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Abstract

The purpose of this paper is to study the immersion property within a credit risk modelling.

The construction of a credit model by enlargement of a reference filtration with the progressive

knowledge of a credit event has become a standard for reduced form modelling. It is known

that such a construction rises mathematical difficulties, mainly relied to the properties of the

random time. Whereas the invariance of the property of semi-martingale in the enlargement is

implied by the absence of arbitrage, we address in this paper the question of the invariance of

the martingale property.

Introduction

The purpose of this paper is to propose a study of the neutral risk probabilities in the context of credit

modelling. Indeed, most of the literature focuses on pricing problems and postulates the existence

of a pricing measure, without questioning its features. Within the reduced form approach and

particularly under the filtration enlargement framework, such questions may be precisely studied,

and lead to interesting properties.

Three steps are developed in the sequel. The first one presents the credit modelling framework

and discusses the meaning of the options taken. The second one is a study of the special case

where the “reference market” is complete. We shall prove a martingale representation theorem,

and establish that under proper conditions the full market is complete as well, and that immersion

holds in the filtration enlargement. The last part is dedicated to the incomplete case. Starting

from a reference risk-neutral market probability, we construct a unique neutral risk probability that

preserves the properties of the reference market and we establish that immersion holds under such

a probability.

1



In this paper, all the processes are constructed on a probability space (Ω,A,P), where the

probability P is referred to as the historical probability.

A financial market is represented in the sequel by a price process S̃ = (S̃t, t ≤ T ) (an Rn+2

valued process, S0 denoting the saving accounts, i.e., the risk free asset), and its information by

G : The natural (augmented) filtration generated by S̃. We do not assume that GT = A, and we

emphasize that P is a probability defined on A (even if we shall be interested in the sequel in the

restriction of the probabilities on sub-σ-algebras of A). We denote by ΘGP (S̃) the set of G-e.m.m,

i.e., the set of probabilities Q defined on A, equivalent to P on A, such that S̃ ∈M (G,Q), i.e., the

process (S̃t, t ≤ T ) is a (G,Q)-martingale.

It is well known that there are strong links between no-arbitrage hypothesis and the existence

of an equivalent martingale probability (see Kabanov [22], Delbaen and Shachermayer [11]). In this

paper we are interested with the condition ΘGP (S̃) is not empty which is equivalent to the No Free

Lunch with Vanishing Risk (a condition slightly stronger than absence of arbitrage). The market

where the assets Si, i = 0, · · · , n+ 2 are traded is complete if any contingent claim is replicable: For

any payoff XT ∈ L2 (GT ) there exists a G-adapted self-financed strategy with terminal value XT . It

follows that an arbitrage free market is complete iff under an e.m.m Q ∈ ΘGP (S̃), S̃ admits the PRP

(predictable representation theorem). This property is equivalent from Jacod and Yor theorem to

the fact that the set composed by the restrictions of the probabilities in ΘGP (S̃) on GT is a singleton,

i.e., there exists a unique martingale probability on GT (this assertion being understood as: The

restriction on GT of any e.m.m. is unique).

1 Credit modelling framework

We work in this study within a progressive enlargement of filtration set-up, so that to study the

pricing of derivatives written on underlyings sensible to a credit event τ . We refer the reader to

Elliott et al. [15] or to Jeanblanc and Rutkowski [21] for a detailed presentation of this approach,

and to Jeanblanc and Le Cam [20] for the reasons that lead us to adopt it in this context.

In this framework, we shall split the information beared by the market in two components. The

first one is generated by what are called in general the default free assets, and the second by the

default time (the probability of occurrence of this event depends on factors adapted to the first

filtration).

Precisely, we consider the n + 1-dimensional vector S of the assets S0, · · · , Sn and its natural

filtration F, referred to as the reference filtration in the sequel1. This information flow does not

contain the information of the occurrence of the credit event. These assets, that do not bear the
1In [3] A. Bélanger et al. refer to F as the non firm specific information. For us, this information flow must be

considered as the ”market risk” information, and can bear assets linked to the firm, for example its equity or even its

directly its spread risk, see later.
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direct information of the default, are intended to be modelled by the set of variables Si, 0 ≤ i ≤ n

(Equity, vanilla options, interest rates, change rates... all information that can be used by a trader

that has to manage a position depending on τ, or that can be used by the market to make its idea

on the probability of occurrence of the risk, and impact the bid-ask price of instruments written on

τ). For example, if τ is the default time of a bond issued by a firm X, it is not a stopping time with

respect to the filtration generated by the stock of X and the stochastic interest rates (even it is far

from being independent of such variables).

We denote by G the Azéma supermartingale

Gt = P(τ > t|Ft)

Obviously, this process depends on the choice of the probability, nevertheless, for ease of notation,

we do not indicate this probability, which will be clear in the context.

We denote by ΘFP (S) the set of F-e.m.m, i.e., the set of probabilities Q defined on A, equivalent

to P on A, such that S ∈ M (F,Q), i.e., the process S = (St, t ≤ T ) is a (F,Q)-martingale. We

assume the hypothesis:

Hypothesis H1: The reference market is arbitrage free (we assume no interest rate to ease the

presentation), i.e., ΘFP (S) is not empty.

We introduce the asset Sn+1, that bears direct information on τ, i.e., that satisfies:

Ht ⊂ σ
(
Sn+1
s , s ≤ t) ⊂ Ht ∨ Ft for any t ≥ 0,

where the notation H = (Ht, t ≥ 0) stands for the natural augmentation of the filtration generated

by the process Ht = 11τ≤t, modelling the knowledge of the occurrence of the default. This relation

means that the default can be read on the value of Sn+1, and that Sn+1 can be priced in terms of τ

and F (think of a risky bond, a defaultable zero coupon or a credit default swap, CDS in the sequel).

We denote by S̃ the vector
(
S0, S1, ..., Sn+1

)
, and by G = F ∨ H, the natural augmentation of the

filtration generated by S̃ (the full information of the market). We add the following hypothesis:

Hypothesis H2: We assume that the full market is arbitrage free, i.e., ΘGP
(
S̃
)

is not empty.

In terms of risks analysis, Sn+1 has in general two types of risks (we consider in this survey only

the single default case, hence do not enter a discussion about the correlation risk): a “market risk”

- typically a spread risk, i.e., the natural variation of the price of the asset when time goes on - and

a jump risk - the specific risk of default, due to the occurrence of τ . This framework is based on the

assumption that the market risk can be hedged with F-adapted instruments, and that the jump risk

relies on H-adapted instruments.

