

Neural Network Image Scaling
Using Spatial Errors

Carl Staelin, Darryl Greig, Mani Fischer, Ron Maurer
HP Laboratories Israel1

HPL-2003-26 (R.1)
October 30th , 2003*

image error
measures,
image scaling,
image
interpolation,
super-
resolution,
neural
networks

We propose a general method for gradient-based training of neural
network (NN) models to scale multi-dimensional signal data. In the
case of image data, the goal is to fit models that produce images of
high perceptual quality, as opposed to simply a high peak signal to
noise ratio (PSNR). There have been a number of perceptual image
error measures proposed in the literature, the majority of which
consider the behavior of the error surface in some local
neighborhood of each pixel. By integrating such error measures into
the NN learning framework, we may fit models that minimize the
perceptual error, producing results that are more visually pleasing.
We introduce a spatial error measure and discuss in detail the
derivative computations necessary for backpropagation. The results
are compared to neural networks trained with the standard sum of
squared errors (SSE) function, as well a state of the art scaling
method.

* Internal Accession Date Only Approved for External Publication
1 HP Laboratories Israel, Technion City, Haifa 32000, Israel
 Copyright Hewlett-Packard Company 2003

1

Neural Network Image Scaling Using Spatial Errors
Carl Staelin, Darryl Greig, Mani Fischer, and Ron Maurer

Abstract— We propose a general method for gradient-based
training of neural network (NN) models to scale multi-
dimensional signal data. In the case of image data, the goal is to fit
models that produce images of high perceptual quality, as opposed
to simply a high peak signal to noise ratio (PSNR). There have
been a number of perceptual image error measures proposed in
the literature, the majority of which consider the behavior of
the error surface in some local neighborhood of each pixel. By
integrating such error measures into the NN learning framework,
we may fit models that minimize the perceptual error, producing
results that are more visually pleasing. We introduce a spatial
error measure and discuss in detail the derivative computations
necessary for backpropagation. The results are compared to
neural networks trained with the standard sum of squared errors
(SSE) function, as well as a state of the art scaling method.

Index Terms— image error measures, image scaling, image
interpolation, super-resolution, neural networks.

I. INTRODUCTION

WE propose a new method for fitting statistical learning
models using spatial error measures, and demonstrate

its use in the context of image scaling. Traditional error
measures examine and penalize each output value in isolation,
solely as a function of the difference between the actual output
value and the target value for that input vector. However, in
some applications such as image processing, the correlation
or co-location of errors can have a dramatic impact on the
importance and significance of the particular error. Spatial
error measures were developed to take these inter-output
interactions into account and to incorporate them into the
penalty function used during model fitting.

The standard sum of squared errors (SSE) measure is
inversely proportional to the peak signal to noise ratio (PSNR)
value between the scaled image and the target image, but
PSNR does not necessarily capture the perceptual quality
of the scaled image (see, for example, [1], [2]). We seek
other error functions that more accurately reflect the desired
results. Artifacts that are visually disturbing often correspond
to local correlations in the error surface. For example, a
checkerboard pattern in the pixel errors along a diagonal edge
corresponds to staircasing, and parallel straight lines along
an edge may correspond to smoothing or over-sharpening
artifacts. Appropriately defined spatial error functions can
specifically target such undesirable artifacts, and produce more
visually appealing images. Spatial error functions take into
account not only the relationship of a single predicted value
to the target value, but also the relationship of that prediction to
the other predicted values in a geographical neighborhood (for
images, this corresponds to pixels that are in close proximity
to the target pixel in the image array).

The image scaling problem is concerned with magnifying
an image while minimizing the loss of perceptual qual-
ity. Traditionally this problem has been approached using

weighted sums of neighboring pixels to estimate the value
of the interpolated pixel. For example, bilinear interpolation
and bicubic interpolation. However these methods tend to
produce undesirable blurring in the interpolated image [3].
More recently, new techniques have been introduced that use
a learning procedure, such as Resolution Synthesis [4] and
Example-based Super Resolution [5]. These methods reduce
edge blurring, but have other problems. Resolution Synthesis
can cause artifacts, mainly in textured areas, and Example-
based Super Resolution produces visually pleasing results but
has a high cost in memory usage.

The general architecture of our system is shown in Figure
1. During normal operation the system processes the low
resolution image a pixel at a time. A neightborhood of the
current pixel is transformed into a fixed length vector which
is input to the neural network. The network outputs a fixed
length vector of reals which are transformed into the high
resolution pixels in the output image corresponding to the
single input pixel. During training a high resolution image is
first downscaled to create an input image with a true, or target,
high resolution image. After each pixel is processed an error
is computed between the output image and the true image,
and the derivative of this error is backpropagated through
the network to iteratively improve and refine the network
approximation of the interpolation function. Note that one
may use any of a number of downsampling methods, such
as pixel averaging, decimation, median filtering, smoothing &
decimation, and so forth. For our experiments we used pixel
averaging.

More formally, suppose we are presented with a low reso-
lution image

�
derived from a corresponding high resolution

image � , and by means of a scaling function ��� �����
	 with
parameters

�
, we obtain an upscaled image ������ ������	 .

The distance between the upscaled image and the true high
resolution image may be measured by some metric ����� � � 	 ,
which we shall call the error function. Then the problem
of finding an optimal set of parameters

�
fits naturally into

the general framework of optimization. Feed-forward neural
networks are an appropriate candidate for the model � since
they provide highly flexible models which can be fitted using
general optimization algorithms. Particular examples, which
will be considered in more detail below, can be found in [6],
[7], [8], and [9].

