hence

v(0, S0) = D0 = E
∗ [Dτn ]

= E
∗
[
1{τn<T− 1

n}Dτn + 1{τn=T− 1
n}DT− 1

n

]
= E

∗
[
1{τn<T− 1

n} e−rτn v(τn, a) + 1{τn=T− 1
n} e−r(T−

1
n

) v(T − 1

n
, ST− 1

n
)

]
.
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The �rst term is 0 because of the last formula in (8.4), and we are left with

v(0, S0) = 1{τn=T− 1
n} e−r(T−

1
n

) v(T − 1

n
, ST− 1

n
) .

We have {
τn = T − 1

n

}
=

{
∀ t < T − 1

n
: St < a

}
n↑∞−→ {∀ t < T : St < a}

=

{
sup
t∈[0,T ]

St < a

}
,

where we have made use of the assumption (∗). Dominated Convergence then
implies

v(0, S0) = E
∗
[
1{supt∈[0,T ] St<a} e−rT v(T, ST )

]
= e−rT E∗ [C] .

QED

Remark. 1) In general, there is no closed form solution of the PDE (8.4). To
solve it one has to resort to numerical procedures, e.g. �nite di�erence methods.

2) A solution of (8.4) cannot be continuous in (T, a) . Indeed, the boundary
conditions imply

lim
t↑T

v(t, a) = 0 and

lim
x↑a

v(T, x) = (a−K)+ .

�
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CHAPTER 9

A�ne Processes

Literature: [10]

We are on our way of describing further re�ned stochastic volatility models, in
particular theHestonmodel, and for this we �rst enter a more general discussion
in an abstract setting and describe the so�called a�ne models.

Let d ∈ N and W a d�dimensional BM on a probability space (Ω,F , P ) . Let
Ft = FWt ∨N with FWt = σ(Ws : s 6 t) and N the collection of P�null sets.

Let X ⊆ R
d be a closed set with non�empty interior; consider this as a state

space. Assume that b : X −→ R
d and % : X −→ R

d×d are continuous functions.
Consider the SDE

(9.1) dXt = b(Xt)dt+ %(Xt)dWt , X0 = x ∈ X .
We assume that for every x ∈ X there exists a unique strong solution X of (9.1),
and Xt ∈ X for all t ≥ 0 . If we want to stress the dependence on x we write
Xx
t = Xt . Throughout we set a(x) := %(x)%(x)> .

De�nition. The process X uniquely solving (9.1) is called a�ne if there exist
functions φ : R+ × iRd −→ C and ψ : R+ × iRd −→ C

d such that

a) φ and ψ are continuously di�erentiable in t ;
b) for all x ∈ X , 0 6 t < T , and u ∈ Rd we have

(9.2) E

[
eiu>Xx

T

∣∣∣Ft ] = eφ(T−t,iu)+ψ(T−t,iu)>Xx
t .

Here we consider d�dimensional vectors as colum vectors, i.e. as d× 1�matrices
and so the matrix product x>y is a 1×1�matrix, i.e. a number, in fact the scalar
product x · y =

∑d
j=1 xjyj .

Remark. 1) Note that
∣∣∣eiu>Xx

T

∣∣∣ = 1 , where |z| =
√

Re(z)2 + Im(z)2 =
√
x2 + y2

is the absolute value or modulus of z = x+ i y ∈ C with x, y ∈ R . By Jensen's
inequality, the modulus of the LHS of (9.2) then is bounded by 1, hence so is
the modulus of the RHS, i.e. it is also bounded by 1, and thus Re(φ(T − t, iu) +

ψ(T − t, iu)>Xx
t ) 6 0 .

To see this, recall the famous Euler formula:

eiu = cos(u) + i sin(u) for all u ∈ R ,
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hence
∣∣eiu

∣∣ =
√

cos2(u) + sin2(u) = 1 for all u ∈ R .

Further, we have the complex conjugation mapping z = x + i y 7→ z := x − i y . As is easily
computed, this is an involutive automorphism of the �eld C over R , i.e. one has

(i) z + z′ = z + z′ ;
(ii) zz′ = zz′ ;
(iii) z = z ;
(iv) z = z ⇐⇒ z ∈ R .

Clearly zz = |z|2 . It is then an easy matter to derive that the modulus is multiplicative; just
compute

|zz′|2 = zz′zz′ = zz′zz′ = zzz′z′ = |z|2 |z′|2 ,
and since the modulus is nonnegative by de�nition there results |zz′| = |z| |z′| .
Now, if z = x+ i y ∈ C , we have

ez = ex+i y = ex ei y

and so
|ez| =

∣∣ex ei y
∣∣ = |ex|

∣∣ei y
∣∣ = |ex| = ex = eRe(z) .

There follows
|ez| 6 1 ⇐⇒ eRe(z) 6 1 ⇐⇒ Re(z) 6 0

as desired.

2) We always assume that φ(0, iu) = 0 and ψ(0, iu) = iu . Then φ and ψ are
uniquely determined.

The �rst main result on a�ne models is the following lengthy theorem.

Theorem 9.1. Suppose that X is an a�ne process. Then the matrix a(x) and
the drift b(x) are a�ne in x , i.e.

(9.3)


a(x) = a+

d∑
j=1

xjαj

b(x) = b+
d∑
j=1

xjβj

for a, αj ∈ Rd×d and b, βj ∈ Rd .

Moreover, φ and ψ solve the Riccati equations

(9.4)



φt(t, iu) = 1
2
ψ(t, iu)>aψ(t, iu) + b>ψ(t, iu) ;

φ(0, iu) = 0 ;

ψjt (t, iu) = 1
2
ψ(t, iu)>αjψ(t, iu) + βj

>ψ(t, iu) , j = 1, . . . , d ;

ψ(0, iu) = iu .

In particular,

φ(t, iu) =

t∫
0

{
1

2
ψ(s, iu)>aψ(s, iu) + b>ψ(s, iu)

}
ds .
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Conversely, suppose that a(x) and b(x) are a�ne of the form (9.3), and sup-
pose that there exists a solution (φ, ψ) of the Riccati equations (9.4) such that

Re(φ(t, iu) + ψ(t, iu)>x) 6 0 for all t ∈ R+ , u ∈ Rd , and x ∈ X . Then X is
an a�ne process.

Proof. Suppose that X is a�ne. For �xed T > 0 and u ∈ Rd we consider the
function f : [0, T ]×Rd −→ C de�ned by

f(t, x) := eφ(T−t,iu)+ψ(T−t,iu)>x .

Equation (9.2) implies (is equivalent with the fact) that

Mt := f(t,Xt) = eφ(T−t,iu)+ψ(T−t,iu)>Xt

is a C�valued martingale on [0, T ] (i.e. Mt = Xt + iYt with Xt, Yt R�valued
martingales).

Indeed, if we denote the process on the LHS of (9.2) by N , we have by the tower property of
conditional expectation for all 0 6 s 6 t 6 T

E [Nt| Fs ] = E

[
E

[
eiu>Xx

T

∣∣∣Ft ]∣∣∣Fs ] = E

[
eiu>Xx

T

∣∣∣Fs ] = Ns ,

and so N is a martingale by construction. Hence if (9.2) holds, M = N is a martingale.
Conversely, if M is a martingale, we have

E [MT | Ft ] = Mt ,

but MT = eφ(0,iu)+ψ(0,iu)>Xx
T = eiu>Xx

T , so this is just (9.2).

Applying Itô's formula to the real and imaginary part of f yields

dMt = Mt

(
−φt(T − t, iu)− ψt(T − t, iu)>Xt

)
dt+Mtψ(T − t, iu)>dXt

+
1

2
Mtψ(T − t, iu)>a(Xt)ψ(T − t, iu)dt

which implies, by replacing dXt using (9.1):

(∗) dMt = MtItdt+Mtψ(T − t, iu)>%(Xt)dWt ,

where

It = −φt(T − t, iu)− ψt(T − t, iu)>Xt + ψ(T − t, iu)>b(Xt)

+
1

2
ψ(T − t, iu)>a(Xt)ψ(T − t, iu) .

Recall the multidimendional Itô formula. LetX = (X1, . . . , Xd) be a d�dimensional continuous
semimartingale with values in the open set U ⊆ Rd and F ∈ C2(U) . Then Itô's formula is

(†) dF (X)t = F ′(Xt)dXt +
1

2
F ′′(X)dXtdXt

with

(††) F ′(Xt)dXt :=

d∑
j=1

Fxj (Xt)dX
j
t and F ′′(Xt)dXtdXt :=

d∑
j,k=1

Fxjxk(Xt)d〈Xj , Xk〉t .
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Needless to say that these are formal stochastic di�erentials and that equations like Itô's
formula have to be interpreted properly by relations between stochastic integrals, which will
not be repeated here. Itô's formula �rst holds for real�valued F , but since it is linear in F ,
it holds, when F is complex�valued, for Re(F ) as well as for Im(F ) and so recombines linearly
into an Itô's formula for F which takes just the same form.

Itô's formula takes a particularly interesting form when we replace d by d+1 and write points in
Rd+1 as (t, x) = (t, x1, . . . , xd) , interpreting t as time, and consider d+1�dimensional processes
X of the form Xt = (t,Xt) with X a d�dimensional process. Itô's formula then specializes to
its �time�dependent� form:

(† † †) df(t,Xt) = ft(t,Xt)dt+ fx(t,Xt)dXt +
1

2
fxx(t,Xt)dXtdXt

With f(t, x) de�ned as above, one computes

ft(t, x) = f(t, x)(−φt(T − t. iu)− T − t, iu>x) ;

fxj (t, x) = f(t, x)ψj(T − t, iu) ;

fxjxk(t, x) = f(t, x)ψj(T − t, iu)ψk(T − t, iu) .

The terms in the time�dependent Itô formula for dMt then come out as

ft(t,Xt)dt = −Mt

(
φt(T − t. iu)− ψt(T − t, iu)

>
Xt

)
dt ;

fx(t,Xt)dXt =Mt

d∑
j=1

ψj(T − t, iu)dXj
t = Mtψ(T − t, iu)

>
dXt ;

fxx(t,Xt)dXtdXt =Mt

d∑
j,k=1

ψj(T − t, iu)ψk(T − t, iu)dXj
t dX

k
t

=Mt

d∑
j,k,p=1

ψj(T − t, iu)ψk(T − t, iu)%jp(Xt)%
k
p(Xt)dt

= Mtψ(T − t, iu)
>
%(Xt)%(Xt)

>
ψ(T − t, iu)dt .

In the third formula we have made use of (9.1), which in component form yields

dXj
t = bj(Xt)dt+

d∑
p=1

%jp(Xt)dW
p
t , j = 1, . . . , d ,

and so

dXj
t dX

k
t =

(
bj(Xt)dt+

d∑
p=1

%jp(Xt)dW
p
t

)(
bk(Xt)dt+

d∑
q=1

%kq (Xt)dW
q
t

)

=

d∑
p,q=1

%jp%
k
qd〈W p,W q〉t

=

d∑
p,q=1

%jp%
k
qδ
pqdt ,

since the cross variations of t with any other process vanish. It is now clear that they combine
into the formula for dMt given above,
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Since M is a martingale, we must have that the dt�term vanishes, i.e. MtIt = 0
P�a.s. Since Mt 6= 0 P�a.s., it must hold true that It = 0 for P ⊗ λ�a.a. (ω, t)
(with λ denoting Lebesgue measure). Since It is continuous in t , there exists a
P�null set N such that for all ω ∈ N c and all t ∈ [0, T ] we have It = 0 .

This is the same kind of argumentation as in the proof of the Black�Scholes PDE. Writing
(∗) properly as an equation between integrals gives

Mt −M0 −
t∫

0

Msψ(T − t, iu)
>
%(Xs) dWs =

t∫
0

MsIs ds .

On the LHS we have a martingale, on the RHS an integral process which therefore is of bounded
variation. Hence both sides must vanish. So the integral process on the RHS has constant paths,
which must be zero, and then the Fubini argument as in loc.cit. provides the statements above.

In particular, I0 = 0 , i.e.

(9.5) φt(T, iu) + ψt(T, iu)>x = ψ(T, iu)>b(x) +
1

2
ψ(T, iu)>a(x)ψ(T, iu)

for all x ∈ X , u ∈ Rd , and T ≥ 0 . Since φ and ψ are continuously di�erentiable
in t , letting T ↓ 0 yields

(?) φt(0, iu) + ψt(0, iu)>x = iu>b(x) +
1

2
iu>a(x)(iu) .

I claim this equation already implies that a and b are a�ne, i.e. of the form (9.3):

In particular, for u := ej , where ej is the j�th unit vector in Rd , we have

(?1) φt(0, i ej) + ψt(0, i ej)x = i bj(x)− 1

2
ajj .

Choosing u := 2ej leads to

(?2) φt(0, i 2ej) + ψt(0, i 2ej)x = i 2bj(x)− 2ajj .

Let

A :=

 i −1

2

2 i −2


Then A is invertible with

A−1 =

−2 i − i

2

2 −1


(?1) and (?2) mean

A

 bj(x)

ajj(x)

 =

 φt(0, i ej) + ψt(0, i ej)x

φt(0, i 2ej) + ψt(0, i 2ej)x

 =: γ(x) ,
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and so  bj(x)

ajj(x)

 = A−1γ(x) .

Now the RHS is a�ne in x, hence the bj(x) and ajj(x) are a�ne in x . From
equation (?) we can now further derive that the ajk(x) , j 6= k , are a�ne in x
(choose u := ej + ek) . So a(x) and b(x) are a�ne functions in x .

The coe�cients a , αj b , βj in (9.3) are at �rst complex numbers, why are they
real? Notice that a(x) and b(x) are real functions by assumption. Choose an x
in the interior of X , which is non�empty by assumption. Now suppose one entry
of a or αi would have nonzero imaginary part. This must be cancelled exactly
by the contribution of the imaginary parts of the other summands in (9.3) as to
achieve that the corresponding entry in a(x) has vanishing imaginary part. But
by conveniently varying x (note that X has non�empty interior) I can destroy this
balance and the corresponding entry of a(x) would acquire a nontrivial imaginary
part in contradiction to its being real. The same argument applies to b and the
βj . So a , αj b , βj in (9.3) are all real.

The Riccati equations (9.4) are now a straight consequence of (9.5).

We �nally prove the reverse direction. Suppose that a(x) and b(x) are of the form

(9.3). Let (φ, ψ) be a solution of (9.4) such that Re(φ(T−t, iu)+ψ(T − t, iu)>x)
6 0 for all t ≥ 0 , u ∈ Rd , x ∈ X . Then Mt := f(t,Xt) with f de�ned as
above is a local martingale, since if you write down Itô's formula as above
thus obtaining (∗), the bounded variation term MtItdt in (∗) drops out due
to the Riccati equations (9.4). Moreover, |Mt| 6 1 due to the assumption

Re(φ(T − t, iu) + ψ(T − t, iu)>x) 6 0 . Hence M is a bounded local martingale,
hence a martingale, and then

E [MT | Ft ] = Mt ,

which is just (9.2). QED

I think now it is time for an example.

Example. Let d := 1 and

dXt = µdt+ σdWt ,

where µ ∈ R , σ > 0 .

Here, X = R (the only natural choice in this case, because we can solve the SDE
for any initial value, and Wt reaches any x ∈ R with probability 1).

Notice that a(x) = a = σ2

and b(x) = b = µ .
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The Riccati equations in this case read

φt(t, iu) =
1

2
σ2ψ2(t, iu) + µψ(t, iu) ;

φ(0, iu) = 0 .

ψt(t, iu) = 0 ;

ψ(0, iu) = iu .

The solutions are:

ψ(t, iu) = iu

and

φ(t, iu) =

t∫
0

{
1

2
σ2(iu)2 + µ iu

}
ds

=

{
iµu− 1

2
σ2µ2

}
t .

