
   

 

A MULTISCALE METHOD FOR AUTOMATED INPAINTING 
R.J.CANT, C.S.LANGENSIEPEN School of Computing and Mathematics, Nottingham Trent University   

 
Abstract: We present a novel, simple and general method for image inpainting. Current methods may be crudely divided into those that 
aim to continue edges by various energy minimisation techniques, and those that perform texture synthesis from local information, but 
both have their weaknesses. Our method searches the image for areas of similarity and uses these to inpaint. By analysing the image at 
multiple resolution scales we can find similar features and textures from anywhere in the image at a reasonable speed. We present results 
using some challenging images where both features (edges) and textures from non-local information are used to achieve plausible 
restoration.  Keywords: Inpainting, image restoration 

 
1  INTRODUCTION 
Image manipulation has a long and not very illustrious history. 
Stalin not only had people executed, but had their images 
removed from photographs as if they had never existed [1]. These 
days, there are more reasonable reasons why images may be 
edited before publication, from the ‘improvement’ of someone’s 
appearance to the clarification of a scene for journalistic effect. 
Usually this involves a substantial amount of work by the user, to 
make the changes blend in with the remainder of the image. This 
paper proposes a method of inpainting an image after the removal 
of a feature, which requires the minimum of human intervention. 
Its aim is to be able to reconstruct pertinent features and textures 
to generate a plausible image without explicitly searching for 
artefacts such as edges. 

2  RELATED WORK 
There has been considerable work in the field of digital 
inpainting, approaching the problem from the directions of noise 
removal (due to compression and transmission), film and video 
artefact removal, and texture synthesis. [11] provides a 
comprehensive summary of work done in this area. Early work 
such as [5] concentrated on image reconstruction after effects 
caused by the scanning device characteristics. Work of particular 
relevance includes the texture synthesis method [15] based on 
Heeger and Bergen’s [13] pyramid texture analysis. This 
produced convincing inpainting of large areas of small-scale 
texture e.g. grass, but no features or edges were included. [14] 
removed image noise while retaining line continuity, but at the 
cost of requiring manual choice of regions for spatial and 
frequency samples. De Bonet [8] used multiple resolution 
methods to reconstruct texture, showing that such a method could 
synthesise more difficult textures where overall feature 
directionality had to be maintained. More recently, [20] provided 
a multi-resolution method of impressive speed for infilling areas 
of texture. However, this method was purely on a single texture, 
and is not appropriate to more general inpainting, since image 
segmentation would also be needed. Methods which 
concentrated on edge, line, curvature continuity included work 
on the TV model [6] and the PDE approach of [3]. The latter 
produced impressive results, though the authors concede that, 
because it concentrates on achieving isophote continuity, it would 
have trouble with areas of texture. Their later work [2][4] 
includes what appears to be even more impressive inpainting of 
the standard Lena image. However, their method includes the use 
of field information directly from the undamaged image to direct 
the inpainting of the damaged area, so can really only be 
considered appropriate where there is such an image available e.g. 
film frames. 

3  THE METHOD 
Our method is based on work first done as an undergraduate 
student project [16] on black and white images. This method used 
pixels from other similar areas of the image to inpaint the area.  If 
a region was to be inpainted, the process was started with the 

outermost pixels – those adjacent to parts of the image that were 
to be retained. The pattern of levels of pixels in the patch 
surrounding it was then compared with the remainder of the 
image to find the closest equivalent pattern match. ‘Closest’ was 
simply defined by the sum of the grey values for the patch. The 
pixel in the equivalent position within this patch was then used to 
replace the pixel to be reconstructed.  

Although this method appeared quite successful, a few 
problems were evident. It was quite good at generating 
‘plausible’ reconstructions of amorphous areas such as foliage, 
and of simple repeating structures such as identical windows in a 
distant building. However it could not cope with more distinct 
edges as in individual leaves, or repeating structures with ranges 
of scales within them. It was also extremely slow, and 
experiments had to be limited to small images. An apparently 
identical technique was later used by [9], who also commented 
on its slowness. 

