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1 Outline

This is a survey paper in which we present a selection of methods and results regarding various applications
of the theory of continuous time Markov chains to valuation of credit derivatives. We present both theoretical
and numerical aspects of the Markovian methodology.

After a review of some basic notions and results from the theory of continuous-time Markov chains in
section 2, sections 3 to 5 are devoted to the study of a few specific Markovian models of portfolio credit risk.
This survey article is intended to illustrate the power and flexibility of the Markov chain approach to portfolio
credit risk, yet it is by no means exhaustive and we refer the reader to, for instance, Frey and Backhaus
[21, 20, 19], Cont and Minca [16], Albanese [1], Halperin and Tomecek [24] or Lopatin and Misirshapaev
[36], for other models, and more specifically to Frey and Backhaus [21], Bielecki et al. [12, 8] and Laurent,
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Cousin and Fermanian [34] regarding the issue of hedging, which we do not really discuss here due space
limitations.

The full version of this paper can be found in Oxford Handbook of Credit Derivatives, A. Lipton and A.
Rennie, eds. .

2 Continuous-Time Markov Chains

The material presented in this section is, for the most part, taken from Chapter 11 of [11], to which we refer in
particular for the proofs of all results. For a more exhaustive treatment of Markov chains, we refer to any of a
large variety of available monographs on the theory of stochastic processes, to mention a few: Bhattacharya
and Waymire [7], Syski [47], Last and Brandt [33], and Rogers and Williams [42].

Since most Markov chain models used in portfolio credit risk are time-continuous, we shall focus on
continuous-time Markov chains (except for the notion of discrete-time Markov Chain embedded to a continuous-
time Markov chain which is dealt with in Section 2.3). However it should be noted that completely analogous
developments are in fact valid relatively to discrete time Markov chains (see Chapter 11 of [11]), which is
relevant to credit risk when it comes to model implementation, which often proceeds via time discretization
(see, for instance, Section 3.1.4).

After an introduction to time-inhomogeneous as well as time-inhomogeneous Markov chains, we exam-
ine conditional expectations, which in the financial interpretation is of course relevant for pricing purposes.
We then consider some ‘fundamental’ martingales with respect to certain relevant filtrations, and we derive
related martingale representation theorems. In the context of finance, such martingale representation are key
to the issue of hedging (see, e.g., Frey and Backhaus [19], Bielecki et al. [12, 8] or Laurent, Cousin and Fer-
manian [34]). We also deal with various examples of random times associated with a Markov chain, such as
the jump times and the absorption time, which in the context of credit risk are related to the issue of deriving
univariate (see section 2.5) or multivariate (see section 4.1.2) default, survival and conditional default and
survival distributions. Finally, we study the behavior of a time-homogeneous Markov chain under an equiva-
lent change of a probability measure. In applications such equivalent changes of measure can be interpreted
and used as a bridge between the statistical measure and a risk-neutral measure (see, e.g., Section 3.1.1 and
[12]), or as a change of numeraire (see, e.g., [9], cf. Section 3.1).

In what follows, we fix the underlying probability space (Ω,G,ℚ), as well as a finite set K = {1, . . . ,K},
which plays the role of the state space for a Markov chain of interest. Since the state space is finite, it is clear
that any function ℎ : K → ℝ is bounded and measurable, provided that we endow the state space with the
�-field of all its subsets.

Let Ct, t ∈ ℝ+, be a right-continuous stochastic process on (Ω,G,ℚ) with values in the finite set K, and
let FC be the filtration generated by this process. Also, let G be some filtration such that FC ⊆ G.

Definition 2.1 A process C is a continuous-time G-Markov chain if for an arbitrary function ℎ : K → ℝ and
any s, t ∈ ℕ we have

Eℚ(ℎ(Ct+s) ∣ Gt) = Eℚ(ℎ(Ct+s) ∣Ct).

A continuous-time G-Markov chain C is said to be time-homogeneous if, in addition, for any s, t, u ∈ ℕ we
have

Eℚ(ℎ(Ct+s) ∣Ct) = Eℚ(ℎ(Cu+s) ∣Cu).

Definition 2.2 A two-parameter family P(t, s), t, s ∈ ℝ+, t ≤ s, of stochastic matrices is called the family
of transition probability matrices for the G-Markov chain C under ℚ if, for every t, s ∈ ℝ+, t ≤ s,

ℚ{Cs = j ∣Ct = i} = pij(t, s), ∀ i, j ∈ K.

In particular, the equality P(t, t) = Id is satisfied for every t ∈ ℝ+.
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2.1 Time-homogeneous chains

In case of a time-homogeneous Markov chain C, we introduce the following definition.

Definition 2.3 The one-parameter family P(t), t ∈ ℝ+, of stochastic matrices is called the family of transi-
tion probability matrices for the time-homogeneous G-Markov chain C under ℚ if, for every t, s ∈ ℝ+,

ℚ{Cs+t = j ∣Cs = i} = pij(t), ∀ i, j ∈ K. (1)

If P(t), t ∈ ℝ+ is the family of transition matrices for C then for any subset A ⊆ K we have

ℚ{Ct+s ∈ A ∣Ct} =
∑

j∈A

pCtj(s), ∀ s, t ∈ ℝ+.

Moreover, the Chapman-Kolmogorov equation is satisfied, namely,

P(t+ s) = P(t)P(s) = P(s)P(t), ∀ s, t ∈ ℝ+.

Equivalently, for every s, t ∈ ℝ+ and i, j ∈ K,

pij(t+ s) =

K∑

k=1

pik(t)pkj(s) =

K∑

k=1

pik(s)pkj(t).

Let the K-dimensional (row) vector �0 = [�0(i)]1≤i≤K = [ℚ{C0 = i}]1≤i≤K denote the initial probability
distribution for the Markov chain C under ℚ.

Likewise, let the (row) vector �t = [�t(i)]1≤i≤K = [ℚ{Ct = i}]1≤i≤K stand for the probability distribution
of C at time t ∈ ℝ+. It can be easily checked that

�t+s = �0P(t+ s) = �tP(s) = �sP(t), ∀ s, t ∈ ℝ+.

We now impose an important assumption on the family P(⋅), specifically, that this family is right-
continuous at time t = 0, that is, limt↓0 P(t) = P(0). By virtue of the Chapman-Kolmogorov equation,
this implies that

lim
s→0

P(t+ s) = P(t), ∀ t > 0,

and thus
lim
s→0

ℚ{Ct+s = j ∣Ct = i} = �ij , ∀ i, j ∈ K, t > 0.