Note that Re(φ(t, iu) + ψ(t, iu)x) = −σ2u2t/2 6 0 . So all assumptions for the
reverse conclusion of Theorem 9.1 are satis�ed, so it implies that X is a�ne. In
particular, if X0 = 0 ,

E
[
eiuXt

]
= eiµtu− 1

2
σ2tu2 ,

which indeed is the characteristic function ofN (µt, σ2t) , a result we know already,
but in this way we have checked it is consistent with the new results here on a�ne
processes. �

We next ask

Question: Are there conditions just on the coe�cients of the SDE (9.1) which
guarantee that X is a�ne?

The answer will be: yes ; there are such conditions which will be necessary and
su�cient, but they will work only if the state space will have a canonical form.

So our next aim is: re�nement of Theorem 9.1 when the state space X has the
following canonical form

X = R
m
+ ×Rn ,

where m.n ∈ Z+ with m+ n = d .

We �rst need some auxiliary results.
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Lemma 9.2. Suppose a(x) and b(x) admit continuous extensions to Rd . Let u ∈
R
d\{0} and H :=

{
x ∈ Rd

∣∣ u>x ≥ 0
}
. We write H◦ :=

{
x ∈ Rd

∣∣ u>x > 0
}

for the interior and ∂H :=
{
x ∈ Rd

∣∣ u>x = 0
}
for the boundary of H . Let

x ∈ ∂H and X = Xx be a solution of (9.1).

If Xt ∈ H for all t ≥ 0 then

u>a(x)u = 0

and

u>b(x)u ≥ 0 .

To interpret these results geometrically, note that

u>a(x)u = u>%(x)%(x)
>
u = u>%(x)(u>%(x))

>
= ‖u>%(x)‖2

so the �rst equation u>a(x)u = 0 is equivalent to %(x)
>
u = 0 , i.e. the di�usion driving X

stays parallel to the boundary ∂H . The second equation u>b(x)u ≥ 0 says that the drift either
stays parallel to the boundary ∂H or is �pointing inward�, i.e. into the direction leading into
the interior H◦ .

Proof (of Lemma 9.2). We �rst prove the second statement. Note that, writing
(9.1) as an integral equation and multiplying it on the left with u> , one may pull
u> through the integrals due to their being linear, and hence

u>Xt =

t∫
0

u>b(Xs) ds+

t∫
0

u>%(Xs) dWs .

Since a(x) and b(x) are continuous, it is possible to choose a constantK ∈ R+ and
a stopping time τ1 > 0 P�a.s. such that

∣∣u>b(Xt∧τ1)
∣∣ 6 K and ‖u>%(Xt∧τ1)‖2 =

u>a(Xt∧τ1)u 6 K for all t ≥ 0 . Then
t∧τ1∫
0

u>%(Xs) dWs is an L
2�local martingale,

hence a true martingale. Therefore, upon taking expectations in the last equation,
this martingale part drops out and leaves us with

E
[
u>Xt∧τ1

]
= E

t∧τ1∫
0

u>b(Xs) ds

for all t ≥ 0 .

We now argue by contradiction. Suppose u>b(x) =: κ < 0 . Choose a further
stopping time τ2 as

τ2 := τ1 ∧ inf { t ≥ 0 | u>b(Xt) ≥ κ/2
}
.

Then τ2 > 0 P�a.s., and

E
[
u>Xt∧τ2

]
= E

t∧τ2∫
0

u>b(Xs) ds < 0
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contradicting Xt ∈ H for all t ≥ 0. Hence it must hold true that u>b(x) ≥ 0 ,
which is the second statement.

For the �rst statement, take C > 0 and de�ne a process

Zt : = E

−C t∫
0

u>%(Xs) dWs


= exp

−C t∫
0

u>%(Xs) dWs −
C2

2

t∫
0

u>a(Xs)u ds

 ,

the stochastic exponential of the process −C
t∫

0

u>%(Xs) dWs . The product for-

mula from Itô Calculus yields

u>XtZt =

t∫
0

u>Xs dZs +

t∫
0

Zsu> dXs + 〈u>X,Z〉t

= Mt +

t∫
0

Zsu> b(Xs)ds+

t∫
0

u>%(Xs)Zs(−Cu>%(Xs))
>
ds

= Mt +

t∫
0

Zs
(
u>b(Xs)− Cu>a(Xs)u

)
ds

with

Mt : =

t∫
0

u>XsZs
(
−Cu>%(Xs)

)
dWs +

t∫
0

Zsu>%(Xs) dWs

a local martingale.

We now again argue by contradiction. So assume u>a(x)u ≥ ε > 0 . Let τ3 be a
localizing stopping time for M , i.e. M τ3 is a martingale. Moreover, set

τ4 := 1 ∧ τ1 ∧ τ3 ∧ inf { t ≥ 0 | u>a(Xt)u 6 ε/2
}
.

Then τ4 > 0 P�a.s. (since a(x) is continuous). If now C is so chosen that
C > 2K/ε , we have

E
[
u>Xτ4Zτ4

]
= E

∫ τ4

0

Zs
(
u>b(Xs)︸ ︷︷ ︸
6K

−Cu>a(Xs)u︸ ︷︷ ︸
≥Cε/2>K

)
︸ ︷︷ ︸

<0

ds

< 0 .
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Z is a stochastic exponential, so is positive. Hence u>Xt must be negative at some
t between 0 and τ4 , which contradicts Xt ∈ H for all t ≥ 0 . Hence u>a(x)u = 0 ,
which is the �rst statement. QED

The following technical result is an exercise in Linear Algebra:

Lemma 9.3. Let A = (aij) ∈ Rd×d be a positive semi�de�nite matrix (i.e. A
symmetric, ∀x ∈ Rd : x>Ax ≥ 0).

(a) If aii = 0 for all i ∈ {1, . . . , d} , then A = 0 .
(b) Let m,n ∈ N with m+ n = d , B ∈ Rm×n , C ∈ Rn×n and suppose

A =

(
0 B
B> C

)
.

Then B = 0 .

Since this result will be used in the proof of the following crucial result, we give a proof for
convenience. We stick to the convention that when a matrix is called positive semi�de�nite it
is automatically symmetric and real.

Proof. We will now prove the following statement:

Let A be a positive semi�de�nite d×d�matrix. Let 0 6 i 6 d be an index such that the diagonal
element aii = 0 . Then aij = aji = 0 for 1 6 j 6 d .

It should be clear that this statement immediately implies both (a) and (b). To prove it let β
be the symmetric bilinear form de�ned by A :

β(u, v) := u>Av for u, v ∈ Rd ,

and let

q(u) := β(u, u) = u>Au for u ∈ Rd

be the associated quadratic form. This is a map q : Rd −→ R , and the property of A being
positive semi�de�nite is equivalent to q(u) ≥ 0 for all u ∈ Rd . Let e1, . . . , ed ∈ Rd be the
canonical unit vectors. We have

aij = β(ei, ej) , aii = β(ei, ei) = q(ei)

for all 1 6 i, j 6 d . Choose any pair (i, j) with 1 6 i, j 6 d and consider the map ψ : R −→ R

de�ned by

ψ(t) := q(tei + ej) .

We have ψ(t) ≥ 0 for all t ∈ R . On the other hand, one computes easily

q(tei + ej) = t2q(ei) + 2tβ(ei, ej) + q(ej) = aiit
2 + 2aijt+ ajj .

Now let i be such that aii = 0 . Then

ψ(t) = 2aijt+ ajj ≥ 0 for all t ∈ R .

But this clearly entails aij = 0 . QED

For the statement of the next fundamental result we need some notation. Re-
call that X = R

m
+ × Rn , m + n = d . De�ne I := {1, . . . ,m} and J :=

{m+ 1, . . . ,m+ n} . For a vector µ ∈ Rd and M ⊆ {1, . . . , d} we write µM :=
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(µi)∈M . We use a similar notation for matrices: for ν ∈ Rd×d and N ⊆ {1, . . . , d}
we de�ne

νMN := (νij)i∈M,j∈N .

Finally, let

B := (βt, . . . , βd) ∈ Rd×d .

Proposition 9.4. Let X be an a�ne process on the canonical space X =
R
m
+ ×Rn . Then

(1) a , αj are positiv semi�de�nite ;
(2) αj = 0 for all j ∈ J ;
(3) aII = 0 (and thus aIJ = aJI = 0) ;
(4) αi,kl = αi,lk = 0 for k ∈ I \ {i} and 1 6 i, l 6 d ;
(5) b ∈ Rm

+ ×Rn ;
(6) BIJ = 0 ;
(7) BII has non�negative o��diagonal entries .

Proof. Ad (1) : Since a(x) = %(x)%(x)> , a(x) is symmetric and positive
semi�de�nite for all x ∈ X ; the claim then follows from (9.3).

Ad (2) : Let e1, . . . , ed be the canonical unit vectors. If j ∈ J , we have x :=
ξej ∈ X for any ξ ∈ R . Then, by (9.3),

a(x) = a+ ξαj

and so

u>a(x)u = u>au+ ξu>αju ≥ 0 for all ξ ∈ R and u ∈ Rd .

But this clearly enforces αj = 0 .

(Note that this argument does not work for j ∈ I , since then ξej 6∈ X for all
ξ 6= 0 .)

Ad (3) & (4) : This proof is somewhat more involved. For any real number
y let y+ := max {y, 0} and consider the following continuous extensions of b(x),
%(x) and a(x) to Rd :

b(x) := b+
∑
i∈I

x+
i βi +

∑
j∈J

xjβj , %(x) := %(x+
1 , . . . , x

+
m, xm+1, . . . , xm+n) ;

then for x ∈ Rd

a(x) = a+
∑
i∈I

x+
i αi .

Let x be a boundary point of X . Then xk = 0 for some k ∈ I .
To see why this is so, use the relation ∂(M ×N) = (∂M ×N)∪ (M × ∂N) for subsets M ⊆ Y ,
N ⊆ Z of topological spaces Y , Z . This comes about as follows. Recall the de�nition of
boundary: If T is a topological space, A ⊆ T , then ∂A := A∩Ac . Thus ∂(M ×N) = M ×N ∩
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(M ×N)
c
. Now (y, z) 6∈M ×N i� y 6∈M or z 6∈ N , hence (M ×N)

c
= (M c×Z)∪ (Y ×N c) ,

and so

∂(M ×N) = M ×N ∩ (M ×N)
c

= M ×N ∩ (M c × Z ∪ Y ×N c)

= M ×N ∩
(
M c × Z ∪ Y ×N c

)
=
(
M ×N

)
∩
(
M c × Z ∪ Y ×N c

)
=
(
M ×N ∩M c × Z

)
∪
(
M ×N ∩ Y ×N c

)
= (∂M ×N) ∪ (M × ∂N)

as desired. This being so, we now put Y := Rm, Z := Rn , and M := Rm+ , N := Rn , so
that M × N = X . We then have, as ∂Rn = ∅ , ∂X = (∂Rm+ ) × Rn . Further, by the same

formula, ∂Rm+ = ∂(R+ ×Rm−1
+ ) = (∂R+ ×Rm−1

+ ) ∪ (R+ × ∂Rm−1
+ ) . Iterating this and using

∂R+ = {0} we end up with

∂X =

m−1⋃
i=0

(Ri+ × {0} ×Rm−i−1
+ ×Rn) =

(
m−1⋃
i=0

R
i
+ × {0} ×Rm−i−1

+

)
×Rn .

By Lemma 9.2 we have ek
>a(x)ek = 0 , i.e.

ek
>

a+
∑

i∈I\{k}

xiαi

 ek = 0 .

In particular, choose all xi = 0 for i ∈ {1, . . . , d} , then akk = ek
>a(x)ek = 0 ; this

holds for all k ∈ I . By Lemma 9.3 (a), aII = 0 , which is (3).

Similarly, by putting all xi = 0 except one, we get ai,kk = 0 for k ∈M := I \ {i} ,
and by Lemma 9.3 (a) again we get ai,MM = 0 . With N := {1, . . . , d} , Lemma
9.3 (b) implies αi,MN = 0 , which is (4).

Ad (5), (6) & (7) : Let x ∈ X be again a boundary point, i.e. xk = 0 for some
k ∈ I . Lemma 9.2 implies

(♣) ek
>

b+
∑

i∈I\{k}

x+
i βi +

∑
j∈J

xjβj

 ≥ 0 .

Choosing all xi = 0 and xj = 0 we get bk ≥ 0 for all k ∈ I which is (5). Moreover,
(♣) implies

ek
>βi ≥ 0 for i ∈ I \ {k}

and

ek
>βj = 0 for j ∈ J

(argue as above in both cases by taking ±xi , ±xj large enough ) . Thus we obtain
(6) and (7). QED
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De�nition. We say that a, αj, b, βj are admissible parameters if the properties
(1) � (7) from Proposition 9.4 are satis�ed.

We now have a reverse statement to Proposition 9.4 (a really strong result):

Proposition 9.5. Let a(x) and b(x) be a�ne functions with admissible param-
eters a, αj, b, βj 
Then the process X determined by them via the SDE (9.1) is an
a�ne process.

Proof. The proof involves very cumbersome notation, so I will only give a
rough sketch; the case of the Heston model presented below will be treated
paradigmatically in more detail. A rigorous, albeit terse, proof can be found in
[10], pp. 148�150.

Let C− be the set of complex numbers wth non�positive real part. Consider the
system of ODEs (cf. with (9.4))

φt(t, i v) =
1

2
ψJ(t, i v)aJJψJ(t, i v) + b>ψ(t, i v) ,(a)

φ(0, i v) = 0 ;

ψk,t(t, i v) =
1

2
ψ(t, i v)>αkψ(t, i v) + βk

>ψ(t, i v) , k ∈ I ;(b)

ψj,t(t, i v) = βj
>ψ(t, i v) , j ∈ J ,(c)

ψ(0, i v) = i v

for v ∈ Rd .

Since (c) is a linear ODE, one can write down immediately its solution, namely

(9.6) ψJ(t, i v) = i etB
>
JJ vJ .

One can show that (b) has a solution on [0,∞) with ψI(t, i v) ∈ Cm
− . Moreover,

one can show that φ(t, i v) ∈ C− (use e.g. property (5)); see [10]. Therefore,

Re(φ(t, i v) + ψ(t, i v)>x) 6 0 for all x ∈ Rm
+ × Rn . By the last statement of

Theorem 9.1, X is a�ne. QED

This is what I wanted to tell you on a�ne models in general; now we turn to the
Heston model.
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CHAPTER 10

The Heston Model

The Heston Model, �rst introduced in [20], is a generalization of the Black�
Scholes Model, intended to improve on some of the shortcomings, but retaining
the bene�ts, of the latter. One of the main weaknesses of the Black�Scholes
Model is the assumption of constant volatility which is not in agreement with
the observed behaviour of markets where phenomena like volatility smile and
skew occur. So the main feature of the Heston model is the introduction of
a stochastic volatility. At the same time it also allows for closed formulas for
pricing European calls and so keeps the numeric tractability of the Black-Scho-
les Model. Numeric tractability is one of the main reasons to render a model
useful for practitioners since it makes the model easy to calibrate, whereas models
giving abstract or general answers which require extensive numeric simulations
like Monte Carlo techniques for solution may be mathematically beautiful, but
are not feasible for practical purposes. Therefore, the Heston Model has been
widely accepted also in practice and has come into common use. It belongs to
the class of a�ne models, which is interesting for just the same reason, namely to
be numerically tractable and so easy to calibrate, and consequently it has been
extensively studied the last ten years.

The Heston Model is an option pricing model with one non�risky asset with
value S0

t = ert at time t ∈ R+ and one risky asset, the underlying of the option. It
will have two processes driven by stochastics, the price process and the volatility
process, and the stochastics will be a BM in both cases which however will be
correlated, which is what is observed in practice.

So the �rst step is to obtain two correlated BMs. We start with a 2�dimensional
BM W = (W 1,W 2) on a probability space (Ω,F , P ∗) with �ltration Ft =
FWt ∨ N . Then W 1 and W 2 are two 1�dimensional BMs which are indepen-
dent. Let ρ ∈ [−1, 1] and de�ne

WZ := ρW 1 +
√

1− ρ2W 2 .