Two points of view can be considered in such a matter. The first one - based on economic

analysis - asserts that the spread risk is mainly ruled out by the same noise sources that the assets

that generate the reference filtration. For example:
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• In the context of firm bonds pricing, Bélanger et al. link in [3] the spread risk of the de-

faultable zero coupon to the stochastic interest rates. In such a modelling, the credit event is

constructed as the hitting time of an independent stochastic barrier by an F-adapted process

(the F-intensity), where F is the filtration bearing the stochastic interest rates movements (ba-

sically, the Brownian motion driving the intensity is the same as the noise source of the IR).

The parameters of the intensity process depend on the firm (see also [12] where Ehlers and

Schönbucher insist on the rôle of the systemic risk implied by the IR on a portfolio of credit

risks).

• Moreover in a very close matter, Carr and Wu in [7] or Cremers et al. in [9] show that corporate

CDS spreads covary with both the stock option implied volatilies and skewness. It insists on

the fact that the factors ruling out the movements of the spread are linked to the variations

of the interest rate and of the equity (and its volatility).

• In the context of modelling CDS on debt issued by states (in their example Mexico and Brasil),

Carr and Wu study in [8] the correlation between the currency options and the credit spreads.

They prove that these quantities are deeply linked and propose a model in which the alea

driving the intensity of the default is composed by the sum of a function of the alea of the

stochastic volatility of the FX (see Heston [17]), and an independent noise (see also Ehlers and

Schönbucher in [13]).

• More generally, this vision is shared by the supporters of structural modelling, in which the

default time is triggered by a barrier reached by the equity value (see [25] or [5] for example).

In [2], Atlan and Leblanc model the credit time as the reaching time of zero of the Equity of

the firm, following a CEV (see also Albanese and Chen in [1] or Linetsky [24]).

The second way is based on the introduction of a new noise source, this alea driving the spread

risk, considered as having its own evolution (both approaches can be combined as in [8]). In this

construction as well, the “market risk of the defaultable security” does not contain the default

occurrence knowledge, and can be sorted in the F-information with the other market risks sensible

assets. In reality, it is easy to synthetize an asset that is sensible to this spread risk and not to

the jump risk. Take two instruments as Sn+1 of different maturity for example, namely X1 and

X2, and assume the market risk is modelled by a (risk neutral) Brownian motion W . If M is the

compensated martingale associated with H, we have dXi
t = βitdMt+δitdWt. Set up the self financed

portfolio Π that is long at any time of β2
t of the asset X1 and short of β1

t of X2 (and has a position

in the savings account to stay self-financed). This portfolio has only sensitivity against the spread

risk, and does not jump with τ, since dΠt = rΠtdt+ β2
t dX

1
t − β1

t dX
2
t = rΠtdt+

(
β2
t δ

1
t − β1

t δ
2
t

)
dWt.

Remark that with a δ-combination, we can set up a portfolio only sensible of the jump risk (and

that has no spread risk).

The two points of view (that need to be combined to achieve a maximum of precision in calibration

procedures) converge on the idea that splitting the information of the market in two filtrations is
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quite natural. Another nomenclature may consist in “market risk filtration”for F, and “default risk

filtration”for H.

Hypothesis H2 implies to work in a mathematical set up where F-semi-martingales remain G-

semi-martingales. As developed in Jeanblanc and Le Cam [20], this property does not hold for any

random time τ, and we choose to work under the

Hypothesis H3: The credit event is an initial time, that is there exists a family of processes αu

where, for any u, the process (αut , t ≥ 0) is an F-martingale such that

P(τ > θ|Ft) =
∫ ∞
θ

αut du

(in the general definition of initial times, du may be replaced by η(du), where η is a finite non-

negative measure on R+). Refer to the thesis of Jiao [18] or to the paper of Jeanblanc and Le Cam

[19] for a study of the properties of these times.

In such a context, every (F,P)-martingale X is a (G,P)-semi-martingale and:

Xt −
∫ t∧τ

0

d 〈X,Z〉u
Gu−

−
∫ t

t∧τ

d
〈
X,αθ

〉
u

αθu−

∣∣∣∣∣
θ=τ

∈M(G,P).

(see [19]). In this paper, we shall implicitly use the

Proposition 1 If τ is an initial time under P, and Q is equivalent to P, then τ is a Q-initial time.

Proof. Let η∞ be the G∞-density of Q w.r.t. P:

dQ|G∞ = η∞dP|G∞ .

For any T, t > 0, Bayes rule implies:

Q(τ > T |Ft) = EQ((1−HT )|Ft) =
EP((1−HT )η∞|Ft)

EP(η∞|Ft)
Assume in a first step that η∞ = η̃∞h(τ) where η̃∞ is an F∞-measurable and h is a deterministic

function

EP((1−HT )η∞|Ft) = EP((1−HT )η̃∞h(τ)|Ft) = EP(η̃∞EP((1−HT )h (τ) |F∞)|Ft)
= EP

(
η̃∞

∫ ∞
T

h(u)αu∞du
∣∣∣∣Ft
)

=
∫ ∞
T

EP(η̃∞αu∞|Ft)h(u)du

It follows that

Q(τ > T |Ft) =
∫ ∞
T

EP(η̃∞αu∞|Ft)
EP(η∞|Ft) h(u)du

Moreover, if µ∞ denotes the F∞-density of Q w.r.t. P, i.e., dQ|F∞ = µ∞dP|F∞ , µ∞ writes

µ∞ = EP(η∞|F∞) = η̃∞EP(h (τ) |F∞) = η̃∞

∫ ∞
0

h(u)αu∞du := η̃∞h∞.
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It follows that the F-adapted process α̂u. defined for any u ≥ 0 by:

α̂ut
h(u)

:= EQ(αu∞/h∞|Ft) =
EP(αu∞µ∞/h∞|Ft)

EP(µ∞|Ft) =
EP(αu∞η̃∞|Ft)
EP(η∞| F∞|Ft) =

EP(η̃∞αu∞|Ft)
EP(η∞|Ft) ,

is an (F,Q)-martingale and that

Q(τ > T |Ft) =
∫ ∞
T

α̂ut du,

which means τ is an F-initial time under Q.The general case follows by application of the monotone

class theorem. �

It follows that the assumption that the time is initial does not depend on the probability, which

will be capital throughout the sequel where we shall study change of equivalent probabilities.

2 Complete reference market

In this section, we make the assumption that the reference market is complete: For any XT ∈
L2 (FT ) , there exist n F -predictable processes ϕi such that XT = x +

∫ T
0

∑
1≤i≤n ϕ

i
udS

i
u. (We

have assumed that the interest rate is null.) Assuming the no-arbitrage hypothesis, this property is

equivalent to the fact that the restriction of ΘFP (S) on FT is a singleton (Jacod and Yor theorem):

It does not imply that there exists a unique probability Q such that S is an (F,Q)-martingale,

but that if two probabilities P∗ and Q∗ belong to ∈ΘFP (S) , then, their restriction to FT are equal:

P∗|FT = Q∗|FT .
We are interested in this section in the properties of the F-adapted assets in the full filtration,

and in the completeness of the full market. Under hypothesis H3, the F-martingales are F-semi-

martingales, and the initial time property is stable when changing the filtration. We also assume

that τ avoids the F-stopping times.

