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Université Paris VI et VII, 4 Place Jussieu - Case 188,
F-75252 Paris Cedex 05
e-mail: deaproba@proba.jussieu.fr

(3) Institut Universitaire de France

Abstract We construct martingales whose 1-dimensional marginals are those of a cen-
tered self-decomposable variable multiplied by some power of time t. Many examples
involving quadratic functionals of Bessel processes are discussed.

Key words Convex order, Self-decomposable law, Sato process, Karhunen-Loeve repre-
sentation, Perturbed Bessel process, Ray-Knight theorem.

1 Introduction, Motivation

1.1

We first introduce some notation which will be used throughout our paper.

If A and B are two random variables, A
d
= B means that these variables

have the same law.

If (Xt , t ≥ 0) and (Yt , t ≥ 0) are two processes, (Xt)
(1.d)
= (Yt)

means that the processes (Xt , t ≥ 0) and (Yt , t ≥ 0) have the same
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one-dimensional marginals, that is, for any fixed t, Xt
d
= Yt.

If (Xt , t ≥ 0) and (Yt , t ≥ 0) are two processes, (Xt)
(d)
= (Yt) means

that the two processes are identical in law.
All random variables and processes which will be considered are assumed

to be real valued.

1.2

In a number of applied situations involving randomness, it is a quite difficult
problem to single out a certain stochastic process (Yt , t ≥ 0), or rather its
law, which is coherent with the real-world data.

In some cases, it is already nice to be able to consider that the one-
dimensional marginals of (Yt) are accessible. The random situation being
studied may suggest, for instance, that:

(i) there exists a martingale (Mt) such that

(Yt)
(1.d)
= (Mt)

(this hypothesis may indicate some kind of “equilibrium” with respect
to time),

(ii) there exists H > 0 such that

(Yt)
(1.d)
= (tH Y1)

(there is a “scaling” property involved in the randomness).

It is a result due to Kellerer [12] that (i) is satisfied for a given process (Yt)
if and only if this process is increasing in the convex order, that is: it is
integrable (∀t ≥ 0, E[|Yt|] <∞), and for every convex function ϕ : R −→ R,

t ≥ 0 −→ E[ϕ(Yt)] ∈ (−∞,+∞]

is increasing.
In the sequel, we shall use the acronym PCOC for such processes, since,
in French, the name of such processes becomes: Processus Croissant pour
l’Ordre Convexe.
A martingale (Mt) which has the same one-dimensional marginals as a PCOC
is said to be associated to this PCOC. Note that several different martingales
may be associated to a given PCOC. We shall see several striking occurrences
of this in our examples.

2



Roynette [19] has exhibited two large families, (F1) and (F2), of PCOC’s:
If (Ns) is a martingale satisfying some integrability condition, then(

1

t

∫ t

0

Ns ds , t ≥ 0

)
is a PCOC in (F1);

(∫ t

0

(Ns −N0) ds , t ≥ 0

)
is a PCOC in (F2).

1.3

It is a non-trivial problem to exhibit, for either of these PCOC’s, an asso-
ciated martingale. We have been able to do so concerning some examples
in (F1), in the Brownian context, with the help of the Brownian sheet, in
our paper [8]. Concerning the class (F2), note that, considering a trivial
filtration, it follows that (tX), where X is a centered random variable, is a
PCOC. Even with this reduction, it is not obvious to find a martingale which
is associated to (tX). In order to exhibit examples, we were led to introduce
the class (S) of processes (Yt) satisfying the above condition (ii) and such that
Y1 is a self-decomposable integrable random variable. It is a result due to
Sato (see Sato [20, Chapter 3, Sections 15-17]) that, if (Yt) ∈ (S), then there
exists a process (Ut) which has independent increments, is H-self-similar

(∀c > 0, (Uct)
(d)
= (cH Ut)) and satisfies Y1

d
= U1. This process (Ut), which is

unique in law, will be called the H-Sato process associated to Y1. Clearly,
then (Ut − E[Ut]) is a H-self-similar martingale which is associated to the

PCOC (Vt) defined by: Vt = Yt−E[Yt]. Moreover, (Vt)
(1.d)
= (tH (Y1−E[Y1])).

We note that the self-decomposability property has also been used in
Madan-Yor [15, Theorem 4,Theorem 5] in a very different manner than in
this paper, to construct martingales with one-dimensional marginals those of
(tX).

1.4

We look for some interesting processes in the class (S), in a Brownian frame-
work.

Example 1 A most simple example is the process:

Yt :=

∫ t

0

Bs ds , t ≥ 0
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Then, (∫ t

0

Bs ds

)
(1.d)
=

(∫ t

0

s dBs

)
and the RHS is a centered (3/2)-Sato process. Moreover the process (Yt)
obviously belongs to the class (F2).

Example 2 The process

V1(t) :=

∫ t

0

(B2
s − s) ds , t ≥ 0

and more generally the process

VN(t) :=

∫ t

0

(R2
N(s)−Ns) ds , t ≥ 0

where (RN(s)) is a Bessel process of dimension N > 0 starting from 0,
belongs to the family (F2) and is 2-self-similar. We show in Section 4 that
the centered 2-Sato process:

N2

4

∫ τt

0

1(|Bs|≤ 2
N
`s) ds− Nt2

2
, t ≥ 0

where (`s) is the local time in 0 of the Brownian motion B, and

τt = inf{s ; `s > t}

is a martingale associated to the PCOC VN .

Example 3 We extend our discussion of Example 2 by considering, for
N > 0 and K > 0, the process:

VN,K(t) :=
1

K2

∫ t

0

s2( 1
K
−1) (R2

N(s)−Ns) ds , t ≥ 0

Then, in Section 5, a centered (2/K)-Sato process (and hence a martingale)
associated to the PCOC VN,K may be constructed from the process of first
hitting times of a perturbed Bessel process RK,1−N

2
as defined and studied

first in Le Gall-Yor [13, 14] and then in Doney-Warren-Yor [5]. We remark
that, if 0 < K < 2, then the process

VN,K(t
K

2−K ) , t ≥ 0

belongs to (F2).