Then WZ is again a BM and has correlation coe�cent ρ with W 1 . Let us see
why. That WZ is a BM is most easily seen via Lévy's Theorem by computing
the quadratic variation of WZ ; since 〈W 1,W 2〉 = 0 there comes

〈WZ〉t = 〈ρW 1 +
√

1− ρ2W 2〉t = ρ2〈W 1〉t + (1− ρ2)〈W 2〉t = ρ2t+ (1− ρ2)t = t ,
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and Lévy's Theorem immediately tells us that WZ is a BM, but it would also be
possible to check directly the de�ning properties of a BM, without using Lévy's
heavy gun.

Since W 1 , W 2 , and WZ are standard BMs, the random variables W 1
t , W

2
t , and

WZ
t have mean 0 and variance t , hence

var(W j
t ) = E

[
(W j

t )2
]

= t , j = 1, 2, Z .

For the covariance between W 1
t and WZ

t there comes

cov(W 1
t ,W

Z
t ) = cov(W 1

t , ρW
1
t +

√
1− ρ2W 2

t )

= ρ cov(W 1
t ,W

1
t ) +

√
1− ρ2 cov(W 1

t ,W
2
t )

= ρ var(W 1
t ) = ρt ,

because cov(W 1
t ,W

2
t ) = 0 as W 1 and W 2 are independent. So the correlation

coe�cient between W 1
t and WZ

t comes out as

corr(W 1
t ,W

Z
t ) =

cov(W 1
t ,W

Z
t )√

var(W 1
t )
√

var(WZ
t )

=
ρt√
t
√
t

= ρ ,

i.e. W 1 and WZ are correlated BMs with correlation parameter ρ . This is a
wanted e�ect, because this allows, in particular, to implement a negative cor-
relation coe�cient, which is what one observes in reality, where falling prices
enhance the nervousness in the market and thus fuel the volatility, so that the
price process and the volatility process develop opposite trends.

The volatility process of the risky asset is described by its variance process which
is supposed to satisfy the SDE

(10.1a) dVt = κ(θ − Vt)dt+ σ
√
VtdW

1
t , V0 > 0 ,

where κ ≥ 0 , θ ≥ 0 , and σ ≥ 0 ; one should think of
√
Vt as being the volatitlity

process. From this we see

Vt > θ : drift < 0
Vt < θ : drift > 0 ;.

so Vt is a process �uctuating around θ , a behaviour known as being mean revert-
ing.

As soon as Vt , and hence the di�usion term, approaches 0, the drift term becomes
positive and dominating, driving the process o� 0, so the di�usion term has the
e�ect that the process stays above 0.

In more detail, the following possible behaviour of the volatility process is claimed in the
literature (citation from [22]:

The Feller classi�cation of boundaries for one-dimensional di�usions (see
[47, Chapter 15, Section 6]) implies the following:
(i) if 2κθ ≥ σ2, then the origin is unattainable;
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(ii) if 2κθ < σ2, then the origin is a regular, attainable and re�ecting
boundary; this means that the variance process can touch 0 in �nite
time, but does not spend time there;

(iii) in�nity is a natural boundary, i.e. it can not be attained in �nite time
and the process can not be started there.

As a rule, therefore, when considering the Heston model the condition 2κθ ≥ σ2 is assumed
(Feller condition).

Remark. Concerning the solvability of (10.1a) note that this SDE has a di�usion
coe�cient that is not Lipschitz continuous (the square root function has a
vertical tangent at 0) , so that the standard Itô theory of existence and uniquenss
of solutions of SDEs does not apply. One can, however, show that there exists
a unique strong solution, but the proof is quite involved. A rough sketch of the
steps to take:

1) Show �rst that there exists a weak solution.
2) Then show that there exists at most one strong solution (= pathwise

uniqueness).
3) Now use the funny result of Yamabe &Watanabe: Existence of a weak

solution + pathwise uniqueness imply existence of a strong solution. For
details see e.g. [23] , Chapter 5, 5.3.D.

The risky asset price is supposed to evolve according to the SDE

(10.1b) dSt = rStdt+
√
VtStdW

Z
t , S0 ∈ (0,∞) .

Note that Vt = θ , σ = 0 is possible in (10.1a), which turns this SDE for St into

dSt = rStdt+
√
θStdW

Z
t , S0 ∈ (0,∞) ,

the Black�Scholes SDE for the price process; hence, the Black�Scholes
model is a special case of the Heston model, namely the case of constant volatil-
ity.

One should emphasize that the equations (10.1a) and (10.1b) are supposed to hold under a
given martingale measure P ∗, not under the real�world measure P . Such a supposition is,
somewhat chivalrously, quite often made, with some handwaving into the direction that it is
�essentially� equivalent to the no�arbitrage condition. This point, however, can be quite subtle
and has led in some cases to serious di�culties; see the discussion in [36], as in the case of
continuous time �essentially� means that the naive �no� arbitrage� condition has to be replaced
by the subtle and technical �no free lunch with vanishing risk� condition, which may be di�cult
to verify (all this, and much more, is very nicely explained in [33], see also [8]). Fortunate
for us, [36] has checked that, under some mild assumptions, martingale measures do exist in
the Heston model; however, there is not a unique one, but they form a family (see loc.cit,
Theorem 3.5, Theorem 3.6). So the Heston model is known to be incomplete, there is no
unique such measure, and so we expect that the measure will show up explicitely in the option
pricing formula, in contrast to the BS�formula.
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We now give an outline of the construction of a risk�neutral measure P ∗, starting from the
formulation of the Heston model under a real world measure P . For this, one starts with a
pair W = (W 1,W 2) of uncorrelated BMs and postulates the equations

dVt = κ(θ − Vt)dt+ σ
√
V tdW

1
t

dSt = µStdt+
√
V tStdW

Z
t ,

with parameters κ, θ, µ, σ, where at least κ, θ might a priori di�er in value from the model
under P ∗, which we therefore just for the discussion at hand denote by κ∗, θ∗. The parameter
µ does not appear in the model under P ∗ and corresponds to an unknown drift, as in the BS
model. Additionally, we assume as before a constant interest rate r for the risk�free bond.

Finally, we have a correlation coe�cient ρ ∈ [−1, 1] such that WZ = ρW 1 +
√

1− ρ2W 2. Thus
the BM W 1 drives the volatility process V and the BM WZ drives the price process S, so that
V and S are correlated.

To make the measure change from P to a risk�neutral measure, i.e. a measure P ∗ that turns

the discounted price process S̃t := e−rt St into a P ∗�martingale, we proceed along the lines of
our action in the BS case. Since this time we start with an underlying two�dimensional BM
W = (W 1,W 2) which generates the �ltration, we start with a Girsanov process G which is
supposed to be a local W�martingale and which therefore has the form

Gt =

t∫
0

γ1
sdW

1
s ds+

t∫
0

γ2
sdW

1
s ds =: −

t∫
0

ϑ1
sdW

1
s ds−

t∫
0

ϑ2
sdW

1
s ds

by the Representation Theorem for Local Martingales 7.8B (see page 93). Here, ϑ1, ϑ2 are

adapted processes satisfying E
[∫ T

0
(ϑ1)2 dt

]
< ∞, E

[∫ T
0

(ϑ2)2 dt
]
< ∞. The process ϑ1 is

called the market price of volatility risk. We want to �nd out for which ϑ1, ϑ2 we have

• D := E (G) is a martingale (and hence the measure P ∗ de�ned by dP ∗/dP := DT is
a probability measure);

• if this is the case, then the discounted price process S̃t = e−rt St is a P
∗�martingale.

First we have to make further assumptions since we do not yet have enough conditions to �x
ϑ1 and ϑ2 (since we have a nontradable asset � the volatility process � we expect the model to
be incomplete anyway). We begin by computing the change of the BMs under the Girsanov
transformation. If we denote the transformed processes by a tilde, we get

W̃ 1
t = W 1

t − 〈G,W 1〉t = W 1
t +

t∫
0

ϑ1
s ds ;

W̃ 2
t = W 2

t − 〈G,W 2〉t = W 2
t +

t∫
0

ϑ2
s ds ;

W̃Z
t = WZ

t − 〈G,WZ〉t = WZ
t +

t∫
0

(
ρϑ1

s +
√

1− ρ2ϑ2
s

)
ds ,

or in di�erential formulation

dW̃ 1
t = dW 1

t + ϑ1
tdt or dW 1

t = dW̃ 1
t − ϑ1

tdt ;

dW̃ 2
t = dW 2

t + ϑ2
tdt or dW 2

t = dW̃ 2
t − ϑ2

tdt ;
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dW̃Z
t = dWZ

t +
(
ρϑ1

s +
√

1− ρ2ϑ2
t

)
dt or dWZ

t = dW̃Z
t −

(
ρϑ1

s +
√

1− ρ2ϑ2
t

)
dt .

Under the new measure P ∗ de�ned by dP ∗/dP := DT = E (G)T the Heston SDEs take the
form

dVt =
(
κ(θ − Vt)− σ

√
V tϑ

1
t

)
dt+ σ

√
V tdW̃

1
t

dSt =
(
µ−
√
V t

(
ρϑ1

s +
√

1− ρ2ϑ2
t

))
Stdt+

√
V tStdW̃

Z
t .

For the discounted price process S̃t = e−rt St we have dS̃t = −r e−rt St + e−rt dSt and so

dS̃t =
(
µ− r −

√
V t

(
ρϑ1

s +
√

1− ρ2ϑ2
t

))
S̃tdt+

√
V tS̃tdW̃

Z
t

and so we get as a necessary condition for S̃t to be at least a local martingale that the coe�cient
of dt is to vanish, hence

µ− r√
V t

= ρϑ1
s +

√
1− ρ2ϑ2

t

a quantity called the market price of stock risk, for then we will have dS̃t =
√
V tS̃tdW̃

Z
t and so

S̃ = E

∫ √V dW̃Z

 .

In particular, we see that under this condition the equation for S under P ∗ simpli�es to

dSt = rStdt+
√
V tStdW̃

Z
t .

So, just as in the BS model, under a risk neutral measure, the unknown trend µ has been
transformed away and been replaced by the constant interest rate r.

This does not �x ϑ1, ϑ2. In [20], Heston makes the additional proposal to take ϑ1 proportional

to
√
V and defends this choice by referring to some places in the literature on �nance, but

notwithstanding those economical arguments this is a clever thing to do mathematically, since
this causes nice simpli�cations: If we put

ϑ1 :=
λ

σ

√
V

with a real parameter λ, the SDEs above simplify to

dVt = (κ(θ − Vt)− λVt) dt+ σ
√
V tdW̃

1
t

dSt = rStdt+
√
V tStdW̃

Z
t .

We thus see that they retain their form: they can be written

dVt = κ∗(θ∗ − Vt)dt+ σ
√
V tdW̃

1
t

dSt = rStdt+
√
V tStdW̃

Z
t ,

with

κ∗ : = κ+ λ , θ∗ :=
κθ

κ+ λ
,(?)

the form we have postulated at the beginning. In particular, the nasty parameter λ, which
parametrizes the possible nonunique choices of measure change, has been nicely stu�ed away
into the parameters κ and θ of the model, which have to be determined by calibration anyway,
and this will take care of unique prices at the end.

Now the real work begins. By quite involved arguments, the paper [36] establishes
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• for −κ 6 λ < ∞, D := E (G) is a martingale, and hence the measure P ∗ de�ned
by dP ∗/dP := DT is a probability measure (loc. cit., p. 8, Theorem 3.5). In

particular, W̃Z is a BM and so the discounted stock price S̃ = E
(∫ √

V dW̃Z

)
a

local martingale;

• for ρσ− κ 6 λ <∞, the discounted stock price S̃ = E
(∫ √

V dW̃Z

)
is a martingale

and so P ∗ a risk�neutral probability measure (loc. cit., p. 8, Theorem 3.6).

Thus our initial assumption of the existence of a risk�neutral measure for the Heston model
has been justi�ed.

We next are going to see in which sense the Heston model is a�ne. The a�ne
process will not be St , but its logarithm Zt := logSt . For this process, Itô's
formula implies

d logSt =
1

St
dSt −

1

2S2
t

d〈S〉t = rdt+
√
VtdW

Z
t −

1

2
Vtdt

and hence

(10.2)

dZt =

(
r − 1

2
Vt

)
dt+

√
VtdW

Z
t

=

(
r − 1

2
Vt

)
dt+

√
VtρdW

1
t +

√
Vt
√

1− ρ2dW 2
t .

Let us now check that the process X := (V, Z) is an a�ne process.

First, note that X is a stochastic process with canonical state space X = R+×R .
The system (9.1) reads in this case

dVt = κ(θ − Vt)dt+ σ
√
VtdW

1
t

dZt =

(
r − 1

2
Vt

)
dt+

√
VtρdW

1
t +

√
Vt
√

1− ρ2dW 2
t .

With the notation from Section 9 we read o�, with x = (v, z) ∈ X :

b(x) =

(
κ(θ − v)
r − v

2

)
;

%(x) =

(
σ
√
v 0

ρ
√
v
√

1− ρ2
√
v

)
.

Next we compute he matrix a(x) as

a(x) := %(x)%(x)> =

(
σ2v ρσv
ρσv v

)
.

Note that a(x) and b(x) are a�ne with parameters

a = 0 , α1 =

(
σ2 ρσ
ρσ 1

)
, α2 = 0 ;
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b =

(
κθ
r

)
, β1 =

(
−κ
−1

2

)
, β2 = 0 .

We now check that the parameters a, αj, b, βj are admissible. We have I = {1} ,
J = {2} , and
(1) a , αj are positiv semi�de�nite: a and α2 are trivially positiv semi�de�nite.
For α1 either use the Main Minors Criterion (a matrix is positive semi�de�nite i�
the determinant of ts main minors are non�negative). Or check it directly: one
easily computes

(x1, x2)

(
σ2 ρσ
ρσ v

)(
x1

x2

)
= σ2x2

1 + 2σρx1x2 + x2
2

= (σx1 + ρx2)2 + (1− ρ2)x2
2 ≥ 0 .

(2) αj = 0 for all j ∈ J : clear.
(3) aII = 0 (and thus aIJ = aJI = 0): clear.

(4) αi,kl = αi,lk = 0 for k ∈ I \ {i} and 1 6 i, l 6 d: I \ {1} = ∅ , so no condition
on α1 . And α2 = 0 , so these conditions are met.

(5) b ∈ Rm
+ ×Rn: κ ≥ 0 , θ ≥ 0 , hence κθ ≥ 0 .

(6) BIJ = 0: We have

B = (β1, β2) =

(
−κ 0
−1

2
0

)
.

By inspection, B12 = 0 .

(7) BII has non�negative o��diagonal entries : BII = (−κ) has no o��diagonal
entries at all.

So we can directly see from the parameters that X is an a�ne process by Propo-
sition 9.5. This conclusion is, however, not entirely satisfactory, since we did not
prove this proposition. But I already announced, when I stated it, to prove it in
the case of the Heston model. It will then transpire that the same proof goes
through in the general case virtually without a change but of notation which
then will be much more elaborated and cumbersome, thus more hindering un-
derstanding than facilitating it. Hence, going through the proof in this special
case hardly falls short in result of plodding through the general case, which, in
contrast might be easy to understand after this special case has been digested.
The general case, by the way, is done in [10], pp. 149-150.

So we are now going to check directly with Theorem 9.1 that X is an a�ne
process. The appropriate Riccati equations read (where the prime denotes
di�erentiation w.r.t. t) (see Theorem 9.1)

(10.3)

{
φ′(t, iu) = κθψ1(t, iu) + rψ2(t, iu) ;

φ(0, iu) = 0 .
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(10.4)


ψ′1(t, iu) = 1

2
ψ(t, iu)>α1ψ(t, iu) + β1

>ψ(t, iu)

= 1
2

(σ2ψ2
1 + 2ρσψ1ψ2 + ψ2

2)− κψ1 − 1
2
ψ2 ;

ψ1(0, iu) = iu1 .