2.1 The F-adapted assets in the full market

2.1.1 Immersion and G-e.m.m.

For any Q ∈ΘGP
(
S̃
)
, it follows2 that Q ∈ΘFP (S). Since the reference market is complete, this implies

that the restriction of Q to the σ-algebra FT is unique: All the e.m.ms of the full market have the

same restriction on FT . Such a result will be confirmed by the next representation theorem.

Moreover immersion must hold under every G-e.m.m. Indeed, let Q ∈ΘGP (S) and X ∈M (F,Q) ,

with Xt = EQ (XT | Ft). As recalled above, the completion of the market implies the existence of F
-predictable processes ϕi such that XT = x+

∫ T
0

∑
1≤i≤n ϕ

i
udS

i
u. Therefore,

EQ (XT | Ft) = x+
∑

i≤n

∫ t

0

ϕiudS
i
u + EQ

(∫ T

t

ϕiudS
i
u

∣∣∣∣∣Ft
)

= x+
∑

i≤n

∫ t

0

ϕiudS
i
u

2ΘGP
�
eS
�
⊂ ΘGP (S) ⊂ ΘFP (S) , because S is F-adapted
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Since Q ∈ΘGP (S) it follows that the process
∫ .

0
ϕiudS

i
u is a (G,Q)-martingale (we impose for example

to X to be a square integrable martingale, so that to avoid cases where the integrals are strict local

martingales), hence EQ
(∫ T

t
ϕiudS

i
u

∣∣∣Gt
)

= 0. Therefore,

= x+
∑

i≤n

∫ t

0

ϕiudS
i
u = x+

∑

i≤n

∫ t

0

ϕiudS
i
u + EQ

(∫ T

t

ϕiudS
i
u

∣∣∣∣∣Gt
)

= EQ (XT | Gt) ,

hence X ∈M (G,Q) and immersion holds under Q. Such a result had already been pointed out by

Blanchet-Scaillet and Jeanblanc in [6].

This means that if the reference market is complete with neutral risk probability P∗, a construc-

tion of the default time in which immersion does not hold imply that P∗ is not a neutral risk measure

for the full market. It is then necessary to change the probability, as we shall see in the sequel.

Said differently, if F is complete and P∗∈ΘFP (S), if the (F,P∗)-conditional survival process G∗

has a non constant martingale part, P∗ is not a G-em.m., i.e., P∗ /∈ΘGP (S) .

Indeed the following characterization of immersion has been proved in [19]: Under the condition

that the default time avoids the F-stopping time, there is equivalence between F immersed in G and

for any u ≥ 0, the martingale αu is constant after u. It follows that under immersion

Gt =
∫ ∞

0

αut∧udu−
∫ t

0

αuudu =
∫ ∞

0

αut du−At = P (τ > 0|Ft)−At = 1−At

hence G is decreasing and predictable. By uniqueness of the predictable decomposition of the special

F-semi-martingale, if G is decreasing and predictable,
∫∞

0
αut∧udu = 1 for any t hence immersion

holds. It follows that immersion is equivalent to the property of G being predictable and decreasing.

2.1.2 A predictable representation theorem in the full market.

For the sake of simplicity, we assume the process S is continuous and one-dimensional. For P∗∈ΘFP (S),

we write

Gθt := P∗ (τ > θ|Ft) =
∫ ∞
θ

αut du (1)

and

Gt = Gtt =
∫ ∞

0

αut∧udu−
∫ t

0

αuudu ≡ Zt −At, (2)

where Z−A stand for the Doob-Meyer decomposition of the supermartingale G and shall both denote

αt (u) or αut in the sequel. Moreover, it is well known (see for example, Bielecki and Rutkowski [4])

that

Mt := Ht −
∫ t∧τ

0

dAu
Gu−

= Ht −
∫ t

0

(1−Hu)
αuu
Gu

du (3)

is a (G,P∗)-martingale.
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By representation theorem, we denote by au the “density” of αu w.r.t. S (resp. z the density

Z), namely the F-predictable such that dαut = aut dSt (resp. dZt = ztdSt). Then, the process

Ŝt := St −
∫ t

0

(1−Hu)
Gu

d 〈S,Z〉u +
Hu

αθu
d
〈
S, αθ

〉
u

∣∣∣∣
θ=τ

= St −
∫ t

0

(
(1−Hu) zu

Gu
+
Hua

θ
u

αθu

∣∣∣∣
θ=τ

)
d 〈S〉u := St − Ct (4)

is a (G,P∗)-local martingale (see [19]).

The next theorem establishes a predictable representation property for F-martingales under a

G-e.m.m P∗, as soon as the F-market enjoys this property. Indeed, any η ∈ M (G,P∗) will write as

the sum of an integral with respect to M ∈M (G,P∗) and an integral with respect to Ŝ ∈M (G,P∗).
This result extends the representation theorem by Kusuoka [23], to any complete reference market

and to the case immersion does not hold.

Theorem 2.1 For every η ∈M (G,P∗), there exists two G-predictable process β and γ such that

dηt = γtdŜt + βtdMt.

Proof. Let η ∈M (G,P∗) . As we are only interested in finite time horizon, we write ηt = E (ηT | Gt) .
By a monotone class argument, we reduce ourself to the case where ηT writes FTh (τ ∧ T ) , with

FT ∈ FT . We split the problem in three parts:

ηt = E (FTh (T ) 1τ>T | Gt) + E (FTh (τ) 1τ≤T | Gt) = at + E (FTh (τ) 1τ≤T | Gt)
= Lth (T )E (FTGT | Ft)︸ ︷︷ ︸

at

+ LtE (FTh (τ) 1t<τ≤T | Ft)︸ ︷︷ ︸
bt

+HtE (FTh (τ) 1τ≤t| Ft ∨ σ (τ))︸ ︷︷ ︸
ct

.

with Lt = (1−Ht) /Gt = Dt (1−Ht) ∈ M (G,Q), with Dt = G−1
t . From the decomposition (2),

writing dGt = −αttdt+ ztdWt,we get: dDt = D2
t

(
αttdt+ z2

tDtd 〈S〉t
)−D2

t ztdSt.