Our neural network processes the low resolution image
a pixel at a time. At each pixel a neighborhood of pixels
surrounding the current pixel of interest is encoded to form
the input vector. The network has an output for each pixel in
the high resolution image encompassed by the low resolution
pixel area. The network outputs are coded in a fashion similar
to the input vectors, so the system decodes the outputs and
places them in the high resolution image in the position cor-

Error

Network
Neural

Scaling

Downscaled Image

NN Target Pattern

NN Output

True Hi−Res Image

Scaled Low−Res Image

NN Input Pattern

Downscale True Hi−Res

Fig. 1. NN training for image scaling.

responding to the low resolution pixel. Initially we used SSE
during training, but we discovered that we often had artifacts
along diagonal edges and diagonal thin lines. In consequence,
we started investigating the possibility of punishing these
artifacts, and discovered that using an error measure that took
into account errors from neighboring pixels could reduce the
frequency of these artifacts without causing other artifacts.

In this article we focus on neural network models and
discuss spatial error functions in that context, detailing nec-
essary changes to the backpropagation fitting algorithm. A
simple spatial error function based on a 3x3 neighborhood is
introduced, and results are compared to networks fitted using
the traditional SSE error.

II. PRIOR WORK

There has been a great deal of work done over the years on
image scaling, with some of the more recent works approach-
ing the problem using machine learning techniques. Plaziac
[8] implemented a straightforward neural network model for
image interpolation based on treating the low resolution image
as a decimated high resolution image, and filling in the
gaps using a neural network prediction. The networks were
fitted using SSE, and the network input was a 24 pixel low
resolution context. The networks used 16 hidden nodes and
interpolated 5 high resolution values at a time. The image
expansion (2x upscaling) model is based on an interpolation
framework - that is, the low-resolution image is assumed
to be a point sampling of the true image signal. Thus the
training is done by decimating a high-resolution image, and
fitting a network that supplies the missing high-resolution
values based on the decimated image. The author reported a

significant improvement in PSNR over bilinear interpolation,
and a median based interpolation scheme.

Gustafson and Meyer [7] proposed using adaptive splines
in a neural network architecture for image interpolation, and
reported good results, although the article does not supply
much in terms of implementation details. The results are
compared only to a standard cubic spline interpolation, and
comparisons are given as reductions in mean squared error.

Lazzaro and Wawrzynek [10] used a neural network for
JPEG quality transcoding. This problem amounts to converting
a low quality JPEG image to a larger JPEG image with reduced
artifacts, which is closely related to the general image scaling
problem. The networks are trained using a perceptual image
metric and the network architecture is quite specific to JPEG
information loss. The perceptual error measure does have a
spatial component, although it includes only information from
the neighboring true image values, rather than the fitted values.

Some interpolating schemes, such as Resolution Synthesis
[4], propose a pre-processing step to segment the image into
patches of some (hopefully small) number of classes. The
patches in each class can then be interpolated using a standard
interpolation strategy (bilinear, bicubic, etc) that is optimized
for that class. Training images are used to design a set of filters
which can be used to classify the image patches. For classes
containing edges, interpolation is generally done using a linear
filter with parameters optimized to the training set examples.
Classes without edges are interpolated using a simpler method
such as bilinear interpolation. The user has control over the
filter size and the number of classes allowed during training.

Another segmentation approach based on neural networks
is given in Admed [6]. This method uses two neural network
models in sequence. The first performs principle components

2

analysis (PCA) on a large input vector of “candidate features”
for a single pixel, such as gray level distribution, texture
measures, etc. The output of this network is a non-linear
projection of the original feature set onto a lower dimensional
space, where the projection is supposed to capture maximal in-
formation from the higher-dimensional feature set. The smaller
feature set is then passed to a second neural network which
is trained as a self-organizing map. This network clusters the
input observations into a set of classes that share common
characteristics. Once this clustering has been obtained, the
different pixel classes may be interpolated either using custom
built filters, such as in Resolution Synthesis, or alternatively
using existing interpolation techniques such as bilinear or
bicubic.

Freeman [5] used an example based learning algorithm
for image interpolation. The learning set contains ����� or� � � tiles in the low resolution image and their corresponding
high resolution tile. The input image is tiled, and each tile is
compared to a data-base to find the best match. Once the match
is found the high resolution tile is plugged into the generated
high resolution image. In order not to have boundary artifacts,
the tiles are overlapped, and the tile which best matches the
previous one is chosen from all the candidates. As stated
previously, this method gives very good results both in textured
regions, and in terms of edge sharpness. However the imple-
mentation requires a large data base of image patches, the size
of which generally dictates the resultant quality. The memory
complexity (and possibly the computational complexity of the
data base search) required to achieve satisfactory results can
be prohibitive.

The search for a “true” perceptual image measure continues
to generate much activity in the image/signal processing liter-
ature, and also in psychology literature (for example see [1],
[11] and references therein). In our experience, the measures
proposed are very complicated, and therefore not suitable as
error measures in a learning framework. In particular, they are
often not differentiable and so cannot be used in gradient based
optimization schemes unless a suitable approximation to the
derivative can be found. An exception to this is the Structural
Similarity measure [2] which is differentiable.

III. NN TRAINING DETAILS

The neural network models are trained using a quasi-
Newton optimization algorithm (BFGS), and the network error
& error derivatives are computed using backpropagation. We
describe here additional architecture details, and the content
of the training set.

A. Network Architecture

We use a generalized feed-forward neural network architec-
ture with linear output nodes and tanh activation in the hidden
nodes. In this architecture, each input node is connected to
each hidden and output node, and we represent the connection
weight between node � and node � by ����� .

The hidden nodes are ordered, and each hidden node is
connected to each subsequent hidden node and to each output
node. The first input is a bias input with a constant value of

Hidden nodes

Output

Bias input

Inputs

Fig. 2. Generalized feedforward architecture

one. Each network node has an index, with index 0 being
the bias input, indices 1,... � �! being the input nodes, in-
dices �"� �! $#&% 	 ,..., �"� �! $# �(' �!) 	 being the hidden nodes, and���*�+ # � ' �,) #-% 	 ,..., ���*�! # � ' �,) # �*.�/10 	 being the output
nodes.

