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Abstract

In the context of arbitrage-free modelling of �nancial derivatives, we introduce a novel cal-

ibration technique for models in the a¢ ne-quadratic class for the purpose of over-the-counter

option pricing and risk-management. In particular, we aim at calibrating a stochastic volatility

jump di¤usion model to the whole market implied volatility surface at any given time. We

study the asymptotic behaviour of the moments of the underlying distribution and use this

information to introduce and implement our calibration algorithm. We numerically show that

the proposed approach is both statistically stable and accurate.
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1 Introduction

The Black-Scholes (BS) paradigm of lognormality of asset returns distribution is in contrast with

empirical observations. For this reason, many di¤erent generalizations of the BS model have been

proposed in the past. Empirical evidence seems to reject stochastic volatility (SV) models since they

are not capable of reproducing the observed conditional kurtosis of returns. The presence of jumps

is often advocated as a solution to this problem. In fact, evidence of presence of jumps in the asset,

in the volatility or in both is reported in Bates (1996), Bakshi et al. (1997), Chernov et al. (1999),

Andersen et al.(2002), Pan (2002), Bates (2000), Eraker et al. (2003) and Chernov et al. (2003),

among others.

In another set of studies, departures from BS model are advocated in relation to the implied

volatility smile phenomenon. Smile-consistent deterministic volatility extensions of the BS model

were �rst introduced by Dupire (1994) and Derman and Kani (1994). These are usually referred to as

local volatility (LV) models. Although LV models provide a simple mechanism for smile generation,

they are pledged by a number of shortcomings (Dumas et al. (1997), Rebonato (2000), Andersen

and Andreasen (2000), Di Graziano and Galluccio (2005)). In a di¤erent line of thought, Hull and

White (1987), Stein and Stein (1991) and Heston (1993), account for the smile phenomenon through

stochastic volatility (SV) models. Finally, modelling the smile through mixed jump-di¤usion (JD)

processes is proposed in Andersen et al. (2000) (for LV models with jumps) and Du¢ e et al. (2000)

(for SV models with jumps). In general, forcing a single SV or JD model to be consistent with the

whole set of smiles at di¤erent maturities (the so-called �implied volatility surface�) is impossible,

unless model coe¢ cients are heavily (and unrealistically) time-dependent. In fact, SV (resp. JD)

models tend to underestimate smile convexity at short (resp. long) maturities (see Section 3).

It is now an established fact that SV, JD and LV models should be rejected in favour of stochastic

volatility jump-di¤usion models (SVJD) thanks to their superior market explicative power (Bates

(1996), Bakshi et al. (1997), Andersen et al.(2002), Pan (2002), Bates (2000), Eraker et al. (2003)

and Chernov et al. (2003)) .

A fundamental problem is the estimation of latent parameters in SVJD models. Statistical esti-

mation from historical data series has been given extensive coverage in the past (see also Chernov

et al. (2003), Craine, Lochstoer and Syrtveit (2000) and Deelstra et al. (2003)). However, for the

purpose of pricing and hedging over-the counter derivatives, a model must be consistent with the

available market quotations of liquid vanilla options at any given time to avoid arbitrage oppor-

tunities. In this respect statistical estimations must be replaced or, at least, complemented by a

reverse engineering process (model calibration) that aims at determining model parameters in order

to reproduce the observed vanilla option prices1 .

Despite the importance of having a fast, robust and accurate model calibration, the academic

1 In a complete market, model calibration identi�es the (unique) risk-neutral measure and avoids the problem of

determining the market price of risk. When market is incomplete, calibration allows selecting one �market�measure

among the in�nite set of risk-neutral measures (see Björk (1998) for details).
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literature on this subject is scarce. In this respect, calibration based on short-term asymptotics is

addressed in Medvedev and Scaillet (2004). Bakshi et al. (1997) and Andersen and Andreasen (2000)

suggest to calibrate a model by minimizing the sum of the squared errors of all available options

across all strikes and maturities. This simple non-linear least squares optimization is usually not

enough accurate and not statistically robust, as shown in Cont and Tankov (2004). These authors

point out that the information contained in the set of available option prices is not su¢ cient to

remove the coe¢ cients degeneracy that is associated to a SVJD process and suggest that calibration

can only be achieved provided one adds exogenous information in addition to the available option

prices. For, they introduce a calibration algorithm (in the context of exponential-Lévy processes)

where the objective function contains a convex functional that is meant to stabilize the (non-convex)

optimization problem. Cont and Tankov (2004) focus on calibrating a single smile at the time.

Generalizing their approach to more general processes or to cope with the calibration of the whole

volatility surface remains an unsolved issue.

In this paper, inspired by Cont and Tankov (2004) results, we attempt to take the next step

in this direction and introduce a novel implied calibration methodology for a wide class of SVJD

models with time-dependent coe¢ cients (Du¢ e et al. (2000), Piazzesi (2003), Peng and Scaillet

(2004)). Our approach is qualitatively inspired at Cont and Tankov�s method, but it di¤ers from

that in both the nature of the problem (we aim at calibrating the whole volatility surface as opposed

to a single smile curve) and in the type of dynamics (we do not restrict ourselves to Lévy processes).

Our approach takes heavily into account the asymptotic behavior of the moments of the underlying

distribution. To this aim, we derive asymptotic moments formulae in a simpli�ed case and we discuss

how to use them to simplify the calibration of long terms smiles. We apply our method to one of

the simplest (yet non-trivial) SVJD model with jumps in the asset and we show that an accurate

and �nancially meaningful calibration to the whole volatility surface is possible and the algorithm

is statistically robust. However, our study strongly suggests that the algorithmic complexity is such

that generalizing the present approach to more complex models might be di¢ cult to achieve. This

is the case, for instance, when jumps in volatility are also present or for more general local volatility

forms2 . These shortcomings expose an intrinsic limitation of SVJD models and clearly indicate that,

despite their mathematical and �nancial appeal, further theoretical developments are needed in this

area of research.

The rest of the paper is organized as follows. In Section 2 we introduce model and notations,

and we determine closed-form formulae for European options. In Section 3 we analytically study the

asymptotic properties of SVJD models and analyze the di¤erent role played by jumps and stochastic

volatility in explaining the market smile. Section 4 introduces and discusses the calibration problem.

Section 5 is devoted to a detailed description of our calibration algorithm. Numerical results are

presented in Section 6 while Section 7 contains conclusions and prospects for future research.

2One important exception being hybrid (Equity-IR) modelling with no jumps in volatility since in that case the

approach we present here can be applied without major modi�cations, as shown in Galluccio and Le Cam (2005).
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2 Mathematical setup and option pricing

2.1 The model

Let (
;A;P) be a probability space. We shall denote by St the stock price at time t and by rt the
(deterministic) spot interest rate. A probability measure P�, equivalent to the historical probability
measure P, is said to be a risk-neutral measure if the discounted price follows a local martingale
process under P�: We stipulate that the asset dynamics follows a jump-di¤usion process3 under any
equivalent risk-neutral measure P�;(

dSt=St� = (rt � dt � �t)dt+ �tdB1t + dJt
d�t = �(at � �t)dt+ �tdB2t ;

(1)

where B1 and B2 are two Brownian motions with d


B1; B2

�
t
= �tdt . Here � is a constant and

�t; dt; �t; at are deterministic functions of time. Finally, J represents a compound Poisson Process

with stochastic intensity � (t; St; �t) so that Jt =
P

n�1
�
eYn � 1

�
1fTn�tg (Tn are the jump arrival

times of the underlying Poisson�s Process of stochastic intensity �). The sequence (Yn)n�0 is iid

(independent of B1 and B2), J will denote the law on R of the size of the jumps of J (the iid sequence
(expYn � 1)n�0), and � is the process such that J: �

R :
0
�sds is a martingale (the Radon derivative

of the compensator of the compound Poisson Process). More precisely, the two dimensional jump

di¤usion (S; �) is a Feller process with in�nitesimal generator A de�ned by (if x = (x1; x2))

A'(t; x) = @t'(t; x) + @x'(t; x)�(t; x) +
1

2
tr
�
@x;x'(t; x)�(t; x)�

>(t; x)
�

(2)

+�(t; x)

Z
R
['(t; x1 + u; x2)� '(t; x1; x2)] dJ(u);

where � is the drift vector and � the volatility matrix of the di¤usion. Finally, (Ft)t�0 is the natural
augmentation of the �ltration generated by the two dimensional jump di¤usion.

As it is well known, the above model is arbitrage-free but is not complete: model calibration will

then be used to select a risk-neutral measure, according to the general theory4 . We point out that

the model de�ned by Eq. (1) does not belong to the a¢ ne class, in the sense of Du¢ e et al. (2000).

Our choice is motivated by several facts. Empirical literature (Jones (2003) and Medvedev and

Scaillet (2004), among others) shows that simple a¢ ne models must be rejected in favor of more

general processes. In fact, our model belongs to the so called �linear-quadratic� class (Piazzesi

(2003), Peng and Scaillet (2004)), which includes the a¢ ne as a special case. In addition, SVJD

linear-quadratic models can be easily generalized to include quanto and cross-currency features as

well as the e¤ect of stochastic interest rates with possibly stochastic volatility (for the purpose of

hybrid derivatives modelling) while the same does not hold, in general, in a¢ ne models (Galluccio

3For the sake of simplicity, we will thoroughout assume that the divident process dt is deterministic and that

relative dividends are payed continuously in time. Note also that in our formulation no restriction must be imposed

on the r.v. (Yn)n�0 to ensure that St stays positive.
4We again refer to the textbook by Björk (1998) for a rigorous treatment of the link between model calibration

and selection of a single risk-neutral measure in incomplete markets.
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and Le Cam (2006)).5 For avoidance of any doubt, we remark that our calibration algorithm

(Sections 4 and 5) equally applies to a¢ ne models since model parametrization is essentially the

same in both settings.