4



Example 4 In Section 6, we generalize again our discussion by considering
the process

V
(µ)
N (t) :=

∫
(0,∞)

(R2
N(ts)−Nts) dµ(s) , t ≥ 0

for µ a nonnegative measure on (0,∞) such that
∫

(0,∞)
s dµ(s) < ∞. We

show that V
(µ)
N is a PCOC to which we are able to associate two very different

martingales. The first one is purely discontinuous and is a centered 1-Sato
process, the second one is continuous. The method of proof is based on a
Karhunen-Loeve type decomposition (see, for instance, [4] and the references
therein, notably Kac-Siegert [11]). For this, we need to develop a precise
spectral study of the operator K(µ) defined on L2(µ) by :

K(µ)f(t) =

∫
(0,∞)

f(s) t ∧ s dµ(s)

This spectral study is certainly classical, but we present it for the convenience
of the reader.

1.5

It is still an open problem (for the authors) whether the PCOC’s (in (F2)):∫ t

0

Hn(Bs, s) ds , t ≥ 0

defined from the 2 variables Hermite polynomials

Hn(x, s) = sn/2 hn(x/
√
s)

lend themselves to our method, namely: is it true that the random variable∫ 1

0

Hn(Bs, s) ds

is self decomposable for n = 3, 4, · · ·.

1.6

We now present more precisely the organisation of our paper:

- in Section 2, we recall some basic results about various representations of
self-decomposable variables, and we complete the discussion of Subsec-
tion 1.3 above;
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- in Section 3, we consider the simple situation, as in Subsection 1.3, where
Yt = R2

N(t), for RN a Bessel process of dimension N starting from 0;

- the contents of Sections 4, 5, 6 have already been discussed in the above
Subsection 1.4;

- in a short final Section 7, we prove some negative results concerning fur-
ther self-decomposability properties for squared Bessel processes: in-
deed, it is well-known, and goes back to Shiga-Watanabe [21], that
R2
N(•), considered as a random variable taking values in C(R+,R+)

is infinitely divisible. Furthermore, in the present paper, we exploit
the self-decomposability of

∫
(0,∞)

R2
N(s) dµ(s) for any positive measure

µ. It then seemed natural to wonder about the self-decomposability
of R2

N(•), but this property is ruled out, as the 2-dimensional vectors:
(R2

N(t1), R2
N(t1 + t2)) are not self-decomposable.

2 Sato processes and PCOC’s

2.1 Self-decomposability and Sato processes

We recall, in this subsection, some general facts concerning the notion of
self-decomposability. We refer the reader, for background, complements and
references, to Sato [20, Chapter 3].

A random variable X is said to be self-decomposable if, for each u with
0 < u < 1, there is the equality in law:

X
d
= uX + X̂u

for some variable X̂u independent of X.
On the other hand, an additive process (Ut , t ≥ 0) is a stochastically con-
tinuous process with càdlàg paths, independent increments, and satisfying
U0 = 0.
An additive process (Ut) which is H-self-similar for some H > 0, meaning

that, for each c > 0, (Uct)
(d)
= (cH Ut), will be called a Sato process or, more

precisely, a H-Sato process.
The following theorem, for which we refer to Sato’s book [20, Chapter 3,

Sections 16-17], gives characterizations of the self-decomposability property
that we state in the following theorem:

Theorem 2.1 Let X be a real valued random variable. Then, X is self-
decomposable if and only if one of the following equivalent properties is sat-
isfied:
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1) X is infinitely divisible and its Lévy measure is
h(x)

|x|
dx with h in-

creasing on (−∞, 0) and decreasing on (0,+∞).

2) There exists a Lévy process (Cs , s ≥ 0) such that

X
d
=

∫ ∞
0

e−s dCs .

3) For any (or some) H > 0, there exists a H-Sato process (Ut , t ≥ 0) such

that X
d
= U1.

In 2) (resp. 3)) the Lévy process (Cs) (resp. the H-Sato process (Ut)) is
uniquely determined in law by X, and will be said to be associated with X.
We note that, if X ≥ 0, then the function h vanishes on (−∞, 0), (Cs) is a
subordinator and (Ut) is an increasing process.

The relation between (Cs) and (Ut) was precised by Jeanblanc-Pitman-
Yor [9, Theorem 1]:

Theorem 2.2 If (Ut) is a H-Sato process, then the formulae:

C(−)
s =

∫ 1

e−s
r−H dUr and C(+)

s =

∫ es

1

r−H dUr , s ≥ 0

define two independent and identically distributed Lévy processes from which
(Ut , t ≥ 0) can be recovered by:

Ut =

∫ ∞
− log t

e−sH dC(−)
s if 0 ≤ t ≤ 1

and

Ut = U1 +

∫ log t

0

esH dC(+)
s if t ≥ 1 .

In particular, the Lévy process associated with the self-decomposable random
variable U1 is

Cs = C
(−)
s/H , s ≥ 0 .
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2.2 Sato processes and PCOC’s

We recall (see Subsection 1.2) that a PCOC is an integrable process which is
increasing in the convex order. On the other hand, a process (Vt , t ≥ 0) is
said to be a 1-martingale if there exists, on some filtered probability space,

a martingale (Mt , t ≥ 0) such that (Vt)
(1.d)
= (Mt). Such a martingale M is

said to be associated with V . It is a direct consequence of Jensen’s inequality
that, if V is a 1-martingale, then V is a PCOC. As indicated in Subsection
1.2, the converse holds true (Kellerer [12]).

The following proposition, which is central in the following, summarizes
the method sketched in Subsection 1.3.

Proposition 2.3 Let H > 0. Suppose that Y = (Yt , t ≥ 0) satisfies:

(a) Y1 is an integrable self-decomposable random variable;

(b) (Yt)
(1.d)
= (tH Y1).

Then the process
Vt := Yt − tH E[Y1] , t ≥ 0

is a PCOC, and an associated martingale is

Mt := Ut − tH E[Y1] , t ≥ 0

where (Ut) denotes the H-Sato process associated with Y1 according to The-
orem 2.1.