Let 2 � be the output from any node � , input, hidden or output.
The output function for hidden node � in terms of previous
hidden nodes and inputs is shown in Equation (1). Since we
use linear output nodes, the output function for output node �
in terms of previous output, hidden and input nodes is shown
in Equation (2). 2 � �&3�46587 9: ��;=<>��?=@ � �A� 2 �CBD (1)

2E�F� ��;=<>��?=@ �G�A�E2H� (2)

This flexible architecture is very powerful and a network
of any given size can mimic any layered architecture with an
equivalent number of total hidden nodes. Figure 2 shows an
example network with three inputs, three hidden nodes, and a
single output node. In practice we have found that only a small
number of hidden nodes are required to provide satisfactory
results. In particular, we have found that reasonable results can
be obtained with between 10 and 30 hidden nodes.

B. Inputs and Output Scaling

For both the training and operation of the NN models
we assume that the input images are single channel (either
graylevels or a single color channel). We generate a single
input and target pattern for each low-resolution pixel, so the
target consists of IJ�KI target values where I is the (integer)
scaling factor. The input pattern consists of a window around
the pixel of interest drawn from the low-resolution image. The
window size should increase as the scaling factor increases -
we have generally found that a window size of 5x5 is suitable
for factor 2x upscaling, and 7x7 for factor 4x upscaling.

We use three data encoding schemes: direct, relative, and
scaled, but in general, scaling works best. Direct encoding
rescales input and output values to the range L MON+N!N %CP by dividing
each input and output by 255. Network outputs are multiplied

3

by 255 and clipped to the range L M � N+N!N �RQ �S� P to get image pixel
values. More formally, the translation from image pixel value
to network value is specified as:T6U �!VXWHY+Z �\[� [Q �6�
where T U �!VXW]Y!Z^��[is the network input or target value and [
is the image pixel value. The translation from network value
(output) to pixel value is:[U �+VXWHY+Z � T 	 �`_a b M Tdc MQ �6� Tde %Q �6��f T g N �$N
Since the network input and output values fall in the rangeL M � NCNhN � %CP , we may naturally use logistic or linear output nodes.

Relative encoding builds on direct coding by first dividing
inputs and outputs by 255 and then subtracting the value
of the central pixel of the input window from each of the
inputs and outputs, and finally removing the central pixel
from the input set. The outputs are also relative to the central
input pixel value, so the image pixel value is obtained by
adding the central pixel value to the network output, and
then multiplying the result by 255 and clipping to the rangeL M � N!N+N ��Q �6� P . This encoding reduces the dimensionality of the
input / target space by making edges of similar height look
similar to the network regardless of the base value. If we defineiSj�k T6U �+VXWHY+Z � jHl1m=nol1p 	 , then we can define the translations as:T^q ZrY+sR0t�!uHZ^��[� T U �+VXWHY+Z^�\[�v iwj[q ZxY!sR0t�+uHZ6� T 	 �y[U �!VzWHY+Z6� T # iwj 	
Since the network input, output, and target values all fall in the
range L v % � NCNhN � %CP , we may naturally use tanh or linear output
nodes.

Scaled encoding builds on relative encoding by dividing the
relative inputs and targets by

j g m=nrp|{~}hn , which is a measure
of the contrast variation in the input window. We can definej g m=nrp|{�}hn using the following equations. Values is the set ofT q ZxY!sR0t�+uHZ values for the pixels in the input window:T {�� I l|}�k�� T q ZrY+sR0t�!uHZ ��[G� [�� � � m [OI n ��� m�i g ���S�
Range is the difference between the maximal and minimal
value in T {�� I lE} :p|{wm���l�k-��{S� � T {�� I lE} 	
v � � m � T {�� I l|} 	
and contrast is defined as:j g m=nrp|{~}hn�k-��{S� � n��OpEl|}E� � p|{wm���l 	 (3)

where threshold is used to prevent noise in flat regions from
being stretched to look like edges, and is set to a value roughly
equivalent to 30 grey levels. This has the effect of stretching
the windows so that the underlying image structure is supplied
and predicted by the network. For example, an edge is treated
as an edge no matter what the contrast between the sides is,
nor the overall gray-level at which it occurs. Of course, in very
flat regions the contrast is small, so we impose a lower limit
on the contrast value to prevent unreasonably large input and

target values in these regions. We can then define the scaled
transforms as: T6Uo� sRY+Z�) ��[� T q ZxY+sR0t�!uHZ �\[j g m=nrp|{~}hn (4)[U�� sRY+Zo) � T 	 ��[q ZxY+sR0t�!uHZ � j g m=nrp|{�}hn f T 	
Since the output values are not bounded by L v % � NCNCN � %HP , we
use only linear output nodes to avoid clipping the network
outputs and limiting the response of the system.

C. Training Images

During training the system takes each sample image and
down-samples it using pixel averaging to create a low res-
olution input corresponding to the original (i.e. true) high
resolution image. Then it uses the neural network to generate
an interpolated high-resolution image. During the interpolation
process the training algorithm can compute the error between
each newly generated high resolution pixel and the correspond-
ing pixels in the original image. This error is used to compute
the overall error function for the network, and its derivative
is back-propagated through the network to compute the error
gradient for the connection weights.

The models are trained on the image set used by Atkins
[4]. This set consists of 25 images of a variety of natural
images (people, landscapes, man-made objects, still life, etc).
The models are tested on a set of images that do not occur in
the training set.

In addition to learning how to interpolate images, it may
be desirable to do simple image processing at the same time,
such as selective sharpening, smoothing, or darkening. This
can be accomplished by training the neural network using
target images that incorporate the desired imaging effects.
The Resolution Synthesis method [4] takes a similar approach
when training its interpolation engine.