In the applications, it is useful to recast all equations in a more convenient form by introducing

the auxiliary vector di¤usion process Zt := (Xt = ln (St) ; Yt = �t) and the jump process Nt :=P
n�1 Yn1fTn�tg (we denote by G the law of Yn): In the new setting, the system reads as:(

dXt =
�
rt � Y 2t =2� dt � �t

�
dt+ YtdW

1
t + dNt

dYt = � (at � Yt) dt+ �t
�
�tdW

1
t + �tdW

2
t

�
:

(3)

where
�
W 1;W 2

�
is a now a two dimensional vector of independent Wiener processes with W 1 = B1

and �t =
p
1� �2t . The model can be easily handled analytically. In fact, if we assume that the

intensity process takes the quadratic form �(t; z) := �0t+ �1tx+ �2ty+ �
3
ty
2, the jump di¤usion vector-

valued process is a semimartingale associated to a triplet of characteristics that are a¢ ne-quadratic

functions of the state variables, as in Peng and Scaillet (2004).

The presence of jumps in the dynamics is well supported by historical time series analysis, as

above mentioned. Bates (1996) and (2000) suggests that jumps are needed in addition to stochastic

volatility to allow matching both long and short-maturity smiles within a single model. Strong

evidence in support of this claim is given in the next Section.

2.2 Option Pricing

In our setting, pricing of vanilla European options can be done in quasi-closed form. For u 2 C,
we introduce the �discounted conditional characteristic function�  (u; z; t; T ) in the risk-neutral

expectation, de�ned by (process Z is Markov in �ltration F, hence the existence of the deterministic
function of z = (x; y);  )

 (u; Zt; t; T ) := E�
"
exp

 
�
Z T

t

R(s; Zs)ds

!
euXT

�����Ft
#
; (4)

where R(t;Xt) = rt is the spot interest rate. The Laplace transform of the law of Y1 is given by

L(x) =
R
euxdG(u) (under the usual conditions of existence and convergence) and we introduce the

auxiliary functions �it(x) = �it (L(x)� 1). The following result provides the �discounted conditional
characteristic function�, that is the exponential of a quadratic function of the state variables (time

dependency is omitted to simplify the notation):

Proposition 1 There exist four functions 
(t; T ); �1(t; T ); �2(t; T ); and �(t; T ) such that  can be

represented as

 (u; Zt; t; T ) = exp
�

(t; T ) + �1(t; T ) �Xt ++�2(t; T ) � Yt + �(t; T )Y 2t

�
:

5This is due to the fact that the presence of quanto e¤ects or stochastic interest rates generates non-linear terms

in the drift of the process when dynamics is expressed in the domestic risk-neutral measure.
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Moreover the four functions satisfy the following system of ODE�s:8>>>><>>>>:
@�1
@t = ��1(�1);
@�2
@t = ��2(�1)� 2�a� �

�
���1 + 2�

2�
�
�2;

@�
@t = ��4(�1) + 1

2

�
�1 � �21

�
+ 2 (�� ���1) � � 2�2�2

@

@t = ��0(�1) + (d+ �� r)�1 � �a�2 � �2

�
� + 1

2�
2
2

� (5)

with conditions �1(T; T ) = u; and �2(T; T ) = �(T; T ) = 
(T; T ) = 0, since  (u; ZT ;T; T ) = euXT :

Proof. See Appendix A.

To simplify the problem we will assume, from now on, that the stochastic intensity of the com-

pound Poisson process is deterministic, i.e. �0t 6= 0; �1t = �2t = �3t = 0. In this case, the expression

of the compensator is �t = �0tE�
�
eY � 1

�
= �0t (1): To ease notation, we shall replace �

0
t by �t: The

above system contains non-linear, time inhomogeneous second order Riccati equations and cannot

be solved in closed form, in general. However, since only a �nite set of options at di¤erent times

to expiry is actually quoted in the market, we can restrict ourselves to handle piecewise constant

functions. Let (T1; � � � ; TN ) be the set of expiry times associated to the quoted vanilla options. Ac-
cordingly, if �(t) is a generic time-dependent coe¢ cient in the system, we will assume that �(t) = �i,

if t 2 [Ti�1; Ti), i = 2; � � � ; N . With this speci�cation on every interval [Ti�1; Ti) all Riccati equa-
tions are de�ned in terms of constant coe¢ cients and then solvable. On every subinterval, terminal

conditions are �(Ti) = (u1i ; u
2
i ); �(Ti) = u3i ; 
(Ti) = u4i . We then arrive at the following result, where

	i(t; x) =
�
1� exp

�
x(T i � t)

��
=x:

Proposition 2 Assume that �t; at; kt; �0t are piecewise constant on the intervals [Ti�1; Ti), i =

2; � � � ; N . The solution of the system of ODE�s is given, on each [Ti�1; Ti), by

�1(t) = u1i ; �2(t) =M(t)
�
u2i �K(t)

�
;

�(t) =
1

�2i

�
�(Bi + �i)�

2�iCi
e4�i(Ti�t) � Ci

�
;


(t) = u4i �
��
di +�

0
t (1)

�
u1i � �0t (u1i )� (Bi + �i)

�
(Ti � t)

�1
2
ln
1� Cie�4�i(Ti�t)

1� Ci
+

Z T

t

�
�ai +

1

2
�2i�2(s)

�
�2(s)ds;

with the notations and functions :

Ai = u1i (1� u1i )=4;Bi =
�
��u1i � �

�
=2; �2i = B2i + �

2
iAi;Ci =

�2ui4 +Bi + �i
�2ui4 +Bi � �ii

;

pi = �2�ai; zi = �2�iCi=�2i ; yi = �Bi + �i=�2i ;�i = 2(Bi + �i)� u1�1�i;

M(t) =
(1� Ci) e��i(Ti�t)
1� Cie�4�i(Ti�t)

;K(t) =
(piyiCi � pizi)	i(t; �i � 4�i)� piyi	i(t; �i)

1� Ci
:

Proof. See Appendix B.

We remark that jumps only appear in the expression of 
(t) through the Laplace transform

L(u1i ). With a proper choice of the distribution of the r.v. Y , the transform can be analytically
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computed. If Y � N (q; v2) is a Gaussian random variable then L(x) = exp
�
qx+ x2v2=2

�
. This

choice provides a simple and intuitive jumps parametrization and, as we show below, it o¤ers great

�exibility in the calibration process.

Our goal is the evaluation of a vanilla call option expiring at T and struck at K written on S,

whose arbitrage price at time t is Callt(St;K; t; T ) = E�
n
exp

�
�
R T
t
rsds

�
(ST �K)+jFt

o
. To this

aim, we use the auxiliary function (we use Markov property again) :

G(y; &; '; Zt; t; T ) = E�
n
e�

R T
t
rsds+&�XT�f'�XT�yg

���Fto ; (6)

and a number of well-known results on Fourier transforms for option pricing. In fact, as the following

Proposition shows, G(y; &; �; z; t; T ) can be determined from the knowledge of  (u; z; t; T ) and the

pricing problem is then solved.

Proposition 3 The price of the call option is given by Callt(St;K; t; T ) = G1 �KG2, with

G1 = G(� lnK; �1; �1; Zt; t; T ); �1 = (1; 0; 0) ; �1 = (�1; 0; 0); Zt = (lnSt; �t; rt) ;

G2 = G(� lnK; �2; �2; Zt; t; T ); �1 = (0; 0; 0) ; �1 = (�1; 0; 0); Zt = (lnSt; �t; rt)

and

G(y; &; �; Zt; t; T ) =
1

2
 (&; Zt; t; T )�

1

�

Z
(Rd)+

1

k
Im
�
e�iky (& + ik�; Zt; t; T )

	
dk (7)

Proof. Peng and Scaillet (2004).

3 Model asymptotics and regimes switching

In this section we study the relationship between the dynamics Eq.(1) and the associated shape of

the volatility surface. The goal is to provide evidence about the di¤erent roles played by jumps and

by stochastic volatility in explaining the observed smile in di¤erent portions of the time to expiry

axis. This result is instrumental in understanding the calibration methodology that will be later

introduced.

The analysis of the moments of the asset distribution and their link with the shape of the smile

has been already addressed in the literature. In particular, Backus et al. (1997) and (in a similar

context) Zhang and Xiang (2005) show that if the smile can be parametrized through a quadratic

polynomial in the �modi�ed moneyness�m = ln(F=K)=
�
�atm

p
T � t

�
+ �atm

p
T � t=2 , where F

is the underlying�s forward, �atm is the at the money (ATM) BS volatility and K is the strike then,

approximately, the BS implied volatility at varying m reads as

�(m; �) ' �atm
p
�

�
1� �1(�)

3!
m� �2(�)

4!

�
1�m2

��
; (8)

where �1(t) and �2(t) are the skewness and the kurtosis of the logarithm of the underlying process,

and � = T � t is the time to expiry. This result descends from a Gram-Charlier expansion of the

law of the log-asset price and holds for small values of �atm. Formula (8) shows the tight link
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existing between shape of the smile and moments of the underlying asset process. In particular,

when skewness and kurtosis are zero, the smile is �at at �atm (as in the BS model). In addition,

skewness (through the linear term in m) and kurtosis (through the quadratic term in m) act by

respectively tilting and bending the smile.

For the sake of simplicity, we will assume in this section that dividends dt vanish and that all

model coe¢ cients are constant. All conclusions hold (at a qualitative level) in the general setup.

Even in this simpli�ed scenario the analytical expression of the characteristic function �t(x) :=

Et (exp ix lnST ) of the log-asset price (and a fortiori, that of the associated cumulants) is quite
involved. For this reason, we analyze separately the impact of jumps and of stochastic volatility.

Pure jump process. In this case, Eq.(1) reduces to the Merton (1973) jump-di¤usion model.