Let us start by developing a : We first remark that a is a G-martingale, so one knows in advance

that the predictable bounded variation part will vanish; nevertheless, we keep all these terms in

our computation. By representation theorem, we write: Nt := E (FTGT | Ft) := n +
∫ t

0
nsdSs and

at = h(T ) (1−Ht)DtNt. It follows, since S is continuous that [S,H] = 0 and

h−1 (T ) dat = −DtNtdHt + (1−Ht)DtdNt + (1−Ht)NtdDt + (1−Ht) d 〈D,N〉t
= −DtNtdHt + (1−Ht)DtntdSt + (1−Ht)NtD2

tα
t
tdt

+ (1−Ht)Ntz2
tD

3
t d 〈S〉t − (1−Ht)NtD2

t ztdSt − (1−Ht)D2
tntztd 〈S〉t

= −DtNtdMt − (1−Ht)D2
tNtα

t
tdt+ (1−Ht)

(
Dtnt −NtD2

t zt
)
dSt

+ (1−Ht)NtD2
tα

t
tdt+ (1−Ht) (NtztDt − nt)D2

t ztd 〈S〉t
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Using (3), the G-Doob Meyer decomposition of the increasing process H writes dHt = dMt +

(1−Ht)Dtα
t
tdt (from dAt = αttdt), with M ∈ M (G,P∗) . Moreover St = Ŝt + Ct with Ŝt ∈

M (G,P∗) , and from (4) (1−Ht) dCt = (1−Ht) ztDtd 〈S〉t . It follows

h−1 (T ) dat = −DtNtdMt + (1−Ht)
(
Dtnt −NtD2

t zt
)
dŜt

+ (1−Ht)
((
Dtnt −NtD2

t zt
)
ztDt +Ntz

2
tD

3
t − ntD2

t zt
)
d 〈S〉t

= −DtNtdMt + (1−Ht)
(
Dtnt −NtD2

t zt
)
dŜt

To explicit the decomposition of the special G-semi-martingale b, we introduce for any u the

martingale Nu
t = E (FTαuT | Ft) and its decomposition on S : Nu

t = yu +
∫ t

0
yus dSs provided by the

martingale representation theorem on F. By definition of initial times, it follows:

bt = LtE (FTE (h (τ) 1t<τ≤T | FT )| Ft) = LtE

(
FT

∫ T

t

h (u)αuT du

∣∣∣∣∣Ft
)

= Lt

∫ T

t

h (u)Nu
t du

by differentiation:

dbt = −Dt

(∫ T

t

h (u)Nu
t du

)
dHt + (1−Ht)

(∫ T

t

h (u)Nu
t du

)
dDt

− (1−Ht)Dth (t)N t
t dt+ (1−Ht)Dt

(∫ T

t

h (u) yut du

)
dSt

− (1−Ht)D2
t zt

(∫ T

t

h (u) yut du

)
d 〈S〉t

and, introducing the G-decomposition of the semi-martingale S and the compensator of H, we obtain

finally:

dbt = −Dt

(∫ T

t

h (u)Nu
t du

)
dHt + (1−Ht)

(
αttD

2
t

∫ T

t

h (u)Nu
t du−Dth (t)N t

t

)
dt

+ (1−Ht)

(
Dt

∫ T

t

h (u) (yut −DtN
u
t zt) du

)
dSt

− (1−Ht)

(
D2
t zt

∫ T

t

h (u) (yut −Nu
t ztDt) du

)
d 〈S〉t

= −Dt

(∫ T

t

h (u)Nu
t du

)
dMt + (1−Ht)

(
Dt

∫ T

t

h (u) (yut −DtN
u
t zt) du

)
dŜt

− (1−Ht)Dth (t)N t
t dt

Decomposition of c. We can write ct = HtE (FTh (τ) 1τ≤t| Ft ∨ σ (τ)) = HtF (t, τ) , where for

each u the random variable F (t, u) is Ft-measurable and for any t, u 7−→ F (t, u) is a Borel function.

Using the properties of initial times, we compute F (t, u) = h (u)Nu
t /α

u
t , and for any u, the dynamics

write:

dF (t, u) =

(
yut
αut
− Nu

t a
u
t

(αut )2

)
dSt +

(
Nu
t

(aut )2

(αut )3 −
aut y

u
t

(αut )2

)
d 〈S〉t .
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It follows that, since
∫ t

0

F (s, τ) dHs = F (τ, τ) 11τ≤t =
∫ t

0

F (s, s) dHs,

we can write the decomposition of c :

dct = F (t, τ) dHt +Ht

(
yut
αut
− Nu

t a
u
t

(αut )2

)∣∣∣∣∣
u=τ

dSt +Ht

(
Nu
t (aut )2

(αut )3 − aut y
u
t

(αut )2

)∣∣∣∣∣
u=τ

d 〈S〉t

= F (t, t) dMt +Ht

(
yut
αut
− Nu

t a
u
t

(αut )2

)∣∣∣∣∣
u=τ

dŜt + (1−Ht)DtF (t, t)αtt dt

+Ht

(
yut
αut
− Nu

t a
u
t

(αut )2

)∣∣∣∣∣
u=τ

dCt +Ht

(
Nu
t (aut )2

(αut )3 − aut y
u
t

(αut )2

)∣∣∣∣∣
u=τ

d 〈S〉t

= F (t, t) dMt +Ht

(
yut
αut
− Nu

t a
u
t

(αut )2

)∣∣∣∣∣
u=τ

dŜt + (1−Ht)DtF (t, t)αtt dt

where the last equality comes from the expression (4) of dC on {τ ≤ t}.
Conclusion. Adding the three parts a, b, and c, we conclude, since F (t, t)αtt = h (t)N t

t , that the

G-martingale can be decomposed on the two martingales
(
M, Ŝ

)
and writes:

dηt =

(
F (t, t)−Dt

(
Nth (T ) +

∫ T

t

h (u)Nu
t du

))
dMt + ((1−Ht)Dt (nt −NtDtzt)h (T )

+ (1−Ht)Dt

∫ T

t

h (u) (yut −Nu
t Dtzt) du+Ht

(
yut
αut
− Nu

t a
u
t

(αut )2

)∣∣∣∣∣
u=τ

)
dŜt,

wich concludes the proof. �

2.1.3 Description of the G-e.m.m.

Applying this theorem to the particular case of a strictly positive martingale - in particular the

density of a change of probability - we derive the

Corollary 1 If η ∈ M (G,P∗) is strictly positive, then, there exists a pair of predicable processes

γ, β
dηt
ηt−

= γtdŜt + βtdMt,

with β > −1, i.e., η = E
(
γ ? Ŝ

)
E (β ?M) , with




E
(
γ ? Ŝ

)
t

= exp
(∫ t

0
γudŜu − 1

2

∫ t
0
γ2
ud〈Ŝ〉u

)

E (β ?M)t = exp
(∫ t

0
ln (1 + βs) dHs −

∫ t
0
βsLsα

s
sds
)

and Ls = (1−Hs) /Gs (remark that ∆M has size 1).
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Let P∗ be an e.m.m. on FT . If immersion does not hold under P∗ - i.e., if G is not a predictable

increasing process - it is sufficient to change the probability from P∗ to any G-e.m.m Q so that

immersion holds, and such a probability change can be expressed in the following way.