(10.5)

{
ψ′2(t, iu) = 0 ;

ψ2(0, iu) = iu2 .

We have to show that a solution (φ, ψ) exists and that Re(φ(t, iu) + ψ(t, iu)>x)
6 0 for all t ∈ R+ , u ∈ Rd , and x ∈ X .

The solution of (10.5) obviously is given by

ψ2(t, iu) = iu2 .

Now you could solve (10.4) explicitely. But I want to give instead an abstract
general argument why a solution exists (it will be this argument which also applies
to the general case).

Lemma 10.1. For all u ∈ R2 , the ODE (10.4) has a solution on R+ . Moreover,
Re(ψ1(t, iu)) 6 0 for all t ∈ R+ , then.

Proof
∗. For z = (z1, z2)> ∈ C2 put

R(z) :=
1

2
z>α1z + β1

>z =
1

2

(
σ2z2

1 + 2ρσz1z2 + z2
2

)
− κz1 −

1

2
z2 .

The ODE (10.4) can be rewritten as

(?) ψ′1(t, iu) = R(ψ1(t, iu), iu2) , ψ1(0, iu) = iu1 .

R is locally Lipschitz continuous. Therefore, there exists t+ ∈ [0,∞] such that
(?) has a unique solution on [0, t+) , and t+ = ∞ or the solution explodes at
t = t+ , i.e. limt↑t+ |ψ1(t, iu)| = ∞ . What we want to show is t+ = ∞ , i.e. the
modulus of the solution stays bounded on any �nite interval.

But �rst we prove that Re(ψ1(t, iu)) 6 0 for all t < t+ . Note that (?) unfolds as
(for clarity of notation we suppress the argument (t, iu))

ψ′1 =
1

2

(
σ2ψ2

1 + 2ρσ iuψ1 − u2
2

)
− κψ1 −

1

2
iu2 .

Let
f(t) := Re(ψ1(t, iu)) .

Then

f ′(t) = Re(ψ′1) =
1

2

(
Re(σ2ψ2

1) + 2 Re(ρσ iuψ1)− u2
2

)
− κf(t)

∗This is Filipovic's proof in [10] of Proposition 9.5, applied to this case. I use more or
less his notation.
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=
1

2

(
σ2f 2(t)− σ2 Im(ψ1)2 − 2ρσu2 Im(ψ1)− u2

2

)
− κf(t)

=
1

2
σ2f 2(t)− 1

2

(
σ2 Im(ψ1)2 + 2ρσu2 Im(ψ1) + u2

2

)
− κf(t)

=
1

2
σ2f 2(t)− κf(t)− 1

2

(
(σ Im(ψ1) + ρu2)2 + (1− ρ2)u2

2

)
.

For f(t) = 0 the RHS is 6 0. Moreover, f(0) = 0. Hence f must always stay
below 0, i.e. we have indeed Re(ψ1(t, iu)) = f(t) 6 0 for all t < t+ .

We �nally show that t+ =∞ .

Note that |ψ1|2 = Re(ψ1)2 + Im(ψ1)2 , hence

d

dt
|ψ1|2 = 2 Re(ψ1)

d

dt
Re(ψ1) + 2 Im(ψ1)

d

dt
Im(ψ1)

= 2 Re(ψ1) Re

(
d

dt
ψ1

)
+ 2 Im(ψ1) Im

(
d

dt
ψ1

)
= 2 Re(ψ1) Re(R(ψ1, iu2)) + 2 Im(ψ1) Im(R(ψ1, iu2)) (because of (?))

= 2 Re[ψ1R(ψ1, iu2)] .

This might look more complicated as it really is; we have just made use of the formula

Re(z1) Re(z2) + Im(z1) Im(z2) = Re(z1z2)

which holds for any two complex numbers z1, z2 ∈ C. To see this, either write zj = aj + i bj ,
j = 1, 2 and note that both sides equal a1a2 + b1b2. Or just observe that

z1 + z1

2
· z2 + z2

2
+
z1 − z1

2 i
· z2 − z2

2 i
=
z1z2 + z1z2

2
.

Now let us derive an estimate for this last expression. For z = (z1, z2) ∈ C2 we
have

Re[z1R(z)] =
1

2
z1z1σ

2 Re(z1) + σρz1z1 Re(z2) +
1

2
Re(z1z

2
2)− κz1z1−

1

2
Re(z1z2) .

Further, we have Re(z1) 6 1 + |z1|2 and Re(z2) 6 1 + |z2|2 .
For this, we claim that for any x ∈ C we have Re(x) 6 1 + |x|2: Let x = a+ i b, with a, b ∈ R,
then the claim is a 6 1 + a2 + b2. This is equivalent to a(1− a) 6 1 + b2. If a < 0, the LHS is
negative and things are OK. If a ≥ 0, then either a ≥ 1 and the LHS is 6 0 whereas the RHS
is ≥ 1; or a < 1, in which case a(1− a) < 1, and still the RHS is ≥ 1. So again things are OK.

Moreover, Re(z1z
2
2) 6 |z1z

2
2 | = |z1| |z2|2 . Checking each term in the formula for

Re[z1R(z)] above reveals that there exists C ∈ R+ such that for all z ∈ C2

Re[z1R(z)] 6 C(1 + Re(z1)+ + |z2|2)(1 + |z1|2) .

Now let us apply this estimate to ψ = (ψ1, ψ2):

d

dt
|ψ1|2 6 C(1 + Re(ψ1)+ + |iu2|2)(1 + |ψ1|2) .
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From above we know that Re(ψ1)+ = 0. Hence, with g(t) := 1 + |ψ1|2:
g′(t) 6 2C(1 + u2

2)g(t) .

Now recall Gronwall's Lemma:

If g(t) 6 a+
t∫

0

bg(s) ds, then g(t) 6 a+
t∫

0

ab ebt−s ds = a ebt, where a, b ≥ 0.

Applying this here with a := g(0) and b := 2C(1 + u2
2)) we see that g, hence

|ψ1|, remains bounded on any �nite interval and so does not explode. Therefore,
t+ =∞, and so, for each u ∈ R2, a solution (φ, ψ) exists globally on R+. QED

Gronwall's Lemma exists in numerous variants. One formulation of which the above formu-
lation is a special case goes as follows (see [34]):

Lemma. (Gronwall's Lemma) Let I denote an interval of the real line of the form [a,∞) or
[a, b] or [a, b) with a < b. Let α, β and γ be real-valued functions de�ned on I. Assume that β
and γ are continuous and that the negative part of α is integrable on every closed and bounded
subinterval of I. If β is non-negative and if γ satis�es the integral inequality

∀ t ∈ I : γ(t) 6 α(t) +

t∫
a

β(s)γ(s) ds

then

∀ t ∈ I : γ(t) 6 α(t) +

t∫
a

α(s)β(s) exp

 t∫
s

β(r) dr

 ds .

Whatever version one stumbles on, the gist is one has a function satisfying an integral or
di�erential inequality involving itself on the RHS and is allowed then to conclude then this
function satis�es the same inequality with itself on the RHS replaced by a solution of the
corresponding integral or di�erential equation. So it gets eliminated on the RHS and one obtains
an explicit inequality with no bootstraps. Correspondingly there exist versions of Gronwall's
Lemma in integral and di�erential formulations; the formulation above is an integral variant.

To conclude with, applying Gronwall's Lemma in the situation above is cracking a peanut
with a sledgehammer. Getting the wanted bound on g(t) is straightforward: If

g′(t) 6 2C(1 + u2
2)g(t)

we can, ince g(t) > 0 for all t, divide by g(t) and obtain

g′(t)

g(t)
= (log g)′(t) 6 2C(1 + u2

2) =: A .

Integrating this inequality over the intervall [0, t] yields

log g(t)− log g(0) =

t∫
0

(log g)′(s) ds 6 At ,

and applying the exponential function which s strictly monotonous:

g(t) 6 g(0) eAt ,
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which de�nitely shows that g, and hence |ψ1|, remains bounded on any �nite interval and so
does not explode.

Lemma 10.1 implies that the solution of (10.3) satis�es

Re(φ(t, iu)) =

t∫
0

{
κθRe(ψ1(s, iu)) + rRe(ψ2(s, iu))︸ ︷︷ ︸

=0

}
ds

=

t∫
0

κθRe(ψ1(s, iu))︸ ︷︷ ︸
60

ds

6 0 .

Hence
Re
[
φ(t, iu) + ψ(t, iu)>x

]
6 0

for any x ∈ X = R+ ×R. This means we can apply Theorem 9.1, which says X
is a�ne. This completes our explicit check of a�neness of the Heston model.

The proof of the general case of admissible parameters is, modulo more cumber-
some notation, the same; hence we consider Proposition 9.5 proved, too.

So we have seen the Heston model is a�ne. In fact, you can explicitely solve
the ODEs, but for the time being we have no need for these explicit solutions.

Our next aim is to derive the famous Heston formula; it is an analytic expression
for the price of an European call option (the formula for a put is similar).

The terminology often seen used in this context is �semi�analytic� in place of �analytic�; this
refers to the fact that the underlying martingale measure will appear explicitely in the formula
in shape of its characteristic function, in contrast to the Black�Scholes formula, which is
called �analytic�, because it only contains numerical parameters of the model and the well�
known simple analytic functions log and Φ. The value of such a distinction may be considered
questionable.

Recall the price paradigm. The arbitrage�free price of a call with maturity T
and strike K is given by

Heston�call(K,T ) = e−rT E∗
[
(S −K)+

]
= e−rT E∗

[
(eZT −K)+

]
.

with E∗ the expectation w.r.t the martingale measure P ∗ which we regarded from
the beginning as input to the model and which underlies the SDEs (10.1a) and
(10.1b).

We split the expectation into two parts:

E
∗ [(eZT −K)+

]
= E

∗ [(eZT −K)1{ZT≥log(K)}
]

= E
∗ [(eZT )1{ZT≥log(K)}

]
−KP ∗ [ZT ≥ log(K)]
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For X a random variable there is a formula P ∗ [X ≥ x] = H(ϕX(x)) in terms
of the characteristic function of X (see Corollary 10.3 below). The second part
of the RHS has this form, and the strategy is now to convert the �rst part of
the RHS also into this form, i.e. to convert the expectation into a probability of
a random variable exceeding a given level x. The technique for doing so which
presents itself is to make a measure change to a new probability measure Q ∼ P ∗

which involves expZT as a density. Wanting Q ∼ P ∗ cries for Girsanov, and
Girsanov cries for e−rt eZt = S̃t being a martingale, which it is since we are
working under a risk�neutral measure. We are thus in the position to de�ne a
new equivalent probability measure Q via

dQ

dP ∗
:= e−rT

1

S0

eZT .

With this de�nition of Q there comes

E
∗ [(eZT )1{ZT≥log(K)}

]
= erT S0E

Q [ZT ≥ log(K)] .

Now note that e−rt eZt = e−rt St is a stochastic exponential, namely e−rt St =

E
(

t∫
0

√
V s dW

Z
s

)
(for a discussion of the stochastic exponential see page 82 �).

To see this, compute d(e−rt St) by the product formula and use (10.1b) to show
the SDE for the corresponding stochastic exponential is satis�ed. Girsanov's
theorem then implies that

dW 1,Q
t = dW 1

t − d〈G,W 1〉 = dW 1
t − ρ

√
V tdt

dWZ,Q
t = dWZ

t − d〈G,WZ〉 = dWZ
t −
√
V tdt

are BMs. The SDEs for V and Z under the new measure Q are

dVt = κ(θ − Vt)dt+ σ
√
V t(dW

1,Q
t + ρ

√
V tdt)

= (κθ − (κ− ρσ))Vtdt+ σ
√
V tdW

1,Q
t ;

dZt =

(
r − Vt

2 t

)
dt+

√
V t(dW

Z,Q
t +

√
V tdt)

=

(
r +

Vt
2 t

)
dt+

√
V tdW

Z,Q
t .

Now let X̃ := (U, Y ) be the solution of the SDE system

dUt = (κθ − (κ− ρσ))Utdt+ σ
√
U tdW

1
t ;

dYt =

(
r +

Ut
2 t

)
dt+

√
U tdW

Z
t .
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From this we see that X̃ = (U, Y ) is also an a�ne process under P ∗ with para-
meters

a = 0 , α1 =

(
σ2 ρσ
ρσ 1

)
, α2 = 0 ;

b =

(
κθ
r

)
, β1 =

(
−(κ− %σ)

1
2

)
, β2 = 0 .

which will be important later for the complete formulation of theHeston formula
for a call.

Now (X̃,W ) = ((U, Y ), (W 1,W 2)) and (X,WQ) = ((V, Z), (W 1,Q,W 2,Q)) are
two weak solutions of the SDE system for a process (Q,R)

dQt = (κθ − (κ− ρσ))Qtdt+ σ
√
QtdB

1
t ;

dRt =

(
r +

Qt

2 t

)
dt+

√
QtdB

Z
t .

with B = (B1, B2) some �xed reference BM and BZ := ρB1 +
√

1− ρ2. As
described above, this SDE system has a unique strong solution. The more it
has a unique weak solution, where uniqueness for weak solutions mean they are
equivalent in law, i.e. have the same distributions. In particular, this entails

Q [ZT ≥ log(K)] = P ∗ [YT ≥ log(K)] .

Then the pricing simpli�es to the following preliminary version of the Heston
formula

(10.6) Heston�call(K,T ) = S0P
∗ [YT ≥ log(K)]− e−rT KP ∗ [ZT ≥ log(K)] .

This is not yet an analytical formula, but a probabilistic formula, since the prob-
ability measure P ∗, Q and the random variables YT , ZT enter explicitely. This
implies that it is of not much practical use, since its numerical evaluation requires
extensive computations, e.g. via Monte Carlo simulations. Therefore, providing
an analytic formula is desirable, so now we set o� for such a task.

Remark. It is interesting to note the structural similarity of this formula with
the BS�formula; in both cases the option price is a di�erence of two terms, the
�rst one involving the start value S0 and the second one the discounted strike K.
In fact, I claim that this formula is a generalization of the BS�formula. Namely,
if the volatility Vt is constant, Yt and Zt are are normally distributed, and (10.6)
coincides with the BS�formula (see Proposition 7.10) for the call option price.

Excursion: Characteristic function and the inversion theorem

First recall the de�nition of the characteristic function of a random variable. Let
X be an R�valued random variable on some probability space (Ω,F , P ). The
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characteristic function ϕX : R −→ C is de�ned by

ϕX(u) := E
[
eiuX

]
.

Further recall that the distribution µX of X is the probability measure on the
measurable space (R,B(R)) de�ned by

∀A ∈ B : µX [A] := P [X ∈ A]

(to enhance readability we write P [X ∈ A] in place of P [{X ∈ A}], leave alone
P [{ω ∈ Ω | X(ω) ∈ A }]). In particular, then,

ϕX(u) =

∫
Ω

eiuX dP =

∫
R

eiux µX [dx]

and so we have expressed ϕX in terms of µX . The following theorem inverts this
relation and expresses µX in terms of ϕX .

Theorem 10.2. (The Inversion Formula) Let X be an R�valued integrable ran-
dom variable on a probability space (Ω,F , P ) with distribution µX and character-
istic function ϕX . Then for all x ∈ R

µX [(−∞, x)] +
1

2
µX [{x}] =

1

2
+ lim

c→∞

1

2π

c∫
0

eiux ϕX(−u)− e− iux ϕX(u)

iu
du .

One may wonder whether this formula indeed recovers the full probability measure µX , in which
case the characteristic function ϕX and the distribution µX would determine each other. This
is, in fact, the case, but it requires some work.

A somewhat roundabout abstract proof goes as follows. The distribution function FX : R −→
R is de�ned as

FX(x) := P [X 6 x] = µX [(−∞, x]] .

It is monotonously increasing and thus is known to have at most countably many discontinuities.
It is easy to see that the σ�algebra generated by the intervals (−∞, x], x ∈ R, is the Borel�
algebra B(R) and so µX is determined by the values µX [(−∞, x]], i.e. by FX .

