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Abstract
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2 Random Times with Given Survival Processes

1 Introduction

The goal of this work is to address the following problem:

Problem (P). Let (Ω,G,F,P) be a probability space endowed with the filtration F = (Ft)t∈R+ .
Assume that we are given a strictly positive, càdlàg, (P,F)-local martingale N with N0 = 1 and an
F-adapted, continuous, increasing process Λ, with Λ0 = 0 and Λ∞ = ∞, such that Gt := Nte

−Λt ≤ 1
for every t ∈ R+. The goal is to construct a random time τ on an extended probability space and a
probability measure Q on an extended space such that:
(i) Q is equal to P when restricted to F, that is, Q|Ft

= P|Ft
for every t ∈ R+,

(ii) the Azéma supermartingale GQ := Q (τ > t | Ft) of τ under Q with respect to the filtration F
satisfies

GQt = Nte
−Λt , ∀ t ∈ R+. (1)

In that case, the pair (τ,Q) is called a solution to Problem (P).

We will sometimes refer to the Azéma supermartingale GQ as the survival process of τ under Q
with respect to F. The solution to this problem is well known if Nt = 1 for every t ∈ R+ (see Section
3) and thus we will focus in what follows on the case where N is not equal identically to 1.

Condition (i) implies that the postulated inequality Gt := Nte
−Λt ≤ 1 is necessary for the

existence of a solution (τ,Q). Note also that in view of (i), the joint distribution of (N, Λ) is set to
be identical under P and Q for any solution (τ,Q) to Problem (P). In particular, N is not only a
(P,F)-local martingale, but also a (Q,F)-local martingale. However, in the construction of a solution
to Problem (P) provided in this work, the so-called H-hypothesis is not satisfied under Q by the
filtration F and the enlarged filtration G generated by F and the observations of τ . Hence the process
N is not necessarily a (Q,G)-local martingale.

In the approach proposed in this work, in the first step we construct a finite random time τ on
an extended probability space using the canonical construction in such a way that

GPt := P (τ > t | Ft) = e−Λt , ∀ t ∈ R+.

To avoid the need for an extension of Ω, it suffices to postulate, without loss of generality, that there
exists a random variable Θ defined on Ω such that Θ is exponentially distributed under P and it is
independent of F∞. In the second step, we propose a change of the probability measure by making
use of a suitable version of Girsanov’s theorem. Since we purportedly identify the extended space
with Ω, it make sense to compare the probability measures P and Q. Let us mention in this regard
that the probability measures P and Q are not necessarily equivalent. However, for any solution
(τ,Q) to Problem (P), the equality Q(τ < ∞) = 1 is satisfied in the present set-up (see Lemma 4.1)
and thus τ is necessarily a finite random time under Q.

In the existing literature, one can find easily examples where the Doob-Meyer decomposition of
the Azéma supermartingale is given, namely, Gt = Mt − At (see, e.g., Mansuy and Yor [6]). It is
then straightforward to deduce the multiplicative decomposition by setting Nt =

∫ t

0
eΛs dMs and

Λt =
∫ t

0
dAs

Gs−
. However, to the best of our knowledge, a complete solution to the problem stated

above is not yet available, though some partial results were obtained. Nikeghbali and Yor [7] study
a similar problem for a particular process Λ, namely, Λt = sups≤t Ns for a local martingale N which
converges to 0 as t goes to infinity. It is worth stressing that in [7] the process G can take the value
one for some t > 0. We will conduct the first part of our study under the standing assumption that
Gt ≤ 1. However, to provide an explicit construction of a probability measure Q, we will work in
Section 5 under the stronger assumption that the inequality Gt < 1 holds for every t > 0

The paper is organized as follows. We start by presenting in Section 2 an example of a ran-
dom time τ , which is not a stopping time with respect to the filtration F, such that the Azéma
supermartingale of τ with respect to F can be computed explicitly. In fact, we revisit here a classic
example arising in the non-linear filtering theory. In the present context, it can be seen as a mo-
tivation for the problem stated at the beginning. In addition, some typical features of the Azéma
supermartingale, which are apparent in the filtering example, are later rediscovered in a more general
set-up, which is examined in the subsequent sections.
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The goal of Section 3 is to furnish some preliminary results on Girsanov’s change of a probability
measure in the general set-up. In Section 4, the original problem is first reformulated and then
reduced to a more tractable analytical problem (see Problems (P.1)–(P.3) therein). In Section 5,
we analyze in some detail the case of a Brownian filtration. Under the assumption that Gt < 1 for
every t ∈ R+, we identify a solution to the original problem in terms of the Radon-Nikodým density
process.

Section 6 discusses the relevance of the multiplicative decomposition of survival process of a
default time τ for the risk-neutral valuation of credit derivatives. From this perspective, it is im-
portant to observe that a random time τ constructed in this work has the same intensity under P
and Q, but it has different conditional probability distributions with respect to F under P and Q.
This illustrates the important fact that the default intensity does not contain enough information
to price credit derivatives (in this regard, we refer to El Karoui et al. [2]). In several papers in the
financial literature, the modeling of credit risk is based on the postulate that the process

Mt := 1{τ≤t} −
∫ t∧τ

0

λu du

is a martingale with respect to a filtration G such that τ is a (totally inaccessible) G-stopping
time. However, we will argue in Section 6 that this information is insufficient for the computation
of prices of credit derivatives. Indeed, it appears that, except for the most simple examples of
credit derivatives, the martingale component in the multiplicative decomposition of the Azéma
supermartingale of a default time τ has a non-negligible impact on risk-neutral values of credit
derivatives.

2 Filtering Example

The starting point for this research was a well known problem arising in the filtering theory. The goal
of this section is to recall this example and to examine some interesting features of the conditional
distributions of a random time, which will be later rediscovered in a different set-up.

2.1 Azéma Supermartingale

Let W = (Wt, t ∈ R+) be a Brownian motion defined on the probability space (Ω,G,P), and τ be
a random time, independent of W and such that P(τ > t) = e−λt for every t ∈ R+ and some fixed
λ > 0. We define the process U = (Ut, t ∈ R+) by setting

Ut = exp
((

a + b− σ2

2

)
t− b(t− τ)+ + σ Wt

)
,

where a, b and σ are some given strictly positive constants. One can check that the process U solves
the stochastic differential equation

dUt = Ut

(
a + b1{τ>t}

)
dt + Ut σ dWt. (2)

In the filtering problem, the goal is to assess the conditional probability that the moment τ has
already occurred by a given date t, using the observations of the process U driven by (2).