3 About the process (R2
N(t) , t ≥ 0)

In the sequel, we denote by (RN(t) , t ≥ 0) the Bessel process of dimension
N > 0, starting from 0.

3.1 Self-decomposability of R2
N(1)

As is well-known (see, for instance, Revuz-Yor [18, Chapter XI]) one has

E[exp(−λR2
N(1))] = (1 + 2λ)−N/2 .

In other words,

R2
N(1)

d
= 2 γN/2
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where, for a > 0, γa denotes a gamma random variable of index a. Now,

N

2
log(1 + 2λ) =

N

2

∫ ∞
0

(1− e−λt)
e−t/2

t
dt .

Then, R2
N(1) satisfies the property 1) in Theorem 2.1 with

h(x) =
N

2
1(0,∞)(x) e−x/2

and it is therefore self-decomposable.
The process R2

N is 1-self-similar and E[R2
N(1)] = N . By Proposition 2.3,

the process
V N
t := R2

N(t)− tN , t ≥ 0

is a PCOC, and an associated martingale is

MN
t := UN

t − tN , t ≥ 0

where (UN
t ) denotes the 1-Sato process associated with R2

N(1) by Theorem
2.1.

We remark that, in this case, the process (V N
t ) itself is a continuous

martingale and therefore obviously a PCOC. In the following subsections,
we give two expressions for the process (UN

t ). As we will see, this process
is purely discontinuous with finite variation; consequently, the martingales
(V N

t ) and (MN
t ), which have the same one-dimensional marginals, do not

have the same law.

3.2 Expression of (UN
t ) from a compound Poisson pro-

cess

We denote by (Πs , s ≥ 0) the compound Poisson process with Lévy measure:

1(0,∞)(t) e−t dt .

This process allows to compute the distributions of a number of perpetuities∫ ∞
0

e−Λs dΠs

where (Λs) is a particular Lévy process, independent of Π; see, e.g., Nilsen-
Paulsen [17]. In the case Λs = r s, the following result seems to go back at
least to Harrison [7].
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Proposition 3.1 The Lévy process (CN
s ) associated with the self-decomposable

random variable R2
N(1) in the sense of Theorem 2.1 is

CN
s = 2 ΠNs/2 , s ≥ 0 .

Proof
We set CN

s = 2 ΠNs/2. Then,

E
[
exp

(
−λ

∫ ∞
0

e−s dCN
s

)]
= exp

(
−N

2

∫ ∞
0

F (2λ e−s) ds

)
with, for x > 0,

F (x) =

∫ ∞
0

(1− e−tx) e−t dt =
x

1 + x
.

Consequently,

E
[
exp

(
−λ

∫ ∞
0

e−s dCN
s

)]
= (1 + 2λ)−N/2 ,

which proves the result.
2

By application of Theorem 2.2 we get:

Corollary 3.1.1 Let Π(+) and Π(−) two independent copies of the Lévy pro-
cess Π. Then

UN
t = 2

∫ ∞
−N

2
log t

e−2s/N dΠ(−)
s if 0 ≤ t ≤ 1

and

UN
t = UN

1 + 2

∫ N
2

log t

0

e2s/N dΠ(+)
s if t ≥ 1 .

3.3 Expression of (UN
t ) from the local time of a per-

turbed Bessel process

There is by now a wide literature on perturbed Bessel processes, a notion
originally introduced by Le Gall-Yor [13, 14], and then studied by Chaumont-
Doney [3], Doney-Warren-Yor [5]. We also refer the interested reader to
Doney-Zhang [6].
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We first introduce the perturbed Bessel process (R1,α(t) , t ≥ 0) starting
from 0, for α < 1, as the nonnegative continuous strong solution (Rt , t ≥ 0)
of the equation

Rt = Bt +
1

2
Lt(R) + αMt(R) (1)

where Lt(R) is the semi-martingale local time of R in 0 at time t, and

Mt(R) = sup
0≤s≤t

Rs ,

(Bt) denoting a standard linear Brownian motion starting from 0. (The
strong solution property has been established in Chaumont-Doney [3].)
It is clear that the process R1,0 is nothing else but the Bessel process R1

(reflected Brownian motion).
We also denote by Tt(R) the hitting time:

Tt(R) = inf{s ; Rs > t} .

We set LTt(R) for LTt(R)(R).
Finally, in the sequel, we set

αN = 1− N

2
.

Proposition 3.2 For any α < 1, the process (LTt(R1,α) , t ≥ 0) is a 1-Sato
process, and we have

(UN
t )

(d)
= (LTt(R1,αN )) .

Proof
By the uniqueness in law of the solution to the equation (1), the process

R1,α is (1/2)-self-similar. As a consequence, the process (LTt(R1,α) , t ≥ 0)
is 1-self-similar.

On the other hand, the pair (R1,α,M(R1,α)) is strong Markov (see Doney-
Warren-Yor [5, p. 239]). As

R1,α(u) = Mu(R1,α) = t if u = Tt(R1,α) ,

the fact that (LTt(R1,α) , t ≥ 0) is an additive process follows from standard
arguments.

Finally, we need to prove:

R2
N(1)

d
= LT1(R1,αN ) .
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We denote below R1,αN by R, and Lt(R), Tt(R), Mt(R) · · · are simply denoted
respectively by Lt, Tt, Mt · · · As a particular case of the “balayage formula”
(Yor [22]) we deduce from equation (1), that:

exp(−λLt)Rt =

∫ t

0

exp(−λLs) dRs

=

∫ t

0

exp(−λLs) dBs +
1− exp(−λLt)

2λ
+ αN

∫ t

0

exp(−λLs) dMs .

Hence,

exp(−λLt) (1 + 2λRt) = 1 + 2λ

∫ t

0

exp(−λLs) dBs

+2λαN

∫ t

0

exp(−λLs) dMs .

By time changing, we get:∫ Tt

0

exp(−λLs) dMs =

∫ t

0

exp(−λLTu) du .

Therefore, the optional stopping theorem yields:

E[exp(−λLTt)] (1 + 2λ t) = 1 + 2λαN

∫ t

0

E[exp(−λLTu)] du .