We modified the technique by handling features in a way that 
seems to match human perception. If one reduces the resolution 
of an image by a factor of 2, 4 etc., one can still see the grossest 
features. One observes this effect when watching the ‘pixellated’ 
faces used to hide identities on screen – the facial shape, nose etc 
can still be seen if one ‘squints’ at it. By using a reduced 
resolution version of the image, the areas to be inpainted could be 
matched up with similar areas elsewhere on the image – where 
similarity is assessed at this reduced resolution. In other words, 
the method is finding features visible at this resolution which are 
relevant to the reconstructed area. Each resolution scale acts as a 
filter which selects out features at that scale for comparison. This 
gives a comparatively quick method of finding the best matches 
for the pixels to be reconstructed. Firstly, the picture resolution is 
reduced by a factor of 2**N. As in the original process, the whole 
image (at this resolution) is scanned to find the best matches for 
the patch surround the pixel to be inpainted. The set of best 
matches (currently defined purely as a fixed number of matches) 
is then used as the starting set (rather than the whole image) for a 
similar matching process at a higher resolution.  This process will 
match on features at a smaller image scale. Regions around each 
of the best matches are then examined at the higher resolution to 
again find the best match with the original. This limits the search 
space, yet allows for some variation in best match from one scale 
to another. The process is repeated until the final target image 
resolution, whereupon the best match is used to generate the 
reconstructed pixel (Figure 1). At each resolution level, each 
pixel in the candidate patch is compared with its equivalent in the 
original patch (in RGB), and the differences summed to give the 
overall measure for that candidate patch. Each candidate patch is 
also reflected about x and y axes and rotated by a range of angles 
for comparison, since a feature may be rotated/reflected 
elsewhere in the image relative to the one being reconstructed.  

This method has a number of advantages over the original 
method discussed and other work. Firstly: speed. The process of 
exhaustive comparison of each pixel in the image against the one 
to be filled (particularly as one has to look at a patch of pixels 



   

 

surrounding it) can be prohibitively slow. By performing the 
exhaustive search only at a much lower resolution, the overall 
process becomes much faster., as the search space used for the 
higher resolutions are then heavily culled. However, even with 
this improvement, images of 640*480 and 24 bit colour (which 
we used for convenience) could take from a few minutes to a 
couple of hours on a reasonable PC, depending on the size of area 
to be filled. The method of [3] is apparently faster, because apart 
from the initial smoothing, it examines pixels local to the 
inpainting area only but does not handle texture.  

Search region found
at lower resolution

Replacement pixel

Best matching patch
in search region

Area to be filled

Current target pixel

Whole image

 

Figure 1 One stage in multiscale process 

Secondly: feature identification. As discussed by DeBonet, 
human vision is very good at seeing features at a range of scales. 
That is why Gothic architecture is so appealing; it has repetition 
and variation at many different scales within a single building. 
By using a process that attempts to mimic the way we ‘pan and 
zoom’, the process has a better opportunity of finding the features 
that would affect the plausibility of the reconstruction. Thus this 
method, unlike [3] can also reconstruct texture, which is visible 
only at the higher resolutions. 

Thirdly: generality. No explicit edges or lines are detected; the 
pixel colours in the patch are simply compared with those in the 
candidate patches. This means that one does not have to start 
looking for ‘special cases’ such as curved or straight edges. No 
explicit weighting is done to favour pixels closest to the one to be 
reconstructed, as otherwise some choice would have to be made 
as to how to weight. The effect of weighting is achieved by the 
use of lower resolutions, since each resolution scale essentially 
averages a different number of pixels. 

The process does have some free parameters. As will be 
discussed later, choice of the size of patch to use and number of 
resolution scales can affect the quality of the reconstruction. 
Choice of region size mainly affects the process speed, since it is 
used to limit the search space. However a larger search space 
around the notional best match can help for local texture. A less 
important constraint, made solely for performance reasons, is that 
we limited the choice of rotation angles used for the comparison. 
Since the built landscape contains features that may vary in angle 
due to perspective, the matching process should rotate the 
comparison patches by small angles from the notional horizontal 
and vertical to find the best match. However, in the natural 
landscape, features may occur at any angle, so the rotation should 
be through a wider range of angles – we chose to use every 90 
degrees (ie 8 rotations and tests for every patch including 
reflections). With more CPU speed, both sets of rotations could 
be tried for every image, and the comparison process itself would 

eliminate the worst matches. 

4  RESULTS 

4.1 The Best 
 In Figure 2 of a building in Prague, there are a challenging range 
of features of differing scales and textures. Figure 2 shows the 
original lamppost in the scene, Figure 3 shows the image forming 
the starting point for the reconstruction, after removal of the 
lamppost, and Figure 4 shows the resultant reconstruction. 