It is a well-known fact (see, for instance, Theorem 8.1.2 in Rolski et al. (1998)) that the right-hand side
continuity at time t = 0 of the family P(⋅) implies the right-hand side differentiability at t = 0 of this family.
More specifically, the following finite limits exist, for every i, j ∈ K,

�ij := lim
t↓0

pij(t)− pij(0)

t
= lim

t↓0

pij(t)− �ij
t

. (2)

Observe that for every i ∕= j we have �ij ≥ 0, and �ii = −
∑K

j=1, j ∕=i �ij . The matrix Λ := [�ij ]1≤i,j≤K

is called the infinitesimal generator matrix for a Markov chain associated with the family P(⋅) via (1). Since
each entry �ij of the matrix Λ can be shown to represent the intensity of transition from the state i to the state
j, the infinitesimal generator matrix Λ is also commonly known as the intensity matrix.

Invoking the Chapman-Kolmogorov equation and equality (2), one may derive the backward Kolmogorov
equation

dP(t)

dt
= ΛP(t), P(0) = Id, (3)

and the forward Kolmogorov equation

dP(t)

dt
= P(t)Λ, P(0) = Id, (4)
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where, at time t = 0, we take the right-hand side derivatives. It is well known that both these equations have
the same unique solution:

P(t) = etΛ :=

∞∑

n=0

Λntn

n!
, ∀ t ∈ ℝ+. (5)

We conclude that the generator matrix Λ uniquely determines all relevant probabilistic properties of a time-
homogeneous Markov chain.

The following important result provides a martingale characterization of a time-homogeneous Markov
chain C in terms of its infinitesimal generator. For the proof of Proposition 2.1, we refer to Last and Brandt
[33] or Rogers and Williams [42]. In the quoted references, the corresponding result is stated for an FC-
Markov chain, rather than for a G-Markov chain. However, the proof of this more general version is analo-
gous. For any state i ∈ K and any function ℎ : K → ℝ, we denote

(Λℎ)(i) =
K∑

j=1

�ijℎ(j).

Proposition 2.1 A process C is a time-homogeneous G-Markov chain under ℚ, with the initial distribution
�0 and with the infinitesimal generator matrix Λ, if and only if the following conditions are satisfied:
(i) ℚ{C0 = i} = �0(i) for every i ∈ K,
(ii) for any function ℎ : K → ℝ the process Mℎ, defined by the formula

Mℎ
t = ℎ(Ct)−

∫ t

0

(Λℎ)(Cu) du, ∀ t ∈ ℝ+,

follows a G-martingale under ℚ.

Example 2.4 Let C be a time-homogeneous G-Markov chain with the infinitesimal generator matrix Λ.
Applying Proposition 2.1 to the function ℎ(⋅) = 11{i}(⋅), we conclude that the process

M i
t = H i

t −

∫ t

0

�Cui du, ∀ t ∈ ℝ+, (6)

follows a G-martingale (and an F
C-martingale) under ℚ. Conversely, if for every i ∈ K the process M i

follows a G-martingale, then for any function ℎ : K → ℝ the process Mℎ is a G-martingale under ℚ.

2.2 Time-inhomogeneous chains

If a Markov chain is time-inhomogeneous, the time-dependent transition intensities are introduced through
the formula1

�ij(t) = lim
ℎ↓0

pij(t, t+ ℎ)− �ij
ℎ

.

It is obvious that �ij(t) ≥ 0 for arbitrary i ∕= j, and

�ii(t) = lim
ℎ↓0

pii(t, t+ ℎ)− 1

ℎ
= − lim

ℎ↓0

∑K
j=1, j ∕=i pij(t, t+ ℎ)

ℎ
= −

K∑

j=1, j ∕=i

�ij(t),

where
pij(t, t+ ℎ) = ℚ{Ct+ℎ = j ∣Ct = i}, ∀ i, j ∈ K.

We shall write Λ(t) = [�ij(t)]1≤i,j≤K to denote the infinitesimal generator matrix function associated with
a time-inhomogeneous Markov chain C.

1Let us mention that mild regularity conditions need to be satisfied by the probabilities pij(s, t) for the results of this subsection to
be valid.
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The two parameter family P(t, s) = [pij(t, s)]1≤i,j≤K , 0 ≤ t ≤ s, of transition matrices for C satisfies
the Chapman-Kolmogorov equation:

P(t, s) = P(t, u)P(u, s), ∀ t ≤ u ≤ s,

the forward Kolmogorov equation:

dP(t, s)

ds
= P(t, s)Λ(s), P(t, t) = Id, (7)

and the backward Kolmogorov equation:

dP(t, s)

dt
= −Λ(t)P(t, s), P(s, s) = Id. (8)

The next result is an immediate consequence of Kolmogorov’s equations.

Corollary 2.2 The family P(t, s), 0 ≤ t ≤ s, satisfies the integral equations

P(t, s) = Id +

∫ s

t

P(t, u)Λ(u) du

and

P(t, s) = Id +

∫ s

t

Λ(u)P(u, s) du.

The above equations can be used in order to derive some remarkable representations, which are important
from the computational point of view, and which are counterparts of (5). For the proof of Corollary 2.3, the
interested reader is referred to Rolski et al. [43] (see Theorem 8.4.4 therein).

Corollary 2.3 For every 0 ≤ t ≤ s we have

P(t, s) = Id +

∞∑

n=1

∫ s

t

∫ s

u1

⋅ ⋅ ⋅

∫ s

un−1

Λ(u1) . . .Λ(un) dun . . . du1,

and

P(t, s) = Id +

∞∑

n=1

∫ s

t

∫ u1

t

⋅ ⋅ ⋅

∫ un−1

t

Λ(u1) . . .Λ(un) dun . . . du1.

Assume that the matrix function Λ(t) = [�ij(t)]1≤i,j≤K satisfies the conditions, which characterize the
infinitesimal generator of an inhomogeneous Markov chain, namely,

�ij(t) ≥ 0, i ∕= j, �ii(t) = −
K∑

j=1, j ∕=i

�ij(t).

For any function ℎ : K → ℝ, we introduce the mapping Λℎ : K × ℝ+ → ℝ by setting:

(Λℎ)(i, t) =

K∑

j=1

�ij(t)ℎ(j), ∀ i ∈ K, t ∈ ℝ+.

The following result is a natural extension of Proposition 2.1.