Proposition 2 There exists a probability Q ∈ ΘGP∗(S) such that immersion property holds under Q

Proof. If the F-conditional survival process writes Gt = P∗ (τ > t|Ft) = Zt − At, the (G,P∗)-
dynamics of S follows the decomposition (4):

St = Ŝt +
∫ t

0

(
(1−Hu) zu

Gu
+
Hua

θ
u

αθu

∣∣∣∣
θ=τ

)
d 〈S〉u with Ŝ ∈M (G,P∗) ,

hence P∗ is not a G-e.m.m. From Corollary 1, the set of G-e.m.m can be perfectly described as:

ΘGP∗(S) =

{
Q :

dQ
dP∗

∣∣∣∣
Gt

= ηt = E
(
− (1−H)z

G
? Ŝ − Haτ

ατ
? Ŝ

)

t

E(β ?M)t,

}
.

where β ∈ Q, the set of predictable processes, taking values in ] − 1,∞[. As a check, under such a

probability Q, as Ŝ ∈M (G,P∗) , one has

Ŝt −
∫ t

0

d〈Ŝ, η〉u
ηu

= Ŝt −
∫ t

0

d

〈
Ŝ,− (1−H)z

G
? Ŝ − Haθ

αθ

∣∣∣∣
θ=τ

? Ŝ + β ?M

〉

u

= Ŝt +
∫ t

0

(
(1−Hu) zu

Gu
+
Hua

τ
u

ατu

)
d〈S〉u = St

where the second equality comes from the fact that 〈Ŝ〉 = 〈S〉 and
〈
Ŝ,M

〉
= 0, since Ŝ is continuous

and M purely discontinuous. It follows from Girsanov’s theorem that S is a (G,Q)-martingale.

The set of G-e.m.m is infinite, parameterized by the predictable processes β. It is straightforward

to check that immersion holds under any such a Q ∈ M (G,P∗) . Indeed for β predictable > −1, if

Qβ is the corresponding e.m.m. (denote by γu = (1−Hu)Duzu + Hua
θ
u/α

θ
u

∣∣
θ=τ

):

• dQβ
∣∣
F∞ = dP∗|F∞ . Indeed, for any Ft ∈ Ft with P∗-null expectation, Ft =

∫ t
0
fsdSs by PRP

and

Eβ (Ft) = E∗ (Ftηt) = E∗
(∫ t

0

ηsfsdSs +
∫ t

0

Fs dηs +
∫ t

0

fsd 〈S, η〉s
)

= E∗
(∫ t

0

ηsfsdSs +
∫ t

0

Fs dηs +
∫ t

0

fsγsηsd〈Ŝ〉s
)

= E∗
(∫ t

0

ηsfsdŜs +
∫ t

0

Fs dηs

)
= 0 = E∗ (Ft) ,

where the first line is integration by part formula, the second comes from the dynamics of

the density η and the third from the definition of Ŝ, the expectation being null since Ŝ and η

belong to M (G,P∗). It follows dQβ
∣∣
F∞ = dP∗|F∞ .
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• Let X be a
(
F,Qβ

)
-martingale. Then, it is a (F,P∗) martingale and if X = x ∗ S,, from the

filtration enlargement by the initial time

X̂t := Xt −
∫ t

0

xu

(
(1−Hu) zu

Gu
+
Hua

θ
u

αθu

∣∣∣∣
θ=τ

)
d 〈S〉u ∈M (G,P∗)

Using Girsanov’s theorem, the process

X̃t = X̂t −
∫ t

0

d 〈X, η〉u
ηu

is a
(
F,Qβ

)
-martingale. It remains to note that

X̃t = X̂t +
∫ t

0

xu

(
(1−Hu) zu

Gu
+
Hua

θ
u

αθu

∣∣∣∣
θ=τ

)
d 〈S〉u = Xt .

It follows that X ∈M (
G,Qβ

)
hence immersion holds under Qβ .

2.1.4 Risk premia.

Such a result can be interpreted in the following way. The change from historical P to neutral

risk probability P∗ aims at correcting the dynamics from the market risk premium. Indeed, to

any financial market can be associated a risk premium, that characterizes the return an investor is

expecting over the risk free return (the interest rate), to bear the risk of taking a long position on

a derivative written on this market. If N is the martingale modelling the alea (multidimensional,

continuous or not) of this market, and if the asset’s return writes:

dSt
St

= µdt+ σdNt,

the dynamics of any derivatives written on S sold at P , would be dPt/Pt = κdt + αdNt. A risk

free portfolio can be set-up in buying a quantity Sσ of the derivative, for a total value of Sσ.P and

selling a quantity Pα of the asset (completing by ςt of money market βt to remain self financed):

dΠt = ςtrβtdt+ StσdPt − PtαdSt = ςtrβtdt+ StσPtκdt+ StσPtαdNt − PtαStµdt− PtαStσdNt
= ((Πt − (σ − α)PtSt) r + (σκ− αµ)PtSt) dt,

since ςtβt = Πt − StσPt + PtαSt by definition of the portfolio. By absence of arbitrage, its return

must be equal to r to preclude arbitrage, so that:

(σκ− αµ)PtSt = r (σ − α)PtSt ⇐⇒ κ− r
α

=
µ− r
σ

= λS .

On the reference market, the neutral risk probability P∗ corrects the historical probability P from

the market risk premium . If immersion does not hold under P∗, it means the market risk premium

does not take into account the jump risk premium, and it is necessary to change to a G-e.m.m Q
under which S remains a martingale.
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2.2 G-adapted assets in the full market.

When considering as well the n+2th asset Sn+1, we shall be able to select a risk neutral probability,

in a unique way.

2.2.1 The necessity of the introduction of Sn+1.

First, remark that it is necessary to introduce the asset Sn+1 to the collection S when working

on derivatives whose pay-off depends on τ , since it is not possible to hedge the jumping risk with

F-adapted assets.

