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Abstract

Image inpainting involves filling in part of an image or
video using information from the surrounding area. Ap-
plications include the restoration of damaged photographs
and movies and the removal of selected objects. In this pa-
per, we introduce a class of automated methods for digital
inpainting. The approach uses ideas from classical fluid dy-
namics to propagate isophote lines continuously from the
exterior into the region to be inpainted. The main idea is
to think of the image intensity as a ‘stream function’ for a
two-dimensional incompressible flow. The Laplacian of the
image intensity plays the role of the vorticity of the fluid;
it is transported into the region to be inpainted by a vec-
tor field defined by the stream function. The resulting al-
gorithm is designed to continue isophotes while matching
gradient vectors at the boundary of the inpainting region.
The method is directly based on the Navier-Stokes equations
for fluid dynamics, which has the immediate advantage of
well-developed theoretical and numerical results. This is
a new approach for introducing ideas from computational
fluid dynamics into problems in computer vision and image
analysis.

1. Introduction

Image inpainting [2, 10, 20, 38] is the process of filling in
missing data in a designated region of a still or video image.
Applications range from removing objects from a scene to
re-touching damaged paintings and photographs. The goal
is to produce a revised image in which the inpainted re-
gion is seamlessly merged into the image in a way that is
not detectable by a typical viewer. Traditionally, inpainting
has been done by professional artists. For photography and
film, inpainting is used to revert deterioration (e.g., cracks
in photographs or scratches and dust spots in film), or to add
or remove elements (e.g., removal of stamped date and red-
eye from photographs, the infamous “airbrushing” of polit-
ical enemies [20]). A current active area of research is to

automate digital techniques for inpainting [2, 3, 16, 21, 22].
In this paper, we introduce a novel algorithm for digi-

tal inpainting of still images that attempts to replicate the
basic techniques used by professional restorators. Our al-
gorithm, motivated by a method proposed in [2], involves a
direct solution of the Navier-Stokes equations for an incom-
pressible fluid. The image intensity function plays the role
of the stream function whose isophote lines define stream-
lines of the flow. After the user selects the regions to be
restored, the algorithm automatically transports informa-
tion into the inpainting region. The fill-in is done in such
a way that isophote lines arriving at the region’s bound-
aries are completed inside. The technique introduced here
does not require the user to specify where the novel infor-
mation comes from. This is done automatically (and in
a fast way), thereby allowing for simultaneously fill-in of
multiple regions containing completely different structures
and surrounding backgrounds. In addition, no limitations
are imposed on the topology of the region to be inpainted.
The only user interaction required by the algorithm is to
mark the regions to be inpainted. Since our inpainting al-
gorithm is designed for both restoration of damaged pho-
tographs and for removal of undesired objects on the im-
age, the regions to be inpainted must be marked by the user.
Our method inherits a mathematical theory already devel-
oped for the fluid equations, including well-posedness and
the design of efficient convergent numerical methods.

1.1. Prior Work

First note that image denoising is different to filling-in,
since the regions of missing data are usually large. That
is, regions occupied by top to bottom scratches along sev-
eral film frames, long cracks in photographs, superimposed
large fonts, and so on, are of significantly larger size than
the type of noise treated by common image enhancement
algorithms. In addition, in common image enhancement ap-
plications, the pixels contain both information about the real
data and the noise (e.g., image plus noise for additive noise),
while in our application there is no significant information



in the region to be inpainted.
A very active area related to our work is the restora-

tion of damaged films. The basic idea is to use informa-
tion from past and future frames to restore the current one,
e.g., [16, 22]. Of course, this general approach cannot be
used when dealing with still images. In addition, it can
not deal with movies where the region to be inpainted is
static with respect to its background (e.g., a logo on a shirt),
since consecutive frames do not provide new information.
This is also the case when the region to be inpainted oc-
cupies a large number of frames. Another area related to
our work is texture synthesis, in which a texture is selected
and synthesized inside the region to be filled-in (the hole)
[9, 13, 15, 34]. These algorithms often require the user to
select the texture and are not often well-designed to fill in
structure from boundary data.