Now by the Inversion Theorem ϕX determines the values µX [(−∞, x)] = µX [(−∞, x]] for those
x such that {x} s not an atom of µX . These are the points of discontinuity of FX , and so there
are only at most countably many. If A ⊆ R is the set of those, R \A is dense in R, and for any
x0 ∈ A there is a monotone sequence x1 > x2 > x3 > · · · such that xn 6∈ A and limn→∞ = x0.
Then (−∞, x1] ⊃ (−∞, x2] ⊃ (−∞, x3] ⊃ · · · ⊃ (−∞, x0] and (−∞, x0] =

⋂
n(−∞, xn]. Then

µX [(−∞, x0]] = limn→∞ µX [(−∞, xn]], and so ϕX determines all the µX [(−∞, x]], x ∈ R,
which shows it determines µX .

A proof more in the spirit of the calculations that follow is to show by the same methods as
below

µX [{x}] = lim
c→∞

1

2c

c∫
0

{
e− iux ϕX(u)− eiux ϕX(−u)

}
du
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(exercise). Then the formula of the Inversion Theorem and the last formula determine all the
µX [(−∞, x]] via

µX [(−∞, x]] =

(
µX [(−∞, x)] +

1

2
µX [{x}]

)
+

1

2
µX [{x}] .

Proof (of Theorem 10.2). Since X stays �xed in the discussion, we write
ϕ := ϕX and µ := µX . We proceed in three steps.

Step 1. Note that∣∣∣∣eiux ϕ(−u)− e− iux ϕ(u)

iu

∣∣∣∣ =

∣∣∣∣eiux ϕ(−u)− eiux ϕ(u) + eiux ϕ(u)− e− iux ϕ(u)

iu

∣∣∣∣
6
∣∣eiux

∣∣ ∣∣∣∣ϕ(−u)− ϕ(u)

iu

∣∣∣∣+ |ϕ(u)|
∣∣∣∣eiux− e− iux

iu

∣∣∣∣
6

∣∣∣∣ϕ(−u)− ϕ(u)

iu

∣∣∣∣+

∣∣∣∣eiux− e− iux

iu

∣∣∣∣
6

∣∣∣∣2E [sinuX]

u

∣∣∣∣+

∣∣∣∣2 sinux

u

∣∣∣∣
(since ϕ(u) = E [cosuX] + iE [sinuX] and so ϕ(−u) = E [cosuX]− iE [sinuX])

= 2E

[∣∣∣∣sinuXu
∣∣∣∣]+ 2

∣∣∣∣sinuxu

∣∣∣∣
6 2E [|X|] + 2 |x|

(since |sin y| 6 |y| for all y ∈ R). This shows that the integral in the theorem is
de�ned.

Step 2. Let ε > 0. Then

c∫
ε

eiux ϕ(−u)− e− iux ϕ(u)

iu
du = −

∫
[−c,c]\(−ε,ε)

e− iux ϕ(u)

iu
du

(note that the integrand on the RHS is not Lebesgue�integrable around 0)

= −
∫

[−c,c]\(−ε,ε)

∫
e− iu(x−y)

iu
µ[dy] du

= −
∫ ∫

[−c,c]\(−ε,ε)

eiu(y−x)

iu
duµ[dy] (Fubini) .
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We next perform the inner integral:∫
[−c,c]\(−ε,ε)

eiu(y−x)

iu
du =

∫
[−c,c]\(−ε,ε)

{
cosu(y − x) + i sinu(y − x)

iu

}
du

= − i

∫
[−c,c]\(−ε,ε)

cosu(y − x)

u
du +

∫
[−c,c]\(−ε,ε)

sinu(y − x)

u
du

=

∫
[−c,c]\(−ε,ε)

sinu(y − x)

u
du ,

because the �rst integral vanishes as
cosu(y − x)

u
is odd in u . Note that the

surviving integrand
sinu(y − x)

u
is Lebesgue-integrable around 0. There results

c∫
0

eiux ϕ(−u)− e− iux ϕ(u)

iu
du = −

∫ c∫
−c

sinu(y − x)

u
duµ[dy] .

Step 3. One can show

lim
c→∞

c∫
−c

sinu(y − x)

u
du = π sign(y − x)

where

sign(y − x) =


1 : y > x ;

0 : y = 0 :

−1 : y < x .

= 1(x,∞) − 1(−∞,x) .

This can be seen as follows. Let a ∈ R. The function

f(u) :=
sinua

u
is continuous on R and so integrable over any bounded interval. Let c > 0 be any positive real.
Then, by making the substitution x := ua

c∫
−c

sinua

u
du =



ca∫
−ca

sinx

x
dx : a > 0 ;

0 : a = 0 ;

−
−ca∫
ca

sinx

x
dx : a < 0 .
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With c→∞ there follows
∞∫
−∞

sinua

u
du = sign a

∞∫
−∞

sinx

x
dx

in the sense that if the right integral exists as a proper or improper integral so does the left
and the values are equal. We will see below that the right integral does not exist in the proper
sense. But it does exist as an improper, or conditional, integral; for this, write, for N ∈ N,

Nπ∫
0

sinx

x
dx =

N−1∑
k=0

(k+1)π∫
kπ

sinx

x
dx =

N−1∑
k=0

(−1)kSk

and observe that the sequence (Sk) with

Sk := (−1)k
(k+1)π∫
kπ

sinx

x
dx

is positive, monotonously decreasing, and satis�es Sk 6 1/(kπ), hence limk→∞ Sk = 0. By the
Leibniz criterion for alternating series there follows (note that sinx/x is even)

∞∫
−∞

sinx

x
dx = lim

N→∞

Nπ∫
−Nπ

sinx

x
dx = 2

∞∑
k=0

(−1)kSk <∞ .

The claim �nally is
∞∫
−∞

sinx

x
dx = π ,

a very classical improper integral known as the Dirichlet integral (one out of many).

The veri�cation of this formula is quite subtle and often used on di�erent occasions to demon-
strate the various techniques to handle improper integrals:

1) By Real Analysis: As will be demonstrated below, the integrand is not integrable over [0,∞].
The idea then is to force integrability by multiplying with a parametrized family of functions
which decay fast enough at in�nity to make the product integrable and then to remove the
parameter in the end. The candidates of choice are, of course functions with an exponential
decay, so we consider the family

f(α, x) := e−αx
sinx

x
, α ≥ 0 .

This function is continuous on [0,∞)×R and continuously di�erentiable on (0,∞)×R. The
usual theorems on integrals of functions depending on a parameter (see [1], p. 111, Theorem
3.18) tell us that the integral

F (α) :=

∞∫
0

e−αx
sinx

x
dx

is di�erentiable w.r.t. α on (0,∞) and the derivative can be obtained by �di�erentiating under
the integral sign�:

F ′(α) :=

∞∫
0

∂ e−αx

∂α

sinx

x
dx = −

∞∫
0

e−αx sinxdx .
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This is � oh lucky us � an integral we can handle; applying partial integration twice leaves us
� doing the inde�nite integrals �rst � with∫

e−αx sinx dx = − 1

α
e−αx sinx+

1

α

∫
e−αx cosx dx+ C

= − 1

α
e−αx sinx− 1

α2
e−αx cosx− 1

α2

∫
e−αx sinx dx+ C

and so

(∗)
∫

e−αx sinx dx = − e−αx

1 + α2
(α sinx+ cosx) + C ,

where C is an arbitrary integration constant. Hence

(∗∗)

∞∫
0

e−αx sinx dx = − e−αx

1 + α2
(α sinx+ cosx)

∣∣∣∣x=∞

x=0

=
1

1 + α2
.

This immediately entails

F (α) = −
∫

1

1 + α2
dα = − arctanα+ C .

The integration constant C can be determined since

∀x ∈ R, x 6= 0 :

∣∣∣∣ sinxx
∣∣∣∣ 6 1

and so

∀α ∈ R, α > 0 : |F (α)| 6

∣∣∣∣∣∣
∞∫

0

e−αx dx

∣∣∣∣∣∣ =
1

α

whence limα→∞ F (α) = 0. We obtain

0 = lim
α→0

F (α) = − lim
α→∞

arctanα+ C = −π
2

+ C

hence

∀α > 0 : F (α) =
π

2
− arctanα .

Thus we would get
∞∫

0

sinx

x
dx = F (0) =

π

2

if we knew that F be continuous in 0. But � oh pitiful us � we do not know this yet, and the
standard theorems on parameter integrals do not cover this particular case. So we have to �nd
a workaround.

Writing

F (0) =

∞∫
0

F ′(α) dα = −
∞∫

0

∞∫
0

e−αx sinx dx dα
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if it were allowed (which it is not) would prove the claim, but it at least suggests to consider the
double integral on the RHS. If it were allowed to apply Fubini (which it is not), there would
come

∞∫
0

∞∫
0

e−αx sinx dx dα =

∞∫
0

∞∫
0

e−αx sinx dα dx

The LHS would give, by equation (∗∗) above,
∞∫

0

∞∫
0

e−αx sinx dx dα =

∞∫
0

1

1 + α2
dα =

π

2

and the RHS weould give

∞∫
0

∞∫
0

e−αx sinx dα dx =

∞∫
0

(
− 1

x
e−αx

)∣∣∣∣α=∞

α=0

sinx dx =

∞∫
0

sinx

x
dx ,

which is our desideratum.

The situation changes on the spot, however, the moment one realizes that it is allowed to apply
Fubini over the region [0,∞) × (0, c) where c > 0 is any positive real. So we �x c > 0 and
consider the equality

∞∫
0

c∫
0

e−αx sinx dx dα =

c∫
0

∞∫
0

e−αx sinx dα dx

which now is allowed by Fubini. The LHS gives by equation (∗) above
∞∫

0

c∫
0

e−αx sinx dx dα =

∞∫
0

(
− e−αx

1 + α2
(α sinx+ cosx)

)∣∣∣∣x=c

x=0

dα

= −
∞∫

0

e−αc

1 + α2
(α sin c+ cos c) dα+

∞∫
0

1

1 + α2
dα

=
π

2
− sin c

∞∫
0

α e−αc

1 + α2
dα− cos c

∞∫
0

e−αc

1 + α2
dα .

The RHS gives

c∫
0

∞∫
0

e−αx sinx dα dx

c∫
0

(
− 1

x
e−αx

)∣∣∣∣α=∞

α=0

sinx dx =

c∫
0

sinx

x
dx .

Collecting our �ndings we get

c∫
0

sinx

x
dx− π

2
= − sin c

∞∫
0

α e−αc

1 + α2
dα− cos c

∞∫
0

e−αc

1 + α2
dα

and so ∣∣∣∣∣∣
c∫

0

sinx

x
dx− π

2

∣∣∣∣∣∣ 6 |sin c|
∞∫

0

α e−αc

1 + α2
dα+ |cos c|

∞∫
0

e−αc

1 + α2
dα
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6

∞∫
0

α e−αc dα+

∞∫
0

e−αc dα

= − 1

c
e−cα

(
α+

1

c
+ 1

)∣∣∣∣α=∞

α=0

=
1

c

(
1

c
+ 1

)
6

2

c

for c ≥ 1. There follows
∞∫

0

sinx

x
dx = lim

c→∞

c∫
0

sinx

x
dx =

π

2

and we are done.

For an enhanced Fubini setup which applies in particular to the Dirichlet integral here see
[25].

b) By Complex Analysis: Improper integrals usually cry for treatment by the Residue Theorem.
Let f be the function f(z) := eiz /z. It has the form

f(z) =
1

z
+ g(z) , g holomorphic with g(0) 6= 0,

and so has a simple pole in 0.

Now �x two positive real numbers 0 < ε < R. consider the points P∓ := ∓R+i 0, Q∓ := ∓ε+i 0
and �nally the points R∓ := ∓R+ iR all in R+ i 0 = {x+ i 0 | x ∈ R } ⊆ C.

We consider the following paths. Let γ∓ε be the straight line segments from P− to Q− and Q+

to P+ respectively, σε the upper half�circle of radius ε from Q− to Q+ in the clockwise direction,
and �nally ρ = ρ+ρ0ρ− the linear path from P+ over R+ and R− to P− in the counter-clockwise
direction along the boundary of the rectangle P+R+R−P−. Then γ := γ−εσεγ+ερ is a closed
circuit wich does not contain the only pole of f in its interior and therefore by Cauchy's
Integral Theorem

0 =

∫
γ

f(z) dz =

∫
γ−ε

f(z) dz +

∫
σε

f(z) dz +

∫
γ+ε

f(z) dz +

∫
ρ

f(z) dz

= i

−ε∫
−R

sinx

x
dx+

1

2

∫
−∂ε

f(z) dz + i

R∫
ε

sinx

x
dx+

∫
ρ

f(z) dz

= i

−ε∫
−R

sinx

x
dx+ i

R∫
ε

sinx

x
dx+

1

2

∫
−∂ε

f(z) dz +

∫
ρ

f(z) dz

where −∂ε is the boundary of the circle around the origin of radius ε in the clockwise direction.
Therefore

i

−ε∫
−R

sinx

x
dx+ i

R∫
ε

sinx

x
dx =

1

2

∫
∂ε

f(z) dz −
∫
ρ

f(z) dz .
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where ∂ε is the boundary of the circle around the origin of radius ε in the counter�clockwise
(= mathematically positive direction. Now∫

∂ε

f(z) dz =

∫
∂ε

1

z
dz +

∫
∂ε

g(z) dz = 2 iπ +

∫
∂ε

g(z) dz

and so

lim
ε→0

∫
∂ε

f(z) dz = 2 iπ + lim
ε→0

∫
∂ε

g(z) dz = 2 iπ

since limε→0

∫
∂ε

g(z) dz = 0. Thus

i

R∫
−R

sinx

x
dx = lim

ε→0
i

−ε∫
−R

sinx

x
dx+ lim

ε→0
i

R∫
ε

sinx

x
dx = iπ −

∫
ρ

f(z) dz .

Now ∫
ρ

f(z) dz =

∫
ρ+

ei z

z
dz +

∫
ρ0

ei z

z
dz +

∫
ρ−

ei z

z
dz

and ∫
ρ+

ei z

z
dz = eiR

R∫
0

e−y

R+ i y
dy hence

∣∣∣∣∣∣
∫
ρ+

ei z

z
dz

∣∣∣∣∣∣ 6 1− e−R

R

∫
ρ0

ei z

z
dz = e−R

−R∫
R

ei x

x+ iR
dx hence

∣∣∣∣∣∣
∫
ρ0

ei z

z
dz

∣∣∣∣∣∣ 6 2 e−R

∫
ρ−

ei z

z
dz = e− iR

0∫
R

e−y

−R+ i y
dy hence

∣∣∣∣∣∣
∫
ρ−

ei z

z
dz

∣∣∣∣∣∣ 6 1− e−R

R
.

Therefore ∣∣∣∣∣∣
∫
ρ

f(z) dz

∣∣∣∣∣∣ 6 4

R

and so

i

∞∫
−∞

sinx

x
dx = lim

R→∞
i

R∫
−R

sinx

x
dx = iπ − lim

R→∞

∫
ρ

f(z) dz = iπ

as was to be shown.

3) By Trickery : What makes Mathematics fascinating and amazing is the degree to which
ideas, de�nitions and theorems of seemingly disparate disciplines are interrelated so that its
universe appears to be subjected to the small world paradigm (i.e. to be modelled by a graph
in which any two vertices are linked by a path of bounded length where the bound is small,
see [35]). So there are always unexpected and astonishing shortcuts or elegant twists to obtain
results in a way very di�erent from the standard route. In particular, when a master opens his
bag of tricks, this event may always be good for a surprise. The following road of attacking
the Dirichlet integral I did �nd in [29] , Kap. 14, �2, 3., pp. 324-5 (a book to be highly
recommended); I somewhat modi�ed the approach.
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We begin by playing around with trigonometric identities and observe

sinx = 2 sin(x/2) cos(x/2) = (2 sin2(x/2))′

and so by partial integration∫
sinx

x
dx = (2 sin2(x/2))

1

x
+

∫
(2 sin2(x/2))

1

x
dx =

sin2(x/2)

x/2
+

∫
sin2(x/2)

x2/4
d(x/2)

thus arriving at identity
2c∫
−2c

sinx

x
dx = 2

sin2 c

c
+

c∫
−c

sin2 x

x2
dx

for any c > 0. Since
∣∣sin2 /x2

∣∣ 6 1/x2 this immediately settles the question of existence

of
∫∞
−∞ sin2 /x2 dx and hence also of the existence of

∫∞
−∞ sin /x dx, and we have by letting

c→∞:
∞∫
−∞

sinx

x
dx =

∞∫
−∞

sin2 x

x2
dx .