Let us take as F the natural filtration of the process U , that is, Ft = σ(Us | 0 ≤ s ≤ t) for t ∈ R+.
By means of standard arguments (see, e.g., [9, Chapter IV, Section 4] or [5, Chapter IX, Section 4]),
it can be shown that the process U admits the following semimartingale decomposition in its own
filtration

dUt = Ut(a + bGt) dt + Utσ dW t,

where G = (Gt, t ∈ R+) is the Azéma supermartingale, given by Gt = P(τ > t | Ft), and the
innovation process W = (W t, t ∈ R+), defined by

W t = Wt +
b

σ

∫ t

0

(
1{τ>u} −Gu

)
du,
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is the standard Brownian motion with respect to F. It is easy to show, using the arguments based on
the notion of strong solutions of stochastic differential equations (see, e.g. [5, Chapter IV,Section 4]),
that the natural filtration of W coincides with F. It follows from [5, Chapter IX,Section 4] (see also
[9, Chapter IV, Section 4]) that the process G solves the following stochastic differential equation

dGt = −λGt dt +
b

σ
Gt(1−Gt) dW t, (3)

so that the process N = (Nt, t ∈ R+), given by Nt = eλtGt, satisfies

dNt =
b

σ
eλt Gt(1−Gt) dW t. (4)

Since G(1 − G) is bounded, it is clear that N is a strictly positive (P,F)-martingale with N0 = 1.
We conclude that the Azéma supermartingale G of τ with respect to the filtration F admits the
following representation

Gt = Nte
−λt, ∀ t ∈ R+, (5)

where the (P,F)-martingale N is given by (4).

Let us finally observe that equality (3) provides the (additive) Doob-Meyer decomposition of the
bounded (P,F)-supermartingale G, whereas equality (5) yields its multiplicative decomposition.

2.2 Conditional Distributions

From the definition of the Azéma supermartingale G and the fact that (Gt eλt, t ∈ R+) is a (P,F)-
martingale it follows that, for every fixed u > 0 and every t ∈ [0, u],

P(τ > u | Ft) = EP
(
P(τ > u | Fu) | Ft

)
= e−λu EP(Nu | Ft) = e−λu Nt. (6)

Standard arguments given in [8, Chapter IV, Section 4] (which are also summarized in [9, Chapter IV,
Section 4]), based on an application of the Bayes formula, yield the following result, which extends
formula (6) to t ∈ [u,∞).

Proposition 2.1. The conditional survival probability process equals, for every t, u ∈ R+,

P(τ > u | Ft) = 1− Xt

Xu∧t
+ XtYu∧t e−λu, (7)

where the process Y is given by

Yt = exp
(

b

σ2

(
ln Ut − 2a + b− σ2

2
t
))

(8)

and the process X satisfies
1

Xt
= 1 +

∫ t

0

e−λu dYu. (9)

It follows immediately from (7) that

Gt = XtYt e−λt

so that the equality N = XY is valid, and thus (7) coincides with (6) when t ∈ [0, u]. Moreover, by
standard computations, we see that

dYt =
b

σ
Yt dWt +

b2

σ2
GtYt dt. (10)

Using (4) and (10), we obtain

dXt = d
(Nt

Yt

)
= − b

σ
GtXt dW t,

and thus X is a strictly positive (P,F)-martingale with X0 = 1.
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Finally, it is interesting to note that we deal here with the model where

τ = inf {t ∈ R+ : Λt ≥ Θ}

with Λt = λt (so that λτ = Θ) and the barrier Θ is an exponentially distributed random variable,
which is not independent of the σ-field F∞. Indeed, we have that, for every u > 0 and 0 ≤ t < u/λ,

P(Θ > u | Ft) = P(τ > u/λ | Ft) = Nte
−u 6= e−u.

3 Preliminary Results

We start by introducing notation. Let τ be a random time, defined the probability space (Ω,G,F,P)
endowed with the filtration F, and such that P(τ > 0) = 1. We denote by G = (Gt)t∈R+ the
P-completed and right-continuous version of the progressive enlargement of the filtration F by the
filtration H = (Ht)t∈R+ generated by the process Ht = 1{τ≤t}. It is assumed throughout that the
H-hypothesis (see, for instance, Elliott et al. [2]) is satisfied under P by the filtrations F and G so
that, for every u ∈ R+,

P (τ > u | Ft) = P (τ > u | Fu) , ∀ t ∈ [u,∞).

The main tool in a construction of a random time with a given Azéma supermartingale will be a
locally equivalent change of a probability measure. For this reason, we first present some results
related to Girsanov’s theorem in the present set-up.

3.1 Properties of (P,G)-Martingales

It order to define the Radon-Nikodým density process, we first analyze the properties of (P,G)-
martingales. The following auxiliary result is based on El Karoui et al. [3], in the sense that it can
be seen as a consequence of Theorem 5.7 therein. For the sake of completeness, we provide a simple
proof of Proposition 3.1. In what follows, Z stands for a càdlàg, F-adapted, P-integrable process,
whereas Zt(u) denotes an O(F) ⊗ B(R+)-measurable map, where O(F) stands for the F-optional
σ-field in Ω× R+ (for details, see [3]).

Proposition 3.1. Assume that the H-hypothesis is satisfied under P by the filtrations F and G. Let
the G-adapted, P-integrable process ZG be given by the formula

ZGt = Zt1{τ>t} + Zt(τ)1{τ≤t}, ∀ t ∈ R+, (11)

where:
(i) the projection of ZG onto F, which is defined by

ZFt := EP
(
ZGt

∣∣Ft

)
= Zt P (τ > t | Ft) + EP

(
Zt(τ)1{τ≤t}

∣∣Ft

)
,

is a (P,F)-martingale,
(ii) for any fixed u ∈ R+, the process (Zt(u), t ∈ [u,∞)) is a (P,F)-martingale.
Then the process ZG is a (P,G)-martingale.

Proof. Let us take s < t. Then

EP
(
ZGt

∣∣Gs

)
= EP

(
Zt1{τ>t}

∣∣Gs

)
+ EP

(
Zt(τ)1{s<τ≤t}

∣∣Gs

)
+ EP

(
Zt(τ)1{τ≤s}

∣∣Gs

)
= I1 + I2 + I3.

For I1 and I2, we apply the standard formula

I1 + I2 = 1{τ>s}
1

GPs
EP

(
ZtG

P
t

∣∣Fs

)
+ 1{τ>s}

1
GPs
EP

(
Zt(τ)1{s<τ≤t}

∣∣Fs

)
,
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whereas for I3, we obtain

I3 = EP
(
Zt(τ)1{τ≤s}

∣∣Gs

)
= 1{τ≤s}EP (Zt(u) | Fs)u=τ = 1{τ≤s}EP (Zs(u) | Fs)u=τ = 1{τ≤s}Zs(τ),

where the first equality holds under the H-hypothesis1 (see Section 3.2 in El Karoui et al. [3]) and
the second follows from (ii). It thus suffices to show that I1 + I2 = Zs1{τ>s}. Condition (i) yields

EP
(
ZtG

P
t

∣∣Fs

)
+ EP

(
Zt(τ)1{τ≤t}

∣∣Fs

)− EP
(
Zs(τ)1{τ≤s}

∣∣Fs

)
= ZsG

P
s .