Setting
ϕλ(t) = E[exp(−λLTt)] ,

we obtain:

ϕλ(t) =
1

1 + 2λ t
+

2λαN
1 + 2λ t

∫ t

0

ϕλ(u) du .

Consequently
ϕλ(t) = (1 + 2λ t)−N/2 .

Therefore,

E[exp(−λLT1)] = (1 + 2λ)−N/2 = E[exp(−λR2
N(1)] ,

which proves the desired result.
2
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4 About the process
(∫ t

0 R
2
N(s) ds , t ≥ 0

)
4.1 A class of Sato processes

Let (`t , t ≥ 0) be the local time in 0 of a linear Brownian motion (Bt , t ≥ 0)
starting from 0. We denote, as usual, by (τt , t ≥ 0) the inverse of this local
time:

τt = inf{s ≥ 0 ; `s > t} .

Proposition 4.1 Let f(x, u) be a Borel function on R+ × R+ such that

∀t > 0

∫ ∫
R+×[0,t]

|f(x, u)| dx du <∞ . (2)

Then the process A(f) defined by:

A
(f)
t =

∫ τt

0

f(|Bs|, `s) ds , t ≥ 0

is an integrable additive process. Furthermore,

E[A
(f)
t ] = 2

∫ ∫
R+×[0,t]

f(x, u) dx du .

Proof
Assume first that f is nonnegative. Then,

A
(f)
t =

∑
0≤u≤t

∫ τu

τu−

f(|Bs|, u) ds .

By the theory of excursions (Revuz-Yor [18, Chapter XII, Proposition 1.10])
we have

E[A
(f)
t ] =

∫ t

0

du

∫
n(dε)

∫ V (ε)

0

ds f(|εs|, u)

where n denotes the Itô measure of Brownian excursions and V (ε) denotes
the life time of the excursion ε. The entrance law under n is given by:

n(εs ∈ dx ; s < V (ε)) = (2πs3)−1/2 |x| exp(−x2/(2s)) dx .

Therefore

E[A
(f)
t ] = 2

∫ t

0

du

∫ ∞
0

dx f(x, u) .
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The additivity of the process A(f) follows easily from the fact that, for
any t ≥ 0, (Bτt+s , s ≥ 0) is a Brownian motion starting from 0, which is
independent of Bτt (where (Bu) is the natural filtration of B).

2

Corollary 4.1.1 We assume that f is a Borel function on R+×R+ satisfying
(2) and which is m-homogeneous for m > −2, meaning that

∀a > 0, ∀(x, u) ∈ R+ × R+, f(ax, au) = amf(x, u) .

Then the process A(f) is a (m+ 2)-Sato process.

Proof
This is a direct consequence of the scaling property of the Brownian

motion.
2

4.2 A particular case

Let N > 0. We denote by A(N) the process A(f) with

f(x, u) =
N2

4
1(x≤ 2

N
u) .

By Proposition 4.1, (A
(N)
t ) is an integrable process and

E[A
(N)
t ] =

N t2

2
.

We now consider the process YN defined by

YN(t) =

∫ t

0

R2
N(s) ds , t ≥ 0 .

Theorem 4.2 The process A(N) is a 2-Sato process and

(YN(t))
(1.d)
= (A

(N)
t ) .
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Proof
It is a direct consequence of Corollary 4.2.1 that A(N) is a 2-Sato process.
By Mansuy-Yor [16, Theorem 3.4, p.38], the following extension of the

Ray-Knight theorem holds:
For any u > 0,

(La−(2u/N)
τu , 0 ≤ a ≤ (2u/N))

(d)
= (R2

N(a) , 0 ≤ a ≤ (2u/N))

where Lxt denotes the local time of the semi-martingale (|Bs| − 2
N
`s , s ≥ 0)

in x at time t.
We remark that

s ∈ [0, τt] =⇒ |Bs| −
2

N
`s ≥ −

2t

N
.

Therefore, the occupation times formula entails:

A
(N)
t =

N2

4

∫ 0

−2t/N

Lxτt dx =
N2

4

∫ 2t/N

0

Lx−(2t/N)
τt dx .

Thus, by the above mentioned extension of the Ray-Knight theorem,

(A
(N)
t )

(1.d)
=

(
N2

4

∫ 2t/N

0

R2
N(s) ds

)
.

The scaling property of RN also yields the identity in law:

(A
(N)
t )

(1.d)
=

(∫ t

0

R2
N(s) ds

)
,

and the result follows from the definition of YN .
2

We may now apply Proposition 2.3 to get:

Corollary 4.2.1 The process VN defined by:

VN(t) = YN(t)− Nt2

2
, t ≥ 0

is a PCOC and an associated martingale is MN defined by:

MN(t) = A
(N)
t − Nt2

2
, t ≥ 0 .

Moreover, MN is a centered 2-Sato process.
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4.3 Representation of A(N) as a process of hitting times

Theorem 4.3 The process A(N) is identical in law to the process

Tt(R1,αN ) , t ≥ 0

where R1,αN denotes the perturbed Bessel process defined in Subsection 3.3
and

Tt(R1,αN ) = inf{s ; R1,αN (s) > t} .

The proof can be found in Le Gall-Yor [14]. Nevertheless, for the convenience
of the reader, we give again the proof below. A more general result, based
on Doney-Warren-Yor [5], shall also be stated in the next section.

Proof
In this proof, we adopt the following notation: (Bt) still denotes a stan-

dard linear Brownian motion starting from 0, St = sup0≤s≤tBs and σt =
inf{s ; Bs > t}. Moreover, for a < 1 and t ≥ 0, we set

Xa
t =

∫ t

0

1(Bs>aSs) ds and Za
t = inf{s ; Xa

s > t} .

Lemma 4.3.1 Let a < 1. Then

sup
0≤s≤t

(Bs − aSs)+ = (1− a)St .

Proof
Since a < 1, we have, for 0 ≤ s ≤ t,

(Bs − aSs)+ ≤ (1− a)Ss ≤ (1− a)St .

Moreover, there exists st ∈ [0, t] such that Bst = St and therefore Sst = St.
Hence, Bst − aSst = (1− a)St.