Proposition 2.4 A process C is a G-Markov chain under ℚ, with the initial distribution �0 and with the
infinitesimal generator matrix function Λ(⋅), if and only if:
(i) ℚ{C0 = i} = �0(i) for every i ∈ K,
(ii) for any function ℎ : K → ℝ the process Mℎ, defined by the formula

Mℎ
t = ℎ(Ct)−

∫ t

0

(Λℎ)(Cu, u) du, t ∈ ℝ+, (9)

follows a G-martingale under ℚ.
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Example 2.5 Let C be a time-inhomogeneousG-Markov chain with the infinitesimal generator matrix func-
tion Λ(⋅). By applying Proposition 2.4 to the function ℎ(⋅) = 11{i}(⋅), we find that the process

M i
t = H i

t −

∫ t

0

�Cui(u) du, ∀ t ∈ ℝ+, (10)

follows a G-martingale (and an FC-martingale) under ℚ. Similarly as in the time-homogeneous case, if for
every i ∈ K the process M i is a G-martingale, then for any function ℎ : K → ℝ the process Mℎ, given by
formula (9), also follows a G-martingale.

2.3 Embedded Discrete-Time Markov Chain

Let Ct, t ∈ ℝ+, stand for a continuous-time time-homogeneous G-Markov chain (and thus a Markov chain
w.r.t. its own filtration) under ℚ with the infinitesimal generator Λ. Let �n, n ∈ ℕ, denote the random
sequence of successive jump times of C. More explicitly, for any n ∈ ℕ, the random variable �n defined as
(by convention, �0 = 0):

�n = inf {t > �n−1 : Ct ∕= C�n−1
}, (11)

represents the time of the nth jump (or transition) forC. Let us recall few classic results related to the behavior
of a continuous-time Markov chain at its jump times.

First, it is well known that the following property holds, for any n ∈ ℕ and every t ∈ ℝ+,

ℚ{�n − �n−1 > t ∣C�n−1
= i} = e�iit, ∀ i = 1, . . . ,K. (12)

Equality (12) makes it clear that, conditionally on the position C�n−1
= i at the jump time �n−1, the random

time that elapses until the next jump occurs has an exponential probability law with the parameter −�ii > 0.

Second, the conditional probabilities of transitions are known to satisfy:

ℚ{C�n = j ∣C�n−1
= i} = pij := −

�ij

�ii

, ∀ i, j ∈ K, i ∕= j. (13)

Formula (13) specifies the conditional probability law of a continuous-time Markov chain C after its nth

jump, given the position after the (n − 1)th jump (it coincides, of course, with the position of C just before
the nth jump).

Let us emphasize that since C is assumed to be a time-homogeneous Markov chain, both probability laws
introduced above do not depend on the number of transitions in the past (that is, on n). They only depend on
the value taken by C after the previous jump.

Define a random sequence Ĉn = C�n for every n ∈ ℕ. It is well known that the sequence Ĉ is a
time-homogeneous Markov chain under ℚ with the one-step transition probability matrix P = [pij ]1≤i,j≤K .

The discrete-time Markov chain Ĉn, n ∈ ℕ, is called the embedded Markov chain corresponding to the
continuous-time Markov chain C.

Remark 2.6 In the case of a time-inhomogeneousG-Markov chainC, one may define likewise the embedded
Markov process in discrete time (�n, C�n)n ∈ ℕ, defined over the extended time-space state by the following
analogs of (12), (13)

ℚ{�n − �n−1 > t ∣C�n−1
= i} = e

∫
t

�n−1
�ii(u)du

, ∀ i = 1, . . . ,K. (14)

ℚ{C�n = j ∣C�n−1
= i , �n = t} = pij(t) := −

�ij(t)

�ii(t)
, ∀ i, j ∈ K, i ∕= j. (15)

The results of this subsection are important in practice regarding the issue, for instance, of numerical
simulation (See e.g., Section 3.1.4).



8

2.4 Conditional Expectations

We say that a state k ∈ K is absorbing for a time-homogeneousG-Markov chain Ct, t ∈ ℝ+, if the following
holds:

ℚ{Cs = k ∣Ct = k} = 1, ∀ t, s ∈ ℝ+, t ≤ s.

In view of (2), it is clear that if a state k ∈ K is absorbing, then we have �kj = 0 for every j = 1, . . . ,K.

>From now on, we shall postulate that the state K is absorbing. This implies that the infinitesimal
generator of C under ℚ is given by the intensity matrix Λ of the following form:

Λ =

⎛
⎜⎜⎝

�1,1 . . . �1,K−1 �1,K

. . . . . .
�K−1,1 . . . �K−1,K−1 �K−1,K

0 . . . 0 0

⎞
⎟⎟⎠ .

We assume that the initial state C0 = x ∕= K is fixed, and we denote by � the random time of absorption at
K, i.e., � = inf {t > 0 : Ct = K}. We assume that � < ∞, ℚ-a.s.; this implies that the state K is the only
recurrent state for C. As usual, we write H i

t = 11{Ct=i} and Ht = 11{�≤t} = 11{Ct=K} = HK
t .

In the next few auxiliary results, we shall deal with the conditional expectations with respect to the
filtrations G and F

C . The absorption time � is, of course, an F
C-stopping time and a G-stopping time. In

what follows, Y will denote an integrable random variable, which is defined on the reference probability
space (Ω,G,ℚ).

Lemma 2.5 We have
11{�≤t}Eℚ(Y ∣ Gt) = Eℚ(11{�≤t}Y ∣ Gt ∨ �(�))

and
11{�≤t}Eℚ(Y ∣ ℱC

t ) = Eℚ(11{�≤t}Y ∣ ℱC
t ∨ �(�)).

In the next lemma, we examine the case when the random variable Y has the form ℎ(C�−, �) for some
function ℎ : K × ℝ+ → ℝ.

Lemma 2.6 Let Y = ℎ(C�−, �) for some function ℎ : K × ℝ+ → ℝ. Then

Eℚ(11{�>t}Y ∣ Gt) =

K−1∑

i=1

H i
t Eℚ(11{�>t}Y ∣Ct = i).

The next two auxiliary results are simple corollaries to Lemma 2.6.

Corollary 2.7 Let Y = ℎ(C�−, �) for some function ℎ : K × ℝ+ → ℝ. Then

Eℚ(Y ∣ Gt) = 11{�≤t}Y +

K−1∑

i=1

H i
t Eℚ(11{�>t}Y ∣Ct = i).