We now compute the integral on the RHS. Fix N ∈ N; then
(N+1)π∫
−Nπ

sin2 x

x2
dx =

k=N∑
k=−N

(k+1)π∫
kπ

sin2 x

x2
dx =

k=N∑
k=−N

π∫
0

sin2(x+ kπ)

(x+ kπ)2
dx

=

k=N∑
k=−N

π∫
0

sin2 x

(x+ kπ)2
dx =

π∫
0

sin2 x

k=N∑
k=−N

1

(x+ kπ)2
dx

Since the integral on the LHS and the series on the RHS are absolutely convergent, there is no
problem with taking the limit N →∞ :

(†)
∞∫
−∞

sin2 x

x2
dx =

π∫
0

sin2 x

k=∞∑
k=−∞

1

(x+ kπ)2
dx .

One of the highlights of a �rst course in Complex Analysis is the partial fraction development
of the classical functions, in particular that of the sine (see [29], Kap. 11, �2, 3. on p. 260):

∞∑
k=−∞

1

(z + k)2
=

π2

sin2 πz

By putting z = x/π we may rewrite this as

∞∑
k=−∞

1

(x+ kπ)2
=

1

sin2 x

thus arriving at
∞∫
−∞

sin2 x

x2
dx =

π∫
0

dx = π .

Lovely.
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Remark. 1) Of course one now is tempted to play the same game directly with
∫∞
−∞ sin /x dx;

There is no need of a preparing partial integration then; directly proceeding to chopping the
integral into pieces as above leads to

(N+1)π∫
−Nπ

sinx

x
dx =

π∫
0

sinx

k=N∑
k=−N

(−1)k

x+ kπ
dx .

One then would like to take limits:
∞∫
−∞

sinx

x
dx =

π∫
0

sinx lim
n→∞

k=N∑
k=−Nπ

(−1)k

x+ kπ
dx ,

but has to be careful here since the series on the RHS is only conditionally convergent and
so the interchange of integration and summation needs further justi�cation which makes this
apparent direct approach more tedious. If one applies the convention to evaluate the sum by
always pairing the summands corresponding to ±k (the so�call Eisenstein summation) one
has indeed the partial development (see [29], Kap. 11, �2, 3. on p. 261)

k=∞∑
k=−∞

(−1)k

z + k
: = lim

n→∞

k=N∑
k=−Nπ

(−1)k

z + k
=

1

z
+ lim
n→∞

k=N∑
k=−Nπ

(−1)k
2z

z2 − k2

=
1

z
+

k=∞∑
k=−∞

(−1)k
2z

z2 − k2
=

π

sinπz
,

hence
k=∞∑
k=−∞

(−1)k

x+ kπ
=

1

sinx
,

and things go through as desired. The trick above of reducing
∫∞
−∞ sin /x dx to

∫∞
−∞ sin2 /x2 dx

circumvents these more cumbersome subtle convergence considerations.

2) In fact, all the integrals

Im,n :=

∞∫
0

sinm x

xn
dx , m, n ∈ N

are known. Of course, some of them are trivially properly or improperly divergent and so we
exclude the cases m = 0 or n = 0, hence consider only m,n ≥ 1. Likewise, we can exclude the
cases m < n, since then sinm x/xn = (sinx/x)m(1/xn−m) and so we can �nd a > 0 such that
sinm x/xn ≥ 1/(2xn−m) on [0, a] whence Im,n is properly divergent. Thus the interesting cases
are m ≥ n ≥ 1. We then have (see [27], the only source I found on these matters)

A) For m ≥ n ≥ 1 of equal parity the Im,n are rational multiples of π and in fact

Im,n =
1

2m(n− 1)!

∑
06k<m/2

(−1)
m−n

2 +k

(
m

k

)
(m− 2k)n−1π .

B) For m ≥ n ≥ 1 of opposite parity the Im,n are

Im,n =


1

2m−1(n− 1)!

∑
06k<m/2

(−1)
m−n−1

2 +k

(
m

k

)
(m− 2k)n−1 log(m− 2k) n ≥ 2 ;

∞ n = 1 .
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As an example for A), we know values of In := In,n for n = 1, 2; the �rst new values are

I3 =
3

8
π , I4 =

1

3
π , I5 =

115

384
π , I6 =

11

40
π .

As an example for B), we have

I3,2 =
3

4
log(3) , I4,3 = log(2) , I5,2 =

5

16
log

(
27

5

)
, I6,3 =

3

16
log

(
256

27

)
.

The rest of this remark which follows is purely recreational; it is a reworking of the computations
in [27]. For the proof we �rst consider the case n ≥ 2. We use the formula

1

xn
=

1

(n− 1)!

∞∫
0

e−xy yn−1 dy

(easily proved by induction using partial integration) to write

(n− 1)!

∞∫
0

sinm x

xn
dx =

∞∫
0

sinm x

∞∫
0

e−xy yn−1 dy dx .

Because of n ≥ 2 there is no trouble to apply Fubini, and so there comes

(n− 1)!

∞∫
0

sinm x

xn
dx =

∞∫
0

yn−1

∞∫
0

sinm x e−xy dx dy .

We now have

(∗) sinm x =

(
ei x− e− i x

2 i

)m
=

1

2m im

m∑
k=0

(−1)k
(
m

k

)
ei(m−2k)x

by the bimomial theorem. Therefore

2m(n− 1)!

∞∫
0

sinm x e−xy dx =
1

im

m∑
k=0

(−1)k
(
m

k

) ∞∫
0

e(i(m−2k)−y)x dx

= − 1

im

m∑
k=0

(−1)k
(
m

k

)
1

i(m− 2k)− y

so that

2m(n− 1)!

∞∫
0

sinm x

xn
dx =

1

im

m∑
k=0

(−1)k
(
m

k

) ∞∫
0

yn−1

y − i(m− 2k)
dy

=
1

im

m∑
k=0

(−1)k
(
m

k

) ∞∫
0

[
yn−1 − in−1(m− 2k)n−1

y − i(m− 2k)
+

in−1(m− 2k)n−1

y − i(m− 2k)

]
dy

But

yn−1 − in−1(m− 2k)n−1

y − i(m− 2k)
=

n−1∑
p=0

yn−1−p ip(m− 2k)p ,

therefore

m∑
k=0

(−1)k
(
m

k

) ∞∫
0

yn−1 − in−1(m− 2k)n−1

y − i(m− 2k)
dy =

n−1∑
p=0

∞∫
0

yn−1−p ip
m∑
k=0

(−1)k
(
m

k

)
(m− 2k)p dy

152



Chapter 10. The Heston Model

Now observe that the Taylor development of the sine allows to write sinm x = xmψm(x) with
ψm an analytic function, which implies that the p�fold derivative of sinm vanishes at x = 0 for
0 6 p < m. Hence

(sinm)(p)(x) =
1

2m im

m∑
k=0

(−1)k
(
m

k

)
ip(m− 2k)p ei(m−2k)x

and so

(∗∗)
m∑
k=0

(−1)k
(
m

k

)
(m− 2k)p = 0 for 0 6 p < m .

Therefore, the sum of integrals above vanishes since so does each summand, and we are left
with

2m(n− 1)!

∞∫
0

sinm x

xn
dx =

1

im

m∑
k=0

(−1)k
(
m

k

) ∞∫
0

in−1(m− 2k)n−1

y − i(m− 2k)
dy .

For m odd there is no summand with k = m/2 and for m even the corresponding summand
vanishes since n ≥ 2 by assumption. For k < m/2 we group the summands corresponding to k
and m− k together; these give

(−1)k
(
m

k

)
in−1

∞∫
0

(m− 2k)n−1

y − i(m− 2k)
dy + (−1)m−k

(
m

m− k

)
in−1

∞∫
0

(m− 2(m− k))n−1

y − i(m− 2(m− k))
dy

= (−1)k
(
m

k

)
in−1

∞∫
0

(m− 2k)n−1

y − i(m− 2k)
dy + (−1)k

(
m

k

)
in−1

∞∫
0

(−1)m
(−(m− 2k))n−1

y + i(m− 2k)
dy

= (−1)k
(
m

k

)
in−1

∞∫
0

[
(m− 2k)n−1

y − i(m− 2k)
+ (−1)m+n−1 (m− 2k)n−1

y + i(m− 2k)

]
dy .

We thus arrive at

2m(n− 1)!

∞∫
0

sinm x

xn
dx

=
∑

06k<m/2

(−1)k
(
m

k

)
1

im−n+1

∞∫
0

[
(m− 2k)n−1

y − i(m− 2k)
+ (−1)m+n−1 (m− 2k)n−1

y + i(m− 2k)

]
dy

A) Suppose m and n are of equal parity. Then m+ n− 1 is odd, and there comes

2m(n− 1)!

∞∫
0

sinm x

xn
dx =

∑
06k<m/2

(−1)k
(
m

k

)
1

im−n+1 2 i(m− 2k)n−1

∞∫
0

m− 2k

y2 + (m− 2k)2
dy

=
∑

06k<m/2

(−1)k
(
m

k

)
1

im−n
2(m− 2k)n−1 arctan

y

m− 2k

∣∣∣∣∞
0

=
∑

06k<m/2

(−1)k
(
m

k

)
(−1)

m−n
2 2(m− 2k)n−1π

2

and hence the claim A) above.
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For n = 1 we directly get from (∗), since m is odd,

sinm x

x
=

1

2m−1 im−1

∑
06k<m/2

(−1)k
(
m

k

)
sin(m− 2k)x

x

Integrating this over (0,∞) and using
∫∞

0
sin(m− 2k)x/x dx =

∫∞
0

sinx/x dx = π/2 yields the
formula for Im,1 above.

B) Suppose m and n are of opposite parity. Then m+ n− 1 is even, and there comes

2m(n− 1)!

∞∫
0

sinm x

xn
dx =

∑
06k<m/2

(−1)k
(
m

k

)
1

im−n+1 (m− 2k)n−1

∞∫
0

2y

y2 + (m− 2k)2
dy

= lim
s→∞

∑
06k<m/2

(−1)k
(
m

k

)
1

im−n+1 (m− 2k)n−1

s∫
0

2y

y2 + (m− 2k)2
dy

= lim
s→∞

∑
06k<m/2

(−1)
m−n+1

2 +k

(
m

k

)
(m− 2k)n−1 log(y2 + (m− 2k)2)

∣∣∣∣∣∣
s

0

= lim
s→∞

∑
06k<m/2

(−1)
m−n+1

2 +k

(
m

k

)
(m− 2k)n−1 log

(
s2

(m− 2k)2
+ 1

)
.

Now write

s2

(m− 2k)2
+ 1 =

s2

(m− 2k)2

(
1 +

(m− 2k)2

s2

)
,

whence

log

(
s2

(m− 2k)2
+ 1

)
= 2 log(s)− 2 log(m− 2k) + log

(
1 +

(m− 2k)2

s2

)
.

In the resulting sum for 2m(n − 1)!
∫∞

0
sinm x/xn dx the �rst term on the RHS sums up to 0

because of the relations (∗∗). The sum over the third term goes to 0 under s → ∞. So after
performing this limit we are left with

2m(n− 1)!

∞∫
0

sinm x

xn
dx =

∑
06k<m/2

(−1)
m−n−1

2 +k

(
m

k

)
(m− 2k)n−12 log(m− 2k) ,

and hence the claim B) above.

Finally, if n = 1, m must be even. As above, we chop the integral into pieces and obtain

Nπ∫
0

sinm x

x
dx =

π∫
0

sinm x

N−1∑
k=0

1

x+ kπ
dx .

Since the harmonic series is properly divergent, so is the integral, which settles the last open
case.
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Since
sinu(y − x)

u
is locally Lebesgue�integrable, the Dominated Convergence

Theorem implies

lim
c→∞

c∫
ε

eiux ϕ(−u)− e− iux ϕ(u)

iu
du = −π

∫
sign(y − x)µ[dy] .

Now

sign(y − x) = 1(x,∞) − 1(−∞,x)

= 1− 1(−∞,x] − 1(−∞,x)

= 1− 1{x} − 21(−∞,x)

whence

lim
c→∞

c∫
ε

eiux ϕ(−u)− e− iux ϕ(u)

iu
du = −π

∫ {
1− 1{x} − 21(−∞,x)

}
µ[dy]

= −π {1− µ [{x}]− 2µ [(−∞, x)]}
= π {−1 + µ [{x}] + 2µ [(−∞, x)]}

and the theorem is proved. QED

Remark. Note that the integral in the theorem might not be de�ned in the Le-
besgue sense. Consider, for example, X = 0, i.e. µ = δ0, the Dirac measure
centered at 0. Then ϕ(u) = E [1] = 1 for all u ∈ R and

eiux ϕ(−u)− e− iux ϕ(u)

iu
=

eiux− e− iux

iu
=

2 sinux

u

which is not Lebesgue�integrable on [0,∞) .

By a simple variable rescaling it su�ces to show that f(u) := sinu/u is not Lebesgue�
integrable on [0,∞). Suppose it were, then |f | would also be Lebesgue�integrable on [0,∞).
Now for any N ∈ N ∫

[0,Nπ]

∣∣∣∣ sinuu
∣∣∣∣ du =

N−1∑
k=0

∫
[kπ,(k+1)π)

∣∣∣∣ sinuu
∣∣∣∣ du .

Since for all k ∈ N ∣∣∣∣ sinuu
∣∣∣∣ ≥ |sinu|

(k + 1)π
for u ∈ [kπ, (k + 1)π)

we get ∫
[0,Nπ]

∣∣∣∣ sinuu
∣∣∣∣ du ≥ N−1∑

k=0

∫
[kπ,(k+1)π)

∣∣∣∣ sinu

(k + 1)π

∣∣∣∣ du =
2

π

N−1∑
k=0

1

k + 1
.

But the harmonic series is unbounded, and we get a contradiction. QED
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The slickest proof of the unboundedness of the harmonic series I know of runs as follows.
Suppose it were bounded. It then would be abolutely convergent, and so any of its subseries
would be so. Now put

H : = 1 +
1

2
+

1

3
+

1

4
+ · · · ,

O : = 1 +
1

3
+

1

5
+

1

7
+ · · · ,

E : =
1

2
+

1

4
+

1

6
+

1

8
+ · · · .

Then H = O + E. On the other hand,

E =
1

2

(
1 +

1

2
+

1

3
+

1

4
+ · · ·

)
=

1

2
H

and so O = E, which is plainly absurd.

Corollary 10.3. Let X be integrable and such that P [X = x] = 0 for all x ∈ R.
Then

P [X ≥ x] =
1

2
+

1

π
lim
c→∞

c∫
0

Re

[
e− iux ϕX(u)

iu

]
du .

Proof. For z ∈ C we have
z − z
i

= 2 Re
z

i
= −2 Re

z

i
.

Hence,
eiux ϕ(−u)− e− iux ϕ(u)

iu
= −2 Re

[
e− iux ϕ(u)

iu

]
,

and Theorem 10.2 implies

P [X ≥ x] = 1− P [X < x] = 1− µX [(−∞, x)]

=
1

2
+

1

π
lim
c→∞

c∫
0

Re

[
e− iux ϕX(u)

iu

]
du .