Let us consider for example a credit default swap (contract in which the holder buys a protection

in paying a premium at each date of a tenor to the seller until a predefined credit event occurs, and

receives if default occurs a recovery fee). To ease the discussion we take a continuous tenor, with a

proportional continuous premium κ, and a constant recovery fee δ (βt denotes the saving account,

i.e., the value at t of one unit invested at 0, and Q a martingale measure associated to this numeraire

- that exists by absence of arbitrage). The price of a CDS is the difference between the value of the

protection leg and the premium leg: CDS(t, δ, κ, T ) = Pr ott − Pr emt with:

Pr emt = βtκE

(∫ T

t

1−Hu

βu
du

∣∣∣∣∣Gt
)

= (1−Ht)
βtκ

Gt

∫ T

t

E
(

1−Hu

βu

∣∣∣∣Ft
)
du and

Pr ott = βtδE

(∫ T

t

dHu

βu

∣∣∣∣∣Gt
)

= (1−Ht)
βtδ

Gt

∫ T

t

E
(

(1−Hu)αuu
βuGu

∣∣∣∣Ft
)
du.

Even if every conditional expectation is F-adapted, the price of each leg may be writen as a

conditional expectation only if it is possible to replicate the pay-off of the leg with financial assets.

Such a writing can not be possible in a model containing only F-adapted assets (S), since the jumping

part is not in FT , hence impossible to replicate.

It is therefore necessary to introduce the asset Sn+1 - that has a sensibility against the jumps -

and prove that a CDS is hedgeable when introducing it in the erplication portfolio, to determine

the neutral risk measure and compute the price.

For quoted instruments like CDS, such a formula allows to calibrate the parameters involved in

the construction of the default time (and a natural class of assets for Sn+1 would be the risky bonds

associated to τ or a CDS of different maturity).

2.2.2 Completness of the full market.

We introduce the asset Sn+1 that is is sensible to the jump risk, i.e., τ∧t is σ
(
Sn+1
s , s ≤ t)-mesurable.

To be concrete, we postulate for example that Sn+1
t = ϕ (t, St, Ht) . Our aim is to prove that if the

F-market is complete, the G-market is complete as well. Let P be the historical probability.

We know that the compensator of G writes dAt = αttdt, hence from

dMt = dHt − 1−Ht

Gt
αtt dt
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it follows, since each process of the right-hand member of the equality is of finite variation and the

second is continuous, that

[M ]t = [H]t =
∑

s≤t
∆H2

s =
∑

s≤t
∆Hs = Ht, hence

[M ]t −
∫ t

0

1−Hs

Gs
αssds = Mt ∈M (G,P) .

It follows d 〈M〉t = (1−Ht)αtt/Gtdt. Assume also that d 〈S〉 � dt.

We assume that the asset S writes

dSt = dS∗t + btdt = dŜt + (ct + bt) dt,

with S∗ ∈ M (F,P), Ŝ ∈ M (G,P) and cu = (1−Hu) zu/Gu + Hua
θ
u/α

θ
u

∣∣
θ=τ

, and the asset Sn+1

writes:

dSn+1
t = µtdt+ εtdŜt + ζtdMt,

where M is the compensated martingale of H (M ∈ M (G,P)) and µtdt is the drift term3 (assume

the three processes µ, ε and ζ are predictable). The set of G-neutral risk probabilities writes, by

Corollary 1:

ΘGP (S) =

{
Q ∼ P ∃α, β ∈ Q, dQ

dP

∣∣∣∣
Gt

= ηt = E
(
−α ? Ŝ

)
t
E (−β ?M)t

}
.

By Theorem 1, the G-neutral risk probability is uniquely defined by:

αt = ct + bt, and βt = Gt
µt − εt (ct + bt)

αttζt
.

It follows the

Proposition 3 If the reference market F defined by the assets S =
(
S0, S1, ..., Sn

)
is complete, then

the full market G composed of the default free assets S =
(
S0, S1, ..., Sn

)
and of the default sensitive

asset Sn+1 is complete.

Once this probability has been defined, it is possible to price and hedge the τ -sensitive claims

with S̃, like for example CDS on τ (of different maturities if Sn+1 is a CDS) or derivatives written

on Sn+1.

3 Incomplete markets.

Assumption of absence of arbitrage is central in analysis and is systematic in the context of derivatives

modelling. It is a natural assumption since as soon as an arbitrage is identified, it is exercised. In

the opposite, assumption of completeness is not always satisfied, and is often violated when writing a
3Each coefficient can be easily derived from the function F by application of Ito’s formula and compensation.
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model to price exotic derivatives. When a structured product has a high sensibility to many complex

risks (more than the delta and gamma risks - against the small movements of the underlying or its

erratic short term large movements) it is necessary to choose a model that incorporates the fair price

of the vanilla options of the needed maturities and strikes. Indeed, the hedge against the vega risk

for example is provided by purchasing vanilla options, and their prices must be taken into account

by the model when computing the selling price of the product, to avoid a negative arbitrage when

setting up the strategy. The trader may price the product with an incomplete model so that to have

a good flexibility in the calibration on the class of products useful for the hedge.

When dealing with an incomplete market - whose information is supported by the filtration F
- it is by definition impossible to replicate every pay-off, hence there is no unicity of the F-e.m.m.

The definition of the price of a derivative may be tricky in an incomplete framework, since there

is no existence of a replication portfolio so that to prove that the conditional expectation of the

pay-off correponds to a fair price. However, as the set ΘFP(S) is convex and not reduced to a point

(by absence of arbitrage), there exists for each claim XT ∈ FT an interval of prices, from
]

inf
Q∈ΘFP(S)

EQ(XT ); sup
Q∈ΘFP(S)

EQ(XT )

[
. (5)

N. El Karoui and M.C. Quenez proved in [14] that if the derivative of payoff XT is sold at a price

inside this interval, it does not lead to an arbitrage. Indeed, they establish the relation:

sup
Q∈ΘS(FS)

EQ(XT ) = inf
ϕ∈Σ(FS)

V0 (ϕ)

where Σ
(
FS
)

is the set of sur-replicating strategies, i.e., the non empty set of strategies such that

VT (ϕ) ≥ XT .

It follows that in such a context, definition of a unique price and martingale property of its

dynamics are not canonical.

3.1 A market neutral risk probability

Let us consider two classical examples of incomplete markets. We deal here with the only reference

market, who can be an equity or fixed income market:

• Heston’s model: The asset’s dynamics are modelled by a stochastic volatility diffusion. Under

the historical probability P, the price of the (traded) underlying asset S is given in terms of a

stochastic volatility (non traded):

dSt
St

= µtdt+ σtdWt, (6)

dσt = ηtdt+ αt

(
ρdWt +

√
1− ρ2dBt

)
,

with W and B are independent Brownian motions. The market is not complete since it is

not possible to replicate a B-sensitive claim with only the asset S, i.e., with W . In other
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words, it is impossible to vega hedge a portfolio with the underlying. The set of F-e.m.m is

parameterized by the F-predictable processes κ and writes

ΘP (S) =

{
Q ∼ P, dQ

dP

∣∣∣∣
Ft

= E
(
−µ
σ
?W

)
t
E (κ ? B)t

}
.