Corollary 2.8 For any s, t ∈ ℝ+, the following equalities are valid

ℚ{� > s ∣ Gt} = 11{s≤t}11{�>s} + 11{s>t}

K−1∑

i=1

H i
t ℚ{� > s ∣Ct = i},

and

ℚ{� ≥ s ∣ Gt} = 11{s≤t}11{�≥s} + 11{s>t}

K−1∑

i=1

H i
t ℚ{� ≥ s ∣Ct = i}.
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2.5 Probability Distribution of the Absorption Time

We maintain the assumptions of section 2.4. More explicit formulae for the conditional expectations with
respect to the �-field Gt can be obtained, if the knowledge of conditional laws of C is used. Notice that for
every 0 ≤ t ≤ s we have

ℚ{� > s ∣Ct = i} = 1−ℚ{Cs = K ∣Ct = i} = 1− piK(s− t),

hence, the first formula of Corollary 2.8 can be rewritten as follows:

ℚ{� > s ∣ Gt} = 11{s≤t}11{�>s} + 11{s>t}

K−1∑

i=1

H i
t

(
1− piK(s− t)

)
. (16)

To derive an alternative representation for the probability distribution of the absorption time, let us denote by
Λ̃ the matrix obtained from Λ by deleting the last row and the last column. Also, let P̃(t) = [p̃ij(t)]i,j∈K̃

stand for the associated transition matrix, where K̃ = {1, . . . ,K − 1}.

Recall that the quantity ℚ{� > s ∣Ct = i} is of fundamental importance when studying the spread for a
defaultable bond, see e.g. p.496-497 in [31].

It is not difficult to check that the so-called taboo probabilities p̃ij(t), i, j ∈ K̃ can be found by solving
the following differential equation:

d

dt
P̃(t) = Λ̃P̃(t), t > 0, (17)

with the initial condition P̃(0) = Id.

It is also clearly seen that (recall that we have assumed that C0 = i ∈ K̃)

F (t) = 1−
K−1∑

j=1

p̃ij(t) = 1−
K−1∑

j=1

pij(t). (18)

Since F (t) < 1 for every t ∈ ℝ+, we may introduce the hazard function Γ of � by setting Γ(t) = − ln(1−
F (t)). Denoting by f(t) the density of F (t) with respect to the Lebesgue measure, and setting (t) =

f(t)(1− F (t))−1, we obtain Γ(t) =
∫ t

0
(u) du. In view of (18), we have

f(t) = −
K−1∑

j=1

dp̃ij(t)

dt
= −

K−1∑

j=1

dpij(t)

dt
.

Corollary 2.9 For every t ∈ ℝ+ and any i = 1, . . . ,K − 1, the conditional law of the absorption time � is
given by the formula

ℚ{� ≤ t ∣C0 = i} = 1−
K−1∑

j=1

pij(0, t).

Remark 2.7 (Phase-type distributions) Let � be the initial distribution of C on E = {1, . . . ,K − 1},
i.e. � = (ℚ{C0 = j})K−1

j=1 and assume that ℚ{C0 = K} = 0. Furthermore, note that we can rewrite the
generator Λ as

Λ =

(
T t

0 0

)

where t is a column vector with K − 1 rows. We assume that Ct is transient on E = {1, . . . ,K − 1} so
that T is invertible. Recall the definition of the time of absorbtion � = inf {t > 0 : Ct = K} and let
F (t) = ℚ{� ≤ t}. We then say that F (t), is a phase-type distribution (PH-distribution) with representation
(E,�,T ), or for short (�,T ). Sometime we also say that � is phase-type distributed with representation
(�,T ). The matrix T is called the phase generator and t the exit vector. The following proposition can be
found in [3] and [43].



10

Proposition 2.10 Let F be a PH-distribution with representation (E,�,T ). Then

F (t) = 1−�eT t
1

f(t) = �eT tt

E [�n] = (−1)nn!�T−n
1

F̂ [s] =

∫ ∞

0

e−stf(t)dt = �
(
sI − T−1

)
t

where f(t) is the density of F (t), F̂ [s] is the Laplace-transform of f(t), t = −T1 and 1
T = (1, 1, . . . , 1) ∈

ℝK−1.

Note that the above quantities are computationally tractable given that we use mathematical software with
a matrix-package. A short discussion of computing the matrix exponential is given in Appendix in the full
version of the paper.

Phase-type distributions are dense (in a weak convergence sense) in the set of all probability distributions
on ℝ+ = [0,∞), see [3], [43]. Hence, any random variable on [0,∞) can be approximated by a properly
chosen PH-distribution. Furthermore, PH-distributions are closed under convolution and mixing.

All of the above properties have made phase-type distributions to be an important tool in queuing and
reliability theory, but also in insurance, see e.g. [2], [3], [39], [40] and [43]. In Sections 4.1 and 4.2 we will
discuss the multivariate extensions of PH-distribution, so called multivariate phase type distributions (MPH)
and their applications in portfolio credit risk.

2.6 Martingales Associated with Transitions

We shall now introduce some important examples of martingales associated with the absorption time � and
with the number of transitions. For any fixed i ∕= j, let H ij

t stand for the number of jumps of the process C
from i to j in the interval (0, t]. Formally, for any i ∕= j we set

H ij
t :=

∑

0<u≤t

H i
u−H

j
u, ∀ t ∈ ℝ+.

The following result is classic (see Brémaud [14], Last and Brandt [33] or Rogers and Williams [42]).

Lemma 2.11 For every i, j ∈ K, i ∕= j, the processes

M ij
t = H ij

t −

∫ t

0

�ijH
i
u du = H ij

t −

∫ t

0

�CujH
i
u du (19)

and

MK
t = Ht −

∫ t

0

K−1∑

i=1

�iKH i
u du = Ht −

∫ t

0

�CuK(1−Hu) du (20)

follow G-martingales (and F
C-martingales).

2.7 Change of a Probability Measure

We shall now examine how the Markov property and the generatorΛ of the time-homogeneous Markov chain
C are affected by a change of the reference probability measure ℚ to an equivalent probability measure ℚ∗

on (Ω,GT∗) for some fixed T ∗ > 0. Let us emphasize that we do not need to assume here that the state K is
absorbing.
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Consider a family �̃kl, k, l ∈ K, k ∕= l, of bounded, FC-predictable, real-valued processes, such that
�̃kl
t > −1. For the sake of notational convenience, we also introduce processes �̃kk ≡ 0 for k = 1, . . . ,K.

Let us define an auxiliary G-martingale M (which is also an FC-martingale) by setting

Mt =

∫

]0,t]

K∑

k,l=1

�̃kl
u dMkl

u =

∫

]0,t]

K∑

k,l=1

�̃kl
u dHkl

u −M c
t , (21)

where M c
t is the path-by-path continuous component of the process M, i.e.,

M c
t =

∫ t

0

K∑

k,l=1

�̃kl
u �klH

k
u du.