QED

End of the excursion

Now back to the pricing formula of a call � here it is, the famous Heston formula:

Theorem 10.4. (The Heston pricing formula for European calls) Let ϕY (u) :=
E
∗ [eiuYT ] and ϕZ(u) := E

∗ [eiuZT ], u ∈ R. Then
Heston�call(K,T )
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= S0

1

2
+

1

π

∞∫
0

Re

[
e− iu log(K) ϕY (u)

iu

]
du

−
− e−rT K

1

2
+

1

π

∞∫
0

Re

[
e− iu log(K) ϕZ(u)

iu

]
du

 .

Proof. Recall (see (10.6))

Heston�call(K,T ) = S0P
∗ [YT ≥ log(K)]− e−rT KP ∗ [ZT ≥ log(K)] .

The result follows from Corollary 10.3. QED

The ultimate goal in this development of the Heston formula �nally is the
explicit determination of the characteristic functions ϕY and ϕZ . Recall that the
process X = (V, Z) was shown to be a�ne. Hence, we can write by applying
(9.2) with t = 0:

E
∗ [ei(u1VT+u2ZT )

]
= eφ(T,iu1,iu2)+ψ1(T,iu1,iu2)V0+ψ2(T,iu1,iu2)Z0 .

where φ, ψ1, and ψ2 satisfy the system of Riccati ODEs (10.3) � (10.5). In
particular, we know already that ψ2(t, iu1, iu2) = iu2. If we put u1 := 0, the
LHS gives ϕZ := ϕZT , and so, writing u in place of u2 to simplify notation:

ϕZ(u) = E
∗ [eiuZT

]
= eφ(T,0,iu)+ψ1(T,0,iu)V0+iuZ0 ,

where φ and ψ1 satisfy the equations (see equations (10.3) - (10.5)):

(10.7)



φ′ = κθψ1 + r iu ;

φ(0, 0, iu) = 0 ;

ψ′1 =
1

2
σ2ψ2

1 + (ρσ iu− κ)ψ1 −
u2

2
− iu

2
;

ψ1(0, 0, iu) = 0 .

Our aim now is to determine φ and ψ1 explicitely; note that, once ψ1 is knwn, φ
can be found immediately by a direct integration.

Lemma 10.5. Let A;B,C ∈ C be such that B2 − 4AC 6= 0. Then the Riccati
equation with constant coe�cients

y′(t) = Ay2(t) +By(t) + C , y(0) = 0

has the unique local solution

y(t) =
2C
(
eϑt−1

)
ϑ (eϑt +1)−B (eϑt−1)

where ϑ2 := B2 − 4AC.
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Proof. Since locally the necessary Lipschitz condition is satis�ed, the stan-
dard Existence and Uniqueness Theorem for ODEs shows that locally around 0
there is a unique solution. The proof then amounts to a direct veri�cation that
the explicitely given function is indeed a solution. QED

Proceeding this way is, of course, not entirely satisfactory since it leaves the origin of the
explicitely given solution in complete darkness and loads one with the rather heavy burden of
stupid veri�cation. To get some enlightment and relief, let us try to solve the equation by some
reasoning instead of violence.

First recall that it is common lore that the substitution y = −z′/(Az) transforms a Riccati
equation into a linear ODE of second order which then can be explicitely solved by traditional
methods, e.g. by variation of constants in case of with constant coe�cients. The solution
process simpli�es signi�cantly, however, if one gets rid of the linear term beforehand:

First we treat the case A = 0. We then have the ODE

y′ = By + C , y(0) = 0

which is readily solved; we have B 6= 0 and hence can write

y′ = By + C = B

(
y +

C

B

)
and putting y + C/B =: z we arrive at

z′ = Bz , z(0) = C/B .

Therefore,

z =
C

B
eBt hence y =

C

B

(
eBt−1

)
which is compliant with the above formula.

If A 6= 0, apply the thousands years old �completion of the square�

y′ = A

(
y +

B

2A

)2

+ C − B2

4A
= A

(
y +

B

2A

)2

− ϑ2

4A
.

Substituting y +B/(2A) =: u leaves us with a Riccati equation bare of the linear term:

u′ = Au2 − ϑ2

4A
, u(0) =

B

2A
.

We now make the substitution u = −z′/(Az). Then

u′ = −Azz
′′ −A(z′)2

A2z2

and so the ODE for u gets transformed into

−Azz′′ +A(z′)2

A2z2
= A

(z′2)

A2z2
− ϑ2

4A
, − z′(0)

Az(0)
=

B

2A

or

z′′ =
ϑ2

4
z ,

z′(0)

z(0)
= −B

2
.

Now we have reached safe waters without having had to vary the constants. The solution to
this equation is �rst�semester�stu�:

z = a eϑt/2 + b e−ϑt/2 = e−ϑt/2
(
a eϑt + b

)
158



Chapter 10. The Heston Model

hence

z′ =
ϑ

2

(
a eϑt/2− b e−ϑt/2

)
=
ϑ

2
e−ϑt/2

(
a eϑt− b

)
where we have to determine a and b so that the initial condition z′(0)/z(0) = −B/2 is satis�ed.
Since this is a single condition, but the ODE is of order 2, this does not uniquely �x the solution,
but since u = −z′/(Az) we can scale z, and hence z′, with a nonzero constant without changing
the �nal solution y. So we only have to �x the ratio a : b, and for this the initial condition is
su�cient; it yields

ϑ

2

a+ b

a− b
= −B

2
or

b+ a

b− a
=
B

ϑ

and so

a : b = (ϑ−B) : (ϑ+B) .

We thus arrive at

z = e−ϑt/2
(
(ϑ−B) eϑt + (ϑ+B)

)
= e−ϑt/2

(
ϑ(eϑt + 1)−B(eϑt− 1)

)
and

z′ =
ϑ

2
e−ϑt/2

(
(ϑ−B) eϑt− (ϑ+B)

)
=
ϑ

2
e−ϑt/2

(
ϑ(eϑt− 1)−B(eϑt + 1)

)
,

whence

u = − z′

Az
= −

ϑ
(
ϑ(eϑt− 1)−B(eϑt + 1)

)
2A (ϑ(eϑt + 1)−B(eϑt− 1))

and so

y = u− B

2A
=
ϑ
(
−ϑ(eϑt− 1) +B(eϑt + 1)

)
−B

(
ϑ(eϑt + 1)−B(eϑt− 1)

)
2A (ϑ(eϑt + 1)−B(eϑt− 1))

=
−ϑ2(eϑt− 1) + ϑB(eϑt + 1)−Bϑ(eϑt + 1) +B2(eϑt− 1)

2A (ϑ(eϑt + 1)−B(eϑt− 1))

=
(−ϑ2 +B2)(eϑt− 1)

2A (ϑ(eϑt + 1)−B(eϑt− 1))
,

which completes the proof. QED

We can then use this lemma to �nd the solution of (10.7); just put

A :=
1

2
σ2 , B := ρσ iu− κ , C := −u

2

2
− iu

2
.

Finally, we observed on page 141 that the process X̃ := (U, Y ) is an a�ne process,
too, and from the parameters given there we read o� the Riccati equations.

Hence, there are functions φ̃ and ψ̃ satisfying analogous Riccati equations such
that

ϕY (u) = eφ̃(T,0,iu)+ψ̃1(T,0,iu)V0+iuY0

and one can again use Lemma 10.5 to obtain explicit expressions for φ̃ and ψ̃1.
The corresponding system of Riccati equations is very similar to the system
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(10.7) 

φ′ = κθψ1 + r iu ;

φ(0, 0, iu) = 0 ;

ψ′1 =
1

2
σ2ψ2

1 + (ρσ iu− (κ− ρσ))ψ1 −
u2

2
+

iu

2
;

ψ1(0, 0, iu) = 0 .

so we see only the equation for ψ′ has slightly changed. We read o� the parameters
A, B, and C as

A :=
1

2
σ2 , B := ρσ iu− (κ− ρσ) , C := −u

2

2
+

iu

2
.

This concludes our derivation of a closed form for the Heston formula.

Let us complete here the explicit derivation of Heston's formula and present it in the form
how it shows up in the literature (where virtually all authors appear to copy it from [20]). In
general terms, Lemma 10.5 provides us with the solution for ψ1, where we have to plug in the
concrete values of A,B, and C. Before doing so, however, we complete the general solution to
φ (recall that φ, ψ1, and ψ2 together determine the characteristic function ϕZ). Recall that φ
is given by 10.7 as

φ′(t, iu) = κθψ1(t, iu) + r iu ;

φ(0, iu) = 0 ,

and so by a direct integration.

Lemma 10.6. Let A;B,C ∈ C be such that B2 − 4AC 6= 0. Then the integral of the solution
of Lemma 10.5 of the Riccati equation with constant coe�cients

y′(t) = Ay2(t) +By(t) + C , y(0) = 0

is given by
t∫

0

y(s) ds =
1

A
log

(
2ϑ

ϑ (eϑt +1)−B (eϑt−1)

)
− 2C

ϑ+B
t ,

where ϑ2 := B2 − 4AC.

Proof. As in the case of proof of Lemma 10.5, a valid proof is provided by just checking, and
this proof is equally unsatisfactory. So we give again a derivation of this formula.

We have for the inde�nite integral∫
y(t) dt =

∫
2C
(
eϑt−1

)
ϑ (eϑt +1)−B (eϑt−1)

dt =

∫
2C
(
eϑt−1

)
(ϑ−B) eϑt−(ϑ+B)

dt
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and so, to simplify notation, an integral of the type∫
γ
(
eϑt−1

)
α eϑt +β

dt , α, β, γ ∈ C .

Then ∫
γ
(
eϑt−1

)
α eϑt +β

dt =

∫
γ eϑt

α eϑt +β
dt−

∫
γ

α eϑt +β
dt

and we observe that the second integral is of the same type, since∫
γ

α eϑt +β
dt =

∫
γ e−ϑt

α+ β e−ϑt
dt

and so ∫
γ
(
eϑt−1

)
α eϑt +β

dt =

∫
γ eϑt

α eϑt +β
dt−

∫
γ e−ϑt

β e−ϑt +α
dt .

The �rst integral on th RHS is easily calculated, once one has observed that the nominator is
essentially the derivative of the denominator:∫

γ eϑt

α eϑt +β
dt =

γ

αϑ

∫
αϑ eϑt

α eϑt +β
dt =

γ

αϑ
log
(
α eϑt +β

)
and so∫

γ e−ϑt

β e−ϑt +α
dt = − γ

βϑ
log
(
β e−ϑt +α

)
= − γ

βϑ
log
((
β e−ϑt +α

)
eϑt e−ϑt

)
= − γ

βϑ
log
((
β + α eϑt

)
e−ϑt

)
= − γ

βϑ
log
(
α eϑt +β

)
− γ

βϑ
log
(
e−ϑt

)
= − γ

βϑ
log
(
α eϑt +β

)
+
γ

β
t .

There results ∫
γ
(
eϑt−1

)
α eϑt +β

dt =
γ

αϑ
log
(
α eϑt +β

)
+

γ

βϑ
log
(
α eϑt +β

)
− γ

β
t

=

(
γ

αϑ
+

γ

βϑ

)
log
(
α eϑt +β

)
− γ

β
t

=
(α+ β)γ

αβϑ
log
(
α eϑt +β

)
− γ

β
t .

Therefore
t∫

0

γ
(
eϑs−1

)
α eϑs +β

ds =
(α+ β)γ

αβϑ
log
(
α eϑs +β

)
− γ

β
s

∣∣∣∣t
0

=
(α+ β)γ

αβϑ
log
(
α eϑt +β

)
− γ

β
t− (α+ β)γ

αβϑ
log(α+ β)

=
(α+ β)γ

αβϑ
log

(
α eϑt +β

α+ β

)
− γ

β
t

= − (α+ β)γ

αβϑ
log

(
α+ β

α eϑt +β

)
− γ

β
t .
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Now put α := ϑ−B, β := ϑ+B, γ := 2C, and use ϑ2 = B2 − 4AC. QED

Lemma 10.5 and 10.6 together completely solve the problem of giving an analyical formula for
the characteristic function ϕZ(u):

ϕZ(u) = eφZ(T,iu)+ψZ(T,iu)V0+iZ0

with ψZ(T, iu) := ψ1(T, 0, iu) and φZ(T, iu) := φ(T, 0, iu) given by Lemma 10.5 and Lemma
10.6, respectively, where

A := AZ :=
1

2
σ2 , B := BZ = ρσ iu− κ , C := CZ := −u

2

2
− iu

2
.

We �nally rewrite the solutions in a way they appear in the literature since they show up there
in an apparently very di�erent form which may be di�cult to match with our form given here.
Rewrite the solution of Lemma 10.5 as

2C
(
eϑt−1

)
ϑ (eϑt +1)−B (eϑt−1)

=
2C
(
eϑt−1

)
(ϑ−B) eϑt−(ϑ+B)

=
2C
(
1− eϑt

)
(ϑ+B)− (ϑ−B) eϑt

=
2C

ϑ+B

[
1− eϑt

1− ϑ−B
ϑ+B eϑt

]

=
2C(ϑ−B)

(ϑ+B)(ϑ−B)

[
1− eϑt

1− ϑ−B
ϑ+B eϑt

]

=
2C(ϑ−B)

ϑ2 −B2

[
1− eϑt

1− ϑ−B
ϑ+B eϑt

]

=
2C(ϑ−B)

−4AC

[
1− eϑt

1− ϑ−B
ϑ+B eϑt

]

=
2C(ϑ−B)

−4AC

[
1− eϑt

1− ϑ−B
ϑ+B eϑt

]
.

Rewrite the solution of Lemma 10.6 as

1

A
log

[
2ϑ

ϑ (eϑt +1)−B (eϑt−1)

]
− 2C

ϑ+B
t =

1

A
log

[
2ϑ

(ϑ−B) eϑt−(ϑ+B)

]
− 2C

ϑ+B
t

= − 1

A
log

[
(ϑ−B) eϑt−(ϑ+B)

2ϑ

]
− 2C(ϑ−B)

(ϑ+B)(ϑ−B)
t

= − 1

A
log

[
(ϑ+B)− (ϑ−B) eϑt

−2ϑ

]
− 2C(ϑ−B)

ϑ2 −B2
t

=
ϑ−B

2A
t− 1

A
log

[
1− ϑ−B

ϑ+B eϑt

−2ϑ
ϑ+B

]

=
1

2A

{
(ϑ−B)t− 2 log

[
1− ϑ−B

ϑ+B eϑt

1− ϑ−B
ϑ+B

]}
.

The analytic expression for ϕ := ϕZ in the Heston formula of Theorem 10.4 is then

ϕ(u) = eφ(T,iu)+ψ(T,iu)V0+iZ0
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with

φ(T, iu) = r iuT +
κθ

2A

{
(ϑ−B)T − 2 log

[
1− ϑ−B

ϑ+B eϑT

1− ϑ−B
ϑ+B

]}
and

ψ(T, iu) =
2C(ϑ−B)

−4AC

[
1− eϑT

1− ϑ−B
ϑ+B eϑT

]
,

where

ϑ2 := B2 − 4AC

and

A := AZ :=
1

2
σ2 , B := BZ = ρσ iu− κ , C := CZ := −u

2

2
− iu

2
.

The analytic expression for ϕ := ϕY in the Heston formula of Theorem 10.4 is given by just
the same procedure of solving the appropiate Riccati equations with only slightly di�erent
coe�cients whose values we have seen above (on page 160) to be

A := AY :=
1

2
σ2 , B := BY = ρσ iu− (κ− ρσ) , C := CY := −u

2

2
+

iu

2
.

If one now compares these formulas with the original ones of Heston ([20], p. 331), one has
to cope with two little bad surprises:

1) The formulas above for φ and ψ do not match completely Heston's formulas for C(τ ;φ) and
D(τ ;φ); one has to switch from ϑ to −ϑ. This issue itself is not a surprise, since the solutions
given in Lemma 10.5 and Lemma 10.6 have only ϑ2 as input, and so it may happen; the bad
surprise is that it does happen. Of course, the solutions given above better be invariant under
ϑ → −ϑ since they are unique, and it is a nice computational exercise to verify this. But it is
conceptually more satisfying to see if they can be written in such a way that this symmetry
becomes manifest, and this is indeed the case. One may write for the solution y(t) of Lemma
10.5 by multiplying nominator and denominator by e−ϑt/2

y(t) =
2C
(
eϑt−1

)
ϑ (eϑt +1)−B (eϑt−1)

=
2C (sinh(ϑt/2))

ϑ cosh(ϑt/2)−B sinh(ϑt/2)
.