 
Figure 2 Original Image 

Note that the process has managed to reconstruct the vertical 
glazing bars automatically, as well as the triangular shapes 
between the windows and the smaller scale pavement texture. We 
believe this capability in feature and texture is unique to our 
multiresolution method. The vertical glazing bar in the bottom 
window would not have been inpainted by the edge continuity 
techniques, because it was completely removed by the mask. It 
would not have be found by the texture method [16] without 
massive enlargement of the patch size, which would have 
ensured the pavement texture would have degenerated into 
garbage as discussed in [9]. [20] found that there tended to be 
discontinuities across the inpaint boundary in their 
multiresolution method unless they modified the process. 
However, they were only using multiple scales to enlarge the 
local region. In contrast, we are using the lower resolutions to 
sample and include non-local regions of the image, and find that 
continuity across the boundary is reasonable at the higher 
resolutions. Ashikhmin[1] who modified the Wei-Levoy method 
to achieve some elegant synthesis of natural textures, commented 
that multiresolution did not appear to assist much in his work on 
single textures – we have found it essential for images with a 
range of features and textures. 

For this image, the most plausible reconstruction was obtained 
using a patch size of 9 pixels, search region of 4 pixels around the 
4 best candidate patches, and 2 lower resolution scales before the 
final processing. Patches were compared at their original angles 
and at slight deviations from the horizontal and vertical as 
mentioned earlier. The latter process seems to have resulted in the 
best matches for the glazing bars that are not quite vertical – 
further work needs to be done in exploring whether the best 
matching pixel should be modified if the angle is not as the 
original. In the lower window, the left hand horizontal glazing bar 
is not reconstructed, though the right hand one is. This is 



   

 

plausible because one of the other windows (bottom left) also 
exhibits only one horizontal bar, since the other half window is 
open. The process has used this area in its reconstruction of the 
rightmost window. 

 
Figure 3 Area masked for infill 

A problem involving natural rather than built artefacts is this 
dolphin image. Figure 5 shows the original image,  Figure 6 the 
masked out dolphin, and Figure 7 the best infilling attempt. For 
this image, the most plausible infilling occurred with a patch size 
of 3 pixels, a search region of 8 pixels, and 2 lower resolution 
scales. In this case, patches were compared at a wide range of 
rotation angles rather than just slight variations off vertical. The 
wave shape and local texture appear to be plausible. 

Most of the images upon which we have attempted the 
technique have provided the most plausible reconstructions when 
using 2 lower resolution scales. However, this is partially related 
to the image size. Higher resolution versions of the same images 
need one or more additional low resolution stages to attain the 
equivalent level of image inpainting. 

4.2 The Worst 
Figure 8 shows the problems associated with trying to inpaint a 
relatively large area within an image. The process begins by 
trying to find the best matches to those pixels on the perimeter of 
the reconstruction area that have the most neighbours in the 
original image. It then fills those with the next highest count of 
‘real’ neighbours until the whole perimeter has been covered, 
before moving inwards. This means that as one gets closer to the 
centre of a large area for reconstruction, more and more of the 
pixels used for comparison have actually been reconstructed 
themselves. As commented by Wei and Levoy [20], this 
spiralling inwards is necessary to avoid directional bias caused 
by the obvious artificiality of following scan lines. Furthermore, 
because of the freedom of matching, adjacent pixels in the area to 
be filled may not be sourced from contiguous parts of the original 
image. This tends to cause a ‘smoothing’ of texture in the centre 
of a large fill area, and this phenomenon can be seen where the 
Mountie has been replaced in Figure 10. Potentially, ‘noisiness’ 
could be added to the interior of the region, perhaps by the 
method of [13] or [15] but would need automated analysis to 
identify the degree to which the texture encloses the region for 
inpaint. A better solution might be to allow the user to indicate 
that noisiness was required. 

 
Note, however, that the process has construct a plausible beach 
texture, and continued the edges at the lakeside and distant 
shoreline successfully. The ‘Connectivity Principle’ presented by 
[7] and discussed by [11] with regard to the Mumford-Shah 
model’s failings is preserved with this technique, as well as the 
restoration of texture provided the area is not too large 
Figure 13 shows the problems associated with the reconstruction 
of areas in distinct predictable lines. The human eye/brain 
combination is very good at pattern finding, and so the narrow 
sections where the wires have been removed can still be seen in 
the middle left of the image. As commented by Ashikhmin, the 
human eye will filter out discontinuities in an image with high 
frequency content – this is the manner in which the simple 
version of chaos mosaic texture synthesis [12] achieves 
plausibility. The bear image is not ‘busy’ and so artefacts would 
be comparatively visible. There are real vertical features in the 
right hand area of water, so to an observer who had not seen the 
original, the image would still be plausible. Interestingly, the 
horizontal ‘replaced wires’ are far harder to see, despite both 
inpainting areas being of similar dimensions. However the bear 
fur texture, body edge, stones and water are reasonably well 
reconstructed. 