The closest methods to our approach are the fundamental
works on disocclusion and line continuation. A pioneering
contribution in this area is described in [28]. The authors
presented a technique for removing occlusions with the goal
of image segmentation. Since the region to be filled-in can
be considered as occluding objects, removing occlusions is
analogous to image inpainting. The basic idea suggested
by the authors is to connect T-junctions at the occluding
boundaries of objects with elastica minimizing curves. The
technique was primarily developed for simple images ob-
tained from a segmentation, with only a few objects with
constant gray-levels. Thus, they ended up by connecting

�
-

junctions at the same gray level. (Other researchers, e.g., D.
Jacobs, R. Basri, and S. Zucker, have followed this interest-
ing research area, mainly developing techniques for smooth
curve continuation.)

Masnou and Morel [25, 26] recently extended these
ideas, presenting a formal variational formulation for dis-
occlusion and a particular practical implementation. The
algorithm uses geodesic curves to join the isophotes arriv-
ing at the boundary of the region to be inpainted. The in-
painting regions require a simple topology. In addition, the
angle, with which the level lines arrive at the boundary of
the holes, is not (well) preserved, and the algorithm uses
straight lines to join equal gray value pixels.

1.2. Image inpainting along isophotes

Recently, the concept of smooth continuation of infor-
mation in the level-lines direction has been addressed in
[2]. This is the work, as we will see below, that we fol-
low to make the connection with fluid dynamics and the
Navier-Stokes equations. The proposed algorithm propa-
gates the image Laplacian in the level-lines (isophotes) di-
rection. The algorithm attempts to imitate basic approaches
used by professional restorators. The algorithm also intro-
duces the importance of propagating both the gradient di-

rection (geometry) and gray-values (photometry) of the im-
age in a band surrounding the hole to be filled-in. Some of
the ideas of [2] where adopted in [1], while deviating from
the particular model in order to be able to define a formal
variational approach to the filling-in/inpainting problem.

The work in [2] inspired a very elegant approach to the
filling-in problem recently reported in [7] (this work was
performed independently of the one reported in [1]). The
authors present a clear and intuitive axiomatic approach to
the problem. The main algorithm they propose is to min-
imize the Total Variation (TV) [33], of the image inside
the hole (they also use, as proposed in [1, 2] and here, a
band surrounding the region). As in the work of Masnou
and Morel, their interpolation is limited to creating straight
isophotes, not necessarily smoothly continued from the hole
boundary, and mainly is developed (as the authors clearly
state) for small holes. Although straight connections give
visually pleasant results for small holes, it is important to
develop a theory that permits interpolation of level lines
across large gaps, where connecting with straight lines will
be unpleasant even for simple images. In order to obtain
such a smooth interpolation and continuation of isophotes,
it is necessary to go into high-order Partial Differential
Equations (PDE’s) or systems of PDE’s, as done in [1, 2]
and here (the authors of [7] have also recently introduced
higher order models). Research in perception, from the
Gestalt to more recent work (e.g. [31]) supports the idea
of performing a smooth continuation of the angle of arrival
of the level lines at the gap.

The paper [2] proposes an algorithm designed to project
the gradient of the smoothness of the image intensity in the
direction of the isophotes. The resulting scheme is a dis-
crete approximation of the PDE

�������	�
���
�	���
(1)

for the image intensity
�
, where

� �
denotes the perpendic-

ular gradient ��������������� and
�

denotes the Laplace operator
���� � �!�� . Additional anisotropic diffusion of the image can
produce a PDE of the form

� � ��� � �"�#�	�$� �&% �'� �)(��+* ��� * � ��� �-, (2)

The goal is to evolve (1) or perhaps more appropriately (2)
to a steady state solution, satisfying the condition in the in-
painting region that the isophote lines, in the direction of� � �

, must be parallel to the level curves of the smoothness���
of the image intensity, which for % �/. becomes

� � �"�#�	�$���/. , (3)

We note that while the authors of [2] present their
method as moving image intensity along isophote lines,
there is another sense in which to think of the dynamics.
Equation (1) is a transport equation that convects the image



intensity
�

along level curves of the smoothness,
���

. This
can be seen by noting that (1) is equivalent to � ��� ��� �'.
where � � ��� is the material derivative � � ��� ��� � � for the
velocity field � � � � ���

. In particular
�

is convected by
the velocity field � which is in the direction of level curves
of the smoothness

���
. In the next section we discuss how

this is related to a classical problem in incompressible fluid
dynamics. Our goal is to make use of expertise developed
in that field to design better inpainting algorithms.

2. Analogy to Transport of Vorticity in Incom-
pressible Fluids

Incompressible Newtonian fluids are governed by the
Navier-Stokes equations, which couple the velocity vector
field 	� to a scalar pressure 
 :

� � ��� �
� � � � � 
 �&% � � � � � � ��. , (4)

In two space dimensions, the divergence free velocity field
� possesses a stream function � satisfying

� � � � � . In
addition, in 2D the vorticity, 
 � ��� � , satisfies a very sim-
ple advection diffusion equation, which can be computed
by taking the curl of the first equation in (4) and using some
basic facts about the geometry in 2D:


 � ��� �
� 
 � % � 
�, (5)

Note here that in 2D the vorticity is a scalar quantity that
is related to the stream function through the Laplace op-
erator,

� � � 
 . In the absence of viscosity % � .
,

we obtain the Euler equations for inviscid flow. Both the
inviscid and viscous problems, with appropriate boundary
conditions, are globally well-posed in two space dimen-
sions. Solutions exist for any smooth initial condition and
they depend continuously on the initial and boundary data
[17, 18, 23, 24, 36, 40].

In terms of the stream function, equation (5) implies that
steady state inviscid flows must satisfy

� � � � �	� � ��. (6)

which says that the Laplacian of the stream function, and
hence the vorticity, must have the same level curves as the
stream function. The analogy to image inpainting in the pre-
vious section is now clear: the stream function for inviscid
fluids in 2D satisfies the same equation as the steady state
image intensity equation (3).

The point is that in order to solve the inpainting problem
proposed in the previous section, we have to find a steady
state stream function for the inviscid fluid equations, which
is a problem possessing a rich and well developed history.

2.1. The stream function-image intensity analogy

The main analogy that we build on in this paper is the
parallel between the stream function in a 2D incompressible
fluid and the role of image intensity function

�
in the in-

painting method described in Section 1.2. This allows us to
design a new inpainting method that will achieve the same
steady equation (3).

Let � be a region in the plane in which we want to inpaint
from surrounding data. Assume that the image intensity

���
is a smooth function (with possibly large gradients) outside
of � and we know both

���
and

�����
on the boundary ��� .

We now design a ‘Navier-Stokes’ based method for image
inpainting. In this method the fluid dynamic quantities have
the following parallel to quantities in the inpainting method.

Navier-Stokes Image inpainting

stream function � Image intensity
�

fluid velocity � ��� � � isophote direction
� � �

vorticity 
 � � � smoothness � ���$�
fluid viscosity % anisotropic diffusion %

Our goal is to solve a form of the Navier-Stokes equa-
tions in the region to be inpainted. The method described
next is based on the vorticity-stream form (5) of the Navier-
Stokes equations, however it is also possible to consider
other methods based on the primitive variables form (4).