Remark 2.8 From Theorem 21.15 in Rogers and Williams [42], we know that an arbitrary FC-local martin-
gale M under ℚ admits the following representation

Mt =
∑

0<u≤t

ℎu(Cu−, Cu)−

∫ t

0

K∑

j=1

�Cu−j ℎu(Cu−, j) du,

where, for any states i, j ∈ K, the process ℎ(i, j) is FC-predictable. In addition, we postulate that ℎ(j, j) ≡ 0.
Notice that the process M as in (21) can be obtained by setting:

ℎt(i, j) =

K∑

k,l=1

�̃kl
t �ik�jl.

Let us return to our problem. We fix a horizon date T ∗ < ∞, and we define an G-martingale �t, t ∈
[0, T ∗], by postulating that

�t = 1 +

∫

]0,t]

K∑

k,l=1

�u−�̃
kl
u dMkl

u . (22)

It is known that the unique solution to the SDE (22) equals, for every t ∈ [0, T ∗],

�t = e−Mc
t

∏

0<u≤t

(1 + ΔMu).

�t = e−Mc
t

∏

0<u≤t

(
1 +

K∑

k,l=1

�̃kl
u (Mkl

u −Mkl
u−)
)
.

Observe that

1 +
K∑

k,l=1

�̃kl
u (Mkl

u −Mkl
u−) = 1 +

K∑

k,l=1

�̃kl
u (Hkl

u −Hkl
u−). (23)

Since at most one of the differentials Hkl
u −Hkl

u− is equal to one, and all those that are not equal to one are
equal to zero, we see that the right-hand side of (23) is either equal to 1 + �̃ij

u for some i ∕= j ∈ K, or it is
equal to 1. Thus, in view of our assumption that �̃kl

u > −1 for all k ∕= l, we conclude that the product

∏

0<u≤t

(
1 +

K∑

k,l=1

�̃kl
u (Mkl

u −Mkl
u−)
)

is strictly positive. Consequently, the process � is strictly positive. Since, in addition, Eℚ(�T∗) = 1, we may
define a probability measure ℚ∗, equivalent to ℚ on (Ω,GT∗), by setting

dℚ∗

dℚ

∣∣∣
GT∗

= �T∗ , ℚ-a.s. (24)
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It is clear that for any date t ∈ [0, T ∗] we have

dℚ∗

dℚ

∣∣∣
Gt

= �t, ℚ-a.s.

Before proceeding further, we need to impose an additional measurability condition on processes �̃kl,
namely, we postulate that, for any fixed k, l ∈ K and t ∈ ℝ+, the random variable �̃kl

t is measurable with
respect to the �-field �(Ct). This implies that, for any fixed k, l ∈ K and t ∈ ℝ+, there exists a function
gklt : K → ℝ such that �̃kl

t = gklt (Ct).

We assume that for any i ∈ K there exists a version of gklt (i), t ∈ ℝ+ that is Borel measurable as a
function of t, and we introduce a family of functions �kl : ℝ+ → (−1,∞) by setting �kl(t) := gklt (k) for
every k, l ∈ K and t ∈ ℝ+.

To further simplify the exposition, we shall only consider processes �̃kl
t of the special form: �̃kl

t =
�kl(t), where for every k, l ∈ K, k ∕= l, the function �kl : ℝ+ → (−1,∞) is Borel measurable and
bounded. We thus may and do assume that �kk ≡ 0 for every k = 1, . . . ,K. Under this assumption, we
have the following result that provides sufficient conditions for a G-Markov chain C to remain a (time-
inhomogeneous, in general) G-Markov chain under ℚ∗.

Proposition 2.12 Let the probability measure ℚ∗ by defined by (24) with the Radon-Nikodým density �T∗

given by (22). Then
(i) the process Ct, t ∈ [0, T ∗], is a G-Markov chain under ℚ∗,
(ii) the infinitesimal generator matrix function Λ∗(t) = [�∗

ij(t)]1≤i,j≤K for C under ℚ∗ satisfies, for i ∕= j,

�∗
ij(t) = (1 + �ij(t))�ij , ∀ t ∈ [0, T ∗], (25)

and

�∗
ii(t) = −

K∑

j=1, j ∕=i

�∗
ij(t), ∀ t ∈ [0, T ∗], (26)

(iii) the two parameter family P∗(t, s), 0 ≤ s ≤ t ≤ T ∗, of transition matrices for C relative to ℚ∗ satisfies
the forward Kolmogorov equation

dP∗(t, s)

ds
= P∗(t, s)Λ∗(s), P∗(t, t) = Id,

and the backward Kolmogorov equation

dP∗(t, s)

dt
= −Λ∗(t)P∗(t, s), P∗(s, s) = Id.

It is clear that Λ∗(t) = Λ for every t ∈ [0, T ∗] if and only if �kl ≡ 0 for all k ∕= l. Letting �ij(t) =
1 + �ij(t), we obtain �∗

ij(t) = �ij(t)�ij .

Example 2.9 Suppose that �kl(t) = �k(t), for every k, l ∈ K, l ∕= k, and t ∈ [0, T ∗]. Then we obtain

Λ∗(t) = U(t)Λ, ∀ t ∈ [0, T ∗],

where U(t) is a diagonal K-dimensional matrix, specifically,

U(t) = diag [1 + �1(t), . . . , 1 + �K(t)].

This type of relation between the pricing and real measure was to the best of our knowledge first used in
Jarrow, Lando and Turnbull [31], see pp. 495 in [31].
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3 Markovian Models of Portfolio Credit Risk

In the remainder of this article we shall review some Markovian models of portfolio credit risk. We shall
be primarily concerned with models of dependent defaults, as well as models of the portfolio loss process.
However, in Subsection 3.1, we shall describe briefly a model of credit migrations; for a much more com-
prehensive study of Markovian models of credit migrations we refer to Chapter 12 in [11] and to references
therein. The models of dependent defaults discussed in the following sections may, in principle, be considered
as special cases of the model of Subsection 3.1.

3.1 Market Model

We begin with a brief description of the Markovian market model that was studied in [9, 13] with view at
valuation and hedging of basket credit instruments. This framework allows one to incorporate information
relative to the dynamic evolution of credit ratings in the pricing of basket instruments. We begin with some
notation.

As before we denote the underlying probability space by (Ω,G,ℚ), where ℚ is here and henceforth a risk
neutral measure inferred from the market. We endow this space with filtration G := ℍ∨F, which contains all
information available to market agents. Specifically, the filtration ℍ carries information about the evolution
of credit events, such as changes in credit ratings or defaults of respective credit names. The filtration F is a
reference filtration containing information pertaining to the evolution of relevant macroeconomic variables.