Therefore,

I1 + I3 = 1{τ>s}
1

GPs

(
ZsG

P
s + EP

(
(Zs(τ)− Zt(τ))1{τ≤s}

∣∣Fs

))
= Zs1{τ>s},

where the last equality holds since

EP
(
(Zs(τ)− Zt(τ))1{τ≤s}

∣∣Fs

)
= 1{τ≤s}EP ( (Zs(u)− Zt(u)) | Fs)u=τ = 0.

For the last equality in the formula above, we have again used condition (ii) in Proposition 3.1. 2

In order to define a probability measure Q locally equivalent to P under which (1) holds, we will
search for a process ZG satisfying the following set of assumptions.

Assumption 3.1. The process ZG is a G-adapted and P-integrable process given by

ZGt = Zt1{τ>t} + Zt(τ)1{τ≤t}, ∀ t ∈ R+, (12)

such that the following properties are valid:
(A.1) the projection of ZG onto F is equal to one, that is, ZFt := EP

(
ZGt

∣∣Ft

)
= 1 for every t ∈ R+,

(A.2) Zt(τ) is such that the process ZG is a strictly positive (P,G)-martingale.

Remarks 3.1. Since P(τ > 0) = 1 is clear that ZG0 = Z0 = 1, so that EP(ZGt ) = 1 for every
t ∈ R+. We will later define a probability measure Q using the process ZG as the Radon-Nikodým
density. Then condition (A.1) will imply that the restriction of Q to F equals P and, together with
the equality Z = N , will give us control over the Azéma supermartingale of τ under Q. Let us also
note that assumption (A.1) implies that condition (i) of Proposition 3.1 is trivially satisfied.

The following lemma provides a simple condition, which is equivalent to property (A.1).

Lemma 3.1. The projection of ZG on F equals ZFt := EP
(
ZGt

∣∣Ft

)
= 1 if and only if the processes

Z and Zt(τ) satisfy the following relationship

Zt =
1− EP

(
Zt(τ)1{τ≤t}

∣∣Ft

)

P (τ > t | Ft)
. (13)

Proof. Straightforward calculations yield

EP
(
ZGt

∣∣Ft

)
= EP

(
Zt1{τ>t} + Zt(τ)1{τ≤t}

∣∣Ft

)
= Zt P (τ > t | Ft) + EP

(
Zt(τ)1{τ≤t}

∣∣Ft

)
= 1.

The last equality is equivalent to formula (13).

We find it convenient to work with the following assumption, which is more explicit and slightly
stronger than Assumption 3.1.

Assumption 3.2. We postulate that the processes Z and Zt(u) are such that:
(B.1) equality (13) is satisfied,
(B.2) for every u ∈ R+, the process (Zt(u), t ∈ [u,∞)) is a strictly positive (P,F)-martingale.

Lemma 3.2. Assumption 3.2 implies Assumption 3.1.
1Essentially, this equality holds, since under the H-hypothesis the σ-fields Ft and Gs are conditionally independent

given Fs.
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Proof. In view of Lemma 3.1, the conditions (A.1) and (B.1) are equivalent. In view of Proposition
3.1, conditions (B.1) and (B.2) imply (A.2).

Remarks 3.2. It is not true that Assumption 3.1 implies Assumption 3.2, since it is not true that
Assumption 3.1 implies condition (B.2), in general. However, if the intensity (λu, u ∈ R+) of τ
under P exists then one can show that for any u ∈ R+ the process (Zt(u)λuGu, t ∈ [u,∞)) is a
(P,F)-martingale (see El Karoui et al. [2]). This property implies in turn condition (B.2) provided
that the intensity process λ does not vanish.

3.2 Girsanov’s Theorem

To establish a suitable version of Girsanov’s theorem, we need to specify a set-up in which the
H-hypothesis is satisfied. Let Λ be an F-adapted, continuous, increasing process with Λ0 = 0 and
Λ∞ = ∞. We define a random time τ using the canonical construction, that is, by setting

τ = inf {t ∈ R+ : Λt ≥ Θ}, (14)

where Θ is an exponentially distributed random variable with parameter 1, independent of F∞, and
defined on a suitable extension of the space Ω. In fact, we identify the probability space Ω with its
extension so that the probability measures P and Q will be defined on the same space.

It is easy to check that in the case of the canonical construction, the H-hypothesis is satisfied
under P by the filtrations F and G. Moreover, the Azéma supermartingale of τ with respect to F
under P equals

GPt := P (τ > t | Ft) = e−Λt , ∀ t ∈ R+.

Under Assumption 3.2, the strictly positive (P,G)-martingale ZG given by (cf. (12))

ZGt = Zt1{τ>t} + Zt(τ)1{τ≤t}, ∀ t ∈ R+, (15)

defines a probability measure Q on (Ω,G∞), locally equivalent to P, by setting dQ
dP

∣∣Gt = ZGt for every
t ∈ R+.

The next result describes the conditional distributions of τ under a locally equivalent probability
measure Q.

Proposition 3.2. Under Assumption 3.2, let the probability measure Q locally equivalent to P be
given by (15). Then the following properties hold:
(i) the restriction of Q to the filtration F is equal to P,
(ii) the Azéma supermartingale of τ under Q satisfies

GQt := Q (τ > t | Ft) = Zte
−Λt , ∀ t ∈ R+, (16)

(iii) for every u ∈ R+,

Q (τ > u | Ft) =

{
EP

(
Zue−Λu

∣∣Ft

)
, t ≤ u,

Zte
−Λt + EP

(
Zt(τ)1{u<τ≤t}

∣∣Ft

)
, t ≥ u.

(17)

Proof. We will now check that (16) is satisfied. By the abstract Bayes formula

Q (τ > t | Ft) =
EP

(
ZGt 1{τ>t}

∣∣Ft

)

EP
(
ZGt

∣∣Ft

) =
EP

(
Zt1{τ>t}

∣∣Ft

)

ZFt
= Zt P (τ > t | Ft) = Zte

−Λt ,

as expected. Using the abstract Bayes formula, we can also find expressions for the conditional
probabilities Q (τ > u | Ft) for every u, t ∈ R+. For a fixed u ∈ R+ and every t ∈ [0, u], we simply
have that

Q (τ > u | Ft) = Q (Q (τ > u | Fu) | Ft) = EP
(
Zue−Λu

∣∣Ft

)
.
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For a fixed u ∈ R+ and every t ∈ [u,∞), we obtain

Q (τ > u | Ft) =
EP

(
ZGt 1{τ>u}

∣∣Ft

)

EP
(
ZGt

∣∣Ft

) = EP
((

Zt1{τ>t} + Zt(τ)1{τ≤t}
)
1{τ>u}

∣∣Ft

)

= EP
(
Zt1{τ>t} + Zt(τ)1{u<τ≤t}

∣∣Ft

)
= Zt P (τ > t | Ft) + EP

(
Zt(τ)1{u<τ≤t}

∣∣Ft

)

= ZtG
P
t + EP

(
Zt(τ)1{u<τ≤t}

∣∣Ft

)
= Zte

−Λt + EP
(
Zt(τ)1{u<τ≤t}

∣∣Ft

)
.

