Stefan Ankirchner, Thomas Kruse

# ,"Mathematical Finance" 

## Exercise sheet 5

Please return your solution sheet in the lecture on January 16th

1. Recall that a sequence of random variables $\left(X_{n}\right)_{n \geq 1}$ converges to $X$ in distribution if and only if

$$
\begin{equation*}
\lim _{n \rightarrow \infty} E f\left(X_{n}\right)=E f(X) \quad \text { for all } f \in \mathcal{C}_{b}(\mathbb{R}) \tag{1}
\end{equation*}
$$

Show that (1) is equivalent to the condition

$$
\begin{equation*}
\lim _{n \rightarrow \infty} E f\left(X_{n}\right)=E f(X) \quad \text { for all uniformly continuous } f \in \mathcal{C}_{b}(\mathbb{R}) \tag{2}
\end{equation*}
$$

2. Let $M=\left(M_{t}\right)_{t \geq 0}$ be a non-negative local martingale on a filtered probability space $\left(\Omega, \mathcal{F},\left(\mathcal{F}_{t}\right)_{t \geq 0}, P\right)$ such that $M_{0} \in \mathbb{R}_{+}$. Show that $M$ is a supermartingale.
3. Consider the Black-Scholes model

$$
\mathrm{d} S_{t}=r S_{t} \mathrm{~d} t+\sigma S_{t} \mathrm{~d} B_{t}
$$

where $B=\left(B_{t}\right)_{t \in[0, T]}$ is a Brownian motion under the EMM $P^{*}$. An Asian call option with strike $K>0$ is a contingent claim with payoff

$$
\begin{equation*}
C=\left(\frac{1}{T} \int_{0}^{T} S_{t} \mathrm{~d} t-K\right)^{+} \tag{3}
\end{equation*}
$$

at time $T$. Define the process $Y_{t}=\int_{0}^{t} S_{r} \mathrm{~d} r$ and let $V_{t}$ denote the arbitrage free price of $C$ at time $t$. By Lemma 4.3 there exists a function $v:[0, T] \times[0, \infty) \times \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
V_{t}=e^{-r(T-t)} E^{*}\left[C \mid \mathcal{F}_{t}\right]=v\left(t, S_{t}, Y_{t}\right)
$$

Show that $v$ satisfies the partial differential equation

$$
v_{t}(t, x, y)+r x v_{x}(t, x, y)+x v_{y}(t, x, y)+\frac{1}{2} \sigma^{2} x^{2} v_{x} x(t, x, y)=r v(t, x, y)
$$

for $(t, x, y) \in[0, T) \times(0, \infty) \times \mathbb{R}$ and the boundary conditions

$$
\begin{array}{rlccl}
v(t, 0, y) & = & e^{-r(T-t)}\left(\frac{y}{T}-K\right)^{+}, & & 0 \leq t<T, y \in \mathbb{R} \\
\lim _{y \searrow-\infty} v(t, x, y) & = & 0, & & 0 \leq t<T, x \geq 0 \\
v(T, x, y) & = & \left(\frac{y}{T}-K\right)^{+}, & & x \geq 0, y \in \mathbb{R} .
\end{array}
$$

4. Consider the Black-Scholes model as in Exercise 3. Replacing the arithmetic average in (3) by a geometric average leads to an option with payoff

$$
\hat{C}=\left(\exp \left(\frac{1}{T} \int_{0}^{T} \ln \left(S_{t}\right) \mathrm{d} t\right)-K\right)^{+}
$$

Denote by $\hat{V}_{0}$ the arbitrage free price of $\hat{C}$ at time 0 .
(a) Show that $\hat{V}_{0} \leq V_{0}$, where $V_{0}$ is the arbitrage free price of the Asian option (3).
(b) Show that

$$
\hat{V}_{0}=e^{-r T} E^{*}\left[\left(S_{0} \exp \left(\left(r-\frac{\sigma^{2}}{2}\right) \frac{T}{2}+\sigma \sqrt{\frac{T}{3}} N\right)-K\right)^{+}\right]
$$

where $N$ is a standard normal variable. Hint: Show that for a Brownian motion $B$ the random variable $\int_{0}^{T} B_{t} \mathrm{~d} t$ is normal with zero mean and a variance equal to $T^{3} / 3$.
(c) Prove the inequality

$$
V_{0}-\hat{V}_{0} \leq S_{0} e^{-r T}\left(\frac{e^{r T}-1}{r T}-e^{r \frac{T}{2}-\sigma^{2} \frac{T}{12}}\right) .
$$