IV. SPATIAL ERROR MEASURES

Suppose that the total error � between two images � and�
is given by ���x� ����	 � > �t� ��� ���=��2E��� 	H� �=� n �A� 	�	

where � denotes the vector of pixels in some pre-specified
neighborhood around its argument, 2 ��� , n �A� are the �t� 0 ' pixels
of image � and image

�
respectively, and � is a differentiable

function. For non-spatial measure (such as SSE), the vector�=�"21��� 	 contains only one value, namely 2|��� . In that case, the
derivative of the error with respect to 2|��� is simply:� ���x� ����	� 2 �A� � � � �"�=�"21��� 	H� �=� n �A� 	�	� 2 ��� N
However in the more general case of spatial errors, we must
consider every pixel neighborhood �=�"26�RY 	 such that 2E������=�"2E�]Y 	 . That is,� ���x� ����	� 2 �A� � >�RY,� ���� C¡S¢E£+��¤�¥!¦ § � � ���=��2 �RY]� ��� n �RY 	�	� 2 �A� ¨ N

4

The computations of the error measure and its derivative are
not complicated, however the form of the derivative does
introduce some issues when this measure is to be used in a
backpropagation algorithm.

To begin with, let us consider the steps involved in the
standard backpropagation framework:

1) For some input pattern © and corresponding targetn ��� , forward-propagate the input through the network
to compute the internal state of the network and the
network prediction 2 ��� on input © .

2) Compute the contribution to the error of this prediction,� �"2 �A� � n �A� 	 , and the derivative of the total error with
respect to this network output, ª1« £!¬� ®¯¦ª � �\ � ª1° £+���\]� 0t�� �¦ª � �� .

3) Backpropagate the derivative ª1« £!¬� ®¯¦ª ���\ through the net-
work to compute the contribution this network output
makes to the total derivative of the error with respect to
the network weight vector.

The backpropagation step 3 requires that the internal state of
the network (specifically, the output of each hidden node in
the network) is appropriately set by the forward-propagation
step 1.

For spatial measures the contribution to the error of network
output 2E��� depends on the network outputs 2^�RY��±����2E�A� 	
and the derivative of this output error contributes to the
derivative of the total error with respect to each 26�RY����=�"2E�A� 	 .
This makes it difficult to implement step 3, since the partial
derivative ª1« £!¬� ®¯¦ª ���\ cannot be known until all network outputs
contributing to this derivative have been computed. At that
point we need to back-propagate the partial derivative through
the network with network state set by the input pattern on
which output 2 ��� was computed, which is not normally the
current state of the network. The following steps describe a
modification of standard backpropagation that is suited to the
special requirements of spatial errors.

1) For some input pattern © and corresponding targetn ��� , forward-propagate the input through the network
to compute the internal state of the network and the
network prediction 2 �A� on input © . The network state
(output values from each hidden and output node) is
saved in a buffer for referral when all the outputs in the
neighborhood �=�"2E��� 	 have been computed.

2) Once all the outputs in neighborhood �=�"2^�A� 	 have been
computed, compute the contribution to the network error� ���=��2E���]� �=� n ��� 	�	 , and the derivative of this quantity with
respect to each output 2 �]Y ���=�"2 �A� 	 . These derivatives are
added to a second buffer containing cumulative sums for
each ª1« £,¬� ®¦ª ��¤�¥ .

3) Once the errors � �"����2^�RY 	H� �=� n �RY 	�	 for all 2|�]Y�������2E�A� 	
have been computed, and their corresponding derivatives
added to the buffer of cumulative sums, then the deriva-
tive value ªh« £!¬� ®¯¦ª � �� is complete. The entry in the network
state buffer corresponding to the input responsible for
output 2 ��� is loaded back into the network, and ª1« £!¬� ®¯¦ª ���\ is backpropagated as per the usual backpropagation
algorithm.

Note that the above algorithm, although computationally quite
efficient, is expensive on memory due to the fact that the

previous network states are stored in step 1. If this memory
overhead is too high, then we may choose a more memory
efficient implementation that pays a higher computational cost.
The algorithm for such an implementation is identical to the
above algorithm except that in step 1 the network state is
not stored, and in step 3 the network state is recomputed by
repeating the forward propagation of the relevant input pattern.

Thus the computationally efficient implementation requires
a memory buffer sufficiently large to hold as many past
network states as will be needed for future error computations.
For a two dimensional signal (which, at least for images, is
usually read in horizontal strips), an error neighborhood with
height

�
for a network with

m
hidden+output nodes would

require storage for
� �K� floating point vectors of length

m
,

where � is the width of the signal strips. The memory efficient
implementation does not have this overhead, but must forward
propagate each input pattern twice, rather than just once.

A. Matrix Error Measure

The goal of spatial error measures may be grasped intu-
itively by considering the error image presented in Figure 3.
In this figure we see (a) a 2x upscaling of a low resolution
image, (b) the true high resolution image from which that low
resolution image was derived, and the error image (c) obtained
by taking the channel-wise differences between (a) and (b).

The “embossing” seen in the error image corresponds to
the locations in the pixel replicated image where the most
visually disturbing artifacts are found. This simple observation
opens up the possibility of using the error image to detect and
penalize artifacts in the upscaling method. In particular, any
filter that detects edges and lines will, when applied to the
error image, supply a value that can be used in a suitably
defined penalty function. Recall that the penalty function (or
error measure) must be a metric, and must be at least once-
differentiable.

As a first step we consider a complete basis of 3x3 masks for
edge and line detection presented in [12] and cited in [13]. The
basis consists of three different sub-bases for edge, line and
“average” features. The (normalized) images resulting from
applying each of the sub-bases to the grayscale error images
in Figure 3(c) are shown in Figure 5. The “average” image (c)
corresponds to the penalties employed in conventional neural
network fitting. For example, if the network is fitted with sum
of squared errors, then the network error will be the sum of
squares of some linear transform of the gray-levels in this
image. Images (a) and (b), on the other hand, highlight the
errors corresponding to the “jaggedness” in the pixel replicated
image. It is just these features that we hope to introduce
penalties against in the network error function.