This completes the proof.

Remarks 3.3. (i) It is worth stressing that the H-hypothesis does not hold under Q. This property
follows immediately from (16), since under the H-hypothesis the Azéma supermartingale is neces-
sarily a decreasing process.
(ii) It is not claimed that τ is a finite random time under Q. Indeed, this property holds if and only
if

lim
t→∞

Q(τ > t) = lim
t→∞

EQ(Zte
−Λt) =: c = 0,

otherwise, we have that Q(τ = ∞) = c. Of course, if Q is equivalent to P then necessarily Q(τ <
∞) = 1 since from (14) we deduce that P(τ < ∞) = 1 (this is a consequence of the assumption that
Λ∞ = ∞).
(iii) We observe that the formula

GQt := Q (τ > t | Ft) = Zte
−Λt , ∀ t ∈ R+, (18)

represents the multiplicative decomposition of the Azéma supermartingale GQ if and only if the
process Z is a (Q,F)-local martingale or, equivalently, if Z is a (P,F)-local martingale (it is worth
stressing that Assumption 3.2 does not imply that Z is a (P,F)-martingale; see Example 3.1). In
other words, an equivalent change of a probability measure may result in a change of the decreasing
component in the multiplicative decomposition as well. The interested reader is referred to Section
6 in El Karoui et al. [2] for a more detailed analysis of the change of a probability measure in the
framework of the so-called density approach to the modelling of a random time.

Example 3.1. To illustrate the above remark, let us set Zt(u) = 1/2 for every u ∈ R+ and t ∈ [0, u].
Then the process ZG, which is given by the formula

ZGt =
1− (1/2)P (τ ≤ t | Ft)

P (τ > t | Ft)
1{τ>t} + (1/2)1{τ≤t},

satisfies Assumption 3.2. The process Z is not a (P,F)-local martingale, however, since

Zt =
1 + P (τ > t | Ft)
2P (τ > t | Ft)

=
1 + e−Λt

2e−Λt
.

Moreover, the Azéma supermartingale of τ under Q equals, for every t ∈ R+,

Q (τ > t | Ft) = Zte
−Λt =

1
2
(1 + e−Λt) = e−Λ̂t ,

where Λ̂ is an F-adapted, continuous, increasing process different from Λ. Note, however, that ZG is
not a uniformly integrable (P,G)-martingale and Q is not equivalent to P on G∞ since Λ̂∞ = ln 2 <
∞, so that Q(τ < ∞) < 1. Note that the martingale ZGt has a jump at time τ , an this in fact implies
the processes Λ and Λ̂ do not coincide. We will see in the sequel (cf. Lemma 4.2) that, under mild
technical assumptions, it is neccesary to set Zt(t) = Zt when solving Problem (P), so that the density
process ZG is continuous at τ . This is by no means surprising, since this equality was identified in
El Karoui et al. [2] within the density approach as the crucial condition for the preservation of the
F-intensity of a random time τ under an equivalent change of a probability measure.
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4 Construction Through a Change of Measure

We are in a position to address the issue of finding a solution (τ,Q) to Problem (P). Let N be
a strictly positive (P,F)-local martingale with N0 = 1 and let Λ be an F-adapted, continuous,
increasing process with Λ0 = 0 and Λ∞ = ∞. We postulate, in addition, that Gt = Ne−Λ ≤ 1.
Recall that a strictly positive local martingale is a supermartingale; this implies, in particular, that
the process N is P-integrable.

Before we proceed to an explicit construction of a random time τ and a probability measure Q,
let us show that for any solution (τ,Q) to Problem (P), we necessarily have that Q(τ < ∞) = 1.

Lemma 4.1. For any solution (τ,Q) to Problem (P), we have that Q(τ = ∞) = 0.

Proof. Note first that

Q(τ = ∞) = lim
t→∞

Q(τ > t) = lim
t→∞

EQ (Q (τ > t | Ft)) = lim
t→∞

EP (Q (τ > t | Ft)) = lim
t→∞

EP
(
Nte

−Λt
)
.

Since N is a strictly positive (P,F)-local martingale, and thus a positive supermartingale, we have
that limt→∞Nt =: N∞ < ∞, P-a.s. By assumption 0 ≤ Nte

−Λt ≤ 1, and thus the dominated
convergence theorem yields

Q(τ = ∞) = lim
t→∞

EP
(
Nte

−Λt
)

= EP
(

lim
t→∞

Nte
−Λt

)
= EP

(
N∞ lim

t→∞
e−Λt

)
= 0,

where the last equality follows from the assumption that Λ∞ = ∞.

In the first step, using the canonical construction, we define a random time τ by formula (14).
In the second step, we propose a suitable change of a probability measure.

In order to define a probability measure Q locally equivalent to P under which (1) holds, we wish
to employ Proposition 3.2 with Z = N . To this end, we postulate that Assumption 3.2 is satisfied
by Z = N and a judiciously selected O(F) ⊗ B(R+)-measurable map Zt(u). The choice of a map
Zt(u), for a given in advance process N , is studied in what follows.

Let Q be defined by (15) with Z replaced by N . Then, by Proposition 3.2, we conclude that the
Azéma supermartingale of τ under Q equals

GQt := Q (τ > t | Ft) = Nte
−Λt , ∀ t ∈ R+. (19)

By the same token, formula (17) remains valid when Z is replaced by N .

Our next goal is to investigate Assumption 3.2, which was crucial in the proof of Proposition 3.2
and thus also in obtaining equality (19). For this purpose, let us formulate the following auxiliary
problem, which combines Assumption 3.2 with the assumption that N = Z.

Problem (P.1) Let a strictly positive (P,F)-local martingale N with N0 = 1 be given. Find an
O(F)⊗ B(R+)-measurable map Zt(u) such that the following conditions are satisfied:
(i) for every t ∈ R+,

1−Nt P (τ > t | Ft) = EP
(
Zt(τ)1{τ≤t}

∣∣Ft

)
, (20)

(ii) for any fixed u ∈ R+, the process (Zt(u), t ∈ [u,∞)) is a strictly positive (P,F)-martingale.

Of course, equality (20) is obtained by combining (B.1) with the equality Z = N . If, for a given
process N , we can find a solution (Zt(u), t ∈ [u,∞)) to Problem (P.1) then the pair (Zt, Zt(u)) =
(Nt, Zt(u)) will satisfy Assumption 3.2.