We consider N obligors (or credit names) and we assume that the current credit quality of each reference
entity can be classified into K := {1, 2, . . . ,K} rating categories. By convention, the categoryK corresponds
to default. Let X l, l = 1, 2, . . . , N be processes on (Ω,G,ℚ) taking values in the finite state space K. The
process X l represents the evolution of credit ratings of the lth reference entity. We define the default time �l
of the lth reference entity by setting

�l = inf{ t > 0 : X l
t = K} (27)

We assume that the default state K is absorbing, so that for each name the default event can only occur once.

We denote by X = (X1, X2, . . . , XN ) the joint credit rating process of the portfolio of N credit names.
The state space of X is X := KN and the elements of X will be denoted by x = {x1, . . . , xN}. We postulate
that the filtration ℍ is the natural filtration of the process X and that the filtration F is generated by a ℝ

n

valued factor process, Y , representing the evolution of relevant economic variables, like short rate or equity
price processes.

We assume that the process M = (X,Y ) is jointly Markov under ℚ, so that we have, for every 0 ≤ t ≤
s, x ∈ X , and any set Y from the state space of Y ,

ℚ(Xs = x, Ys ∈ Y ∣ℋt ∨ ℱY
t ) = ℚ(Xs = x, Ys ∈ Y ∣Xt, Yt). (28)

The process M is constructed as a Markov chain modulated by a Lévy process. We shall refer to X (Y ) as
the Markov chain (Lévy) component of M . Given Xt = x and Yt = y, the intensity matrix of the Markov
chain component is given by Λt = [�(x, x′; y)]x′∈X . The Lévy component satisfies the SDE:

dYt = b(Xt, Yt) dt+ �(Xt, Yt) dWt +

∫

ℝ
n
g(Xt−, Yt−, y

′)N(dy′, dt),

where, for a fixed y ∈ ℝ
n, N(dy′, dt) is a counting process with Lévy measure �(x, y, dy′) and �(x, y)

satisfies �(x, y)�(x, y)T = a(x, y). We provide the following structure to the generator of the process M .
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Af(x, y) = (1/2)

n∑

i,j=1

aij(x, y)∂i∂jf(x, y) +

n∑

i=1

bi(x, y)∂if(x, y)

+

∫

ℝ
n

(
f(x, y + g(x, y, y′))− f(x, y)

)
�(x, y; dy′) (29)

+
∑

x′∈X∖{x}

�(x, x′; y)f(x′, y).

We stress that, within the present set-up, the current credit rating of the credit name l directly impacts the
intensity of transition of the rating of the credit name l′, and vice versa. This property, known as frailty, may
contribute to default contagion.

Remark 3.1 (Valuation of Basket Credit Derivatives) The model described above can be used to price
various basket credit derivatives. In particular, computing the fair spreads of such products involves evaluating
conditional expectations, under the risk neutral measure ℚ, of some quantities related to the cash flows
associated to each instrument. For example, the fair spread at time 0 of the CDO equity tranche is (we refer
for details to [13], and to Section 3.1.2 for implementation issues):

�0 =
1

C0
Ex,y
ℚ

(∫ T

0

�tdM
0
t −

J∑

j=0

�tj .05(C0 −M0
tj
)
)
, (30)

and the fair spread at time 0 of a CDS index is

�0 =
Ex,y
ℚ

∑L
i=1 ��i(1− �)H i

T

Ex,y
ℚ

∑J
j=0 �tj

∑N
i=1

(
1−H i

tj
(1− �)

) . (31)

3.1.1 Markovian Changes of Measure

For applications like performing changes of numeraire (which can be useful for simplifying the evaluation of
quantities of the form (30) or (31, see [9]), or switching between the statistical and a risk-neutral measure (in
a situation where the above model M = (X,Y ) would in fact be given under the statistical measure, which
for pricing purposes would then need to be changed into a risk-neutral measure, see [13]), it is important to
be able to apply changes of measure to the model M, whilst preserving Markovianity.

Towards this end we briefly state some facts concerning Markovian changes of measure. Let Mt (such
as M = (X,Y ) above) be an E valued Markov process under ℙ with extended generator A (see [41]). In
addition define the process

Mf
t :=

f(Mt)

f(M0)
exp

(
−

∫ t

0

Af(Ms)

f(Ms)
ds

)
. (32)

Definition 3.2 We say that a strictly positive function f ∈ D(A) is a good function if M f
t is a genuine

martingale with Eℙ(M
f
t ) = 1.

Let f ∈ D(A) and ℎ be a good function in C(E) or ℳb(E) and define the operator

Aℎf = ℎ−1A(fℎ)− fA(ℎ). (33)

In view of Definition 3.2, process Mℎ may play the rôle of the Radon-Nikodym density between measure ℚ
and the resulting measure, say ℚℎ. We have the following result (cf. [41]).

Theorem 3.1 Let ℚℎ be the probability measure associated to the density process Mℎ
t . Then Mt is a Markov

process under ℚℎ with extended generator (Aℎ,D(A)).
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We now apply the above theorem to our model. The domain of D(A) contains all functions f(x, y) with
compact support that are twice continuously differentiable with respect to y. Let ℎ be a good function. By
application of Theorem 3.1, the generator of M under ℙℎ is given as (see [9])

Aℎf(x, y) = (1/2)

n∑

i,j=1

aij(x, y)∂i∂jf(x, y) +

n∑

i=1

bℎi (x, y)∂if(x, y)

+

∫

ℝ
n
(f(x, y + g(x, y, y′))− f(x, y)) �ℎ(x, y; dy′) +

∑

x′∈X

�ℎ(x, x′; y)f(x′, y),

where

bℎi (x, y) = bi(x, y) +
1

ℎ(x, y)

n∑

i,j=1

aij(x, y)∂jℎ(x, y),

�ℎ(x, y; dy′) =
ℎ(x, y + g(x, y, y′))

ℎ(x, y)
�(x, y; dy′), (34)

�ℎ(x, x′; y) = �(x, x′; y)
ℎ(x′, y)

ℎ(x, y)
, x ∕= x′, �ℎ(x, x; y) = −

∑

x′ ∕=x

�ℎ(x, x′; y).

3.1.2 Model Implementation

Expectations such as the ones appearing in the fair spread valuation formulae (30) or (31) above, can in princi-
ple be computed by numerical resolution of the related Kolmogorov valuation systems of reaction-diffusions
equations, or, in the special case of a time-homogeneous Markov chain model, by numerical exponentiation
of the model generator (see Sections 3.2-3.2.1). However all these analytical methods are limited in practice
to low-dimensional models by the curse of dimensionality. In general simulation methods are then the only
viable alternative. Implementation of the above Markovian model via simulation will now be described in
the special case where the dynamics of the factor process Y do not depend on the credit migrations process
X . The general case appears to be much harder.

