Stefan Ankirchner, Thomas Kruse

,"Mathematical Finance"
 Exercise sheet 3

Please return your solution sheet in the lecture on December 5th

1. Let $X=\left(X_{1}, \ldots, X_{n}\right)$ and $Y=\left(Y_{1}, \ldots, Y_{m}\right)$ be vectors of random variables such that $\sigma\left(X_{1}, \ldots, X_{n}\right)$ is independent of $\sigma\left(Y_{1}, \ldots, Y_{m}\right)$. Let $\Phi: \mathbb{R}^{n+m} \rightarrow \mathbb{R}$ be such that $E|\Phi(X, Y)|<\infty$, and suppose that $\varphi(x)=E(\Phi(x, Y))$ is defined for all $x \in \mathbb{R}^{n}$. Show that

$$
E\left(\Phi(X, Y) \mid \sigma\left(X_{1}, \ldots, X_{n}\right)\right)=\varphi(X)
$$

2. Consider a complete multi-period model. An owner of a chooser option has to decide, at some fixed time $t<T$, whether to turn the option into a call or into a put. The strike K and the expiration date T are fixed from the time of purchase. We suppose that the owner chooses the option type possessing a higher value at time t. Try to write the payoff of a chooser option as a random variable C.
Let $p(u, L)($ resp. $c(u, L))$ denote the price at time 0 of a put (resp. call) with strike L and expiration date u. Show that

$$
(1+r)^{-T} E^{*}(C)=c(T, K)+p\left(t,(1+r)^{t-T} K\right),
$$

i.e. the arbitrage free price of the chooser option is equal to the sum of the price of a call with strike K and expiration date T, and the price of a put with strike $(1+r)^{t-T} K$ and expiration date t.
Hint: Use that $\left(K-S_{T}\right)^{+}=\left(S_{T}-K\right)^{+}-S_{T}+K$.
3. Consider the BOPM. Calculate the price of the up-and-out call

$$
C=\left\{\begin{array}{cl}
0 & , \text { if } \max _{0 \leq t \leq T} S_{t} \geq B \\
\left(S_{T}-K\right)^{+} & , \text {else. }
\end{array}\right.
$$

Assume that $d=u^{-1}$ and $B>S_{0} \wedge K$.
4. Let $C=\left(K-\min _{0 \leq t \leq T} S_{t}\right)^{+}$be a lookback put with fixed strike K. Show that in the BOPM with $d=u^{-1}$ the arbitrage free price of C is given by

$$
\frac{1}{(1+r)^{T}} \sum_{k=0}^{T}\left(K-S_{0} u^{-k}\right)^{+} \sum_{l=l_{k}}^{T-k}\left(p^{*}\right)^{l}\left(1-p^{*}\right)^{T-l} \frac{2(k+l)-T+1}{T+1}\binom{T+1}{T-l-k},
$$

where $l_{k}=\min \{l: 2 l-T \geq-k\}$.
You may assume, without proof, that for $k \in \mathbb{N}$ and $l \geq 0$,

$$
P\left(\min _{0 \leq t \leq T} Z_{t}=-k, Z_{T}=-k+l\right)=\frac{2(k+l+1)}{T+1} P\left(Z_{T+1}=-k-l-1\right) .
$$