Here the nominator and denominator are clearly odd and so y(t) is even. To rewrite the
solution of Lemma 10.6 is slightly more work. Again one starts with multiplying nominator
and denominator by e−ϑt/2:∫

y(t)dt =
1

A
log

[
2ϑ

ϑ (eϑt +1)−B (eϑt−1)

]
− 2C

ϑ+B
t

=
1

A
log

[
2ϑ e−ϑt/2

ϑ cosh(ϑt/2)−B sinh(ϑt/2)

]
− 2C

ϑ+B
t

=
1

A
log

[
2ϑ

ϑ cosh(ϑt/2)−B sinh(ϑt/2)

]
−
(
ϑ

2A
+

2C

ϑ+B

)
t

=
1

A
log

[
2ϑ

ϑ cosh(ϑt/2)−B sinh(ϑt/2)

]
−
(
ϑ(ϑ+B) + 4AC

2A(ϑ+B)

)
t

=
1

A
log

[
2ϑ

ϑ cosh(ϑt/2)−B sinh(ϑt/2)

]
−
(
ϑ2 + ϑB + 4AC

2A(ϑ+B)

)
t

=
1

A
log

[
2ϑ

ϑ cosh(ϑt/2)−B sinh(ϑt/2)

]
−
(
B2 − 4AC + ϑB + 4AC

2A(ϑ+B)

)
t
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=
1

A

{
log

[
2ϑ

ϑ cosh(ϑt/2)−B sinh(ϑt/2)

]
− B

2
t

}
,

which again is even. So if we now make the change ϑ→ −ϑ and employ the relations

1− e−x

1− h e−x
= h−1 1− ex

1− h−1 ex
,

1− h e−x

1− h
= e−x

1− h−1 ex

1− h−1

Heston's formulas should now match our formulas . . .

2) . . . if there were not little bad surprise #2: where we have a κ in the parameter B, Heston
has a κ + λ with an additional parameter λ. To see how this discrepancy arises, one has to
realize that Heston sets up his model under the real world measure P , whereas we set up
our model under the assumption of a risk�neutral measure P ∗. When trying to implement the
Girsanov scheme on a measure change P → P ∗ making the discounted stock price e−rt St
into a martingale, one has to introduce an additional parameter λ to parametrize the possible
Girsanov transformations, because one now has two BMs. It thus turns out that the Heston
model is not complete and there are various EMMs parametrized by λ (not all λ can occur,
see [36], Section 3, or p. 134 above). The choice made in [20] has the e�ect that, analogous
to the situation in the BS model the equations maintain their form with the drift parameter µ
replaced with the constant interest rate r and the parameter λ hidden in the parameters κ and
θ of the model under the risk�neutral measure (see pp. 131 � 134 for more details on how the
measure change in the Heston model works).

There seems to be a certain agreement in the literature that Heston's choice is arbitrary and
further inverstigation is needed by what methods to determine an optimal EMM to deal with
the intrinsic risks existing in incomplete models which cannot be hedged away (see [14], [19]
and [11]). At any rate, under a risk�neutral measure obtained this way and assumed in our
approach from the beginning, Heston's formulas in [20] take the form which has been derived
here; the complete identi�cation is accomplished by making use of the formula (?) on p. 133.
The parameter λ is the only relic of the incompleteness of the Heston model and has vanished
completely from the formulas under a risk�neutral measure rendering them unique; it has been
absorbed into the parameters κ and θ, which have to be determined by calibration (see the
next topic) anyway. In this manner we end up with unambiguous price formulas. But keep in

mind that the price for this was to choose the market price of volatility ϑ1 proportional to
√
V .

We now come to our last topic in this chapter.

Calibration of the Heston model

Given a parametric model, the �rst task to cope with before the model can be put
to use is the determination of those numerical values of the parameters, which
optimize the predictions of the model. This is a kind of inverse to the problems
the model has been set up to solve. E.g. if the model is set up for predicting
option prices, one �rst collects a sample of actual markt prices of liquidly traded
options and sets out to �nd those values of the parameters which make the model
produce the best approximations to the observed prices with respect to some
chosen error distance. This process of determining optimal parameters is called
calibrating to model. After this process of calibration the model can then be used
to predict prices of other options, which then may also be exotic. So, while the
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standard task, which the model has been designed for, is to predict prices given
the parameters, the calibration process predicts, given the prices, the optimal
parameters, and so is inverse to the standard task of the model.

We describe this now in some more detail. First, introduce some notation. let
0 < T1 < · · · < TM be a set of maturities, and Kij, i ∈ {1, . . . ,M} and j ∈
{1, . . . , N(i)} a set of strikes. Suppose that the call with maturity Ti and strike
Kij is liquidly traded at a market price CM(Ti, Kij) for all 1 6 i 6 M , 1 6 j 6
N(i). Let Θ := (K, θ, σ, ρ, V0) be the Heston model parameters. The calibration
of the model consists in �nding the Θ that minimizes

M∑
i=1

N(i)∑
j=1

[CM(Ti, Kij)−Heston�callΘ(Ti, Kij)]
2 .

We write Heston�callΘ to remind of the fact that the Heston formula for the
price of a call is a function of the parameters. Heston�callΘ(Ti, Kij) and its
derivatives (the Greeks) are known explicitely. Hence one can use one of the
known e�cient and fast optimization methods, e.g. the Newton method, for
�nding an optimal Θ.

The Heston model parameters can thus be approximated quickly. This is the
strength of the Heston model, and of, more generally, the a�ne models.
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CHAPTER 11

Fourier Transform of Exponentially Weighted Plain Vanilla
Options

From a numerical point of view, there is a problem with the Heston formula:
since it has iu in the denominator of the integrand, it has a singularity in u = 0
which makes the evaluation of the integral numerically unstable, so one has to
be very careful about this point. In particular, this prevents the use of the FFT
(Fast Fourier Transform) for evaluating the integral, which is highly regrettable
in view of the speed advantages of this method.

Now numerical tractability of pricing formulae is quite an issue in daily �nancial
practice; the methods of evaluation must be practicable, fast, and stable. One
trick to circumvent the singularity at u = is to use an exponential weight and is
due to [3] (a very famous landmark paper, perhaps not quite in the league of [2]
or [20] but surely among the Top Ten of the All�Time Greatest of Mathematical
Finance . . . ) This makes the Heston formula amenable to FFT calculations.
We now explain the details.

Let (Ω,F , P ∗) be a probability space. We consider a model allowing analytical
formulas for option prices (like the Heston model, but there are others, see [3]).
Let S0

t = ert be the price at time t ∈ R+ of a non�risky asset, and St the price
of a risky asset, the underlying. We assume that e−rt St is a P

∗�martingale; in
other words, P ∗ is supposed to be a risk�neutral measure.

We make a couple of assumptions. We assume that XT := log(ST ) has a density
w.r.t. the Lebesgue measure on R, denoted qT (x), x ∈ R. Moreover, we
suppose that the characteristic function ϕT of XT :

ϕT (u) :=

∫
eiux qT (x) dx

is �known� for u ∈ C, i.e. given by some explicit analytic expression (which is for
instance the case for a�ne processes).

Let K be a strike price and T > 0 a maturity date. We de�ne k := log(K). The
price of a call with strike K and maturity T is given by

CT (k) = e−rT
∞∫

−∞

(
ex− ek

)+
qT (x) dx = e−rT

∞∫
k

(
ex− ek

)
qT (x) dx .
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Now recall the Fourier Inversion Theorem. Let Lp(R) stand for the functions
f : R −→ C such that |f |p is integrable. For f ∈ L2(R), de�ne

F [f ](u) :=

∫
R

eiux f(x) dx ,

the Fourier transform of f .

Here one has to be careful about the meaning of this formula. As a Lebesgue integral, it de�nes
the Fourier transform on the subspace L1(R)∩L2(R) ⊆ L2(R). In fact, this formula de�nes
F on all of L1(R) with image contained in C0

∞(R), the space of continuous functions vanishing
at in�nity (Riemann�Lebesgue Lemma). Unfortunately, C0

∞(R) is not contained in L1(R), so
F does not map L1(R) to L1(R), which makes L1(R) a bad domain to study F and its inverse.
However, L1(R)∩L2(R) is dense in L2(R) and can be shown to map into C0

∞(R)∩L2(R) under F
([1], Chap. X, Lemma 9.17). Hence F maps L1(R) ∩ L2(R) into L2(R) and extends to an
isometry F : L2(R) −→ L2(R) ([1], Chap. X, Theorem 9.23). We thus have for any f ∈ L2(R):

F [f ] = lim
n→∞

F [fn]

for any sequence (fn) in L1(R)∩L2(R) with limn→∞ fn = f , the limits taken in the L2�sense.
In particular, one may take the sequence fn := f1[−Rn,Rn], where (Rn) is any monotonously
increasing unbounded sequence of real numbers. This shows

F [f ](u) = lim
R↑∞

R∫
−R

eiux f(x) dx =

∞∫
−∞

eiux f(x) dx ,

so that the integral above has to be read as an improper integral, which might not be Lebesgue.

The Fourier Inversion Theorem then is the statement

1

2π

∫
R

e− iuxF [f ](u) du = f(x) .

Again, this equation has to be interpreted properly. As it stands, i.e. with the integral inter-
preted as a Lebesgue integral, it holds for those f ∈ L1(R) such that F [f ] ∈ L1(R)∩ C0

∞(R).
For f ∈ L2(R) it then holds again by density arguments, and the integral again has to be
interpreted as an improper one.

Notice that one has CT (k) → S0 as k → −∞; this prevents CT (k) from being
in L1(R). This should be intuitively plausible, since k → −∞ corresponds to
K → 0; but the closer the strike K approaches 0, the sooner the option becomes
active and so, because the price process has continuous paths, the closer it stays
to S0.

For a formal proof, note that, because the discounted price process is a P ∗�martingale,

S0 = e−rT E∗ [ST ] = E
∗ [e−rT ST ] = E

∗ [eXT
]

= E
XT [ex] =

∞∫
−∞

ex qT (x) dx
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and so

erT (CT (k)− S0) =

∞∫
k

(
ex− ek

)
qT (x) dx−

∞∫
−∞

ex qT (x) dx

= −
k∫

−∞

ex qT (x) dx−
∞∫
k

ek qT (x) dx ,

whence

erT |CT (k)− S0| 6

∣∣∣∣∣∣
k∫

−∞

ex qT (x) dx

∣∣∣∣∣∣+

∣∣∣∣∣∣
∞∫
k

ek qT (x) dx

∣∣∣∣∣∣
6 ek

∣∣∣∣∣∣
k∫

−∞

qT (x) dx

∣∣∣∣∣∣+ ek

∣∣∣∣∣∣
∞∫
k

qT (x) dx

∣∣∣∣∣∣
= ek

k∫
−∞

qT (x) dx = ek

which proves the claim.

In order to be able to apply the Fourier transform, the trick is to multiply
CT (k) with an exponential weight to render it integrable. Suppose that there
exists α > 0 such that

DT (k) := eαk CT (k)

is in L1(R) ∩ L2(R). Then the Fourier transform

ψT (v) :=

∫
ei vkDK(k) dk

is de�ned.

Lemma 11.1. We have

ψT (v) =
e−rT ϕT (v − (α + 1) i)

α2 + α− v2 + (2α + 1) i v
.

Proof. We compute

ψT (v) =

∞∫
−∞

ei vk

∞∫
k

eαk e−rT
(
ex− ek

)
qT (x) dx dk

=

∞∫
−∞

e−rT qT (v)

x∫
−∞

ei vk
(
ex+αk− ek+αk

)
dk dx
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=

∞∫
−∞

e−rT qT (v)

x∫
−∞

(
ex+αk+i vk− ek+αk+i vk

)
dk

︸ ︷︷ ︸
=:A

dx.

Then

A =
ex+αk+i vk

α + i v

∣∣∣∣x
−∞
− ek+αk+i vk

1 + α + i v

∣∣∣∣x
−∞

=
ex+αx+i vx

α + i v
− ex+αx+i vx

1 + α + i v

=
(1 + α + i v) e(1+α+i v)x−(α + i v) e(1+α+i v)x

(α + i v)(1 + α + i v)

=
e(1+α+i v)x

α2 + α− v2 + 2α i v + i v
,

which imples

ψT (v) =

∞∫
−∞

e−rT qT (v)
e(1+α+i v)x

α2 + α− v2 + (2α + 1) i v

= e−rT
1

α2 + α− v2 + (2α + 1) i v

∞∫
−∞

qT (v) e(1+α+i v)x dx

=
e−rT

α2 + α− v2 + (2α + 1) i v

∞∫
−∞

ei(v−i(1+α))x qT (v)dx

=
e−rT

α2 + α− v2 + (2α + 1) i v
ϕT (v − i(1 + α)) .

QED

Corollary 11.2. The call price satis�es

CT (k) = e−αk
1

π
Re

∞∫
0

e− i vk ψT (v) dv .
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Proof. The Fourier Inversion Theorem implies

CT (k) = e−αkDT (k) = e−αk
1

2π

∞∫
−∞

e− i vk ψT (v) dv .

Make the following observations:

e− i vk ψT (v) = e− i vk ψT (v) = ei vk ψT (−v) ,

and

∞∫
−∞

e− i vk ψT (v) dv =

0∫
−∞

e− i vk ψT (v) dv +

∞∫
0

e− i vk ψT (v) dv

=

∞∫
0

ei vk ψT (−v) dv +

∞∫
0

e− i vk ψT (v) dv

=

∞∫
0

(
e− i vk ψT (v) + e− i vk ψT (v)

)
dv

= 2

∞∫
0

Re
(
e− i vk ψT (v)

)
dv

= 2 Re

∞∫
0

e− i vk ψT (v) dv .

QED

Calibration using the Fast Fourier Transform (FFT)

The FFT is an e�cient algorithm for computing sums of the following type:

ω(k) =
N∑
j=1

e− i 2π
N

(j−1)(k−1) x(j)

for k = 1, . . . , N ∈ N (it brings the computational cost of O(N2) operations
using the traditional implementation of the basic arithmetic operations down to
O(N logN)). This is of particular importance for the calibration process, where
you have to compute not just one price, but a whole bunch of prices at one stroke.
Applying it to our situation leads to the following scheme.
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For simplicity, assume S0 = 1. Let η > 0 and vj := n(j − 1) for j = 1, . . . , N .
Then

e−αk

π
Re

N∑
j=1

ωj e− i vjk ψT (vj)η

(you could interpret this as an approximating Riemann sum for the Fourier
integral). The ωj are weights depending on the numeric integration rule that you
use. For the trapezoidal rule, for instance, we have ω1 = ωN = 1/2 and ωj = 1
for all other j.

Let λ := (2π/N) · (1/η) and de�ne b := Nλ/2. We set

kn := −b+ λ(n− 1) , n = 1, . . . , N .

Then

CT (kn) ≈ e−αkn

π
Re

N∑
j=1

ωj e− i vjkn ψT (vj)η .

Rewrite

e− i vjkn = e− i vj(−b+λ(n−1)) = ei vjb e− iλ(n−1)vj

= ei vjb e− iλη(n−1)(j−1) = ei vjb e− i 2π
N

(n−1)(j−1) .

To sum up, we get

CT (kn) ≈ e−αkn

π
Re

N∑
j=1

e− i 2π
N

(n−1)(j−1) ωj ei vjb ψT (vj)η︸ ︷︷ ︸
=:xj

.

Now one can apply the FFT algorithm to compute C(kn) quickly also for a whole
range of strikes; this is what you need in applications, e.g., as mentioned above,
in calibrations.
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