To examine the existence of a solution to Problem (P.1), we note first that formula (20) can be
represented as follows

1−GPt Nt = EP
(
Zt(τ)1{τ≤t}

∣∣Ft

)
=

∫ t

0

Zt(u) dP (τ ≤ u | Ft) .
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Since the H-hypothesis is satisfied under P, the last formula is equivalent to

1−GPt Nt =
∫ t

0

Zt(u) dP (τ ≤ u | Fu) =
∫ t

0

Zt(u) d
(
1−GPu

)
= −

∫ t

0

Zt(u) dGPu.

Since we work under the standing assumption that GPt = e−Λt , we thus obtain the following equation,
which is equivalent to (20)

Nte
−Λt = 1 +

∫ t

0

Zt(u) de−Λu . (21)

We conclude that, within the present set-up, Problem (P.1) is equivalent to the following one.

Problem (P.2) Let a strictly positive (P,F)-local martingale N with N0 = 1 be given. Find an
O(F)⊗ B(R+)-measurable map Zt(u) such that the following conditions hold:
(i) for every t ∈ R+

Nte
−Λt = 1 +

∫ t

0

Zt(u) de−Λu , (22)

(ii) for any fixed u ∈ R+, the process (Zt(u), t ∈ [u,∞)) is a strictly positive (P,F)-martingale.

Assume that Ẑt := Zt(t) is an F-optional process. We will now show that the equality N = Ẑ
necessarily holds for any solution to (22), in the sense made precise in Lemma 4.2. In particular,
it follows immediately from this result that the processes N and Ẑ are indistinguishable when Ẑ is
an F-adapted, càdlàg process and the process Λ has strictly increasing sample paths (for instance,
when Λt =

∫ t

0
λu du for some strictly positive intensity process λ).

Lemma 4.2. Suppose that Zt(u) solves Problem (P.2) and the process (Ẑt, t ∈ R+) given by Ẑt =
Zt(t) is F-optional. Then N = Ẑ, ν-a.e., where the measure ν on (Ω × R+,O(F)) is generated by
the increasing process Λ, that is, for every s < t and any bounded, F-optional process V

ν(1[s,t[V ) = EP
( ∫ t

s

Vu dΛu

)
.

Proof. The left-hand side in (22) has the following Doob-Meyer decomposition

Nte
−Λt = 1 +

∫ t

0

e−Λu dNu +
∫ t

0

Nu de−Λu , (23)

whereas the right-hand side in (22) can be represented as follows

1 +
∫ t

0

Zt(u) de−Λu = 1 +
∫ t

0

(Zt(u)− Ẑu) de−Λu +
∫ t

0

Ẑu de−Λu = 1 + I1(t) + I2(t), (24)

where I2 is an F-adapted, continuous process of finite variation. We will show that I1 is a (P,F)-
martingale, so that right-hand side in (24) yields the Doob-Meyer decomposition as well. To this
end, we need to show that the equality EP (I1(t) | Fs)= I1(s) holds for every s < t or, equivalently,

EP
(∫ t

0

Zt(u) de−Λu −
∫ s

0

Zs(u) de−Λu

∣∣∣∣Fs

)
= EP

(∫ t

s

Ẑu de−Λu

∣∣∣∣Fs

)
. (25)

We first observe that, for every s < t,

EP
(∫ s

0

Zs(u) de−Λu

∣∣∣∣Fs

)
= EP

(∫ s

0

EP (Zt(u) | Fs) de−Λu

∣∣∣∣Fs

)
= EP

(∫ s

0

Zt(u) de−Λu

∣∣∣∣Fs

)
,

and thus the right-hand side in (25) satisfies

EP
(∫ t

s

Zt(u) de−Λu

∣∣∣∣Fs

)
= EP

(∫ t

s

EP (Zt(u) | Fu) de−Λu

∣∣∣∣Fs

)
= EP

(∫ t

s

Ẑu de−Λu

∣∣∣∣Fs

)
,
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where we have used the following equality, which holds for every F-adapted, continuous process A
of finite variation and every càdlàg process V (not necessarily F-adapted)

EP
(∫ t

s

Vu dAu

∣∣∣∣Fs

)
= EP

(∫ t

s

EP (Vu | Fu) dAu

∣∣∣∣Fs

)
.

We thus see that (25) holds, so that I1 is a (P,F)-martingale. By comparing the right-hand sides in
(23) and (24) and using the uniqueness of the Doob-Meyer decomposition, we conclude that

∫ t

0

(Nu − Ẑu) de−Λu = 0, ∀ t ∈ R+.

The formula above implies that N = Ẑ, ν̃-a.e., where the measure ν̃ on (Ω×R+,O(F)) is generated
by the decreasing process e−Λu . It is easily see that the measures ν̃ and ν are equivalent and thus
N = Ẑ, ν-a.e.

To address the issue of existence of a solution to Problem (P.2) (note that it is not claimed that
a solution Zt(u) to Problem (P.2) is unique), we start by postulating that, as in the filtering case
described in Section 2, an O(F)⊗ B(R+)-measurable map Zt(u) satisfies: Zt(u) = XtYt∧u for some
F-adapted, continuous, strictly positive processes X and Y . It is then easy to check that condition
(ii) implies that the process X is necessarily a (P,F)-martingale. Moreover, equation (22) becomes

Nte
−Λt = 1 + Xt

∫ t

0

Yu de−Λu . (26)

Note that at this stage we are searching for a pair (X, Y ) of strictly positive, F-adapted processes
such that X is a (P,F)-martingale and equality (26) holds for every t ∈ R+. In view of Lemma 4.2,
it is also natural to postulate that N = XY . We will then be able to find a simple relation between
processes X and Y (see formula (27) below) and thus to reduce the dimensionality of the problem.

Lemma 4.3. (i) Assume that a pair (X, Y ) of strictly positive processes is such that the process
Zt(u) = XtYt∧u solves Problem (P.2) and the equality N = XY holds. Then the process X is a
(P,F)-martingale and the process Y equals

Yt = Y0 +
∫ t

0

eΛu d

(
1

Xu

)
. (27)

(ii) Conversely, if X is a strictly positive (P,F)-martingale and the process Y given by (27) is strictly
positive, then the process Zt(u) = XtYt∧u solves Problem (P.2) for the process N = XY .

