
C++ / VBA interface

1 Solution

The purpose of this document is to describe the steps to obtain three projets
in a Visual Studio 2010 solution, and to describe the C++ / VBA interface.
These three projects will be:

• a project to create a static library, named rational stat, which will con-
tain the definition of class(es) and its (their) methods,

• a project to create an application, named rational app, which is actually
a test program which verifies if our class is working correctly,

• a project to create a dynamic library (DLL), named rational dll, which
will be used for the C++ / VBA interface.

The application and the DLL will use the code of the static library, which
will contain the definition of the methods of our class(es). Hence, the code of
the rational stat project will not be copied in the projects rational app and
rational dll, but instead it will be used.

On the hard disk, the solution will be in the folder “Mes Documents/Visual
Studio/Projects”. This folder will be called “project folder” below. Here is the
structure of the solution Rational (relevant suubfolders and files) that will be
created on the hard disk in “project folder”. The italic files are those added in
the following sections, the bold ones are those generated by the compilation of
the solution.

• Rational/

– Debug/

∗ rational stat.lib

∗ rational app.exe

∗ rational dll.lib

∗ rational dll.dll

– rational stat/

∗ rational.h

∗ rational.cpp

– rational app/

∗ rational app.cpp

– rational dlll/

∗ rational dll.h

∗ rational dll.cpp

1

1.1 Static library

To create the project of the static library :

• Fichier → Nouveau → Projet

• Choose “Win32” (on the left) and “Application Console Win32” (on the
right)

• Set the name of the project in the bottom part : rational stat

• Set the name of the solution (just below) : Rational

• Click on “OK”. In the new window, click on “Suivant” at the bottom,
then, on the right, click on “Bibliothèque statique”. Uncheck “En-tête
précompilé”.

• Click on “Terminer”

Now that the project is created, the files must be added.

1.1.1 Header file

To add a header file :

• In rational stat (on the left), right click on “Fichiers d’en-tête”.

• Then click on “Ajouter” → “Nouvel Elément”.

• Choose on the right “Code” and “Fichier d’en-tête (.h)”

• Set the file name at the bottom : rational.h

We now fill the file rational.h :

#ifndef RATIONAL H
#define RATIONAL H

class Rat
{
private :

int num ;
int den ;

public :
Rat (int num, int den = 1) ;
double doub l e ge t () ;

} ;

#endif // RATIONAL H

2

1.1.2 Source file

To add a source file :

• In rational stat (on the left), right click on “Fichiers sources”.

• Then click on “Ajouter” → “Nouvel Elément”.

• Choose on the right “Code” and “Fichier source (.cpp)”

• Set the file name at the bottom : rational.cpp

We now fill the file rational.cpp :

#include ” r a t i o n a l . h”

Rat : : Rat (int num, int den)
{

num = num;
den = den ;

}

double Rat : : doub l e ge t ()
{

return (double)num / den ;
}

To compile and create the static library, press the F7 key. The file ratio-
nal stat.lib is located in the directory project folder/Rational/Debug.

1.2 Application

To create the project of the application :

• Right click on the solution Rational on the left

• “Ajouter” → “Nouveau Projet”

• Choose “Win32” (on the left) and “Application Console Win32” (on the
right)

• Set the name of the project in the bottom part : rational app

• Click on “OK”. In the new window, click on “Suivant” at the bottom,
then, on the right, select “Projet vide”

• Click on “Terminer”

3

1.2.1 Source file

Now that the project is created, the source file must be added:

• In rational app (on the left), right click on “Fichiers source”.

• Then click on “Ajouter” → “Nouvel Elément”.

• Choose on the right “Code” and “Fichier source (.cpp)”

• Set the file name at the bottom : rational app.cpp

We now fill the file rational app.cpp :

#include <iostream>

#include ” r a t i o n a l . h”

int main ()
{

Rat r (1 , 5) ;

s td : : cout << r . doub l e ge t () << std : : endl ;

return 0 ;
}

1.2.2 Configuration

Now, in order to compile the project, we must configure it so that it uses the
static library.

• Right click on rational app (on the left) and click on “Propriétés”. A
new window appears with, on the left, a set of options.

– C/C++

∗ Général

· On the right, click on “Autres Répertoires Include”

· Click on the black arrrow, then “Modifier...” and a new
window appears

· Click on the yellow folder icon then on “...”. Select the folder
where the file rational.h is located (it should be project folder/Rational/rational stat.

· Click on “OK”

– Editeur de liens

∗ Général

· On the right, click on “Répertoires de bibliothèques supplémentaires”

4

· Click on the black arrrow, then “Modifier...” and a new
window appears

· Enter project folder/Rational/Debug.