2

Lemma 4.3.2 Let a < 1 and α = −a/(1− a). We set

Ra
t = (Bt − aSt)+ and Ua

t = Ra
Zat
.

Then the processes Ua and R1,α are identical in law.
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Proof
By Tanaka’s formula,

Ra
t =

∫ t

0

1(Ras>0) dRa
s +

1

2
Lt(R

a)

where Lt(R
a) denotes the local time of the semi-martingale Ra in 0 at time

t. Now, ∫ t

0

1(Ras>0) dRa
s =

∫ t

0

1(Bs−aSs>0) d(Bs − aSs) .

If s > 0 belongs to the support of dSs, then Bs = Ss and, since a < 1,
Bs − aSs > 0. Therefore,

Ra
t =

∫ t

0

1(Bs−aSs>0) dBs − aSt +
1

2
Lt(R

a) .

By Lemma 4.3.1, −aSt = αMt(R
a) where

Mt(R
a) = sup

0≤s≤t
Ra
s .

Consequently,

Ua
t =

∫ Zat

0

1(Bs−aSs>0) dBs +
1

2
LZat (Ra) + αMZat

(Ra) .

The process ∫ Zat

0

1(Bs−aSs>0) dBs , t ≥ 0

is a continuous martingale whose bracket is t, therefore it is a Brownian
motion.
On the other hand, it is easy to see that

LZat (Ra) = Lt(U
a) and MZat

(Ra) = Mt(U
a) .

Therefore, the process Ua is a solution to equation (1), which obviously is
continuous and nonnegative.

2

By Lévy’s theorem, the process A(N) is identical in law to the process

N2

4

∫ σt

0

1(Bs>(1− 2
N

)Ss)
ds , t ≥ 0 .

17



By the scaling property of B, the above process has the same law as∫ σNt/2

0

1(Bs>(1− 2
N

)Ss)
ds = X

1− 2
N

σNt/2 , t ≥ 0 .

Now,

X
1− 2

N
σNt/2 = inf{X1− 2

N
u ; Su >

Nt

2
}

and, by Lemma 4.3.1,

X
1− 2

N
σNt/2 = inf{X1− 2

N
u ; R

1− 2
N

u > t} = inf{v ; U
1− 2

N
v > t} .

The result then follows from Lemma 4.3.2.
2

Corollary 4.3.1 The process

Tt(R1,αN ) , t ≥ 0

is a 2-Sato process and(∫ t

0

R2
N(s) ds

)
(1.d)
= (Tt(R1,αN )) .

5 About the process(
1
K2

∫ t
0 s

2(1−K)
K R2

N(s) ds , t ≥ 0
)

In this section we extend Corollary 4.3.1. We fix two positive real numbers
N and K. We first recall some important results on general perturbed Bessel
processes RK,α with α < 1.

5.1 Perturbed Bessel processes

We follow, in this subsection, Doney-Warren-Yor [5]. We first recall the
definition of the process RK,α with K > 0 and α < 1.
The case K = 1 was already introduced in Subsection 3.3. For K > 1, RK,α

is defined as a continuous nonnegative solution to

Rt = Bt +
K − 1

2

∫ t

0

1

Rs

ds+ αMt(R) , (3)

18



and, for 0 < K < 1, RK,α is defined as the square root of a continuous
nonnegative solution to

Xt = 2

∫ t

0

√
Xs dBs +K t+ αMt(X) . (4)

We note that, for any K > 0, (RK,0(t))
(d)
= (RK(t)) . As in the case K = 1,

for any K > 0, the pair (RK,α,M(RK,α)) is strong Markov.
We denote, as before,

Tt(RK,α) = inf{s ; RK,α(s) > t} .

The following theorem, due to Doney-Warren-Yor ([5, Theorem 5.2, p. 246])
is an extension of the Ciesielski-Taylor theorem and of the Ray-Knight the-
orem.

Theorem 5.1 1) ∫ ∞
0

1(RK+2,α(s)≤1) ds
d
= T1(RK,α)

2)

(La∞(RK+2,α) , a ≥ 0)
(d)
= (

a1−K

K
R2(1−α)(a

K) , a ≥ 0)

5.2 Identification of the Sato process associated to YN,K

We denote, for N > 0 and K > 0, by YN,K the process:

YN,K(t) =
1

K2

∫ t

0

s
2(1−K)
K R2

N(s) ds , t ≥ 0 .

We also recall the notation:

αN = 1− N

2
.

Theorem 5.2 The process

Tt1/K (RK,αN ) , t ≥ 0

is a (2/K)-Sato process and

(YN,K(t))
(1.d)
= (Tt1/K (RK,αN )) .
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Proof
In the following proof, we denote RK,αN simply by R, and we set Tt and

Mt for, respectively, Tt(R) and Mt(R).
The first part of the statement follows from the (1/2)-self-similarity of R

and from the strong Markovianity of (R,M), taking into account that, for
any t ≥ 0,

RTt = MTt = t .

By occupation times formula, we deduce from 1) in Theorem 5.1,∫ 1

0

Lx∞(RK+2,αN ) dx
d
= T1 .

Using then 2) in Theorem 5.1, we obtain:∫ 1

0

Lx∞(RK+2,αN ) dx
d
=

∫ 1

0

x1−K

K
R2
N(xK) dx .

By change of variable, the last integral is equal to YN,K(1), and hence,

YN,K(1)
d
= T1 .

The final result now follows by self-similarity.
2

Corollary 5.2.1 The process

VN,K(t) := YN,K(t)− N

2K
t2/K , t ≥ 0

is a PCOC, and an associated martingale is

MN,K(t) := Tt1/K (RK,αN )− N

2K
t2/K , t ≥ 0 ,

which is a centered (2/K)-Sato process.

Finally, we have proven, in particular, that for any ρ > −2 and any
N > 0, the random variable ∫ 1

0

sρR2
N(s) ds

is self-decomposable. This result will be generalized and made precise in the
next section, using completely different arguments.