Proof. For part (i), we observe that under the assumption that N = XY , equation (26) reduces to

XtYte
−Λt = 1 + Xt

∫ t

0

Yu de−Λu , (28)

which in turn is equivalent to

Yte
−Λt =

1
Xt

+
∫ t

0

Yu de−Λu . (29)

The integration by parts formula yields

1
Xt

= Y0 +
∫ t

0

e−Λu dYu

and this in turn is equivalent to (27). To establish part (ii), we first note that (27) implies (28),
which means that (22) is satisfied by the processes N = XY and Zt(u) = XtYt∧u. It is also clear
that for any fixed u ∈ R+, the process (Zt(u), t ∈ [u,∞)) is a strictly positive (P,F)-martingale.
Let us also note that, by the Itô formula, the process XY satisfies

d(XtYt) = Yt dXt − eΛt(1/Xt) dXt, (30)

and thus it is a strictly positive (P,F)-local martingale.
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We conclude that in order to find a solution Zt(u) = XtYt∧u to Problem (P.2), it suffices to solve
the following problem.

Problem (P.3) Assume that we are given a strictly positive (P,F)-local martingale N with N0 = 1
and an F-adapted, continuous, increasing process Λ with Λ0 = 0 and Λ∞ = ∞. Find a strictly
positive (P,F)-martingale X such that for the process Y given by (27) we have that N = XY .

The following corollary is an easy consequence of part (ii) in Lemma 4.3.

Corollary 4.1. Assume that a process X solves Problem (P.3) and let Y be given by (27). Then
the processes Z = N and Zt(u) = XtYt∧u solve Problem (P.2) and thus they satisfy Assumption 3.2.

5 Case of a Brownian Filtration

The aim of this section is to examine the existence of a solution to Problem (P.3) under the following
standing assumptions:
(i) the filtration F is generated by a Brownian motion W ,
(ii) we are given an F-adapted, continuous, increasing process Λ with Λ0 = 0 and Λ∞ = ∞ and a
strictly positive (P,F)-local martingale N satisfying

Nt = 1 +
∫ t

0

νuNu dWu, ∀ t ∈ R+, (31)

for some F-predictable process ν,
(iii) the inequality Gt := Nte

−Λt < 1 holds for every t > 0, so that Nt < eΛt for every t > 0.

We start by noting that X is postulated to be a strictly positive (P,F)-martingale and thus it is
necessarily given by

Xt = exp
( ∫ t

0

xs dWs − 1
2

∫ t

0

x2
s ds

)
, ∀ t ∈ R+, (32)

where the process x is yet unknown. The goal is to specify x in terms N and Λ in such a way that
the equality N = XY will hold for Y given by (27).

Lemma 5.1. Let X be given by (32) with the process x satisfying

xt =
νtNt

Nt − eΛt
, ∀ t ∈ R+. (33)

Assume that x is a square-integrable process. Then the equality N = XY holds, where the process
Y given by (27) with Y0 = 1.

Proof. Using (30) and (32), we obtain

d(XtYt) = Yt dXt − eΛt(1/Xt) dXt = YtxtXt dWt − eΛt(1/Xt) xtXt dWt,

and thus
d(XtYt) = xt

(
XtYt − eΛt

)
dWt. (34)

Let us denote V = XY . Then V satisfies the following SDE

dVt = xt (Vt − eΛt) dWt. (35)

In view of (33), it is clear that the process N solves this equation as well. Hence to show that the
equality N = XY holds, it suffices to show that a solution to the SDE (35) is unique. We note that
we deal here with the integral equation of the form

Vt = Ht +
∫ t

0

xuVu dWu. (36)
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We will show that a solution to (36) is unique. To this end, we argue by contradiction. Suppose
that V i, i = 1, 2 are any two solutions to (36). Then the process U = V 1 − V 2 satisfies

dUt = xtUt dWt, U0 = 0, (37)

which admits the obvious solution U = 0. Suppose that Û is a non-null solution to (37). Then the
Doléans-Dade equation dXt = xtXt dWt, X0 = 1 would admit the usual solution X given by (32)
and another solution X + Û 6= X, and this well known to be false. We conclude that (37) admits
a unique solution, and this in turn implies the uniqueness of a solution to (36). This shows that
N = XY , as was stated.

The following result is an immediate consequence of Corollary 4.1 and Lemma 5.1.

Corollary 5.1. Let the filtration F be generated by a Brownian motion W on (Ω,G,F,P). Assume
that we are given an F-adapted, continuous supermartingale G such that Gt < 1 for every t > 0 and

Gt = Nte
−Λt , ∀ t ∈ R+, (38)

where Λ is an F-adapted, continuous, increasing process with Λ0 = 0 and Λ∞ = ∞, and N is a
strictly positive F-local martingale, so that there exists an F-predictable process ν such that

Nt = 1 +
∫ t

0

νuNu dWu, ∀ t ∈ R+. (39)

Let X be given by (32) with the process x satisfying

xt =
νtGt

Gt − 1
, ∀ t ∈ R+. (40)

Then:
(i) the equality N = XY holds for the process Y given by (27),
(ii) the processes Z = N and Zt(u) = XtYt∧u satisfy Assumption 3.2.

In the next result, we denote by τ the random time defined by the canonical construction on a
(possibly extended) probability space (Ω,G,F,P). By construction, the Azéma supermartingale of
τ with respect to F under P equals

GPt := P (τ > t | Ft) = e−Λt , ∀ t ∈ R+.

Let us note that, since the H-hypothesis is satisfied, the Brownian motion W remains a Brownian
motion with respect to the enlarged filtration G under P. It is still a Brownian motion under Q with
respect to the filtration F, since the restriction of Q to F is equal to P. However, the process W is
not necessarily a Brownian motion under Q with respect to the enlarged filtration G.

The following result furnishes a solution to Problem (P) within the set-up described at the
beginning of this section.

Proposition 5.1. Under the assumptions of Corollary 5.1, we define a probability measure Q locally
equivalent to P by the Radon-Nikodým density process ZG given by formula (12) with Zt = XtYt = Nt

and Zt(u) = XtYt∧u or, more explicitly,

ZGt = Nt1{τ>t} + XtYt∧τ1{τ≤t}, ∀ t ∈ R+. (41)

Then the Azéma supermartingale of τ with respect to F under Q satisfies

Q (τ > t | Ft) = XtYte
−Λt = Nte

−Λt , ∀ t ∈ R+. (42)

Moreover, the conditional distribution of τ given Ft satisfies

Q (τ > u | Ft) =

{
EP

(
Nue−Λu

∣∣Ft

)
, t < u,

Nte
−Λt + Xt EP

(
Yτ1{u<τ≤t}

∣∣Ft

)
, t ≥ u.
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Proof. In view of Corollary 5.1, Assumption 3.2 is satisfied and thus the probability measure Q is
well defined by the Radon-Nikodým density process ZG given by (15), which is now equivalent to
(41). Therefore, equality (42) is an immediate consequence of Proposition 3.2. Using (17), for every
u ∈ R+, we obtain, for every t ∈ [0, u]

Q (τ > u | Ft) = EP
(
Zue−Λu

∣∣Ft

)
= EP

(
Nue−Λu

∣∣Ft

)
,

whereas for every t ∈ [u,∞), we get

Q (τ > u | Ft) = Zte
−Λt + EP

(
Zt(τ)1{u<τ≤t}

∣∣Ft

)

= XtYte
−Λt + EP

(
XtYt∧τ1{u<τ≤t}

∣∣Ft

)

= Nte
−Λt + Xt EP

(
Yτ1{u<τ≤t}

∣∣Ft

)
,

as required.