The �rst four cumulants of Xt := ln(St) in this setup are well known (appendix C). Skewness�
�1(t) = �3�

�3=2
2

�
and kurtosis

�
�2(t) = �4�

�2
2

�
(expression of functions �i are recalled in the

appendix), are given by :

�1(t) =
1p
t

�q
�
q2 + 3v2

�
[�2 + � (q2 + v2)]

3=2
; �2(t) =

1

t

�
�
q4 + 6q2v2 + 3v4

�
[�2 + � (q2 + v2)]

2 : (9)

These expressions, in conjunction with Eq.(8) ; show that the impact of jumps on the volatility smile

is restricted at very short times since both skewness and kurtosis are inversely proportional to time

and diverge in approaching 0. In other words, high levels of skew and convexity in the smile can be

naturally explained by the presence of jumps in the short term, while the presence of (log-normal)

jumps is negligible in the medium/long term.

Pure SV model. In this case, Eq.(1) reduces to the Stein-Stein stochastic volatility model and the

computation of the moments is a harder task. In this paper, we concentrate on a¢ ne-quadratic mod-

els but the analytical approach we introduce to evaluate moments asymptotics applies in principle

to any SV model.

Proposition 4 In a Stein-Stein model, short and long term asymptotics of skewness �1(t) and

excess kurtosis �2(t) of lnS(t) are given by

lim
t!0

�1(t)p
t

=
3��

�0
; lim

t!0

�2(t)

t
= q��20 + 6�a��10 � 6�; (10)

lim
t!1

�1(t)
p
t =

a1
n3=2

; lim
t!1

�2(t)t =
6c0 � 3(2m+ p)n=�

n2
;

respectively, with c0; a1 de�ned as in Appendix C and :

m = 2a(�0 � a); n =
�2 + 2�a2

2�
; p = �20 �

�2 + 2�a2

2�
� 2a(�0 � a); q = 7�2 + 8�2�2 + 6�p+ 3�m:

Proof. Appendix C.

Two things are worth noticing. First, both skewness and kurtosis now vanish when maturity

approaches 0. Second, smile skew and convexity decrease as 1=
p
t and 1=t as function of time,

respectively, when t tends to in�nity. Therefore, while long term smile asymptotics in Stein-Stein
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and Merton models are the same (apart from multiplicative factors), short term asymptotics are

completely di¤erent in the two cases. In particular, Eqs. (10) imply that the term structure of

both skewness and kurtosis reach a maximum after a �nite time tmax in the Stein-Stein model.

Interestingly, by proceeding as in Appendix C, it is possible to show that this property is shared by

a¢ ne models with mean reverting volatility (e.g. Heston model).

Equations (10) indicate the location of the maximum of skewness and kurtosis at tmax is inversely

proportional to the volatility mean reversion �: Since the larger tmax the longer smile skew and

convexity are preserved in time, one can use � to �ne tune the degree at which the smile switches

from a high convex shape (at short times) to a low convex shape (at long times) as actually observed

in the market. This fundamental property is missing in models with pure jumps or in SV models

without mean-reverting volatility (such as SABR, Hagan et al. (2002)) and so they tend to generate

smiles at di¤erent maturities that move together too rigidly as a function of the model parameters.

More precisely, due to the lognormality of the volatility process, the volvol parameter in the SABR

model must rapidly decrease in the time to maturity direction to allow calibrating all smiles. For

this reason, these models are unable of �tting the whole volatility surface with time-independent

parameters. To gain further insight, we compare the term structure of skewness and kurtosis of the

Merton and Stein-Stein model in Fig.1a and Fig.1b for typical values of the parameters (see Eqs.

(26)and (30) in Appendix C). No matter how parameters are chosen, in a pure jump model both

skewness and kurtosis tend to converge to zero much faster than in a SV model with mean-reverting

volatility in general. Figures show that after just one year the jumps-induced skewness and excess

kurtosis are totally negligible so that jumps cannot practically generate any smile e¤ect beyond

that time. Moreover, in the limit of vanishing time to expiry skewness and kurtosis behave very

di¤erently in the two cases.

These theoretical results can be empirically tested thanks to the link between shape of the smile

and moments of the underlying process provided by Eq. (8) : To this aim, we study the term

structure of �butter�y spread�prices observed in the market on a generic trading day. A butter�y

spread option with expiry T is a combined position in three call options and, to �x the ideas, can be

associated to the quantity H = �BS(Katm ��)� 2�BS(Katm) + �BS(Katm +�) where �BS(K)

is the BS implied volatility at K. Butter�y spreads provide the simplest trading strategy to take a

position in the smile�s convexity. This is due to the fact that (apart from a multiplicative factor) H

is the second derivative of the smile (here thought of as a function of K) taken at Katm. Thus, the

higher H the larger the convexity and viceversa. In Fig.2a we show a typical market butter�y as

a function of time to expiry. Thanks to Eq. (8) the presence of a butter�y directly translates into

that a positive excess kurtosis. We notice two things. First, smile�s convexity is positive and quite

large in the short term (this is consistent with the presence of jumps but inconsistent with the

predictions of a pure SV model, from Eq (10) anf Fig 1b). Second, smile convexity nicely decreases

to 0 in the long term but not too quickly since it is still present after 5 years (this is consistent with

the presence of SV but is inconsistent with the predictions of a pure jump model, from Eq (10) and

Fig 1b). This shows that no matter how parameters are chosen, it is almost impossible to make a
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pure SV or jumps model consistent with the observed shape of the smile over a time interval of a

few years since jumps tend to work well at short maturities and SV at long maturities only. This

further reinforces the view that option markets are consistent with the simultaneous presence of

both jumps and stochastic volatility in the asset dynamics.

These �ndings can be also interpreted from a di¤erent perspective. From a trading point of

view, short-term and long-term smiles have a very di¤erent origin. Short term convexity is mainly

associated to investors risk aversion to unexpected economic and socio-political events that might

induce a jump in the asset price. On the other side, long-term convexity is usually driven by the law

of o¤er/demand induced by large investors, �nancial institutions and hedge/pension funds buying

and selling in and out of the money options for liability management or investment purpose. Traders

refer to these two regimes as �Gamma�and �Vega�trading, since the option Gamma (resp. Vega)

risk is predominant at short (resp. long) maturities and in presence of large (resp. small) asset

variations. These considerations indicate that the market smile is implicitly pricing the risk of large

�uctuations (indeed, jumps) in the asset dynamics in the short term and of that of unpredictable

(indeed, stochastic) asset volatility in the long end. The threshold between the two regimes will be

denoted by T �: This regime �switching� is therefore an intrinsic market characteristic and plays a

fundamental role in our calibration approach.

4 SVJD models: the calibration problem

As above mentioned, model calibration consists of solving a multi-dimensional reverse engineering

problem. As discussed by many authors it is impossible, in general, to determine a set of parameters

such that market prices are exactly reproduced by a given model.6 Throughout this paper, by

�model calibration�we will then refer to a numerical algorithm such that :

� The di¤erence between market and model option prices is within the bid/ask spread

� The calibrated solution is statistically robust, i.e. weakly sensitive to the input option prices.7

Cont and Tankov (2004) show that a single smile calibration can be achieved by solving the

following non-linear optimization problem ( NS = n. of strikes, NE = 1 = n. of option expires):

f�ig� = argmin
f�ig

NSX
j=1

NEX
k=1

wjk

�����Tk;K(k)
j ; f�ig

�
� �BS

�
Tk;K

(k)
j

����2 +  F (f�ig); (11)

where in general f�ig is a set of free model parameters, � is the model-implied Black-Scholes

volatility, �BS is the market-implied Black-Scholes volatility,  and wjk are weighting constants,

K
(k)
j is the j-th. strike for options expiring at Tk and F (f�ig) is a convex regularization functional.
6Even from a pure �nancial point of view this is impossible to achieve. In fact, market imperfections and ine¢ -

ciencies do not allow to identify option prices exactly (due to the bid/ask spread).
7We point out that robustness, in this context, is a fundamental property since otherwise one would be obliged to

frequently readjust the replicating portfolio.
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The above minimization problem provides in theory a set of �optimal�free parameters f�ig�. In our
case, however, achieving calibration is much harder since we aim at making a single model consistent

with the whole volatility surface not just a single smile curve.

In any time interval [Ti�1; Ti) between two consecutive option expires our model is speci�ed by

a set of 7 independent coe¢ cients: the volatility mean reversion level at; the volatility of volatility

(volvol) �t; the constant volatility mean reversion rate �, the asset-volatility correlation �t, the

stochastic jumps intensity �0t , the jumps average qt and, �nally, the jumps variance v
2
t , with t 2

[Ti�1; Ti).

As it is well known, any attempt to perform a global calibration on this 7-dimensional manifold

is doomed to failure.8 Understanding the impact of each single parameter on the shape of the smile

is instrumental to the problem�s solution. We then start by discussing the role of the di¤erent

parameters when trying to minimize the above functional.

In a pure stochastic volatility framework, the role of coe¢ cients at; �t and �t is indeed well

established (Hagan et al. (2002)). At the leading order in the volvol �t, the at-the-money (ATM)

volatility is completely speci�ed by at. Thus, at mainly a¤ects the global level of the smile but

has little impact on its overall shape. The instantaneous Equity-volatility correlation �t a¤ects the

asymmetry of the smile (or �skew�) around the ATM point. Finally, the volatility of volatility �t
rules smile convexity: the higher �t the more convex the smile and viceversa. In addition, the volvol

coe¢ cient has an impact on the process variance (like at). Thus, the global level of the smile is

a¤ected, too (Fig 2b).9 Each parameter in the set fa; �; �g plays a special role in explaining possible
smile movements; in other words they are not �degenerate�.