For ease of notation we denote by � the smoothness
���

of the image intensity. Instead of solving a transport equa-
tion for

�
as in (2), we solve a vorticity transport equation

for � :

��� � ��� ��� � � � � % � � � ( ��* � ��* � � � ��� (7)

where the function ( allows for anisotropic diffusion of the
smoothness � . The image intensity

�
which defines the ve-

locity field � � � � � in (7) is recovered by solving simul-
taneously the Poisson problem

���$� � � � * ��� �/��� , (8)

For ( ���
, the direct numerical solution of of (7-8) is a

classical way to solve both the dynamic fluid equations and
to evolve the dynamics towards a steady state solution [30].

For fluid problems with small viscosity % , the above dy-
namics can take a long time to converge to steady state,
making the method less practical. Instead there are pseudo-
steady methods that involve replacing the Poisson equation
(8) with a dynamic relaxation equation

� � ��� � ��� � �"! ��. �#��$ . � � ��� ����� , (9)

where the parameter � determines a rate of relaxation. In
our situation, diffusion can result in a blurring of sharp in-
terfaces, gradients of

�
, in the inpainting region. Hence it



is often desirable to include anisotropic diffusion in the so-
lution of

�
. This can be added directly to the dynamical

problem (9) or as an additional step in conjunction with the
Poisson step (8). In our test cases with anisotropic diffu-
sion, we did not find a significant difference between direct
solution of the Poisson equation in (8) versus the relaxation
method (9).

Once steady state is achieved, we have effectively found
a solution of (3) for the intensity

�
(perhaps modified

slightly by the anisotropic diffusion). Hence we expect and
indeed find that the Navier-Stokes inpainting method per-
forms in many ways like the method proposed in [2]. There
are several advantages to using the Navier-Stokes method.
First, there is a well-developed theoretical and numerical
literature for this problem on which we can build inpainting
algorithms. Second there is the possibility to test the perfor-
mance of the method against a number of classical examples
from fluid dynamics. Finally, we are able to implement this
method efficiently and we have a theoretical framework in
which to understand the transport of information from the
exterior into the inpainting region.

2.2. Isophote continuity and boundary conditions
for Navier-Stokes

When using any PDE-based method to do inpainting, the
issue of boundary conditions becomes very important. In
order to produce a result which, to the eye, does not distin-
guish where the inpainting has taken place, we must at the
very least continue both the image intensity and direction of
the isophote lines continuously into the inpainting region.
This means that any PDE-based method involving the im-
age intensity

�
must enforce Dirichlet (fixed

�
) boundary

conditions as well as a condition on the direction of
�$�

on
the boundary. Immediately we see that this poses a problem
for lower-order PDE-based methods. Indeed, any first or
second order PDE (including anisotropic diffusion) for the
scalar

�
could typically only enforce one of these boundary

conditions, the result being an inpainting with discontinu-
ities in the slope of the isophote lines, or a method with
a jump in

�
itself on the boundary. From a mathematical

point of view, to fix this, one can either choose a higher or-
der equation for

�
, as in [2], that requires more boundary

conditions, or consider a vector evolution for
�$�

, which is
the idea of the Navier-Stokes method.

The Navier-Stokes analogy guarantees, in a very natu-
ral way, continuity of the image intensity function

�
and

its isophote directions across the boundary of the inpainting
region. First consider a solution of the Navier-Stokes equa-
tion (4) in primitive variables form satisfying the classical
no-slip condition � � .

on the boundary ��� . This condi-
tion guarantees two features: (a) that the stream function
� must be constant on the boundary, since the boundary is

trivially a streamline of the flow; (b) that the direction of
the fluid velocity 	� is always tangent to the boundary. A
more general form of the no-slip boundary condition, for
which well-posedness is known, is to prescribe the velocity
vector � � 	� � on the boundary. This would be the natu-
ral choice for a moving boundary. Specifying the velocity
on the boundary is equivalent to specifying both the normal
and tangential derivatives of the stream function � on the
boundary, since � � � � � . However, specifying the tan-
gential derivative of � determines � on the boundary up to
a constant of integration, by simply integrating around the
boundary with respect to its arc length. Similarly this in-
formation determines the direction of flow on the boundary.
The result is that if we solve the Navier-Stokes equations
with � fixed on the boundary, we obtain a solution with a
stream function � and velocity field � both of which are
continuous up to the boundary.