Example 5.1. This example is related to the filtering problem examined in Section 2. Let W =
(Wt, t ∈ R+) be a Brownian motion defined on the probability space (Ω,G,P) and let F be its natural
filtration. We wish to model a random time with the Azéma semimartingale with respect to the
filtration F given by the solution to the following SDE (cf. (3))

dGt = −λGt dt +
b

σ
Gt(1−Gt) dWt, G0 = 1. (43)

A comparison theorem for SDEs implies that 0 < Gt < 1 for every t > 0. Moreover, by an application
of the Itô formula, we obtain

Gt = Nte
−λt, ∀ t ∈ R+,

where the martingale N satisfies

dNt =
b

σ
(1−Gt)Nt dWt. (44)

As in Section 3, we start the construction of τ by first defining a random variable Θ with exponential
distribution with parameter 1 and independent of F∞ under P and by setting

τ = inf {t ∈ R+ : λt ≥ Θ}.
In the second step, we propose an equivalent change of a probability measure. For this purpose, we
note that the process x is here given by (cf. (33))

xt =
νtNt

Nt − eλt
= − b

σ
Gt,

and thus x is a bounded process. Next, in view of (32) and (44), the process X solves the SDE

dXt = − b

σ
GtXt dWt,

and the process Y satisfies (cf. (27))

dYt = eλt d
( 1

Xt

)
=

Nt

Xt

( b

σ
dWt +

b2

σ2
Gt dt

)
.

The integration by parts formula yields

d

(
Nt

Xt

)
=

1
Xt

dNt + Nt d

(
1

Xt

)
+ d

[
1
X

, N

]

t

=
Nt

Xt

b

σ
(1−Gt) dWt +

Nt

Xt

(
b

σ
Gt dWt +

b2

σ2
G2

t dt

)
+

Nt

Xt

b2

σ2
Gt(1−Gt) dt

=
Nt

Xt

( b

σ
dWt +

b2

σ2
Gt dt

)
.
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It is now easy to conclude that N = XY , as was expected. Under the probability measure Q
introduced in Proposition 5.1, we have that

GQt := Q (τ > t | Ft) = Gt = Nte
−λt, ∀ t ∈ R+.

Moreover, the conditional distribution of τ given Ft satisfies

Q (τ > u | Ft) =

{
EP

(
Nue−λu

∣∣Ft

)
= Nte

−λu, t < u,

Nte
−λt + Xt EP

(
Yτ1{u<τ≤t}

∣∣Ft

)
, t ≥ u.

Since τ is here independent of F∞, we obtain, for t ≥ u,

EP
(
Yτ1{u<τ≤t}

∣∣Ft

)
=

∫ t

u

Yvλe−λv dv = −
∫ t

u

Yv de−λv = Yue−λu − Yte
−λt +

(
1

Xt
− 1

Xu

)
,

where the last equality can be deduced, for instance, from (29). Therefore, for every t ≥ u

Q (τ > u | Ft) = 1− Xt

Xu
+ XtYue−λu.

We conclude that, for every t, u ∈ R+,

Q(τ > u | Ft) = 1− Xt

Xu∧t
+ XtYu∧te

−λu.

It is interesting to note that this equality agrees with the formula (7), which was established in
Proposition 2.1 in the context of filtering problem using a different technique.

6 Applications to Valuation of Credit Derivatives

We will examine very succinctly the importance of the multiplicative decomposition of the Azéma
supermartingale (i.e., the survival process) of a random time for the risk-neutral valuation of credit
derivatives. Unless explicitly stated otherwise, we assume that the interest rate is null. This as-
sumption is made for simplicity of presentation and, obviously, it can be easily relaxed.

As a risk-neutral probability, we will select either the probability measure P or the equivalent
probability measure Q defined here on (Ω,GT ), where T stands for the maturity date of a credit
derivative. Recall that within the framework considered in this paper the survival process of a
random time τ is given under P and Q by the following formulae

GPt := P (τ > t | Ft) = e−Λt ,

and
GQt := Q (τ > t | Ft) = Nte

−Λt ,

respectively. The random time τ is here interpreted as the default time of a reference entity of a
credit derivative.

We assume from now on that the increasing process Λ satisfies Λt =
∫ t

0
λu du for some non-

negative, F-progressively measurable process λ. Then we have the following well known result.

Lemma 6.1. The process M , given by the formula

Mt = 1{τ≤t} −
∫ t∧τ

0

λu du,

is a G-martingale under the probability measures P and Q.
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The property established in Lemma 6.1 is frequently adopted in the financial literature as the
definition of the default intensity λ. In the present set-up, Lemma 6.1 implies that the default
intensity is the same under the equivalent probability measures P and Q, despite the fact that the
corresponding survival processes GP and GQ are different (recall that we postulate that N is a
non-trivial local martingale). Hence the following question arises: is the specification of the default
intensity λ sufficient for the risk-neutral valuation of credit derivatives related to a reference entity?
Similarly as in El Karoui et al. [2], we will argue that the answer to this question is negative. To
support our claim, we will show that the risk-neutral valuation of credit derivatives requires the full
knowledge of the survival process, and thus the knowledge of the decreasing component Λ of the
survival process in not sufficient for this purpose, in general.

To illustrate the importance of martingale component N for the valuation of credit derivatives,
we first suppose Λ = (Λt, t ∈ R+) is deterministic. We will argue that in that setting the process N
has no influence on the prices of some simple credit derivatives, such as: a defaultable zero-coupon
bond with zero recovery or a stylized credit default swap (CDS) with a deterministic protection
payment. This means that the model calibration based on these assets will only allow us to recover
the function Λ, but will provide no information regarding the local martingale component N of
the survival process GQ. However, if the assumptions of the deterministic character of Λ and/or
protection payment of a CDS are relaxed, then the corresponding prices will depend on the choice of
N as well, and thus the explicit knowledge of N becomes important (for an example, see Corollary
6.1). As expected, this feature becomes even more important when we deal with a credit risk model
in which the default intensity λ is stochastic, as is typically assumed in the financial literature.

6.1 Defaultable Zero-Coupon Bonds

By definition, the risk-neutral price under Q of the T -maturity defaultable zero-coupon bond with
zero recovery equals, for every t ∈ [0, T ],

DQ(t, T ) := Q(τ > T | Gt) = 1{τ>t}
Q(τ > T | Ft)

GQt
= 1{τ>t}

EQ
(
NT e−ΛT | Ft

)

GQt
. (45)

Assuming that Λ is deterministic, we obtain the pricing formulae independent of N . Indeed, the
risk-neutral price of the bond under P equals, for every t ∈ [0, T ],

DP(t, T ) := P(τ > T | Gt) = 1{τ>t} e−(ΛT−Λt).

