Stefan Ankirchner, Thomas Kruse

,"Mathematical Finance"

Exercise sheet 6

Please return your solution sheet in the lecture on January 30th

1. Let $A \in \mathbb{R}^{d, d}$ be a positive semi-definite matrix. Prove the following claims.
(a) If $a_{i i}=0$ for all $i \in\{1, \ldots, d\}$, then $A=0$.
(b) If there exist $B \in \mathbb{R}^{n, m}$ and $C \in \mathbb{R}^{m, m}$ with $m+n=d$ and

$$
A=\left(\begin{array}{cc}
0 & B \\
B^{T} & C
\end{array}\right),
$$

then $B=0$.
2. Show that

$$
\lim _{c \rightarrow \infty} \int_{0}^{c} \frac{\sin (x)}{x} d x=\frac{\pi}{2}
$$

Hint: Fix $c>0$ and show that $(x, y) \mapsto e^{-x y} \sin (x)$ is Lebesgue integrable on $(0, c) \times(0, \infty)$. Apply Fubini's theorem to obtain

$$
\int_{0}^{c} \frac{\sin (x)}{x} d x=\frac{\pi}{2}-\cos (c) \int_{0}^{\infty} \frac{e^{-c y}}{1+y^{2}} d y-\sin (c) \int_{0}^{\infty} \frac{y e^{-c y}}{1+y^{2}} d y .
$$

Use $1+y^{2} \geq 1$ to conclude that $\left|\int_{0}^{c} \frac{\sin (x)}{x} d x-\frac{\pi}{2}\right| \rightarrow 0$ as $c \rightarrow \infty$.
3. Let B be a Brownian motion and define the \mathbb{R}_{+}^{2}-valued process X by $X_{t}^{i}=\left(\sqrt{x^{i}}+B_{t}\right)^{2}$ for $i=1,2$ and $x \in \mathbb{R}_{+}^{2}$.
(a) Show that X satisfies

$$
d X_{t}^{i}=d t+2 \sqrt{X_{t}^{i}} d B_{t}
$$

for $i=1,2$ and $X_{0}=x$.
(b) Is X an affine process? Prove your answer by computing the characteristic function of X_{t}. You can use the following representation of the characteristic function of a noncentral chi-squared distributed random variable Z^{2}

$$
E\left[e^{i u Z^{2}}\right]=\frac{1}{\sqrt{1-2 i \sigma^{2} u}} e^{\frac{i u \mu^{2}}{1-2 i \sigma^{2} u}}
$$

where $Z \sim N\left(\mu, \sigma^{2}\right)$.
4. In the Vasicek model the short-rate X evolves according to an Ornstein-Uhlenbeck process

$$
d X_{t}=\left(b+\beta X_{t}\right) d t+\sigma d B_{t},
$$

where $b \in \mathbb{R}, \beta<0, \sigma>0$ and B is a Brownian motion. Show that X is an affine process by using Theorem 9.1 and solving the associated Riccati equations

$$
\begin{aligned}
\Psi_{t}(t, i u) & =\beta \Psi(t, i u) \\
\Psi(0, i u) & =i u \\
\Phi(t, i u) & =\frac{1}{2} \sigma^{2} \int_{0}^{t} \Psi^{2}(s, i u) d s+b \int_{0}^{t} \Psi(s, i u) d s
\end{aligned}
$$

Conclude that X_{t} is normally distributed with mean $X_{0} e^{\beta t}+\frac{b}{\beta}\left(e^{\beta t}-1\right)$ and variance $\sigma^{2} \frac{e^{2 \beta t}-1}{2 \beta}$.