3.1.3 Specification of Credit Ratings Transition Intensities

In order to alleviate the simulation of the model we specify the credit migrations intensity measure � in (29)
to be of the following form:

∑

x′∈X∖{x}

�(x, x′; y)f(x′, y) =

N∑

l=1

∑

�∈K

�l(x, x�
l ; y)f(x

�
l , y), (35)

where we write x�
l = (x1, x2, . . . , xl−1, �, xl+1, . . . , xN ).

Note that the model specified by (35) does not allow for simultaneous jumps of the components X l and
X l′ for l ∕= l′. In other words, the ratings of different credit names may not change simultaneously. The
advantage is that, for the purpose of simulation of paths of process X , rather than dealing with X × X
intensity matrix [�(x, x′; y)], we shall deal with N intensity matrices [�l(x, x�

l ; y)], each of dimension K×K
(for any fixed y).

We now provide further structure to the generator of the Markov chain component of the joint process
M = (X,Y ) and specify a general functional form for its transition intensities. We shall then briefly describe
a recursive procedure for simulating the evolution of the process X .

Because we need to simulate the joint process (X,Y ), it is important to specify its form in such a way
to avoid unnecessary computational complexity. As noted earlier, the structure of the generator A that we
postulate makes it so that simulation of the evolution of process X reduces to recursive simulation of the



16

evolution of processes X l, whose state spaces are only of size K each. In order to facilitate simulations
even further, we also postulate that each migration process X l behaves like a birth-and-death process with
absorption at default, and with possible jumps to default from every intermediate state. In addition, we shall
assume that the factor process, Y, is independent of X . Conditional upon (Xt, Yt) = (x, y), the infinitesimal
generator governing the evolution of the credit ratings of the lth name is the sub-stochastic matrix:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 3 ⋅ ⋅ ⋅ K − 1 K
1 �l

1,1 �l
1,2 0 ⋅ ⋅ ⋅ 0 �l

1,K

2 �l
2,1 �l

2,2 �l
2,3 ⋅ ⋅ ⋅ 0 �l

2,K

3 0 �l
3,2 �l

3,3 ⋅ ⋅ ⋅ 0 �l
3,K

...
...

...
...

. . .
...

...
K − 1 0 0 0 ⋅ ⋅ ⋅ �l

K−1,K−1 �l
K−1,K

K 0 0 0 ⋅ ⋅ ⋅ 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where, with a slight change of notation, �l
xl,�

= �l
xl,�

(x, y) = �l(x, x�
l ; y). The functional form of the

transition intensities should reflect the specific characteristics of the instruments we need to price and should
be chosen to obtain the best possible fit in the calibration phase.

3.1.4 Simulation Algorithm

In general, a simulation of the evolution of the process X entails high computational costs, as the the cardi-
nality of the state space of X is equal to KN . Thus, for example, in case of K = 18 rating categories, as
in Moody’s ratings, and in case of a portfolio of N = 100 credit ratings, the state space has 18100 elements.
However, the specific assumptions on the structure of the generator allow to simulate the process in a recur-
sive fashion, which has a relatively low computational complexity. We consider here simulations of sample
paths over a generic time interval, [t1, t2], where 0 ≤ t1 < t2, and assume that the time t1 state of the process
(X,Y ) is (x, y). Generating one sample path will, in general, involve the following steps:

Step 1: in Step 1, a sample path of the process Y is simulated. Recall that the dynamics of the factor process
are described by the SDE

dYt = b(Yt) dt+ �(Yt) dWt +

∫

ℝ
n
g(Yt−, y

′)N(dy′, dt)

Yt1 = y

Any standard procedure can be used to simulate a sample path of Y (the reader is referred, for example,
to Cont and Tankov [17]). We denote by Ŷ the simulated sample path of Y .

Step 2: generate a sample path of X on the interval [t1, t2].

Step 2.1: simulate the first jump time of the process X in the time interval [t1, t2]. Towards this end, draw
from a unit exponential distribution. We denote by �̂1 the value of the first draw. The simulated value
of the first jump time, � , is then given by:

� = inf
{
t > t1 :

∫ t

t1

�(x, Ŷu) du ≥ �̂1

}
,

where

�(x, Ŷt) := −
N∑

i=1

�i
xi,xi(x, Ŷt)
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and
�l
xl,xl(x, Ŷt) = −�l

xl,xl−1(x, Ŷt)− �l
xl,xl+1(x, Ŷt)− �l

xl,K(x, Ŷt).

If � > t2 return to step 1, otherwise go to Step 2.2.

Step 2.2: simulate which component of the vector process X jumps at time � , by drawing from the condi-
tional distribution:

(X l
� ∕= X l

�−) = −
�l
xl,xl(x, Ŷ� )

�(x, Ŷ� )
(36)

Recall that �l
xl,xl(x, Ŷt) = 0 if xl = K, since K is an absorbing state.

Step 2.3: assume the itℎ obligor jumps at �. Simulate the direction of the jump by drawing from the condi-
tional distribution

Qi(X i
� = �) = −

�i
xi,�

(x, Ŷ� )

�i
xi,xi(x, Ŷ� )

(37)

where
� = {xi − 1;xi + 1;K}

Step 2.4: update the state of X and set t1 = � . Repeat Steps 2.1-2.3 on [t1, t2] until � > t2

Step 3: calculate the simulated value of a relevant functional. For instance, assume that Y represents the
short rate process, and is used as a discount factor, i.e

∫ t

0 Yt = − lnBt. In order to compute the protection
leg of a CDS index, one would evaluate

L∑

i=1

B�i

Bt

(1− �)(H i
T −H i

t)(!)

at each run !, and obtain the Monte Carlo estimate by averaging over all sample paths.

Remark 3.3 An important issue in regard to simulation is variance reduction. Importance sampling is often
regarded as the method of choice when it comes to variance reduction. Importance sampling and related
particle methods for Markovian models of portfolio credit risk (in the Homogeneous Groups Model of Section
3.2 particularly) are dealt with in [15].

3.2 Homogeneous Groups Model

We now describe in some detail a more specific version of the previous model, considered for different
purposes by various authors in [8, 15, 20, 25], among others. In this specification of the model, there is no
factor process Y involved. We thus deal with a continuous-time Markov Chain denoted in this subsection by
N (cf. X above), relative to the filtration and F = F

N .