For the Navier-Stokes inpainting method, we inherit the
continuity across the boundary. For example, suppose we
fix
� � �

on the boundary. Then solving the Navier-Stokes
inpainting equation with these boundary conditions will not
only result in continuous isophotes, but also will produce an
image intensity function that is continuous across � � .

In this paper, we are interested in solving the vortic-
ity stream form (7) which, practically speaking, requires
boundary conditions for the stream function and the vor-
ticity. For viscous Navier-Stokes, there are several well-
studied methods for doing this, all of which involve some
sort of Dirichlet condition for 
 on the boundary. In the
case of a fluid, information about 
 outside of the boundary
is typically not known, hence first and second order accu-
rate methods use information about the stream function at
the previous timestep in order to numerically compute

� �
on the boundary. In the case of images, we have more infor-
mation about

�$�
outside the boundary and can use this to

construct accurate boundary conditions for � � ���
at the

boundary. For a discussion of how this is treated in fluids,
see [30] Chapter 6.

2.3. Existence and uniqueness of solutions

The Navier-Stokes based inpainting method inherits a
theoretical framework from the mathematical theory of the
Navier-Stokes equations. Although a full treatment of such
issues is beyond the scope of this paper, we discuss the
problem of uniqueness and its relevance to inpainting.

First we note that without the presence of viscosity in the
method we do not have a unique steady-state solution. This
can be seen in the following simple example, motivated by
problems involving the mathematical concentration of vor-
ticity in solution sequences of the Euler equations [8, 12].
Consider the problem (6) with � � .

on � � . Consider a
disk � � � of radius

���
, centered at the point �

�
, contained



inside � . Let ��� ��� � and � � ��� � be two different compactly
supported functions on � . � � ! so that

� �� ���+��� ���	�
� � .
.

From each ��� we can construct an exact “radial eddy” solu-
tion of the inviscid ( % � . ) fluid equations: the vorticity 
 �
is given as 
 � � ��� � � � �
� ������� �� � , * � � � � *�� �

, and zero oth-
erwise. This results in a stream function satisfying (where
we denote � � * � � �

� * )
���� ��� � �

�
�
���
��� 
 � � � ��� �

for
. ����� � �

. Note that � �� ��� � ��. for
� ����� � �

. We
can integrate the equation for � �� to recover � � where the
constant of integration is chosen so that � � is identically
zero in

� ��� � � �
. Outside of the disk � � � we continue

� � and 
 � as zero. Note that this is a !�" continuation, by
construction. Since the initial functions ��� and � � were
chosen to be different, but both satisfying the mean zero
constraint, the result is two different smooth solutions of
the inviscid steady state problem. In terms of the actual
image, the result would be two different bull’s eye patterns
on a disk in the interior of � . Note that this construction
works for any disk or for multiple disks. So it is possible to
construct a wide range of different solutions satisfying the
same zero velocity boundary data.

At the other extreme when viscosity is sufficiently large,
for smooth boundaries there is a unique solution of the
steady Navier-Stokes equations [11]. For viscous flows with
moderate and small viscosity the problem is more complex;
for example, there are classical experimental examples in
which known steady state solutions have varying stability
properties depending on the viscosity. For example, in the
case of Couette flow, the fluid is constrained to move be-
tween two concentric cylinders rotating at different speeds.
There is an exact, radially symmetric, solution that satisfies
the Navier-Stokes equation for all viscosities. However this
solution is unstable for sufficiently high viscosity, resulting
in the creation of multiple eddies in such experiments (see
e.g. [37] p. 80-81).