A key role is played by the mean reversion parameter � which we assume constant. A mean

reverting Ornstein-Uhlenbeck process converges to its ergodic measure at a speed linked to its

�characteristic time� � = 1=�. Thus, by adjusting the volatility mean reversion � one can ��ne

tune�the rate of convergence to the ergodic measure or, equivalently, the rate decrease of the smile

convexity at increasing maturities, as previously discussed. In models where � = 0, like the one

proposed by Hagan et al. (2002), it is necessary to arti�cially impose a decreasing term structure

of the volvol to ensure market consistency to option prices. We also remind that � cannot be

statistically inferred from historical time series since it is not a measure change invariant.

When only jumps are present, the picture becomes much more complex. In fact, although

jump parameters f�; q; vg play altogether a role similar to fa; �; �g in explaining possible smile
deformations, their in�uence on the smile shape cannot be as nicely identi�ed as before; parameters

now play �mixed� roles and are thus �degenerate�. Merton model provides the simplest example

8The causes for this are: i) the non-linear optimization problem is not strictly convex and, ii) some parameters

are degenerate. This implies respectively that: i) the objective function has many local minima and, ii) it is almost

�at in the maximum gradient direction so that both convergence and robustness of the algorithm are not guaranteed

(see Cont and Tankov (2004)).
9As shown in Fig. 2, by increasing the level of � the ATM volatility increases, as one would intuitively expect.

On the opposite, in a¢ ne models (Heston) the ATM volatility is inversely proportional to the volvol coe¢ cient. This

unrealistic behaviour makes a¢ ne models less appealing from a trading perspective than a¢ ne-quadratic ones.
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in this respect. In this case, the cumulants of Zt := ln(St) are given by Eq.(9). In a BS setting

we have � = 0 and only the �rst two cumulants (mean and variance) are di¤erent from zero; the

implied smile is �at and equal to �. When � 6= 0 second, third and fourth cumulant play altogether
a decisive role in moving the implied volatility away from the BS level. In fact, Eq. (9) and Eq. (8)

show that smile deformations around the BS level can be attributed to either the stochastic intensity

�, the jumps average q or the jumps standard deviation v (for example q2 and v2 play an almost

identical role in the smile). Therefore, a classi�cation of jump parameters according to their impact

on the smile is impossible since di¤erent triplets f�; q; vg can generate almost identical smile shapes.
Consequently, the inverse problem (i.e. determining a unique triplet from a given smile or a set

of smiles) is in general an ill-de�ned problem (as already pointed out in Cont and Tankov (2004)).

In other words the triplet f�; q; vg is a �degenerate� set. This identi�cation problem is present in

several global minimization algorithm proposed in the literature (Andersen and Andreasen (2000),

Bakshi et al. (1997) and Detlefsen (2005) among others).10

When both jumps and stochastic volatility are present, the set of (seven) parameters is -roughly

speaking- �twice degenerate�. To remove these degeneracies from the optimization algorithm on

this 7-dimensional manifold, we suggest the following method. We add to problem (11) a number

of additional constraints and carry out a regularization of the least-squares optimization11 :

1. First, (condition C1) the in�uence of the jumps on the dynamics is strictly restricted at short

times while stochastic volatility mainly acts at medium and long expiries to re�ect the tran-

sition between �Gamma� and �Vega� regimes, as previously discussed.12 We then split the

calibration problem in two consecutive steps. Initially, until a given date T �, the term struc-

ture of di¤usion coe¢ cients is kept at a (trial) constant level fa0; �0; �0g, while calibration is
performed by only adjusting the jump coe¢ cients. This procedure is motivated by the fact

that stochastic volatility has no impact on the smile at t � T � (Fig.1). Once jumps calibration

has been achieved, we calibrate the remaining smiles at t > T � by adjusting fa; �; �g while
the jump parameters are �frozen�to their previously calibrated levels. In this way jumps and

stochastic volatility are not �mixed up�in the optimization procedure and several degeneracies

10We also remind that calibration methods based on global minimization algorithms might be �trapped� in local

minima. Detlefsen (2005) proposes a simulated annealing (Metropolis) algorithm to avoid this problem. Unfortunately,

the typical convergence time of Metropolis algorithms are of the order of hours and, as a consequence, they are of no

use in practice.
11This approach retains (at a qualitative level) some of the interesting features contained in Cont and Tankov�s

method, namely the regularization of least-squares optimization through addition of a number of constraints to the

problem
12Central limit theorem implies that the impact of log-normal jumps on the dynamics asymptotically vanishes at

increasing times. However, by enforcing jumps to be non-zero only for short periods of time has two main advantages.

On one side, it provides a better way to avoid parameters degeneracies when stochastic volatility is also present. On

the other hand, it helps implementing PDE�s for option pricing, as extensively discussed in Galluccio and Le Cam

(2006) since one can avoid numerically solving a complex partial integro-di¤erential equation for the majority of the

time axis.

12



are eliminated.

2. Second, (condition C2) we impose that the switch between the two regimes at t � T � and

t > T � is smooth. A smooth �transition�between the two regimes (Gamma and Vega) must

be imposed in order to guarantee a robust risk-management. To this aim, jumps will be

gradually �switched o¤� to avoid unreasonable discontinuities across the two regimes. We

then assume that the stochastic intensity �(t) is a continuous (possibly di¤erentiable) strictly

decreasing function converging to 0 at t = T �, i.e. i) �(T ) 2 C0; ii) �(T �) = 0, iii) �(t) > �(t0)

for t < t0. Also, the initial set fa0; �0; �0g is selected to minimize the di¤erence in parameters
value between t � T � and t > T �(Section 5).

3. Third, (condition C3) the volatility mean reversion � is chosen to make the calibrated set

fa; �; �g is as time-homogeneous as possible. From a statistical point of view, such models are

more robust and realistic than those models where all parameters are heavily time-dependent.

In addition, when parameters are constant the dynamics of the volatility surface is closer to

stationarity and then consistent with empirical observations. This is also bene�cial on the

risk-management side (Rebonato (2000))

4. Fourth (condition C4), in calibrating jumps at t � T � we do not attempt a global minimization

over the set f�; q; vg to avoid the degeneracy issue above mentioned.

As a side remark, we recall that the jumps intensity is de�ned under the neutral risk probability

measure in our setting. Since this measure re�ects market prices anticipations, the estimation of the

intensity cannot be performed statistically. This choice ensures in fact a large degree of �exibility in

selecting the the risk-neutral intensity. To �x the ideas, assume that in a Merton model (associated

to the SDE dSt=St� = �dt+ �dWt + jdNt with jumps of constant size), the statistically estimated

jumps intensity is constant and equal to �. The market being incomplete, it is easy to prove that

for any function �t, there exists a risk neutral probability measure P� such that the intensity of
the process is �t under P�. In fact, if Mt = Nt � �t is the compensated martingale associated to
N under the historical probability, and if we de�ne the new probability measure by the following

Radon-Nykodim derivative
dP�

dPhist

����
GT
= �(h:W )T � (�=�:M)T

with �ht = �� r + j�t=� (� denotes the Doléans Dade exponential) then, from Girsanov theorem,

dSt=St� = rdt + �dW �
t + jdM�

t is a martingale under the neutral risk probability P�. Here M� is

the compensated martingale associated to a Poisson Process of intensity �13 :

13Recall that dW �
t = dWt � htdt is a Brownian Motion and dM�

t = dNt � �tdt is the compensated martingale
associated to the Poisson�s Process N whose intensity is ��=� = �.
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5 Method implementation

In our empirical study we consider options up to 5 years time to expiry since the market is in general

illiquid at longer maturities. We consider data from the EuroStoxx 50 equity index, whose ATM

volatility matrix is given in Fig 8a14 . The tenor is T = f1M; 2M; 3M; 6M; 1Y; 2Y; 3Y; 5Y g. Similar
studies conducted on other indices (S&P 500, FTSE 100, DAX and CAC40) provide qualitatively

similar results to the ones presented here.

5.1 Jumps calibration

As anticipated, Cont and Tankov (2004) regularization procedure for generic Lévy processes cannot

be directly applied to our problem for two reasons. First, we aim at making the model consistent

with the whole volatility surface and in doing so we need to calibrate a term structure of model

coe¢ cients. Second, the process de�ned by Eq. (1) is not a Lévy process since its increments are

independent but not stationary.

Our method aims at calibrating the whole set of smiles up to (and including) T � by adjusting

the jumps average q and standard deviation v once a suitable parametric form for �(t) has been

assigned. Meanwhile, coe¢ cients fa0; �0; �0g are kept �xed at a trial (initial) level.
Selection of the expiry threshold T �: It can be done empirically by observing (Fig.1,2) that,

typically, the SV component generates no excess kurtosis (hence, no smile convexity) on smiles of

less than 3-4 months from expiry. Selection of T � is thus important to avoid too much overlap

between jumps and stochastic volatility. In our case we �x T � = 3M = 0:25 to get the best results.