We now proceed to define a spatial error measure using this
basis. To simplify the formulae we define the pixel errors as:l ��� k 2E��� v n ��� (5)

where 2|�A� is the network output value, and
n ��� is the target

network output. Further let �=� l ��� 	 be the vector formed from
taking all the pixel errors in a 3x3 neighborhood of �t� � � 	 ,
where the pixels indices are read row by row.

5

(a) (b) (c)

Fig. 3. (a) pixel replicated low resolution image; (b) true high resolution image; (c) error image = (a)-(b).

Edge detectors: ²³ v % v % v %M M M% % % ´µ ²³ v % M %v % M %v % M % ´µ ²³ M % %v % M %v % v % M ´µ ²³ v % v % Mv % M %M % % ´µ
Line detectors: ²³ v % v % v %Q Q Qv % v % v % ´µ ²³ v % v % Qv % Q v %Q v % v % ´µ ²³ v % Q v %v % Q v %v % Q v % ´µ ²³ Q v % v %v % Q v %v % v % Q ´µ
Average: ²³ %¶%·%%¶%·%%¶%·% ´µ

Fig. 4. Orthogonal masks for edge and line detection.

(a) (b) (c)

Fig. 5. Grayscale feature detection results (a) edge (b) line (c) average

If we choose a positive definite matrix ¸ , then the error
function���x� ����	 � > ��� � � �"�=�"21��� 	H� �=� n �A� 	�	 � > ��� � ��� l �A� 	 ® ¸¹�=� l ��� 	
is positive for all non-zero error neighborhoods �=� l ��� 	 . There-
fore we seek a positive definite candidate for ¸ that penalizes
the sorts of errors highlighted by the basis refered to above.
From Wolfram ([14] Equation 5) we know that a real sym-
metric matrix ¸ is positive definite iff there exists a real, non-
singular matrix M such that ¸º�¼» ® » .

An obvious choice for » is formed by the row-wise
vectorization of the basis matrices from Figure 4 and is
shown in Equation 6. » is real and non-singular, and detects
edges and lines in the error image. However, we first want to
normalize the detectors (rows) using a normalization matrix� so that �*�½�"�¾f1» 	 ® ���¿f1» 	 , giving�À� i � {S��Á %Â i � {S� ��»Ãf1» ® 	|Ä fE»
Then we want to have a weight vector

vÅ � to explicity weight

each detector, so that¸º�½� i � {S� � }1ÆEp1n � vÅ � 	�	 fC�¾fE» 	 ® fS� i � {S� � }1ÆEpEn � vÅ � 	�	 fh�¿fh» 	 N
Defining ÇÈ�É�ÈfS» and Ê¶� i � {S� � vÅ � 	 , and using a few
simple transformations, we get¸º�ºÇ ® fEÊÃfhÇ
which is positive definite iff all the weights are positive and» is real and non-singular.

Note that Ç is a basis, so this transformation is equivalent
to transforming the vector into another basis, adjusting the
features according to a penalty function in the basis space,
and then transforming back to the original space.

Since the feature detection basis gives a large response (in
absolute value) when the specific features described above
are detected, we can expect the square of this quantity to
be large and positive in the presence of edges or lines in the
error image, and approximate a traditional squared error metric
otherwise.

The only decision that remains is the weighting scheme
applied to the matrix » . It is reasonable that the rows of »

6

»`�
²ËËËËËËËËËËËË³

% % % % % % % % %v % v % v % M M M % % %v % M % v % M % v % M %M % % v % M % v % v % Mv % v % M v % M % M % %v % v % v % Q Q Q v % v % v %v % v % Q v % Q v % Q v % v %v % Q v % v % Q v % v % Q v %Q v % v % v % Q v % v % v % Q

´\ÌÌÌÌÌÌÌÌÌÌÌÌµ (6)

e
00

 e
01

 e
02

 e
03

 e
04

 e
05

e
10

 e
11

 e
12

 e
13

 e
14

 e
15

e
20

 e
21

 e
22

 e
23

 e
24

 e
25

e30 e31 e32 e33 e34 e35

e
40

 e
41

 e
42

 e
43

 e
44

 e
45

e
50

 e
51

 e
52

 e
53

 e
54

 e
55

Fig. 6. Matrix Error Computation

should be normalized. We investigated a number of different
weighting schemes, although in every case we applied a single
weight to each of the sub-bases. This reduces the complexity
of the investigation, and there does not seem to be a good
reason to introduce internal weighting of the sub-bases.

1) Error Computation and Derivatives: Figure 6 shows the
influence neighborhood of the pixel error

l^Í�Í
. The contribution

to the total error at the point � Q~�RQ6	 is given by� Í�Í �º��� lEÍ�Í 	 ® ¸��=� lEÍ�Í 	 N
This requires the 9 precomputed errors in the 3x3 neigh-
borhood �=� l Í�Í 	 , and thus may only be computed when the
computation of

lEÎ�Î
is complete. The derivative of � Í�Í with

respect to the output of the network 2 Í�Ï �1� Í�Ï Y , where Ð � � �v % � M � % , is given by:� � Í�Í� 2 Í�Ï �1� Í�Ï Y �-¸�Ñ Ï Î � Ï Yt� � ��� l Í�Í 	 # ��¸ ��� Ñ Ï Î � Ï Y 	 ® T � l Í�Í 	 (7)

where ¸ V�� � and ¸ ��� are the row
�

and column
m

vectors
of matrix ¸ respectively. By defining Ò�V¼�-¸�V�� � # ��¸Ó�A� V 	 ® ,
and using Equation (7) we may compute the derivative of the
total error with respect to 2 Í�Í :� �� 2 Í�Í ��Ò @ ��� lEÎ�Î 	 # Ò < �=� l1Î Í 	 # Ò Í ��� lEÎ < 	# Ò Î ��� lEÍ ÎE	 # Ò Ñ �=� l1Í�Í 	 # ÒÕÔh��� lEÍ < 	# ÒÕÖh��� l < ÎE	 # ÒÕ×h�=� l < Í 	 # ÒÕØh��� l <�< 	 (8)

We may only backpropagate this error once the computation
of
l Ñ�Ñ (from the neighborhood �=� l Î�Î1) is complete.