We expect that Navier-Stokes based inpainting may in-
herit some of the stability and uniqueness issues known for
incompressible fluids, although the effect of anisotropic dif-
fusion is not clear. In fact, some degree of non-uniqueness
of the steady state problem could be favorable for inpaint-
ing, since large inpainting regions might have multiple ‘pos-
sible’ solutions, the best choice of which might be deter-
mined by pattern matching or information from a previous
frame, as in the case of video. Ultimately we hope that the
choice of magnitude and anisotropy of viscosity, as well as
the initial condition in the inpainting region, may determine
the best possible outcome for the inpainting method.

Existence and uniqueness of time-dependent solutions of
the Navier-Stokes equations with isotropic viscosity ( ( � �
in (7)) is well established [17, 18, 23, 24, 36, 40]. In our

problem we consider the dynamics with anisotropic viscos-
ity, both at the level of the smoothness and at the level of
the intensity. This method of selective smoothing is known
to be ill-posed for a wide class of functions ( , however the
ill-posedness can be easily removed with a small amount
of smoothness applied to the gradient inside the function ( .
Catte et. al. [6] established an existence and uniqueness the-
ory which could be extended to include nonlinear transport
terms from the Navier-Stokes equations. In fact, nonlinear
diffusion has a natural physical analogy; Non-Newtonian
fluids have a viscosity that depends locally and nonlinearly
on the shear ( * � � * ) of the fluid [32]. Another form of vis-
cosity for Navier-Stokes include fourth order hyperviscosity
which is commonly used in numerical simulations of turbu-
lence [4].

3. Computational Examples

We now show via some examples how the Navier-Stokes
inpainting method performs. In each example described be-
low, the Navier-Stokes equations are solved in the inpaint-
ing region. We start by computing the vorticity � from
the image

�
, using information from the exterior to deter-

mine the boundary vorticity. We evolve the vorticity stream
form (7), using a simple forward Euler time stepping, with
centered differences in space for the diffusion and a min-
mod method [29] for the convection term. The diffusion is
anisotropic.

After one time step of (7) we compute the image inten-
sity

�
by solving the Poisson equation (8) using the Jacobi

iteration method. From this updated
�

we recompute � and
start again. Every few steps we perform anisotropic diffu-
sion on

�
, which helps to sharpen edges. Steady state is

achieved after N iterations of this cycle, typically N=300.
We can set the algorithm to stop automatically when

�
does

not change appreciably. Parameters for the algorithm have
been chosen in such a way as to work for a wide range of
examples: � � � . , . � , � � � �
# � �

, % � �
, $ . steps for

Jacobi, $ steps of anisotropic diffusion of
�

every
�
.

cycles.
The evolution (7) might be made more efficient by using an
ADI (alternate direction implicit) method [39].

When working with a color image, we perform inpaint-
ing on its three components separately (one luminance im-
age and two chroma images), and join the results at the end
(in the same was as in [2]). The algorithm is programmed
in tens of lines of C++ code. The results shown here were
obtained in a few seconds of CPU time of a standard PC
under Linux.

3.1. Inpainting of stills

In this example we consider a still image, shown in Fig-
ure 1 top, with thick lines obscuring parts of the photograph.



Figure 1. (top) Color photograph with lines
obscuring parts of the image, (bottom)
Navier-Stokes inpainting restoration of the
photograph.

The bottom image in the figure shows the result of Navier-
Stokes inpainting applied to the photo with the inpainting
region corresponding to the obscuring lines.

Notice the result is sharp, edges are not blurred inside
� nor do color artifacts appear. This is a clear example for
which texture synthesis or manual selection algorithms are
not a good choice, since the inpainting region is complex.
The topology of the inpainting region does not pose a prob-
lem, unlike the approach in [25, 26].

3.2. Video inpainting

Figure 2 shows four frames of the ‘Foreman’ video in
which lettering overlay has been removed using Navier-
Stokes inpainting. The inpainting is done frame-by-frame
using the same method outlined in the previous subsection.
Notice that this approach, though straightforward, shows
very good results: sharp, no color artifacts, no motion ar-
tifacts.