∗ Entrée

· Click on “Dépendances supplémentaires”

· Click on the black arrrow, then “Modifier...” and a new
window appears

· Enter rational stat.lib

– Click on “OK”

• Click on “OK”

To compile both projects, press the F7 key. pressing Ctrl-F5 will not execute
this program, as the default project that will be executed is the static library
(which is even not a binary...). To allow rational app to be executed, right
click on rational app and select “Définir comme projet de démarrage”. Now
press Ctrl-F5.

1.3 Dynamic library

To create the project of the DLL :

• Right click on the solution Rational on the left

• “Ajouter” → “Nouveau Projet”

• Choose “Win32” (on the left) and “Application Console Win32” (on the
right)

• Set the name of the project in the bottom part : rational dll

• Click on “OK”. In the new window, click on “Suivant” at the bottom,
then, on the right, select “DLL” and select “Projet vide”

• Click on “Terminer”

The DLL will be used into Excel, via VBA. A header file and a source file
need to be written.

1.3.1 Header file

First, the header file :

• In rational dll (on the left), right click on “Fichiers d’en-tête”.

• Then click on “Ajouter” → “Nouvel Elément”.

• Choose on the right “Code” and “Fichier d’en-tête (.h)”

• Set the file name at the bottom : rational dll.h

5

In order for VBA to call the functions, these ones must have the key-
word stdcall added just before their name and declspec(dllexport) in
the header file, that is, their signature must be of the form :

d e c l s p e c (d l l e x p o r t) t y p e r e t s t d c a l l fct name (params)

and they must be written in a C style (no class, etc...).
Here is the header file :

#ifndef RATIONAL DLL H
#define RATIONAL DLL H

#define DLL EXPORT d e c l s p e c (d l l e x p o r t)

extern ”C”
{
// add here a l l the f u n c t i o n s t h a t w i l l be c a l l e d by VBA

DLL EXPORT double s t d c a l l r a t d o u b l e g e t (int num,
int den) ;

}

#endif /∗ RATIONAL DLL H ∗/

1.3.2 Source file

Second, the source file :

• In rational dll (on the left), right click on “Fichiers source”.

• Then click on “Ajouter” → “Nouvel Elément”.

• Choose on the right “Code” and “Fichier source (.cpp)”

• Set the file name at the bottom : rational dll.cpp

In order for VBA to call the functions, these ones must have the keyword
stdcall added just before their name in the source file, that is, their signature

must be of the form :

t y p e r e t s t d c a l l fct name (params)

Usually, one has to use a class in the body of the function, hence it is quite
common that the function takes as arguments the arguments of the constructor
of the class. It is not mandatory, though.

Here is the source file that will be used :

6

#include <r a t i o n a l . h>
#include < r a t i o n a l d l l . h>

double s t d c a l l r a t d o u b l e g e t (int num, int den)
{

Rat r (num, den) ;

return r . doub l e ge t () ;
}

Now, the project must be configured exactly like in section 1.2.2, except that
in Editeur de liens→Entrées→Dépendances supplémentaires, rational dll.lib
must also be added.

2 C++-VBA interface

To use C++ functions in Excel, VBA must be used. Actually, VBA can’t call
directly C++ functions, it can only call C functions. So one has to write C
functions which call the C++ functions we want. That is the purpose of the
DLL build in section 1.3.
Here are the steps to use that DLL in VBA:

• In Excel, open a new sheet and save it with the name rational dll.xls
for example.

• Press Ctrl-F11 to open VBA Editor.

• Add a module (right click on VBA Project (rationall dll.xls), then
Insert → Module.

• At the beginning of the VBA program, one must write the functions to
use in VBA, and the C function that the VBA one calls. The syntax is
the following :

Declare Function name_fct_vba "path_to_DLL" Alias _

"_name_fct_c@n" (VBA parameters) type_ret_vba

where:

– name fct vba is the name of the function used in the VBA program

– path to DLL is the name of the DLL with its full path

– name fct c@n is the name of the C function in the DLL, prepended
with an undersore, and to which we append @n, where n is a number
which value will be described later.

– VBA parameters are the parameters of the C function, but with the
VBA syntax.

7

– type ret vba is the returned type of the C function but with the VBA
syntax

– the underscore ’ ’ that is at the end of a line allows the command to
be splitted into several lines.

Here is an example of VBA program using the rational dll.dll DLL :

Dec lare Function ra t d ou b l e g e t v ba Lib
”c :\ path\ to \ r a t i o n a l d l l . d l l ” A l i a s ” ra t doub l e ge t@8 ”
(ByVal n As Long , ByVal d As Long) As Double

Sub t e s t ()
Feu i l 1 . C e l l s (1 , 1) . Value = ra t d ou b l e g e t v ba (2 , 7)

End Sub

It is sufficient to launch the VBA macro in the Excel sheet.
As a final note, the computation of n is the following : it is the sum of the
length of the type of each argument of the C function in byte. An int in C is 4
bytes long, so n = 4 + 4 = 8.

8