2) Connection to Mahalanobis Distance: Some insight
into the behavior of this error measure may be gained by
considering the well known Mahalanobis distance between
two vectors Ù� and ÙÚ with a common covariance matrix of the
feature space Û :i�Ü �hÙ� � ÙÚ 	 �½�1Ù� v ÙÚ 	 ® Û ;�< �hÙ� v ÙÚ 	 N
If the features are uncorrelated, then Û reduces to the diagonal
matrix with the variance of each feature along the diagonal,
and

i�Ü
simply becomes the scaled sum of squared differences

of the features of Ù� and ÙÚ , where the contribution of each
feature is scaled by one over the variance of that feature.
This has the effect of scaling the features so that differences
in features with large variance are not weighted more than
differences in features with small variance. In the case that
correlations do exist between features, the inverse covariance
term has the same result - the feature space is rescaled so that
large covariances between features do not skew the distance.

The matrix error measure may be written as a Mahalanobis
distance if we take Ù� to be the error neighborhood ��� l ��� 	
, ÙÚ to be the mean vector of the errors (which we may
assume to be ÙM if the model is unbiased), and ¸ is an
estimate of the inverse covariance matrix Û ;�< N Note however
that the spatial error measure seeks to penalize correlations
between features, whereas the Mahalanobis distance seeks to
factor these correlations out of the distance measure. Therefore
we choose weighting schemes that exaggerate the effect of
undesirable correlations and induce the model to penalize such
correlations more heavily in the training phase.

V. SIMILARITY MEASURES

In order to evaluate the efficacy of the new training method
using spatial error measures, we use four image similarity
measures: PSNR, block-PSNR, MSSIM, and block-MSSIM.
PSNR is the standard measure and is defined as:Ý$Þ ��ßÕ��à ��áâ	 � Q M¹f � g ��Á�ã Q �6��f Q �S�ä&å�!?æ< �tà���� 	
vçá �t� 	�	 Í Ä
Blocked PSNR [15] is the minimal PSNR taken over all fixed-
size sub-blocks of the two images. In our case, we use sub-
blocks where the area of the sub-block is 1% of the image.
Since the human eye tends to be drawn towards artifacts, this
sets the similarity as the worst PSNR for a block in the image.

MSSIM [2] was designed to more accurately reflect sim-
ilarities between two images according to the human visual

7

system. Let ©¯� refer to the pixels in image è that fall within
a neighborhood �=�+� 	 centered on pixel � . For convenience, we
shall refer to a generic neighborhood in the image as � , and let© refer to the pixels contained in � . Furthermore, suppose that
the elements of � are indexed % � NhNCN � � , then we introduce a
weighting scheme éÉ� � ��< � NCNCN � � å � over � . For the generic
neighborhood � , we shall write ©�� �h� < � NhNCN � � å � , and for
a specific neighborhood ���+� 	 we write © � � �h� �R< � NCNhN � � � å � .
The equations defining the MSSIM similarity measure from
Wang et. al. are shown:» ÞzÞ �w»ê�"è ��ë�	 � %» Ü>��?æ< ÞzÞ �w»ê��© � ��ì � 	ÞXÞ �w»ê��© ��ìæ	 �½L � ��© ��ìæ	 Ptí f6L j �t© ��ì
	 Pïî f6L } ��© ��ìæ	 Pïð� ��© ��ìæ	 � Q|ñ=ò�ñ�ó #�ôG<ñ Íò # ñ Íó #�ô <j �t© ��ì
	 � Q^õ8ò�õ~ó #öô Íõ Íò # õ Íó #öô Í} ��© ��ìæ	 � õ òEó #öô Îõ8ò~õ8ó #öô Îñ=ò � å> �!?æ< � � � �õ8ò � Á å> �!?æ< � � � � � vçñ=ò8	 Í Äø÷ùõOòEó � å> �!?æ< � � � � � vçñ=ò�	 � Ú � vçñ�ó	

Following Wang, we use an 11x11 window, and the � �
are set according to a circular-symmetric Gaussian function
with standard deviation of 1.5 pixels normalized to unit sumú ä å�!?æ< �G�æ� %hû .

Blocked-MSSIM is created analogously to blocked-PSNR.
It is the smallest MSSIM over all sub-blocks of a given size.
Again we chose blocks that are 1% of the image size.

VI. RESULTS

We evaluated the utility of the spatial error measure both
visually and statistically. Two independent visual tests were
performed. In the first visual test, the subjects were shown
pairs of natural images, and in the second test they were shown
fragments of images containing the narrow lines and diagonal
edges that often caused artifacts in SSE networks. In all cases,
neural networks that failed to train properly were excluded
from the analysis. These are easy to identify as all resultant
images are usually either white or black.

In each visual test, one set of images and two sets of
networks were used (one for each configuration). The user was
shown a series of paired images and asked to select the image
he preferred, with the additional option of giving a tie. The
image pairs were created by randomly choosing an image from
the image set, and then randomly choosing two networks, one
of each configuration. The selected image was upscaled using

TABLE I

VISUAL PREFERENCE TEST RESULTS

subject LiveQuality Fragments

a üXý spatial
b ü ý spatial
c spatial spatial
d spatial spatial

each network, the resulting images were randomly assigned
to the names a and b, and the two images were then shown
to the subject. In this way the images were anonymized and
the subject could not know which image was processed using
which method. Each methods was assigned a value, -1 or 1,
and the result of each comparison was one of -1, 0, or 1,
depending on whether the subject chose the first method, tied,
or chose the second method. The null hypothesis was that the
sequence of values had a zero mean. The test was terminated
when fifty image pairs were evaluated. Additionally, the test
could be terminated early if the current results violated the
null hypothesis at a 95% confidence value, or if there was no
way to violate the null hypothesis at a 95% confidence value
within fifty evaluations given the current results.