20



6 About the random variables
∫
R2
N(s) dµ(s)

In this section, we fix a measure µ on R∗+ = (0,∞) such that∫
R∗+
s dµ(s) <∞ .

6.1 Spectral study of an operator

We associate with µ an operator K(µ) on E = L2(µ) defined by

∀f ∈ E K(µ)f(t) =

∫
R∗+
f(s) t ∧ s dµ(s)

where ∧ denotes the infimum. Though the spectral study of this operator
is certainly classical, we give the details for the convenience of the reader.

Lemma 6.1 The operator K(µ) is a nonnegative symmetric Hilbert-Schmidt
operator.

Proof
As a consequence of the obvious inequality:

(t ∧ s)2 ≤ t s ,

we get ∫ ∫
(R∗+)2

(t ∧ s)2 dµ(t) dµ(s) ≤

(∫
R∗+
s dµ(s)

)2

,

and therefore K(µ) is a Hilbert-Schmidt operator.
On the other hand, denoting by (•, •)E the scalar product in E, we have:

(K(µ)f, g)E = E
[∫

f(t)Bt dµ(t)

∫
g(t)Bt dµ(t)

]
where B is a standard Brownian motion starting from 0. This entails that
K(µ) is nonnegative symmetric.

2

Lemma 6.2 Let λ ∈ R. Then λ is an eigenvalue of K(µ) if and only if λ > 0
and there exists f ∈ L2(µ), f 6= 0, such that:
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i)
λ f ′′ + f · µ = 0 in the distribution sense on R∗+ (5)

ii) f admits a representative which is absolutely continuous on R+, f ′ ad-
mits a representative which is right-continuous on R∗+;
(In the sequel, f and f ′ respectively always denote such representatives.)

iii)

f(0) = 0 and lim
t→∞

f ′(t) = 0 .

Proof
Let f ∈ L2(µ) and g = K(µ)f . We have, for µ-a.e. t > 0,

g(t) =

∫ t

0

du

∫
(u,∞)

f(s) dµ(s) . (6)

Thus g admits a representative (still denoted by g) which is absolutely con-
tinuous on R+ and g(0) = 0. Moreover, g′ admits a representative which is
right-continuous on R∗+ and is given by:

g′(t) =

∫
(t,∞)

f(s) dµ(s) . (7)

In particular

|g′(t)| ≤ t−1/2

[∫
(t,∞)

f 2(s) dµ(s)

∫
(t,∞)

s dµ(s)

]1/2

. (8)

Hence:
lim
t→∞

g′(t) = 0 .

Besides, (7) entails:

g′′ + f · µ = 0 in the distribution sense on R∗+ .

Consequently, 0 is not an eigenvalue of K(µ) and the “only if” part is proven.
Conversely, let f ∈ L2(µ), f 6= 0, and λ > 0 such that properties i),ii),iii)

hold. Then

λ f ′(t) =

∫
(t,∞)

f(s) dµ(s) .

Hence

λ f(t) =

∫ t

0

du

∫
(u,∞)

f(s) dµ(s) = K(µ)f(t) ,
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which proves the “if” part.
2

We note that, since 0 is not an eigenvalue of K(µ), K(µ) is actually a positive
symmetric operator. On the other hand, by the previous proof, the func-
tions f ∈ L2(µ), f 6= 0, satisfying properties i),ii),iii) in the statement of
Lemma 6.2, are the eigenfunctions of the operator K(µ) corresponding to the
eigenvalue λ > 0.

Lemma 6.3 Let f be an eigenfunction of K(µ). Then,

|f(t)| = o(t1/2) and |f ′(t)| = o(t−1/2)

when t tends to ∞.

Proof
This is a direct consequence of (8).

2

Lemma 6.4 Let f1 and f2 be eigenfunctions of K(µ) with respect to the same
eigenvalue. Then,

∀t > 0 f ′1(t) f2(t)− f1(t) f ′2(t) = 0 .

Proof
By (5),

(f ′1 f2 − f1 f
′
2)′ = 0 in the sense of distributions on R∗+ .

By right-continuity, there exists C ∈ R such that

∀t > 0 f ′1(t) f2(t)− f1(t) f ′2(t) = C .

Letting t tend to ∞, we deduce from Lemma 6.3 that C = 0.
2

Lemma 6.5 Let f be a solution of (5) with λ > 0, and let a > 0. We assume
as previously that f (resp. f ′) denotes the representative which is absolutely
continuous (resp. right-continuous) on R∗+. If f(a) = f ′(a) = 0, then, for
any t ≥ a, f(t) = 0.
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Proof
This lemma is quite classical if the measure µ admits a density with

respect to the Lebesgue measure. The proof may be easily adapted to this
more general case.

2

We are now able to state the main result of this section.

Theorem 6.6 The operator K(µ) is a positive symmetric compact operator
whose all eigenvalues are simple (i.e. the dimension of the eigenspaces is 1).

Proof
It only remains to prove that the eigenvalues are simple. Let then λ > 0

be an eigenvalue and let f1 and f2 be eigenfunctions with respect to this
eigenvalue. Let a > 0 with µ({a}) = 0. By Lemma 6.4, there exist c1 and c2

with c2
1 + c2

2 > 0 such that, setting f = c1 f1 + c2 f2, we have

f(a) = f ′(a) = 0 .

By Lemma 6.5, f(t) = 0 for any t ≥ a. But, since µ({a}) = 0, f ′ also is
left-continuous at a. Then, we may reason on (0, a] as on [a,∞) and therefore
we also have f(t) = 0 for 0 < t ≤ a. Finally,

c1 f1 + c2 f2 = 0 ,

which proves the result.
2

In the following, we denote by λ1 > λ2 > · · · the decreasing sequence (possi-
bly finite) of the eigenvalues of K(µ). Of course, this sequence depends on µ,
which we omit in the notation. As K(µ) is Hibert-Schmidt,∑

n≥1

λ2
n <∞ .

It will be shown in Subsection 6.3 (see Theorem 6.7) that actually∑
n≥1

λn <∞ ,

i.e. K(µ) is trace-class. The following corollary plays an essential role in the
sequel.