Choice of �(t): Denote by T �+ the date correponding to the �rst smile after T �, in our example

T �+ = 6M . Although di¤erent choices of �(t) provide qualitatively similar results, we �nd convenient

to de�ne �(t) = f! (T �+=t� 1)g� for t 2 (0; T �+] (with !; � > 0), and �(t) = 0 otherwise . This

simple choice satis�es condition C2 and has just two free parameters: ! (a¤ecting the intensity level)

and � (a¤ecting the rate of decrease of the intensity) to calibrate all smiles up to T �. In practice,

�(t) must be discretized with caglad15 piecewise functions �(t) = �(ti+1) for t 2 (ti; ti+1], so that

�(t) = �(t; !; �) =

8>>>><>>>>:
�0 =

�
!
�
6M
1M � 1

�	�
for t 2 (0; 1M ]

�1 =
�
!
�
6M
2M � 1

�	�
for t 2 (1M; 2M ]

�2 =
�
!
�
6M
3M � 1

�	�
for t 2 (2M; 3M = T �]

�3 =
�
!
�
6M
6M � 1

�	�
= 0 for t 2 (T �; 6M = T �+]

and �(t) = 0 for t > T �+. The problem of the optimal choice of ! and � is addressed next. We �rst

notice that the speed of convergence of �(t) to 0 as t ! T � has a major impact on the accuracy of

14The smooth surface has been obtained by using a BNP Paribas propietary arbitrage-free volatility interpolation

algorithm that is capable of matching quoted market prices within their bid-ask spread. With no loss in generality,

all smiles are cut-o¤ beyond a point that corresponds to many standard deviations for the ATM strike. Alternative

parametrizations have been tried, like the one proposed by Fengler (2005), but results are not signi�cantly a¤ected

by this choice. Data are observed on Feb 2nd 2004.
15Caglad stands for �left-continuous with right limit�.
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the jumps calibration. Intuitively, when � is assigned a large (resp. small) value, jumps intensity

converges to zero quickly (resp. slowly). In the former case the model does not generate enough

convexity in the smile at T �. If one then decided to increase ! to compensate, the model would

typically generate a too convex smile at the shortest expiry T1. In the latter case the smile at T �

wuold be too convex and a simultaneous decrease of ! would yield a �at smile at the shortest expiry

T1. In both cases, a simultaneous calibration of all smiles with expiry less than T � is impossible

to achieve. These observations indicate that � must be chosen (other parameters being given) by

providing the optimal trade-o¤ between the two opposite scenarios.

Before attempting any minimization on the set fq; v; �; !g; for a given set of stoch vol parameters
B = fa0; �0; �0g; we need to gain further insight into the role played by the di¤erent parameters.16

We introduce the function

G!;�;B(q; v) :=

NSX
j=1

NEX
k=1

wjk

�����Tk;K(k)
j ; q; v; !; �;B

�
� �BS

�
Tk;K

(k)
j

����2 :
and study the dependence on (!; �;B) of two objects: (i) the couple (q�(!; �;B); v�(!; �;B)) solution
of the optimization problem

(q�; v�) = argmin
(q;v)

G!;�;B(q(!; �;B); v(!; �;B))

and (ii) the associated minimum G�!;�;B(q
�(!; �;B); v�(!; �;B)). We plot G!;�;B as a function of

(q; v) for di¤erent values of !; � and �0. Results not reported here show that changing a0; �0 has

a negligible impact on G!;�;B for t � T �. Results are gathered in Fig.3,4,5,6 and in Tables 1,2,3,4.

We notice that

1. For a given (!; �;B); the function G!;�;B(q; v) is strictly convex around a single minimum

(q�; v�). Furthermore the convex domain extends to a relatively wide region in the (q; v) space

where no other local minima exist. It follows that if (�; !;B) have been previously chosen, the
couple (q�; v�) can be found by standard convex optimization routines.

2. The minimum G�!;�;B is strongly dependent on � and �0 and weakly dependent on all other

parameters. In particular, when �0 takes too large values (typically beyond 50% for T � = 0:25)

the impact of the SV becomes comparable to that of jumps even at short maturities and, as a

consequence, G!;�(q; v) tends to rapidly lose its convex shape because SV and jump parameters

become mutually degenerate. The optimal choice of �0 will be addressed in Section 5.2.

3. The convexity of the objective function is not very pronounced, in general. To increase the

convexity (at the expense of calibration accuracy) one can use a Tichonov regularization by

adding a convex functional to G!;�;B (as in Cont and Tankov (2004)).

16Remark that with our parametrization the problem has been reduced from a minimization on the set f�i; qi; vig
containing 3 � n parameters (n is the n. of smiles with expiry less than T �) to one on the set fq; v; �; !g containing 4
parameters.
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4. Results not reported here show that the convexity of G!;�;B is generally lost if one assumes

�(t) = � (constant) and attempts estimating � jointly with q and v as a solution of the

global least-squares problem (q�; v�; ��) = argminq;v;� GB(q; v; �). Addition of a third jump

parameter makes the optimization problem fully degenerate.

Computation of the optimal ��: We propose to assign an initial value to the free set fB; !g, and
to determine �� (the �rst time one runs the algorithm) by solving the problem

��(!;B) = argmin
�
G!;�;B(q

�(!; �;B); v�(!; �;B)) (12)

This method is viable if one can prove that i) the problem (12) is convex so that �� is well de�ned

and, ii) �� does not depend on f!;Bg (one needs to ensure that the optimal �� remains unaltered
after calibration of these parameters). To this aim, in Fig 7a we show several plots of the function

� 7! G� = G!;�;B(q
�(!; �;B); v�(!; �;B)), by varying the set (a0; �0; �0; !). Each curve is convex

with a single minimum. Hence �� is well de�ned.

In addition, �g 7a shows how ��(!;B) is a¤ected by changes in the initial set fa0; �0; �0; !g. We
�rst consider a typical set of parameters f7%;�0:4; 10%;�0:3g as our base case scenario. All other
curves in Fig.7a are obtained from the base case by applying a large shock in a single parameter

among those in the set fa0; �0; �0; !g. Results can be summarized as follows, i) �� and G� are not
sensibly a¤ected by a shock in ! and a0 (Series 2 and 3), ii) a shock in �0 a¤ects slightly calibration

accuracy (G�) but has almost no impact on the optimal �� (Series 4), iii) a shock in �0 a¤ects the

optimal �� but has almost no impact on the calibration accuracy (G�). In addition, Fig 7b further

investigates the dependency of �� on �0. The picture shows that the functional relationship between

�� and �0 is linear only for small values of �0.

In summary, the optimal exponent �� depends only on �0 to a high degree of accuracy. In other

words, once the initial volvol parameter �0 has been set at inception, one can determine an optimal

�� for any given set fa0; �0; !g as a solution of(12) :
Computation of the optimal ! and of (q; v). For a given set B; once �� has been deter-

mined, we can estimate coe¢ cient !. Above results indicate that the value of ! does not a¤ect

the calibration accuracy. In fact, a change in ! is re�ected by a change in the optimal couple

(q�(!; ��;B); v�(!; ��;B)), while the associated value of G� stays essentially the same. We can then
�x !� to a value such that the couple (q�(!�; ��); v�(!�; ��)) is as close as possible to a �prior�

couple
�
qP ; vP

�
arbitrarily chosen. A viable way consists of estimating jumps average and standard

deviation from historical data series and to assign
�
qP ; vP

�
accordingly. This choice has the advan-

tage that the optimal solution (!�; q�; v�) guarantees that the market-implied model stays �close�

(in the probability measure space) to the historically estimated one 17 .

In conclusion, jumps calibration can be summarized as follows

17The request that couples
�
qP ; vP

�
and (q�; v�) are close is a well de�ned problem in probabilistic terms. It is

indeed equivalent to enforce that the market-implied jumps probability distribution is as close as possible to the

historical (objective) one. Girsanov theorem ensures that the jumps distribution is indeed invariant under changes of

probability measure (in our case from the objective to the risk-neutral and viceversa).
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1. Assign a trial set fa0; �0; �0; !g.

2. For a given value of �, solve the minimization problems

(q�(!); v�(!)) = argmin
(q;v)

G!;�;B(q(!; �;B); v(!; �;B)) (13)

(!�; q�; v�) = argmin
!

�
(qP � q�(!))2 + (vP � v�(!))2

�
:

3. Finally, the optimal �� is obtained by solving the above problems iteratively until the global

minimum is reached, that is

�� = argmin
�
G!;�;B(q

�(!; �;B); v�(!; �;B)): (14)

We recall that any value of ! in the interval [�0:1;�1] provides very similar results on tests
performed on long time series and on di¤erent equity indices.

5.2 Stochastic volatility calibration

In the last section we showed that it is possible to calibrate the jumps once an initial set fa0; �0; �0g
of SV parameters has been assigned. In particular, the choice of the initial volvol parameter �0 was

shown to have a signi�cant impact on jumps calibration. The simplest way to decide how to �x

a priori the triplet is to run a �pre-calibration�. The good news is that once this study has been

carried out as shown below, one can safely keep the initial set fa0; �0; �0g �xed most of the time
without readjusting it.

Choice of �0. The approach we introduce is based on the observation that if fa0; �0; �0g has
been badly selected in the �Gamma�region (so that the process has accumulated too much variance

and kurtosis before T �) calibration of the remaining smiles for options expiring after T � cannot

be achieved. To better illustrate this, we run an empirical test where we consider three sets of

parameters
n
a0; �0; �

(i)
0

o
, with i = 1; 2; 3 corresponding to �(1)0 = 10%; �

(2)
0 = 30%; �

(3)
0 = 50%.

For each given set, the model is then calibrated to all smiles up to T �. Finally, all smiles with

expiry beyond T � are generated. This test is aimed at measuring the terminal variance, skewness

and kurtosis generated by the initial set fa0; �0; �0g and by jumps in the time interval [0; T �]. Table
5 gathers the results. Here we show the di¤erence between market and model implied volatility for

smiles at 1Y, 2Y, 3Y and 5Y induced by the calibration at the shorter maturities. As anticipated,

when �0 is assigned a too large value, all model-implied smiles at 6M expiry are inconsistent with the

market. In fact, if �0 = 50% no matter how fa(t); �(t); �(t)g are selected hitting the market smile is
impossible to achieve because the cumulative variance at T � is too large. In theory, calibration could

still be achievable by allowing a(t) to take large negative values but this solution is not �nancially

sound.