Indeed, under such a probability Qκ the dynamics of the process write:

dSt
St

= σtdW̃t,

dσt =
(
ηt − ραtµt

σt
+
√

1− ρ2αtκt

)
dt+ αt

(
ρdW̃t +

√
1− ρ2dB̃t

)
,

and S ∈M (F,Qκ) .

It is classical that if the calls are liquid and their price are computed through this model (i.e.,

the true dynamics of the asset is the model dynamics (6)), it is possible to use such instruments

in the hedging portfolio and to work under a complete market framework. See Romano and

Touzi [26].

• The asset’s dynamics are modelled by a jumping diffusion. For example, assume that the price

of the underlying follows, under the historical probability P:

dSt
St−

= µtdt+ σtdWt + ϕtdMt

where W is a Brownian motion and dMt = dNt − λtdt, with N an inhomogeneous Poisson

process with deterministic intensity λ. Then, the market is incomplete and the set of F-e.m.m

is parametrized by two F-predictable processes α and β, with β > −1 as follows:

ΘP (S) =

{
Q ∼ P, dQ

dP

∣∣∣∣
Ft

= E (α ?W )t E (β ?M)t , with µt + σtαt + λtβtϕt = 0

}
.

Indeed, under such a probability Qα,β the processes W̃ , M̃ defined as

dW̃t = dWt − αtdt
dM̃t = dMt − βtd 〈M〉t = dMt − λtβtdt

are martingales by Girsanov’s theorem, hence the dynamics of the process write:

dSt
St−

= σtdW̃t + ϕtdM̃t.

Under each new F-e.m.m., the asset is a martingale, but in general, the law of the process changes

with any change of e.m.m. It follows contingent claims may have different prices - where price is

here a short cut for discounted F-conditional expectation (cf. 5). For example, changing the drift of
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the stochastic volatility by changing the probability will change the price of the call options, as well

as changing the intensity of the jump process in the second example4.

In practice, once a class of model is chosen by the trader for pricing a derivative, the procedure of

calibration aims at choosing the parameters of this class that make the pricing of well chosen hedging

instruments (for example vanilla options) the closest to the market cotations. This operation can

be assimilated to the selection of the neutral risk probability within the sub-set of F-e.m.m. that

preserves the class of the model, so that to stick to the true market probability. For example, if the

target dynamics of the volatility in a stoch vol framework are a piecewise constant CIR process -

i.e., the so-called Heston class (see [17]) writing under the neutral risk probability:

dSt
St

= µtdt+
√
VtdWt, (7)

dVt = λ (a− Vt) dt+ α
√
Vt

(
ρdWt +

√
1− ρ2dBt

)
,

- the set of F-e.m.m. is parametrized by the couples of real numbers (β, δ) such that κt = β
√
Vt +

δ/
√
Vt (with the above notations). This condtion of remaining in the Heston class is not due

to absence of arbitrage consideration but is a constraint imposed by the teams. Each change of

probability (i.e., of (β, δ)) implies a change in call prices.

The calibration procedure can be interpreted as the selection of the appropriate (β, δ) , namely

the appropriate F-e.m.m. In some more complicated examples, matching the set of calls can be not

sufficient for determining the parameters. The definition of a series of constraints allows to solve this

problem and make the pricing consistent with the market. This contrained procedure can become

quite sophisticated in case of degenerated model, as in [10] or in [16].

When an incomplete model is chosen - in general for its hability to well reproduce a given class

of calibration instruments and for its nice features regarding to the products to price - the selection

of a probability is systematically performed by the calibration procedure. Under this condition, the

law of the price process is uniquely determined, to be the closest to the observed prices and to a set

of well chosen constraints (historical data etc.). A change of probability within the set of F-e.m.m.

will change the price of the selected options or break the imposed constraints.

3.2 Filtration enlargement

As emphasized in the first section, even if the set of F-e.m.m. is not reduced to a singleton in the

incomplete situation, we are often conduced to focus on one particular probability. Equivalently, we
4In the opposite, series of examples are known where a change of probability does not imply a change in the price

of call options (jumping processes with free parameters on the intensity, the mean and the variance of jumps, or a mix

between stoch vol and jumps). These models are in general called degenerated. In such cases, the absence of change

in call options prices is due to the fact that the change of probability changes the law of the underlying, but preserves

its marginals (recall f (x, t) = ∂2
xC (x, t) , with C (x, t) the price of the call of maturity t stroken at x, and f (x, t) the

density of St). However, the increments laws may be completely different (think of the important differences in the

value of a forward start option between a pricing within a stoch vol model and a pricing within a local vol model, the

latter being calibrated on the former).
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assume that the market has chosen an F-e.m.m. for pricing the default free derivatives.

This point justifies that our attention is fixed from now on, on a given F-neutral risk probability,

i.e., a probability P∗ defined on A equivalent to the historical probability P, such that S ∈M(F,P∗).
Our goal is to prove that there exists a unique probability Q equivalent to P∗ such that S̃ is a

(G,Q)-martingale and FT is preserved, i.e.,

EQ (XT ) = E∗ (XT ) , for any XT ∈ L2 (FT ) ,

this constraint being naturally imposed regarding to the discussion of the previous section.

3.2.1 The G-e.m.m.

If YT ∈ L2 (FT ) with null expectation, the martingale (Yt = E∗ (YT |Ft) ; 0 ≤ t ≤ T ) belongs to the

class H2(F,P∗) the set of square integrable (F,P)-martingales. Since S ∈ H2(F,P∗) and due to the

Hilbert property of this functional space, there exists a unique decomposition Y = x ? S +N where

N ∈ H2(F,P∗) and the martingales (S,N) are orthogonal.

Using this result, we now decompose the martingales Z and αθ:

G = Z −A = z ? S +NG −A, αθ = aθ ? S +Nθ,

with
(
NG, Nθ

) ∈ H2(F,P∗) and are orthogonal to S. As S = Ŝ + s is the decomposition of the

(G,P∗)-semi-martingale, with:

dst =
1−Ht

Gt
d 〈S,G〉t +

Ht

αθt
d
〈
S, αθ

〉
t

∣∣∣∣
θ=τ

=
(

1−Ht

Gt
zt +

Ht

αθt
aθ
∣∣∣∣
θ=τ

)
d 〈S〉t ,

the set ΘGP∗ (S) writes (if we only focus on H2 change of probability measures, and apply the same

martingale decomposition in the Hilbert space H2(G,P∗)):

ΘGP∗ (S) =

{
Q,

dQ
dP∗

∣∣∣∣
Gt

= ηt = E
(
ϕ ? Ŝ

)
t
E (ψ ?M)t E

(
N⊥

)
t

}

with ϕ = −ds/d
〈
Ŝ
〉
, and where N⊥ is a martingale in the set M(G,P∗), orthogonal to the pair

Ŝ,M and where ψ is a G-predictable process, such that ψ > −1. We see that the set of e.m.m.

