

"Mathematical Finance"

Exercise sheet 1

Please return your solution sheet in the lecture on November 7th

1. Recall the definition of the value-at-risk of a portfolio from the lecture. If the random variable L on (Ω, \mathcal{F}, P) denotes the loss of the portfolio, then

$$\operatorname{VaR}_{\alpha}(L) = \inf\{c \in \mathbb{R} | P[L > c] \le 1 - \alpha\}.$$

Let (L_n) denote a sequence of integrable, independent and identically distributed random variables. Show that for any $\alpha \in (0, 1)$

$$\operatorname{VaR}_{\alpha}\left(\frac{1}{n}\sum_{i=1}^{n}L_{i}\right) \to E[L_{1}]$$

as $n \to \infty$. Choose the common distribution in such a way that convexity is violated for large n, i.e.

$$\operatorname{VaR}_{\alpha}\left(\frac{1}{n}\sum_{i=1}^{n}L_{i}\right) > \operatorname{VaR}_{\alpha}(L_{1}).$$

Thus, VaR_{α} may penalize diversification instead of encouraging it.

2. Consider a market model with one bond and two risky assets. Let $\Omega = \{\omega_1, \omega_2\}$ and P a probability measure with $P(\{\omega_1\}) = P(\{\omega_2\}) = \frac{1}{2}$. Let r = 0.1, and let the prices of the risky assets at time 0 be given by $\pi = (\pi^1, \pi^2) = (2, 2)$. Check whether the market is arbitrage free if the prices $S = (S^1, S^2)$ of the risky assets at time 1 satisfy

- (a) $S(\omega_1) = (1,3)$ and $S(\omega_2) = (3,4)$,
- (b) $S(\omega_1) = (3, 1)$ and $S(\omega_2) = (1, 3)$,
- (c) $S(\omega_1) = (3, 1)$ and $S(\omega_2) = (1, 4)$.

Prove your answers!

3. Consider a market model with one bond and one risky asset with prices $S^0 = 1 + r$ and S^1 at time 1. Show that the following financial derivatives can be seen as linear combinations of S^0 , S^1 and call options $(S^1 - K)^+$ on S^1 with strike K:

(a) put: $(K - S^1)^+$, with strike $K \ge 0$,

- (b) $\min(S^1, K)$, with $K \ge 0$,
- (c) convertible bond: $\max(S^1, S^0)$,
- (d) butterfly spread: $f(S^1)$, where

$$f(x) = \begin{cases} x - a, & a \le x \le \frac{a+b}{2} \\ b - x, & \frac{a+b}{2} < x \le b \\ 0, & \text{else} \end{cases}$$

Denote the arbitrage free prices of S^0 , S^1 and $(S^1 - K)^+$ at time 0 by π^0 , π^1 and $\pi(K)$, respectively. Calculate the arbitrage free prices of the derivatives (a) - (d) in dependence of π^0 , π^1 and $\pi(K)$.

4. Let C_1 and C_2 be two call options on the same asset, with strike prices $K_1 \leq K_2$. Suppose that both options are traded at prices $\pi(C_1)$ and $\pi(C_2)$ respectively. Show that for the market to be arbitrage free it is necessary that

- (a) $\pi(C_1) \ge \pi(C_2)$,
- (b) $\frac{K_2 K_1}{1 + r} \ge \pi(C_1) \pi(C_2),$
- (c) if C_3 is an option with strike price $\lambda K_1 + (1 \lambda)K_2$, $\lambda \in [0, 1]$, traded at $\pi(C_3)$, then $\lambda \pi(C_1) + (1 \lambda)\pi(C_2) \ge \pi(C_3)$.