We can formally de�ne, for a given a0, a �critical�value b�0 of the volvol coe¢ cient as follows:
b�0 = sup f�0 : all smiles are calibrated within the bid/ask spread; a(t) > 0; �(t) > 0 g :
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In other words, b�0 is the maximum value of the volvol such that, other parameters being given, all

smiles can be matched by means of a sequence fat; �t; �tg by simultaneously keeping both a(t) and
�(t) positive. In the next section we show that typically b�0 is quite large and a full volatility surface
calibration can indeed be achieved for any �0 in the interval (0; b�0] :We �nally remark that the above
picture is not signi�cantly altered by �0 once its sign has been properly assigned (smiles are usually

negatively skewed implying �0 should be negative). These two properties are extremely important

since they indicate that fa0; �0; �0g can be assigned with great �exibility without compromising the
quality of the calibration.

Calibration of fat; �t; �tg : We assume that fa0; �0; �0g has been �xed and that an optimal set
f!�; q�; v�; ��g has been determined accordingly. The next step consists of keeping these parameters
�xed and calibrate the remaining part of the volatility surface at t > T � by adjusting the stochastic

volatility coe¢ cients a(t); �(t) and �(t). In other words, starting from the �rst smile after T �,

we proceed recursively and at each interval in between consecutive smiles we attempt solving the

following problem

(��(t); ��(t); a�(t)) = arg min
a(t);�(t);�(t)

NSX
j=1

ujk

�����Tk;K(k)
j ;�(t); �(t); a(t)

�
� �BS

�
Tk;K

(k)
j

����2 ;
for t 2 [Tk; Tk+1); k = 1; � � � ; L� 1, T1 = T �; (15)

where L� 1 is the number of smiles with expiry strictly larger than T �. As above anticipated, this
problem is well posed since f��(t); ��(t); a�(t)g are not degenerate.
Finally, � can be �ne tuned so that the calibrated term structure of the volvol ��(t) is as constant

as possible. Finding the optimal �� can be easily achieved by solving the following least squares

optimization,

�� = argmin
�

24L�1X
j=1

�
��j (�)� ��j+1(�)

�235 ; (16)

where vector (��1(�); �
�
2(�); � � � ; ��L(�))

0 comprises the piecewise constant term structure of ��t , for a

given value of �. In short, �� is the volatility mean reversion that corresponds to the least oscillating

calibrated term structure ��t . As before, the good news is that once optimization problem (16)

has been solved it is possible to keep �� �xed without signi�cantly altering the result in future

calibrations. In this way, we empirically established that optimal values for � are in the interval

[0:4; 0:7]; independently on the chosen market.

As a �nal remark we recall that calibrating the stochastic volatility part in the long end can be

simpli�ed by using information provided by long term asymptotics, Eqs. (27), (32), in conjuction

with Eq. (8). Generalizing the results of Appendix C to account for time-dependent (piece-wise

constant) coe¢ cient is indeed straightforward. The approach we advocate here is qualitatively

similar to the one suggested by Medvedev and Scaillet (2004) for calibrating a model in the Gamma

regime through short term asymptotics.
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6 Calibration algorithm and numerical results

6.1 The algorithm

In our empirical test we calibrate the model on a set of increasing time to expiry options, correspond-

ing to T1 = 1=12 (1 month), T2 = 1=6 (2 months); T3 = 0:25 (3 months); T4 = 0:5 (6 months), T5 = 1

(1 year), T6 = 2; T7 = 3, T8 = 5, while T0 is the observation date and T � = 0:25: We denote by

T< the set of option expiries shorter than T �, that is T< := fT : T � T �g, and T> := fT : T > T �g.
The calibration algorithm is based on a recursive procedure that, starting from the shortest expiry

T1; goes as follows.

1. Be �(0) a �trial�initial value for �. Run a �pre-calibration�test as described in the previous

section to determine, for a given a0, the critical volvol coe¢ cient b�0. Finally, determine an
initial set fa0; �0; �0g by �xing �0 in (0; b�0] :

2. Determine the optimal jump parameters set f!�; q�; v�; ��g by solving the two problems (13)
and (14) :

3. Determine the di¤usion coe¢ cients by calibrating the smile in the interval T>. Keep jump
parameters frozen at the previously calibrated values, then proceed recursively by sequentially

calibrating the remaining smiles starting from the one associated to options with the shortest

maturity in T>. This is done by solving the problem (15) and provides an optimal term

structure of SV coe¢ cients f��t ; ��t ; a�t g for t � T �.

4. If the prior mean reversion rate �(0) has been badly chosen, step 4) might provide a too rapidly

increasing or decreasing term structure f��(t); ��(t); a�(t)g, as previously discussed. We then
proceed (condition C3) by solving the problem (16): choose a new �(1) and restart from step 1).

Then proceed recursively until the optimal �� has been found or until the desired smoothness

of coe¢ cients term structure has been achieved.

It is not necessary to perform all four steps every time. Typically ��, �� and fa0; �0; �0g are very
stable over time and, once estimated, they need not being readjusted too often.

Extensive empirical studies performed on S&P and EuroStoxx data in the time period spanning

the years 2002 - 2005 (not reported here) suggest that the optimal �� must lie in the interval [0:4; 0:7];

as above mentioned. Interestingly, this is in contrast with the most recent �ndings of � based on

historical data series (Eraker et al. (2000)) that assign to the mean reversion rate much lower values:

� 2 [0:013; 0:025] . This indirectly indicates that the market price of volatility risk is signi�cant in
SVJD models.

6.2 Numerical results

We calibrate each smile by selecting three options (i.e., NS = 3) struck at Ki, i = 1; 2; 3. They

correspond to the at-the-money forward option (K2), to one in-the-money option (K1), and to one
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out of-the-money option (K3), respectively. This is the minimal number of instruments to calibrate

ATM volatility level, smile slope and convexity for a given maturity. To select liquid instruments,

for every Ti we �x K1 (resp. K3) to a �xed number l of standard deviations from the ATM strike,

i.e. K1 = K0 � l�ATM
p
T , K3 = K0 + l�ATM

p
T . Here, �ATM is the at-the-money Black implied

volatility.18 Scale parameter l is equal to 1, although larger values can be assigned to calibrate wider

portions of the smile. In our tests the spot interest rate is 0:033 and there are no dividends. All

weights ujk; wjk are equal to 1.

Table 6 shows the outcome of a typical calibration on the EuroStoxx volatility matrix with

�0 = 30%. We �x a0 = 6%; �0 = �0:6, and � = 0:6. Results can be summarized as follows.

1. Calibration is achieved within the required accuracy (all errors are within the volatility bid-ask

spread (about 1%)).

2. The term structures of calibrated coe¢ cients f�(t); �(t); a(t)g are smooth across the whole
time range. In particular, no unreasonable jumps are present in switching between the two

regimes.

3. Jumps are gradually switched o¤ since the stochastic intensity �(t) nicely converges to 0 in

approaching T �.

4. Calibrated instantaneous correlation �(t) converges to �1 at large maturities. This clearly
indicates that the market-implied skewness is larger than the one predicted by a SVJD model

and is in contrasts with correlation estimations based on historical data.19 For instance, Eraker

et al. (2000) report that � varies typically in [�0:4;�0:5] for the S&P 500 and in [�0:3;�0:4]
for the Nasdaq 100 based on statistical estimations. To take into account these features,

dynamics Eq.(1) must be generalized. From a statistical point of view there is strong evidence

of presence of jumps in volatility (Eraker et al. (2000)). Alternatively, these e¤ects could be

accounted for by an extension of the present model to include more complex forms of local

volatility (Hagan et al. (2002)).

5. The typical levels of �(t)�(t) for short maturity options are in line with those reported in Bates

(2000), Pan (2002) and Jones (2003) - based on statistical estimations - but di¤er from the

�ndings of Medvedev and Scaillet (2004) - based on short term asymptotics -, although these

authors concentrate on the S&P500 index.20 In fact, for annualized spot volatility of 0:11,our

results indicate that the product �(t)�(t) is typically in the interval [�0:1;�0:15] for short
dated options. For long maturity options, on the contrary, the product �(t)�(t) lies in the

interval [�0:25;�0:3] :
18Alternatively one could select K1 (resp. K3) as the strike corresponding to 25% (resp. 75%) of the ATM option�s

delta.
19Although the tests presented here refer to the EuroStoxx 50, the same conclusion applies to other indices, including

S&P 500 and FTSE 100.
20Results not reported here con�rm, however, that calibrated values of �(t)�(t) for the S&P500 and the Eurostoxx

indeces are usually very close based on our method.
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6. Contrary to Medvedev and Scaillet (2004), we �nd that a simple jumps parametrization allows

to compensate the lack of convexity in SV models in the short term and well �t the implied

smiles in that region.

The rest of the section addresses the robustness of the proposed algorithm. We perform three

di¤erent tests that are meant to study the stability of the calibrated solution after the input market

volatility surface has been manually shocked. The three most relevant PCA modes are independently

analyzed. They consist of a parallel shift, a tilt and a bending of the volatility surface, respectively.

In our robustness tests, we keep all parameters �xed at their values before the shock (in particular

a0,�0,�0, � and ! are �xed). We then apply the shock and �nally re-calibrate the model. If the

algorithm were robust, a shock in the input of similar magnitude as those observed in the market

should not sensibly alter the location of the previously found minima.

Table 7 shows the results after a shock of 1% has been uniformly applied to the volatility matrix.

In the second test (Table 8), a tilt is applied to each smile, that is K1 ! K1�0:5%, K3 ! K3+0:5%

and K2 is unchanged. Finally, (Table 9) we study a market scenario where the smile convexity has

increased, that is K1 ! K1+0:5%, K3 ! K3+0:5% and K2 is unchanged. In all cases, results show

that the calibration accuracy is una¤ected by the volatility shocks and, more importantly, that the

new set of calibrated coe¢ cients is very close to the old one. We can deduce that the algorithm is

statistically robust in normal market conditions, i.e. if shocks on the volatility surface are not too

large and are in line with the typical market movements from one day to another.