ΘGP∗ (S) is parameterized by the pair (ψ,N⊥).

Moreover, assuming that dSn+1
t = µtdt + εtdŜt + ζtdMt + dΣt under P∗ where Σ is a (G,P∗)

martingale, orthogonal to the pair
(
Ŝ,M

)
, the set ΘGP∗

(
S̃
)

writes:

ΘGP∗
(
S̃
)

=

{
Q,

dQ
dP∗

∣∣∣∣
Gt

= ηt = E
(
ϕ ? Ŝ

)
t
E (ψ ?M)t E

(
N⊥

)
t

}

with ϕ = −ds/d〈Ŝ〉 and where N⊥ is a (G,P∗)-martingale orthogonal to (Ŝ,M) and ψ is the

G-predictable process defined as

µtdt = εtdst − d
〈
Σ, N⊥

〉− ζtψtd 〈M〉t
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(here again we assume that all quadratic variations are a.c.w.r.t. dt, otherwise some continuous

relations are to be imposed). We see that the set of e.m.m. ΘGP∗
(
S̃
)

is parameterized by N⊥, a

(G,P∗)-martingale orthogonal to the pair
(
Ŝ,M

)
.

Let XT ∈ L2 (FT ) , such that E∗ (XT ) = 0. The (F,P∗)-martingale X writes X = x?S+N, with

(S,N) ∈M(F,P∗). The decomposition of this special (G,P∗)-semi-martingale is X = x ? Ŝ+x ? s+

N̂ + n, with
(
Ŝ, N̂

)
∈M(G,P∗) and:

dnt =
1−Ht

Gt
d 〈N,G〉t +

Ht

αθt
d
〈
N,αθ

〉
t

∣∣∣∣
θ=τ

=
1−Ht

Gt
d
〈
N,NG

〉
t

+
Ht

αθt
d
〈
N,Nθ

〉
t

∣∣∣∣
θ=τ

(recall dst =
(
(1−Ht) zt/Gt + Hta

θ
t /α

θ
t

∣∣
θ=τ

)
d 〈S〉t). It follows that

EQ (XT ) = E∗ (XT ηT ) = E∗
(∫ T

0

ηtdXt + [X, η]T

)
+ E∗

(∫ T

0

ηt (xtdst + dnt) + 〈X, η〉T
)

= E∗
(∫ T

0

ηt (xtdst + dnt) +
∫ T

0

ηtd
〈
x ? Ŝ + N̂ , ϕ ? Ŝ + ψ ?M +N⊥

〉
t

)

= E∗
(∫ T

0

ηt (xtdst + dnt) +
∫ T

0

ηtxtϕtd
〈
Ŝ
〉
t

+
∫ T

0

ηtd
〈
N̂ ,N⊥

〉
t

)

= E∗
∫ T

0

ηtd
(
nt +

〈
N̂ ,N⊥

〉
t

)
.

Introduce the (F,P∗)-martingale

NF,⊥t =
∫ t

0

−1−Hu

Gu
dNG

u −
Hu

αθu
dNθ

u

∣∣∣∣
θ=τ

and choose for N⊥ in the definition of Q the (G,P∗)-martingale

N⊥t = NF,⊥t +
∫ t

0

1−Hu

Gu
d
〈
NF,⊥, G

〉
u

+
Hu

αθu
d
〈
NF,⊥, αθ

〉
u

∣∣∣∣
θ=τ

∈M(G,P∗).

With this definition of N⊥, we have:

d
〈
N̂ ,N⊥

〉
= d

〈
N,NF,⊥t

〉
= −1−Ht

Gt
d
〈
N,NG

〉
t
− Ht

αθt
d
〈
N,Nθ

〉
t

∣∣∣∣
θ=τ

= −dnt.

Moreover, under each Q defined with another orthogonal martingale Ñ⊥, it is possible to find

N ∈M(F,P∗) such that

E∗
∫ T

0

ηtd
(
nt +

〈
N̂ ,N⊥

〉
t

)
6= 0,

since therefore nt 6=
〈
N̂ ,N⊥

〉
t

and ηt does not depend on N.

It follows there exists a unique pair N⊥, ψ) where the (G,P∗)-martingale is orthogonal to the

pair
(
Ŝ,M

)
and ψt =

(
εtdst − µtdt− d

〈
Σ, N⊥

〉)
/ζtd 〈M〉t is a G-predictable process such that

EQ (XT ) = 0 for any XT ∈ L2 (FT ) , and we have the

Proposition 4 There exists a unique G-e.m.m. Q ∈ΘGP∗
(
S̃
)

, that preserves F∞, i.e.,

EQ (XT ) = E∗ (XT ) , for any XT ∈ L2 (FT ) .
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3.2.2 Immersion under Q

Let X ∈ H2(F,Q), Xt = EQ (XT | Ft) . As Q|F∞ = P∗|F∞ , Xt = E∗ (XT | Ft) . Indeed, for Ft ∈ Ft,

E∗ (XTFt) = EQ (XTFt) = EQ (XtFt) = E∗ (XtFt) .

It follows that X = x ? S + N, where the (F,P∗)-martingales (S,N) are orthogonal. The (G,P∗)-
decomposition writes:

X = x ? S +N = x ? Ŝ + x ? s+ N̂ + n

for
(
Ŝ, N̂

)
∈M(G,P∗), with

dst =
(

1−Ht

Gt
zt +

Ht

αθt
aθ
∣∣∣∣
θ=τ

)
d 〈S〉 , and dnt =

1−Ht

Gt
d
〈
N,NG

〉
t

+
Ht

αθt
d
〈
N,Nθ

〉
t

∣∣∣∣
θ=τ

.

Under Q :

X = x ? S̃ + x ?
〈
Ŝ, log η

〉
+ x ? s+ Ñ +

〈
N̂ , log η

〉
+ n,

and by definition of Q,
〈
Ŝ, log η

〉
= −s and

〈
N̂ , log η

〉
= −n (see above), hence

X = x ? S̃ + Ñ ∈M(G,Q),

and it follows the

Proposition 5 Under the G-e.m.m. Q ∈ΘGP∗
(
S̃
)

, that preserves F∞, immersion holds.

4 Conclusion

In this paper, we have given some arguments that show that it is natural to assume that immersion

hypothesis holds for a study of a single default. However, it is well known that it is usually impossible

to assume this hypothesis in case of (non-ordered) multi-defaults,and that the martingale parts of

the survival probabilities reflects the correlation between the different default times.
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