On the other hand, using (45) and the fact that the restriction of Q to F is equal to P, we obtain

DQ(t, T ) := Q(τ > T | Gt) = 1{τ>t}
1

Nte−Λt
EQ(NT e−ΛT | Ft)

= 1{τ>t}
1

Nte−Λt
e−ΛT EP(NT | Ft) = 1{τ>t} e−(ΛT−Λt),

where we have assumed that N is a (true) (P,F)-martingale.

If we allow for a stochastic process Λ, then the role of N in the valuation of defaultable zero-
coupon bonds becomes important, as can be seen from the following expressions

DP(t, T ) = 1{τ>t}
1

e−Λt
EP

(
e−ΛT | Ft

)

and

DQ(t, T ) = 1{τ>t}
1

Nte−Λt
EQ

(
NT e−ΛT | Ft

)
= 1{τ>t}

1
Nte−Λt

EP
(
NT e−ΛT | Ft

)
,

where the last equality follows from the standing assumption that the restriction of Q to F is equal
to P. We thus see that the inequality DP(t, T ) 6= DQ(t, T ) is likely to hold when Λ is stochastic.
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In the case of a stochastic interest rate, the bond valuation problem is more difficult. Let the
discount factor β = (βt, t ∈ R+) be defined by

βt = exp
(
−

∫ t

0

rs ds

)
,

where the short-term interest rate process r = (rt, t ∈ R+) is assumed to be F-adapted. Then the
risk-neutral prices under P and Q of the T -maturity defaultable zero-coupon bond with zero recovery
are given by the following expressions

DP(t, T ) = 1{τ>t}
1

e−Λtβt
EP

(
e−ΛT βT | Ft

)

and
DQ(t, T ) = 1{τ>t}

1
Nte−Λtβt

EP
(
NT e−ΛT βT | Ft

)
.

Once again, it is clear that the role of the martingale component of the survival process is non-trivial,
even in the case when the default intensity is assumed to be deterministic.

6.2 Credit Default Swaps

Let us now consider a stylized CDS with the protection payment process R and fixed spread κ,
which gives protection over the period [0, T ]. It is known that the risk-neutral price under P of this
contract is given by the formula, for every t ∈ [0, T ],

SPt := EP
(
1{t<τ≤T}Rτ − κ

(
(T ∧ τ)− (t ∨ τ)

) ∣∣∣Gt

)
. (46)

In the case where Λt =
∫ t

0
λu du, one can also show that (see Bielecki et al. [1])

SPt = 1{τ>t}
1

GPt
EP

( ∫ T

t

GPu(Ruλu − κ) du
∣∣∣Ft

)
. (47)

Analogous formulae are valid under Q, if we decide to choose Q as a risk-neutral probability.

To analyze the impact of N on the value of the CDS, let us first consider the special case when
the default intensity λ and the protection payment R are assumed to be deterministic. In that case,
the risk-neutral price of the CDS under P can be represented as follows

SPt = 1{τ>t} eΛt

∫ T

t

e−Λu(Ruλu − κ) du.

For the risk-neutral price under Q, we obtain

SQt = 1{τ>t}
1

GQt
EQ

( ∫ T

t

GQu (Ruλu − κ) du
∣∣∣Ft

)

= 1{τ>t}
1

GQt

∫ T

t

EP
(
GQu

∣∣Ft

)
(Ruλu − κ) du

= 1{τ>t}
1

Nte−Λt

∫ T

t

EP
(
Nu

∣∣Ft

)
e−Λu(Ruλu − κ) du

= 1{τ>t} eΛt

∫ T

t

e−Λu(Ruλu − κ) du,

where in the second equality we have used once again the standing assumption that the restriction
of Q to F is equal to P and the last one holds provided that N is a (P,F)-martingale. It is thus clear
that the equality SPt = SQt holds for every t ∈ [0, T ], so that the price of the CDS does not depend
on the particular choice of N when λ and R are deterministic.
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Let us now consider the case when the intensity λ is assumed to be deterministic, but the
protection payment R is allowed to be stochastic. Since our goal is to provide an explicit example,
we postulate that R = 1/N , though we do not pretend that this is a natural choice of the protection
payment process R.

Corollary 6.1. Let us set R = 1/N and let us assume that the default intensity λ is deterministic.
If the process N is a (P,F)-martingale then then the fair spread κP0 of the CDS under P satisfies

κP0 =

∫ T

0
EP

(
(Nu)−1

)
λue−Λu du

∫ T

0
e−Λu du

(48)

and the fair spread κQ0 under Q equals

κQ0 =
1− e−ΛT

∫ T

0
e−Λu du

. (49)

Proof. Recall that the fair spread at time 0 is defined as the level of κ for which the value of the
CDS at time 0 equals zero, that is, S0(κ) = 0. By applying formula (47) with t = 0 to risk-neutral
probabilities P and Q, we thus obtain

κP0 =
EP

(∫ T

0
GPuRuλu du

)

EP
(∫ T

0
GPu du

)

and

κQ0 =
EQ

(∫ T

0
GQuRuλu du

)

EQ
(∫ T

0
GQu du

) .

Let us first observe that the denominators in the two formulae above are in fact equal since

EP
( ∫ T

0

GPu du

)
=

∫ T

0

e−Λu du

and

EQ
( ∫ T

0

GQu du

)
= EQ

( ∫ T

0

Nte
−Λu du

)
=

∫ T

0

EQ(Nt)e−Λu du =
∫ T

0

EP(Nt)e−Λu du =
∫ T

0

e−Λu du

since the restriction of Q to F equals P and N is a (P,F)-martingale, so that EP(Nt) = 1 for every
t ∈ [0, T ]. For the numerators, using the postulated equality R = 1/N , we obtain

EP
( ∫ T

0

GPuRuλu du

)
= EP

( ∫ T

0

(Nu)−1λue−Λu du

)
=

∫ T

0

EP
(
(Nu)−1

)
λue−Λu du

and

EQ
( ∫ T

0

GQuRuλu du

)
=

∫ T

0

λue−Λu du = 1− e−ΛT .

This proves equalities (48) and (49).

Formulae (48) and (49) make it clear that the fair spreads κP0 and κQ0 are not equal, in general.
This example supports our claim that the knowledge of the default intensity λ, even in the case
when λ is deterministic, is not sufficient for the determination of the risk-neutral price of a credit
derivative, in general. To conclude, a specific way in which the default time of the underlying entity is
modeled should always be scrutinized in detail, and, when feasible, the multiplicative decomposition
of the associated survival process should be computed explicitly.
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d’Evry Val d’Essonne in November 2008. The warm hospitality from the Département de Mathéma-
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