If shocks are much larger in size (a few percentage points) tests not reported here indicate that

robustness might be sometimes at risk. In this case one should better determine new optimal values

for ��; �; ! and fa0; �0; �0g before running a new calibration.

7 Conclusions

In this paper we have introduced a market-implied calibration technique that can be used for certain

classes of stochastic volatility jump di¤usion models. In particular, we focused on a model within

the linear-quadratic class since generalizing our framework to include stochastic interest rates with

possibly stochastic volatility in single and multi-currency markets is possible. We have numerically

implemented our method and shown that it is possible to calibrate the entire volatility surface in

normal market conditions. In addition, the algorithm is statistically stable and accurate. We have

derived useful asymptotic formulae for the moments that can be used to simplify the calibration at

long maturities. Further theoretical and numerical developments in this direction, as the extension

of the proposed algorithm to more general processes, are left to future research.
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A Appendix

Remark that e�
R t
0
rsds (u;Xt; t; T ) is a P�-martingale. Equivalently, the process

h(t;Xt) = eYt+
(t;T )+�(t;T )�Xt+�(t;T )(X2
t )

2

is a P�-martingale where Ys = �
R t
0
rsds is a deterministic function. Since the predictable �nite

variation process of this semimartingale must be zero, application of Itô formula to h(t;Xt) allows

identifying the drift term which results into the following equation

0 = @tf(t; x; y) +
X
i=1;2

@xih(t; x; y)�i(t; x)� rt:h(t; x; y)

+
1

2

X
i;j=1;2

(��t)i;j(t; x)@
2
i;jh(t; x; y):+Ah(t; x; y);

where � is the drift vector and � the volatility matrix of the di¤usion. A is the in�nitesimal generator
of the jump process, i.e.,

Af(t;X1; X2) = �(t;X1; X2)

Z
R
[f(t;X1 + u;X2)� f(t;X1; X2)] dG(u);

Because

Ah(t;X1; X2) =
�
�0 + �1X1 + �

2X2 + �
3X2

2

�
(L(�1(t; T ))� 1)h(t;X1; X2);

after some algebra, we �nally get

0 = @t
 + @t�1(t)X1 + @t�2(t)X2 + @t�(t)X
2
2

+�1(t)
�
rt �X2

2=2� dt � �t
�
+ �(�2(t) + 2�(t)X2)(a(t)�X2)

+
1

2

�
�1(t)

2 (X2)
2
+ 2�1(t)(�2(t) + 2�(t)X2)�X2�t +

�
2�(t) + (�2(t) + 2�X2)

2
�
�2t

�
+
�
�0 + �1X1 + �

2X2 + �
3X2

2

�
(L(�1(t; T ))� 1)

For a completely generic choice of X1 and X2 this expression is a second order polynomial in X and

is identically equal to zero if and only if all its coe¢ cients are identically zero, which provides the

four ODE�s.

B Appendix

We consider a generic time interval [T i�1; T i) where all equation coe¢ cients are supposed to be

constant. To solve the system of Riccati ODE�s, a precise order must be followed. In this appendix

we will omit specifying the time dependency of some variables to lighten notation.

- First equation. Solution subject to the �nal condition �1(T
i) = u

(1)
i is immediate, and reads

�1(t) = u
(1)
i : (17)
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- Third equation. The equation satis�ed by �(t) is a second-order Riccati equation with terminal

condition �(T i) = u
(3)
i

@�(t)
@t = 1

2

�
u
(1)
i �

�
u
(1)
i

�2�
+ 2

�
�� �i�u(1)i

�
]�(t)� 2�2�(t)2;

and we have used �1(t) given Eq.(17). After a little algebra, we can rewrite the equations as

@�(t)

@t
= 2

 
1

�2i

�
B2i + �

2
iAi
�
�
�
�i�(t) +

Bi
�i

�2!

= �2
�
�i�(t) +

Bi
�i
+
�i
�i

��
�i�(t) +

Bi
�i
� �i

�i

�
;

or, equivalently, by separating the variables

4�idt = �id�(t)

24 1�
�i�(t) +

Bi

�i
+ �i

�i

� � 1�
�i�(t) +

Bi

�i
� �i

�i

�
35

and the solution, given the above �nal condition u(3)i is therefore

�(t) = � 1

�2i

�
(Bi + �i) +

2�iCi
e4�i(Ti�t) � Ci

�
: (18)

- Second equation. This equation is linear and its solution (with terminal condition �2(T
i) = u

(2)
i is

lengthy but straightforward. We have

@�2(t)

@t
= �2�ai� �

�
��i�1 + 2�

2
i �
�
�2

Introducing a new set of functions

U(t) = �2�ai�; V (t) = �
�
��i�1 + 2�

2
i �
�

This equation becomes @�2(t)=@t = U(t) + V (t)�2(t) so that, formally

�2(t) = u
(2)
i e�

R Ti
t

V (s)ds � e�
R Ti
t

V (s)ds

Z T i

t

U(x)e
R Ti
x

V (s)dsdx:

After some algebra it is possible to solve all integrals explicitly, and we �nally obtain

�2(t) =M(t)
�
u
(2)
i �K(t)

�
: (19)

where M(t) and K(t) have been de�ned in the text.

-Fifth equation. The equation to solve reads as

@


@t
= ��0(�1) + (d+ �� r)�1 � �ai�2 � �2i

�
� + �22=2

�
with terminal condition 
(T i) = u

(4)
i : Once again, the solution is lengthy but straightforward. Notice

that the integrals de�ning �2(t) and �2(t)
2 can be alternatively expressed in terms of hypergeometric

functions but the expressions are rather involved. In the applications, both integrals can be easily

evaluated through a simple Gaussian quadrature algorithm.
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C Appendix

1: Pure jump model. In Merton�s model, the log price satis�es the SDE (with N and � de�ned as in

the main text) :

dXt =
�
rt � �2=2� �

�
dt+ YtdW

1
t + dNt;

and Levy Khintchine formula provides the expression of the characteristic function

�Mer
t (�) = exp (t'(�)) ; with '(�) = i

�
r � �2=2� �

�
� � �2�2=2 + �

�
exp

�
i�q � �2v2=2

�
� 1
�
:

Di¤erentiating this function leads to the expressions of the �rst four cumulants �i (i = 1; � � � ; 4):

E (Xt) = �1 =

�
r � �2

2

�
t;

E
h
(Xt � E (Xt))

2
i
= �2 = V ar (Xt) = �2t+ �t

�
q2 + v2

�
;

E
h
(Xt � E (Xt))

3
i
= �3 = �tq

�
q2 + 3v2

�
;

E
h
(Xt � E (Xt))

4
i
� 3�22 = �4 = �t

�
q4 + 6q2v2 + 3v4

�
:

Thus skewness and kurtosis read as, respectively

�1(t) =
1p
t

�q
�
q2 + 3v2

�
[�2 + � (q2 + v2)]

3=2
; and �2(t) =

1

t

�
�
q4 + 6q2v2 + 3v4

�
[�2 + � (q2 + v2)]

2 :

2: Stochastic volatility model with no jumps. Despite we here concentrate on the Stein-Stein

model, the arguments used in this section can be easily applied to any SV model with simple

modi�cations to determine the moments asymptotics. In the Stein-Stein model, the log price satis�es

the equation dXt =
�
rt � �2t=2

�
dt + �tdW

1
t : For future purpose, we introduce the process Y =

X � EX and study the dynamics of the powers of Y (by Ito�s lemma):

dY 2t = �2tdt+ 2Yt�tdW
1
t ; (20)

dY 3t = 3�2tYtdt+ 3�tY
2
t dW

1
t ; (21)

dY 4t = 6�2tY
2
t dt+ 4�tY

3
t dW

1
t : (22)

Similarly, given the volatility process d�t = �(a� �t)dt+ �dW 2
t we have

d�2t =
�
�2 + 2�(a�t � �2t )

�
dt+ 2��tdW

2
t ; (23)

d�3t =
�
3�t�

2 + 3�2t�(a� �t)
�
dt+ 3��2tdW

2
t ; (24)

d�4t =
�
6�2t�

2 + 4�3t�(a� �t)
�
dt+ 4�3t�dW

2
t : (25)

We denote g(s) = E (�s) ; f(s) = E
�
�2s
�
, '(t) = E

�
�3t
�
; and  (t) = E

�
�4t
�
. By taking the expecta-

tion of both terms in the volatility SDE leads to a ODE in g(s);(
g0(s) + �g(s) = �a

g(0) = �0
;
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whose solution is given by

g(s) = a+ (�0 � a)e��t:

Similarly, by taking the expectation of Eq.(23)leads to the ODE(
f 0(s) + 2�f(s) = �2 + 2�ag(s)

f(0) = �20
:

whose solution reads as

f(t) =
�2 + 2�a2

2�
+ 2a(�0 � a)e��t +

�
�20 �

�2 + 2�a2

2�
� 2a(�0 � a)

�
e�2�t

� n+me��t + pe�2�t;

By taking the expectation of Eq.(24) leads to the ODE(
'0(t) + 3�'(t) = 3�2g(t) + 3�af(t)

'(0) = �30
;

whose solution is

'(t) =

�
a�2

�
+ an

�
+

�
3�2 (�0 � a)

2�
+
3am

2

�
e��t + 3ape�2�t

+

�
�30 �

a�2

�
� an� 3�

2 (�0 � a)
2�

� 3am
2

� 3ap
�
e�3�t:

Finally, by taking the expectation of Eq.(25) leads to the ODE(
 0(t) + 4� (t) = 6�2f(t) + 4�a'(t)

 (0) = �40

whose solution reads as

 (t) =

�
a2�2

�
+ a2n+

3�2n

2�

�
+

�
2a�2 (�0 � a)