Corollary 6.6.1 There exists a Hilbert basis (fn)n≥1 in L2(µ) such that

∀n ≥ 1 K(µ)fn = λn fn .
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6.2 Examples

In this subsection, we consider two particular types of measures µ.

6.2.1 µ =
∑n

j=1 aj δtj

Let a1, · · · , an positive real numbers and 0 < t1 < · · · < tn. We denote by δt
the Dirac measure at t and we consider, in this paragraph,

µ =
n∑
j=1

aj δtj .

By the previous study, the sequence of eigenvalues of K(µ) is finite if and
only if the space L2(µ) is finite dimensional, that is if µ is of the above
form. In this case, the eigenvalues of K(µ) are the eigenvalues of the matrix
(mi,j)1≤i,j≤n with

mi,j =
√
ai aj ti∧j .

In particular, by the previous study, such a matrix has n distinct eigenvalues,
which are > 0.

6.2.2 µ = C tρ 1(0,1](t) dt

In this paragraph, we consider

µ = C tρ 1(0,1](t) dt

with C > 0 and ρ > −2. By Lemma 6.2, the eigenfunctions f of K(µ)

associated with λ > 0 are characterized by:

λ f ′′(x) + C xρ f(x) = 0 on (0, 1) , (9)

f(0) = 0 , f ′(1) = 0 .

We set σ = (ρ+ 2)−1 and ν = σ − 1. For a > −1, we recall the definition of
the Bessel function Ja:

Ja(x) =
∞∑
k=0

(−1)k (x/2)a+2k

k! Γ(a+ k + 1)
.

Then, the only function f satisfying (9) and f(0) = 0 is, up to a multiplicative
constant,

f(x) = x1/2 Jσ

(
2σ

√
C

λ
x1/2σ

)
.
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We deduce from the equality, valid for a > 1,

a Ja(x) + x J ′a(x) = x Ja−1(x)

that f ′(1) = 0 if and only if

Jν

(
2σ

√
C

λ

)
= 0 .

Denote by (jν,k , k ≥ 1) the sequence of the positive zeros of Jν . Then the
sequence (λk , k ≥ 1) of eigenvalues of K(µ) is given by:

λk = 4C (ν + 1)2 j−2
ν,k , k ≥ 1 .

Particular case Suppose ρ = 0. Then ν = −1/2 and

Jν(x) = J−1/2(x) =

(
2

π x

)1/2

cos(x) .

Hence,
λk = 4C π−2 (2k − 1)−2 , k ≥ 1 .

6.3 Representation of
∫
B2
s dµ(s)

We again consider the general setting defined in Subsection 6.1, the notation
of which we keep.

In this subsection, we study the random variable

Y
(µ)

1 :=

∫
B2
s dµ(s) .

The use of the operator K(µ) and of its spectral decomposition in the type
of study we develop below, is called the Karhunen-Loeve decompositions
method. It has a long history which goes back at least to Kac-Siegert [10, 11].
We also refer to the recent paper [4] and to the references therein.

Theorem 6.7 The eigenvalues (λk , k ≥ 1) of the operator K(µ) satisfy∑
k≥1

λk =

∫
R∗+
t dµ(t) (<∞ , by hypothesis) .

Moreover, there exists a sequence (Γn , n ≥ 1) of independent normal vari-
ables such that:

Y
(µ)

1
d
=
∑
n≥1

λn Γ2
n .
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Proof
We deduce from Corollary 6.6.1, by the Bessel-Parseval equality,

Y
(µ)

1 =
∑
n≥1

(∫
Bs fn(s) dµ(s)

)2

a.s.

Taking the expectation, we get∫
R∗+
t dµ(t) =

∑
n≥1

(K(µ)fn, fn)E =
∑
n≥1

λn .

We set, for n ≥ 1,

Γn =
1√
λn

∫
Bs fn(s) dµ(s) .

Then (Γn , n ≥ 1) is a Gaussian sequence and

E[Γn Γm] =
1√
λn λm

(K(µ)fn, fm)E = δn,m

where δn,m denotes Kronecker’s symbol. Hence, the result follows.
2

Corollary 6.7.1 The Laplace transform of Y
(µ)

1 is

F
(µ)
1 (t) =

∏
n≥1

(1 + 2 t λn)−1/2 .

Proof
This is a direct consequence of the previous theorem, taking into account

that, if Γ is a normal variable, then

Γ2 d
= 2 γ1/2 .

2
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6.4 Representation of
∫
R2
N(s) dµ(s)

We now consider the random variable

Y
(µ)
N :=

∫
R2
N(s) dµ(s) .

Theorem 6.8 There exists a sequence (ΘN,n , n ≥ 1) of independent vari-
ables with, for any n ≥ 1,

ΘN,n
d
= R2

N(1)
d
= 2 γN/2

such that
Y

(µ)
N

d
=
∑
n≥1

λn ΘN,n . (10)

Moreover, the Laplace transform of Y
(µ)
N is

F
(µ)
N (t) =

∏
n≥1

(1 + 2 t λn)−N/2 . (11)

Proof
It is clear, for instance from Revuz-Yor [18, Chapter XI, Theorem 1.7],

that
F

(µ)
N (t) = [F

(µ)
1 (t)]N .

Therefore, (11) holds and (10) follows directly.
2

Corollary 6.8.1 The random variable Y
(µ)
N is self-decomposable. The func-

tion h, which is decreasing on (0,∞) and associated with Y
(µ)
N in Theorem

2.1, is

h(x) =
N

2

∑
n≥1

exp

(
− 1

2λn
x

)
.

As a consequence, following Bondesson [1], we see that Y
(µ)
N is a generalized

gamma convolution (GGC) whose Thorin measure is the discrete measure:

N

2

∑
n≥1

δ1/2λn .
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Particular case We consider here, as in Section 5, the particular case:

µ =
1

K2
t

2(1−K)
K 1(0,1](t) dt .

Then, Y
(µ)
N is the random variable YN,K(1) studied in Section 5. As a conse-

quence of Paragraph 6.2.2 with

C =
1

K2
and ρ =

2

K
− 2 ,

we have
λk = j−2

ν,k , k ≥ 1

with ν = K
2
− 1. Moreover, by Theorem 5.2,

Y
(µ)

2
d
= T1(RK) .