Table I shows the results for four subjects on each of two
image sets. The table entries show the result of each test,
and the possible values in the table are SSE, spatial, and � @
for the null hypothesis or an inconclusive result. LiveQuality
is the set of 29 natural images from the LiveQuality2002
image database [16], while Fragments is a set of four image
fragments containing features such as diagonal edges and
narrow lines that are known to cause problems for SSE-
trained networks. From these results we can see that on whole
images, spatial error measures are not worse than SSE-trained
networks, and for some viewers it can improve the image. In
addition, spatial error measures definitely improve the visual
quality of those portions of the images where SSE-trained
networks often have problems.

Some examples of portions of the image fragments illustrat-
ing the differences are shown in Figure 7. You can see that the
SSE-trained networks tended to result in somewhat blockier
images, while the Spatial-trained networks tended to recognize
lines and edges more readily. The first image fragment is a
portion of the striped headscarf from Barbara. The second
fragment has a tree branch running from the bottom left to
top right corner. The third fragment shows a slightly curved
edge, and the fourth image shows a patterned foil wrapper on
the top of a wine bottle with some curved lines and edges.

We also conducted statistical tests to determine if spatial
errors affected image similarity measures, such as PSNR and
MSSIM.

For the purposes of comparison, we assume that a particular
neural network is a single repetition of a training configuration
representing a specific choice of training and architecture
parameters. The training configuration specifies number of
hidden units, input & data scaling, training error measure,
and error parameter values (where required). The comparison
below is the result of training a subset of configurations for
a fixed number � of repetitions. The training configurations

8

Fig. 7. Image Fragments
Original Image SSE Spatial

were chosen to span a range of values, and give some useful
comparative analysis. A more comprehensive search of the
configuration space is currently underway to chose the “best”
configuration for performance purposes. The comparisons are
made on a series of

Þ ��ß measures to yield a more broad
consensus on the results.

As a final outcome of our results, we wish to produce a
ranking of the configurations considered, giving some idea of
which configurations may be considered statistically indistin-
guishable for a given

Þ ��ß measure, and which differ in a
statisically significant way. This ranking can be induced by
selecting all pairs of configurations � j < � jHÍ 	 , and testing the
hypotheses �(@$þ Þ ��ßÕ� j < 	 � Þ �ÿß(� jHÍ 	 (9)

against the alternative����þ Þ �ÿß(� j < 	 e Þ ��ßÕ� j Í]�
where

Þ ��ßÕ� j 	 is a measures of the
Þ ��ß performance of

configuration
j
.

Now suppose we wish to test the above hypothesis for a
particular configuration pair � j < � j Í 	 . We have � � ÷ and � � ù
trained networks respectively for these configurations and wish
to use an appropriate test to assess the hypothesis based on theÞ ��ß results the networks achieve on the LiveQuality database
of images. A visual inspection of the

Þ ��ß values suggested
that the

Þ ��ß distribution for the networks of a specific
configuration on a specific image is near enough to normal to
admit a test statistic based on the normal distribution. Since

9

the number of repetitions is typically quite small (in our case,�¶� % �), the appropriate test is a paired Student’s t-test.
Therefore, for each image � , we compute a p-value for the
hypothesis test�(@�þ Þ ��ßÕ� j < � � 	 � Þ �ÿß(� jHÍ � � 	 (10)

against the alternative� � þ Þ ��ßÕ� j < � � 	 e Þ ��ßÕ� jHÍ � � 	 N
The result is a sequence of p-values [�< � N!N!N � [�� corresponding to
the hypotheses that configuration

j < is better than
jCÍ

on image��� � % � N+N!N � �8� . Now, supposing the original null hypothesis
(9) were true, then distribution of p-values from the test (10)
should be more or less uniformly distributed. That is, if the
set of test images is suitably random, we would expect that,
for example, 5% of the hypothesis tests to be significant at
the 5% level. Therefore, we may test if the null hypothesis
(9) is violated by testing if the sequence of p-values resulting
from (10) is approximately uniformly distributed on L M � %CP . An
appropriate test for this is the one-sided Kolmogorov-Smirnov
goodness of fit test [17]. Using this test in a pairwise fashion
we are able to induce a ranking on the configurations of
interest, where configurations that are not significant may be
grouped in equivalence classes.

We performed the above analysis on 16 repetitions of
two neural network configurations, and evaluated each of the
networks on a set of 29 test images, computing the PSNR,
blocked PSNR, MSSIM and blocked MSSIM measures for
each outcome against the true images. The configurations use
a 5x5 input window, scaled inputs, linear output nodes, and
30 hidden nodes, and are trained with either SSE or the new
spatial error measure. In the case of the spatial error measure
only one parameter set was used, giving 0.1 weight to the
average basis, and 0.45 weight to each of the line and edge
bases. The resulting weight vector Ù� is:Ù�¼� � M8N % � M8N �w� � M8N �w� � M8N �w� � MON ��� � MON �S� � M~N �w� � M8N �S� � M~N �w�w�
This configuration was selected after a more extensive survey
of configuration parameter values (on a separate set of test
images).

We also compared these two neural network configurations
against Resolution Synthesis with 5x5 input window, 100
classes, and a factor of 12 which typically resulted in nearly
all 100 classes participating in each pixel computation. We
tried a few different configurations of Resolution Synthesis
on an independent image set and found this configuration to
generally perform the best for all error measures all except
block-MSSIM, where a different configuration was some-
times preferred. Since Resolution Synthesis is a deterministic
method, the two sample paired Student’s t-test above was
replaced by a one sample t-test that the mean of the networks
was greater than the resolution synthesis result. The remainder
of the analysis is the same.