�
+ 2a2m+

2m�2

�

�
e��t

+

�
6a2p+

3p�2

�

�
e�2�t + 4a

�
�30 �

a�2

�
� an� 3�

2 (�0 � a)
2�

� 3am
2

� 3ap
�
e�3�t

+

�
�40 � 4a�30 + a2 (3n+ 4m+ 6p) +

�2

�

�
4a (�0 � a) + 3a2 � 3p� 2m�

3

2
n

��
e�4�t

We are now ready to derive the expressions of the four cumulants �i (i = 1; � � � ; 4):
Derivation of �2: From Eq.(20), we have

�2(t) = E
�
Y 2t
�
= E (hY it) =

Z t

0

E
�
�2s
�
ds

=

Z t

0

f(s)ds = nt+
m

�

�
1� e��t

�
+

p

2�

�
1� e�2�t

�
:

Derivation of �3: From Eq.(21) we obtain

�3(t) = E
�
Y 3t
�
= 3E

�Z t

0

Ysd hY is
�
= 3

Z t

0

E
�
Ys�

2
s

�
ds = 3

Z t

0

k(s)ds:
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with k(t) = E
�
Yt�

2
t

�
: To evaluate this last expectation we introduce a new function h(t) = E (Yt�t)

and two new processes

Ut = Yt�t =

Z t

0

(Ys�(a� �s) + ���s) ds+ Ys�dW 2
s + �

2
sdW

1
s ;

Vt = Yt�
2
t =

Z t

0

�
Ys
�
�2 + 2�(a�s � �2s)

�
+ 2���2s

�
ds+ Ys2��sdW

2
s + �

3
sdW

1
s :

By taking the expectation of the last two equations (with E (Yt) = 0) we arrive to an ODE for h(t)(
h0(t) + �h(t) = ��g(s)

h(0) = 0
;

whose solution is

h(t) =
��a

�

�
1� e��t

�
+ ��(�0 � a)te��t:

As a consequence, the equation for k(t) is(
k0(t) + 2�k(t) = 2�ah(s) + 2��f(s)

k(0) = 0
;

and its solution, after some algebra, reads as

k(t) =
��
�
a2 + n

�
�

�
1� e�2�t

�
+
2��

�
m� a2

�
�

�
e��t � e�2�t

�
+ 2��pte�2�t

+2�a
��(�0 � a)

�2
e�2�t + 2�a

��(�0 � a)
�2

(�t� 1) e��t:

Summing up, we arrive at following the expression of the third cumulant

�3(t) = a0 + a1t+ a2e
��t + a3te

��t + a4e
�2�t + a5te

�2�t;

with

a0 = 3
��
�
m� a2

�
�2

+ 3a
��(�0 � a)

�2
� 3

��
�
a2 + n

�
2�2

+
3��p

2�2
;

a1 = 3
��
�
a2 + n

�
�

; a2 = �6
��
�
m� a2

�
�2

; a3 = �6a
��(�0 � a)

�
;

a4 = �3a��(�0 � a)
�2

+ 3
��
�
a2 + n

�
2�2

+ 3
��
�
m� a2

�
�2

� 3��p
2�2

; a5 = �
3��p

�
:

Derivation of �1 and asymptotics. From above results, we get

�1(t) =
�3(t)

�
3=2
2 (t)

=
a0 + a1t+ a2e

��t + a3te
��t + a4e

�2�t + a5te
�2�t

(m=�+ p=2�+ nt�m=�e��t � p=2�e�2�t)3=2
: (26)

From this general expression, it is possible to deduce the asymptotic behavior of the skewness �1 at

large times:

�1(t) �t!1
a1
n3=2

1p
t
; (27)
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since

a0 + a1t+ a2e
��t + a3te

��t + a4e
�2�t + a5te

�2�t �t!1 a1t and�
m=�+ p=2�+ nt�m=�e��t � p=2�e�2�t

�3=2 �t!1 (nt)
3=2

On the other hand, the asymptotic behavior for t small is :

�1(t) �t!0
3��

�0

p
t; (28)

since (from a0 + a2 + a4 = 0 and a1 � �a2 + a3 � a42�+ a5 = 0),

a0 + a1t+ a2e
��t + a3te

��t + a4e
�2�t + a5te

�2�t = 3���20t
2 +O(t3) and�

m=�+ p=2�+ nt�m=�e��t � p=2�e�2�t
�3=2

= �30t
3=2 +O

�
t5=2

�
:

Derivation of �4: From Eq.(22) the fourth cumulant reads as

E(Y 4t ) = 6
Z t

0

E(�2sY 2s )ds = 6
Z t

0

l(s)ds;

with l(t) = E(�2sY 2s ): The expectation of the SDE

d�2sY
2
s =

�
�4t + 4���

2
tYt + �

2Y 2s + 2�Y
2
s (a�t � �2t )

�
dt+ 2Yt�

3
tdW

1
t + 2��tY

2
s dW

2
t ;

directly leads to the ODE satis�ed by l(t)(
l0(t) + 2�l(t) =  (t) + 4��k(t) + �2�2(t) + 2�av(t)

l(0) = 0
(29)

where we have introduced the auxiliary function v(t) = E(�sY 2s ): At the same time, from

d�sY
2
s =

�
�3t + 2Yt�t��+ �Y

2
s (a� �t)

�
dt+ 2Yt�

3
tdW

1
t + �Y

2
s dW

2
t ;

we obtain the ODE satis�ed by v(t) :(
v0(t) + �v(t) = '(t) + 2��h(t) + a��2(t)

v(0) = 0
;

whose solution is (coe¢ cients bi are given below) :

v(t) =
b0
�
� b5

�2
�
�
b0
�
� b2
�
� b3
2�
� b5

�2

�
e��t � b2

�
e�2�t � b3

2�
e�3�t + b1te

��t +
b4
2
t2e��t +

b5
�
t:

By putting all expressions together, we �nally get

l(t) = c0 + c1e
��t + c2e

�2�t + c3e
�3�t + c4e

�4�t + c5te
��t + c6t

2e��t + c7te
�2�t + c8t

2e�2�t + c9t
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and, by simple integration,

E(Y 4t ) = 6

Z t

0

l(s)ds =

�
6c1
�
+
3c2
�
+
2c3
�
+
3c4
2�

+
6c5

�2
+
12c6

�3
+
3c7

2�2
+
3c8

2�3

�
+ 6c0t

�
�
6c1
�
+
6c5

�2
+
12c6

�3
+
3c8

2�3

�
e��t �

�
3
c2
�
+
3c7

2�2

�
e�2�t � 2c3

�
e�3�t � 3c4

2�
e�4�t

�
�
3c7
�
+
3c8

�2

�
te�2�t �

�
6c5
�
+
12c6

�2

�
te��t � 6c6

�
t2e��t � 3c8

�
t2e�2�t + 3c9t

2

with :

b0 =
a�2

�
+ an+

2�2�2a

�
+ am+

ap

2
; b4 = 2�

2�2(�0 � a); b1 =
3�2 (�0 � a)

2�
+
3am

2

�2�
2�2a

�
� am; b3 = �30 �

a�2

�
� an� 3�

2 (�0 � a)
2�

� 3am
2

� 3ap; b5 = a�n; b2 = 3ap�
ap

2
;

c0 =
a2�2

2�2
+
a2n

2�
+
�2n

2�2
+ 2

�2�2
�
a2 + n

�
�2

+
�2m

2�2
+
�2p

4�2
+
ab0
�
� 3ab5
2�2

; c1 = +
2a2m

�
+
m�2

�2

+
�
2� 16�2

� a�2 (�0 � a)
�2

+ 8
�2�2

�
m� a2

�
�2

� 2ab0
�

+
2ab2
�

+
ab3
�
� 2ab1

�
+
2ab4

�2
+
2ab5

�2
;

c2 = �c0 � c1 � c3 � c4; c3 = �
4a�30
�

+
4a2�2

�2
+
4a2n

�
+
6a�2 (�0 � a)

�2
+
6a2m

�
+
12a2p

�
+
ab3
�
;

c4 = �
�40 � 4a�30 + 3a2n+ 4a2m+ 6a2p

2�
� 2�

2a (�0 � a)
�2

+
6p�2 + 4m�2 + 3�2n� 6a2�2

4�2
;

c5 = 2ab1 +
8a�2�2(�0 � a)

�
� 2ab4

�
; c6 = ab4; c8 = 4�

2�2p; c9 =
�2n

2�
+
ab5
�
;

c7 = 8a
�2�2(�0 � a)

�
� 4

�2�2
�
a2 + n

�
�

� 8
�2�2

�
m� a2

�
�

+ 6a2p+
5p�2

2�
� 2ab2:

Derivation of �2 and asymptotics. By de�nition we have

�2(t) =
�4(t)

�22(t)
=
E(Y 4t )� 3�22(t)

�22(t)
=

E(Y 4t )� 3�22(t)
(m=�+ p=2�+ nt�m=�e��t � p=2�e�2�t)2

(30)

Thanks to previous results, a Taylor expansion around t = 0 leads to

E(Y 4t ) = 3�40t
2 +

��
7�2 + 8�2�2

�
�20 + 6�a�

3
0 � 6��40

�
t3 +O(t4) and

�22(t) = �40t
2 � 2�20

�
p�+

�m

2

�
t3 +O(t4);

which implies that when t approaches 0, the kurtosis behaves as

�2(t) �t!0

��
7�2 + 8�2�2 + 6�p+ 3�m

�
��20 + 6�a��10 � 6�

�
t: (31)

Finally, by studying the behavior at large times we obtain

�4(t) � t!1

�
6c0 � 3(2m+ p)

n

�

�
t

�22(t) � t!1n
2t2 + (2m+ p)

n

�
t;

and thus

�2(t) �t!1
(6c0 � 3(2m+ p)n=�)

n2
1

t
: (32)

Expressions 28, 27, 31, 32, are equivalent to those given in the main text. This ends the proof.
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