 
Figure 4 Lamppost filled in 

 

Figure 5 Original Image 



   

 

 

Figure 6 Dolphin masked out 

 

Figure 7 Image after processing 
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Figure 8 Original image of Mountie 

 
Figure 9 Masked image 

 
Figure 10 Best inpainting 

 

 
Figure 11 Original image of bear 



   

 

 
Figure 12 Masked image 

4.3 Analysis of results 
Our experiments with a range of images showed that there were 
noticeable differences in the visual quality of reconstruction 
depending on the values of patch and region size chosen for a 
particular image and on the number of resolution scales used for 
the earlier stages. A small patch size means that the filled pixel 
correctly reflects small-scale variation i.e. texture, but may not 
achieve the correct overall shade.  A large patch size may provide 
a better match to the local shade, but loses the opportunity to 
show texture, and ‘smoothes’ the image. As mentioned earlier, 
the optimum number of resolution scales tends to relate to the 
original image size, but some images did need more or fewer 
scales. 

 
Figure 13 Best inpainting 

These points can be illustrated by the example shown in 
Figure 14. This picture of lilies has its most plausible 
reconstruction following the removal of one stem (as shown in 
Figure 15) by using only 1 lower resolution scale (i.e. a factor of 
2 in x and y) – see Figure 16. When using 3 lower resolution 
scales (Figure 17) the program failed to continue the horizontal 
wire correctly across the infill area. In both cases the patch and 
region sizes were the same. 

It became apparent during the course of experiments that the 
experimenter could make a reasonable guess at the best 
parameters to use for the reconstruction from simply viewing the 
image. Further investigations are thus required to understand 
how this is occurring. For this inpainting method to work, parts of 
the area being reconstructed must be replicated (approximately) 
elsewhere in the image. The number of resolution scales used  
acts as a crude filter into frequency bands, whereas the patch size 
itself relates directly to the scale of the feature. The region size 

used for the local best match relates to the ‘wave packet’ scale, 
the distance within which the highest frequencies are part of 
some common feature. Initial Fourier analyses of our test images 
have not yet led to any clear relationships between the image 
scales and the parameters. 

5  FUTURE WORK AND CONCLUSIONS 
In order to derive the relationship mentioned above, further 

experiments need to be conducted. Because at present 
plausibility is so difficult to define mathematically, we will have 
to use human testing to achieve at least a statistical measure. For 
example, although [19] calculate an error measure for their 
magnification process, they found images with similar error 
values could have markedly different visual appeal. In a similar 
vein [7] found that some algorithms generated solutions which 
caused lines to be terminated, while human perception much 
prefers continuity. As a result of these difficulties, much of the 
work discussed earlier presents the images to the reader without 
evaluation or objective comparison (as do we). As the processes 
for inpainting improve, we have to start measuring the 
plausibility of the resultant images, in order to assess whether any 
new technique is a genuine improvement.  

Assuming that human tests can give us a relationship for our 
free parameters to the image feature scales, the process of digital 
inpainting can then be made more automated. Given an image 
with a masked region, the program could use an initial analysis to 
determine plausible values for the 3 parameters, perform the 
inpainting using these and some nearby values, and thus provide 
a small set of reconstructed images from which the user could 
make the final selection 

 

Figure 14 Original image and enlarged region 

 

Figure 15 Masked image and enlarged region 



   

 

 

Figure 16 Best infill, and enlarged region 

 

Figure 17 Infill using more lower resolution stages 

If human tests could further assist in identifying which 
technique was most suitable for a given class of image, one could 
extend the process. Apart from simple Fourier or wavelet 
analysis, some segmentation could be carried out eg as in [18] to 
categorise the areas of texture to be inpainted. The most 
appropriate techniques could then be selected and used. Such a 
tool could free the user from the drudgery of manual editing, 
while still giving them the freedom to decide on the best image to 
use. 
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