Figure 2. Four frames from the ‘Foreman’
video in which the lettering has been re-
moved using Navier-Stokes inpainting (avail-
able electronically).

3.3. Super-resolution

This example uses Navier-Stokes inpainting to increase
the resolution of an image. We have taken a detail

�
of size

(n,m) of the original image, the right eye of the girl in Figure
3. Then we increased its size 9-fold with replication (zero-
th order interpolation) to obtain

� � of size (9n,9m). Finally
we apply Navier-Stokes inpainting to

� � , while fixing
�

and� � �
, from the original small image, on the lattice of points

with coordinates (9i,9j). Notice how inpainting reproduces
a round iris.

In this example, we use Navier-Stokes inpainting only
for the brightness component of the color image. A sim-
pler filter is used for the chroma components. Better results
may be achieved via harmonic map smoothing of vectors
(see [35]). For an axiomatic/PDE based technique for im-



Figure 3. Top left: Original image of girl,
120X160 pixels. Top right: one of her eyes
(19x27 pixels) magnified with zeroth order
zoom to 169x241 pixels, Bottom left: bicubic
interpolation, Bottom right: Navier-Stokes in-
painting. Note how the edges are smoother
with the NS approach, e.g., the eye ball.

age iterpolation, see [5].

4. Summary and Conclusions

In this paper, we show the importance of computational
fluid dynamics (CFD) in general, and Navier-Stokes equa-
tions in particular, to vision problems. Although CFD ideas
have been used in computer graphics for such problems
as modeling natural phenomena, in shape analysis follow-
ing [29], and as an interpretation for anisotropic diffusion
[27], the connection and application here is to the best
of our knowledge novel. Having such a direct interdisci-
plinary connection has several benefits for the computer vi-
sion community. First it brings well-established numerical
methods and theory to a problem of central importance in
vision research. Second, the very close connection to CFD
has the potential to draw more people from that community

to explore problems in image processing and computer vi-
sion. This can only serve to accelerate the development of
the field.

Although we present a new method that seems to per-
form well, there are several interesting problems and is-
sues to be worked out that should give improvements. First
there is the design of the numerical algorithm. We use a
vorticity-stream based method due to its direct connection
to the method introduced in [2]. However one can consider
many other methods, including direct solution of the prim-
itive variables form of the Navier-Stokes equation (4) with
linear viscosity replaced by anisotropic diffusion. There is a
vast literature of CFD methods that can be modified to suit
the image problems. Moreover, the close analogy between
Navier-Stokes and the method described in [2] suggests the
possibility to try hybrid methods that cross between the two
equations, thereby giving a range of parameters that can be
tuned to optimize the end result. Moreover, the theoreti-
cal knowledge base developed in connection with Navier-
Stokes might provide more insight into a theory for the PDE
proposed in [2]. Finally there is a very interesting connec-
tion that we have not yet explored related to the dynamical
evolution of the fluid equations and stability of solutions.
For example it is possible that classical two-dimensional
fluid dynamics instabilities, like the Kelvin-Helmholtz in-
stability [19, 14] for shear layers, might allow us to gen-
erate interesting pattern formation in large inpainting re-
gions. The control of such instabilities should be linked to
the magnitude of diffusion present in the model and to the
choice of initial condition.

At the very practical level, we have not dealt with tex-
tures, and the parameters are set manually. In this respect
we believe that the user may be required to tune both the pa-
rameters and initial data in the inpainting region to suit the
particular problem at hand. However, our experience sug-
gest that large classes of problems can be efficiently solved
with the same or similar ranges of parameters and initial
conditions.

We also expect that this connection, when extended to
higher dimensions, will allow us to generalize the inpaint-
ing problem to other features (e.g., optical flow) and other
modalities. We are currently working on a video inpaint-
ing technique, based on the framework presented here, to
automatically switch between texture and structure inpaint-
ing, as well as to permit the use of information from other
frames when it is available.
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