The results from the analysis are given in Table II. In each
column the methods are ranked from best (at the top) to worst
(at the bottom). For each of the similarity measures the rank-
ings were statistically signficant at the 0.05 level. In the PSNR

PSNR B-PSNR MSSIM B-MSSIM

Spatial Spatial Spatial Spatial
ResSynth ResSynth SSE SSE

SSE SSE ResSynth ResSynth

TABLE II

COMPARATIVE RANKINGS OF SPATIAL ERROR, SSE AND RESOLUTION

SYNTHESIS ON THE FOUR SNR VALUES

column, for example, Spatial is a significant improvement over
ResSynth, which is in turn a significant improvement over
SSE. Clearly the spatial-error trained networks are statistically
significantly better than both Resolution Synthesis and SSE
trained networks on all four SNR measures. This concurs
with the results of the human perceptual tests and suggests
that spatial-error based training can utilize the flexibility of a
given network architecture more effectively than SSE for the
purposes of image scaling.

VII. CONCLUSIONS

We have presented a general framework for using neural
networks for image scaling using a spatial penalty function
to train the network, and applied this framework in the
specific case of the matrix error described above. This method
allows more general, perceptual errors to be used for fitting
the model, and can therefore target specific visual artifacts,
such as staircasing. The framework is not restricted to neural
networks and may be extended easily to any model that is
fitted using gradient based training. Furthermore, it may be
applied directly to multi-dimensional signals of all kinds, not
just images. The results show a clear improvement over the
classical sum of squared errors training, and also compare
favorably with the state of the art Fast Resolution Synthesis.

There is an extra training overhead for using area based
errors, in particular, each pixel must participate in the errors
and derivatives for all the pixels in its influence neighborhood
(3x3, for the spatial error above). This overhead is further com-
pounded if there is not sufficient memory resources available
to store the network state, as discussed in Section IV. On the
other hand, a larger influence neighborhood is likely to yield
better networks and perhaps quicker convergence times for the
training algorithm. In our experience, the extra overhead for
the spatial error is not significant compared with the memory
and computation overhead of the NN training algorithm for
this problem. Furthermore, this is an example of a model that
is fit once, but used many times, so the fitting time is not
usually crucial.

It is clear that any Ð Í ��Ð Í positive definite matrix defines
a matrix error measure with Ðç��Ð influence neighborhood,
however the cost of searching the parameter space to find good
matrix coefficients may become prohibitive. We are currently
investigating methods for developing spatial error measures
that do not depend on a parameter space search.

ACKNOWLEDGEMENTS

We should like to thank Brian Atkins for his interesting
and stimulating discussions on image interpolation, and for his

10

generous sharing of his time, Resolution Synthesis software,
and training images.

REFERENCES

[1] K. K. Makoto Miyahara and V. R. Algazi, “Objective picture quality
scale (pqs) for image coding,” IEEE Trans. Commun., vol. 46, no. 9,
pp. 1215–1226, 1998.

[2] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
quality assessment: from error measurement to structural similarity,”
IEEE Trans. Image Processing, (To Appear).

[3] H. S. Hou and H. C. Andrews, “Cubic splines for image interpolation
and digital filtering,” IEEE Trans. Acoust., Speech, Signal Processing,
vol. 26, no. 6, pp. 508–517, 1978.

[4] C. B. Atkins, C. A. Bouman, and J. P. Allebach, “Tree based resolution
synthesis,” in Proceedings Conference on Image Processing, Image
Quality, Image Capture Systems, Savannah, Georgia, April 25–28 1999,
pp. 405–410.

[5] W. T. Freeman, T. R. Jones, and E. C. Pasztor, “Example-based super
resolution,” in Proceedings of Computer Graphics and Applications.
IEEE, March/April 2002, pp. 56–65.

[6] B. E. C. Mohamed N. Ahmed and S. T. Love, “Adaptive image
interpolation using a multilayer neural network,” in Proceedings of the
SPIE - Applications of Artificial Neural Networks in Image Processing
IV.

[7] S. C. Gustafson and G. J. Meyer, “Spline-based neural networks for
digital image interpolation,” in Proceedings of the SPIE - Applications
of Artificial Neural Networks in Image Processing IV, N. M. Nasrabadi
and A. K. Katsaggelos, Eds.

[8] N. Plaziac, “Image interpolation using neural networks,” IEEE Trans.
Image Processing, vol. 8, no. 11, pp. 1647–1651, 1999.

[9] T. Sigitani, Y. Linguni, and H. Maeda, “Image interpolation for progres-
sive transmission by using radial basis function networks,” IEEE Trans.
Neural Networks, vol. 10, no. 2, pp. 381–390, 1999.

[10] J. Lazzaro and J. Wawrzynek, “Jpeg quality transcoding using neural
networks trained with a perceptual error measure,” Neural Computation,
vol. 11, no. 1, pp. 267–296, 1999.

[11] P. Teo and D. Heeger, “Perceptual image distortion,” in
Proceedings ICIP-94 (IEEE International Conference on Image
Processing), vol. 2, 1994, pp. 982–986. [Online]. Available:
citeseer.nj.nec.com/teo94perceptual.html

[12] W. Frei and C. C. Chen, “Fast boundary detection: A generalization and
a new algorithm,” IEEE Trans. Comput., vol. C-26, no. 10, pp. 988–998,
1977.

[13] R. C. Gonzalez and R. E. Woods, Digital Image Processing. Addison-
Wesley, 1993.

[14] W. Research, “Positive definite matrix,”
http://mathworld.wolfram.com/PositiveDefiniteMatrix.html, accessed
July 2003.

[15] A. S. Tom, “Prediction of fir pre- and post-filter performance based upon
a visual model,” Master’s thesis, Department of Electrical Engineering
and Computer Science, Massachusetts Institute of Technology, May
1986.

[16] H. R. Sheikh, Z. Wang, L. Cormack, and A. C. Bovik, “LIVE
image quality assessment database,” 2002. [Online]. Available:
http://live.ece.utexas.edu/research/quality

[17] R. A. Johnson, Miller and Freund’s Probability and Statistics for
Engineers, 6th ed. Upper Saddle River, NJ: Prentice-Hall, 2000.

11