It is known (see for instance Borodin-Salminen [2, formula 2.0.1, p. 387])
that

E[exp(−t T1(RK))] =
2−ν

Γ(ν + 1)

(
√

2t)ν

Iν(
√

2t)

where Iν denotes the modified Bessel function:

Iν(x) =
∞∑
k=0

(x/2)ν+2k

k! Γ(ν + k + 1)
.

We set:

Îν(x) =
∞∑
k=0

(x/2)2k

k! Γ(ν + k + 1)
.

Therefore, by formula (11) in the case N = 2, we recover the following
representation:

Îν(x) =
1

Γ(ν + 1)

∏
k≥1

(
1 +

x2

j2
ν,k

)
.

In particular (ν = −1/2),

cosh(x) =
∏
k≥1

(
1 +

4x2

π2 (2k − 1)2

)
.

Likewise we obtain, for ν = 1/2,

sinh(x)

x
=
∏
k≥1

(
1 +

x2

π2 k2

)
.
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6.5 Sato process associated to Y
(µ)
N

Theorem 6.9 Let (UN
t ) be the 1-Sato process associated to R2

N(1) (cf. Sec-

tion 3). Then, the 1-Sato process associated to Y
(µ)
N is (U

(N,µ)
t ) defined by:

U
(N,µ)
t =

∑
n≥1

λn U
N,n
t , t ≥ 0

where ((UN,n
t ) , n ≥ 1) denotes a sequence of independent processes such

that, for n ≥ 1,

(UN,n
t )

(d)
= (UN

t ) .

Proof
This is a direct consequence of Theorem 6.8.

2

Corollary 6.9.1 The process

V
(N,µ)
t :=

∫
R∗+

(R2
N(t s)−N t s) dµ(s) , t ≥ 0

is a PCOC and an associated martingale is

M
(N,µ)
t := U

(N,µ)
t −N t

∫
R∗+
s dµ(s) , t ≥ 0 .

The above martingale (M
(N,µ)
t ) is purely discontinuous. We also may asso-

ciate to the PCOC (V
(N,µ)
t ) a continuous martingale, as we now state.

Theorem 6.10 A continuous martingale associated to the PCOC (V
(N,µ)
t )

is ∑
n≥1

λn ((R
(n)
N )2(t)−Nt) , t ≥ 0

where ((R
(n)
N (t)) , n ≥ 1) denotes a sequence of independent processes such

that, for n ≥ 1,

(R
(n)
N (t))

(d)
= (RN(t)) .
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Proof
This is again a direct consequence of Theorem 6.8.

2

We can also explicit the relation between U (N,µ) and U (N ′,µ). Let C(N,µ)

(resp. C(N ′,µ)) be the Lévy process associated with Y
(µ)
N (resp. Y

(µ)
N ′ ). We

see, by Laplace transform, that

(C(N ′,µ)
s )

(d)
= (C

(N,µ)
N ′s/N) .

Then, using the relations between the processes U and C given in Theorem
2.2, we obtain:

Proposition 6.11 We have:

(U
(N ′,µ)
t , t ≥ 0)

(d)
=

(∫ tN
′/N

0

s
N−N′
N′ dU (N,µ)

s , t ≥ 0

)
.

Corollary 6.11.1 For N > 0 and K > 0, we set, with the notation of
Section 5,

TN,Kt = Tt(RK,αN ) , t ≥ 0 .

Then, for N > 0, N ′ > 0 and K > 0, for any t ≥ 0,

TN
′,K

t =

∫ tN
′/N

0

s2 N−N′
N′ dTN,Ks .

Proof
By Theorem 5.2, (TN,K

t1/2
) is the 1-Sato process associated with Y

(µ)
N defined

from

µ =
1

K2
t

2(1−K)
K 1(0,1](t) dt .

2
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7 Some negative results

7.1 Squared Bessel process started from x > 0

Let Y N,x
u be the value at time u > 0 of the squared Bessel process of dimension

N ≥ 0, starting from x ≥ 0.

Proposition 7.1 The random variable Y N,x
u is self-decomposable if and only

if x2 ≤ N u.

Proof
One has:

E[exp(−t Y N,x
u ) = (1 + 2tu)−N/2 exp

(
− x2 t

1 + 2tu

)
.

It is then easy to see that Y N,x
u is infinitely divisible and its Lévy measure

admits on (0,∞) the density

ϕ(y) =

(
N +

x2

2u2
y

)
1

2y
e−y/2u .

Hence, the result follows from the characterisation 1) in Theorem 2.1.
2

7.2 Pairs of values of a squared Bessel process

We now consider, for N > 0, t1, t2 > 0, the R2-valued random variable

Y := (R2
N(t1), R2

N(t1 + t2)) .

(Recall that RN(0) = 0.)
For such an R2-valued random variable, we can also define the notion of
self-decomposability as in Section 2. Theorem 2.1, suitably modified, is still
valid.

Proposition 7.2 The R2-valued random variable Y is not self-decomposable.

Proof
An easy computation gives

E[exp(−λ1R
2
N(t1)− λ2R

2
N(t1 + t2))] = [P (λ)]−N/2
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with
P (λ) = 1 + 2λ1t1 + 2λ2(t1 + t2) + 4λ1λ2t1t2 .

If Y were self-decomposable, we would have

log(P (λ)) =

∫ ∫
(R∗+)2

(1− exp(−λ1x1 − λ2x2))
H(x1, x2)

x2
1 + x2

2

dx1 dx2

with H a decreasing function on each half line with origin (0, 0). Taking the
derivative with respect to λ1, we get

2t1(1 + 2λ2t2)

P (λ)
=

∫ ∫
(R∗+)2

exp(−λ1x1 − λ2x2)
x1H(x1, x2)

x2
1 + x2

2

dx1 dx2 .

Letting λ2 tend to ∞, we obtain

2t1t2
t1 + t2 + 2λ1t1t2

= 0

which yields a contradiction.
2
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