More precisely, a pool of n credit names is organized in d homogeneous groups of (� − 1) obligors (so
n = (� − 1)d, assuming n

d
integer), and N l represents the number of defaulted obligors in the ltℎ group

(instead of X l representing the credit rating of obligor l previously; so the interpretation of the Markov
chain has changed, but the mathematical structure of the model is preserved). Moreover we assume that the
N l’s can only jump one at a time and by one, so that we in fact deal with a d-variate Markov point process
N = (N1, ⋅ ⋅ ⋅ , Nd). For each l, the (F-)intensity of N l is assumed to be of the form

�l(Nt) = (� − 1−N l
t)�̃

l(Nt) , (38)

for an aggregated intensity function �l = �l({), and pre-default individual intensity function �̃l({), where
{ = (i1, ⋅ ⋅ ⋅ , id) ∈ ℐ = {0, 1, ⋅ ⋅ ⋅ , � − 1}d. We thus deal with a d-variate Markov point process N =
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(N1, ⋅ ⋅ ⋅ , Nd).

Since we assume that there are no common jumps between processes N l, so the jump intensities �l are in
one-to-one correspondence with the generator Λ of N , which consists of a �d ⊗ �d matrix Λ (a very sparse
matrix, since the components of N may only jump by one and only one at a time).

For d = 1, we recover the so called Local Intensity Model (birth-and-death process stopped at level n)
used by Laurent, Cousin and Fermanian [34], Cont and Minca [16] or Herbertsson [25] for modeling a credit
portfolio cumulative default process N . This model, which will be intensively used in Sections 4.1–4.2, can
be considered as the analog for credit derivatives of the local volatility model for equity and equity index
derivatives (analogous in the sense that at any given time in any loss derivatives model, there exists a local
intensity model with the same marginals for the portfolio loss process, see Cont and Minca [16] and Gyöngy
[23]).

At the other end of the spectrum, for d = n (i.e. when each group has only a single element), we are in
effect modeling the vector of default indicator processes H = (H i)1≤i≤n of the pool.

As d varies between 1 and n, we thus get a variety of models of credit risk, ranging from pure ‘top-down’
models for d = 1, to pure ‘bottom-up’ models for d = n (see [8]). Introducing parsimonious parame-
terizations of the intensities allows one to account for inhomogeneity between groups, and/or for defaults
contagion.

Other examples related to intensities as in (38) can be found in Section 2.3 and Section 2.5 in [6], where
a portfolio with 125 obligors is split in first three and then six subportfolios. Both examples uses intensities
similar to those in equation (38), with the aim to price CDO-tranches.

3.2.1 Pricing in the Homogeneous Groups Model

Since N is a Markov process and the portfolio cumulative default process N is a function of N , the model
price process of a (stylized) loss derivative (protection leg of a CDO tranche, say) with payoff �(NT ) writes,
for t ∈ [0, T ]:

Πt = E(�(NT )∣ℱt) = u(t,Nt) , (39)

where u(t, {) or u{(t) for t ∈ [0, T ] and { ∈ ℐ = Id, is the pricing function (system of time-functionals u{),
solution to the following pricing equation (system of ODEs) with generator Λ:

(∂t +Λ)u = 0 on [0, T ) ,

with terminal condition u{(T ) = �({), for { ∈ ℐ.
Likewise, the groups losses distribution at time t, that is, q{(t) = ℚ(Nt = {) for t ∈ [0, T ] and { ∈ ℐ, can be
characterized in terms of the associated forward Kolmogorov equations (see, e.g., [15]).
These pricing and transition probability backward and forward Kolmogorov equations can then be solved by
various means, like numerical matrix exponentiation (since the model is time-homogeneous, see Appendix
in the full version of the paper).

However, even if the matrix Λ is very sparse, its size is prohibitive in most cases as far as deterministic
numerical methods are concerned. For instance, in the case of d = 5 groups of � − 1 = 25 names, one gets
�2d = 2610. So for high values of d, Monte Carlo methods as of Section 3.1.4 appear to be the only viable
computational alternative. Appropriate variance reduction techniques may help in this regard (cf. Remark
3.3).

3.3 Markov Copulae

Modeling of stochastic dependence between evolutions of credit migration processes (default processes, in
particular) in a pool of credit names is of key importance of course. In the Markovian model presented in the
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previous section, the dependence was modeled in a way that did not, automatically, guarantee that desired
marginal distributions (of credit migration processes of individual obligors) are preserved. In this section
we shall present a methodology that, in the Markovian framework, allows for construction of a multivariate
process with given univariate marginals. For mathematical details pertaining to this section we refer to [10].

To simplify notation we shall only consider the case of bivariate Markov chains. The general multivariate
case can be treated accordingly (it is even possible to treat the case of a general joint Markov process M =
(X,Y ) as of Section 3.1, see [12]).

Given a bivariate processes Z = (X,Y ), which is a finite Markov chain with respect to to its natural
filtration FZ = FX,Y , one is naturally confronted with the following two questions, which we shall address
in this section:

(Q1): what are the sufficient and necessary conditions on the infinitesimal generator of Z so that the com-
ponents X and Y are Markov chains with respect to their natural filtrations?

(Q2): how do we construct a bivariate Markov chain, whose components are themselves Markov chains
w.r.t their natural filtration and have desired infinitesimal characteristics?

We denote by S and O two finite sets. Let Z = (X,Y ) denote a two dimensional Markov chain on Z =
S ×O, with generator function AZ(t) = [�iℎ

jk(t)]i,j∈S,k,ℎ∈O . Consider the following condition

Condition (M) ∑

k∈O

�iℎ
jk(t) =

∑

k∈O

�iℎ′

jk (t), ∀ℎ, ℎ′ ∈ O, ∀i, j,∈ S, i ∕= j,

and ∑

j∈S

�iℎ
jk(t) =

∑

j∈S

�i′ℎ
jk (t), ∀i, i′ ∈ S, ∀k, ℎ ∈ O ℎ ∕= k.

The following proposition addresses the sufficiency part in question (Q1),

Proposition 3.2 Suppose that condition (M) holds, and define

f i
j(t) :=

∑

k∈O

�iℎ
jk(t), i, j ∈ S, i ∕= j, f i

i (t) = −
∑

j∈S,j ∕=i

f i
j(t), ∀i ∈ S,

and
gℎk (t) :=

∑

j∈S

�iℎ
jk(t), k, ℎ ∈ O, ℎ ∕= k, gℎℎ(t) = −

∑

k∈O,k ∕=ℎ

gℎk (t), ∀ℎ ∈ O.

Then the components X and Y of the Markov chain Z are Markov chains with respect to their natural filtra-
tions with generator functions AX (t) = [f i

j(t)]i,j∈S and AY (t) = [gℎk (t)]k,ℎ∈O , respectively.

For the necessity part of question (Q1) we have

Proposition 3.3 For the components X and Y of the Markov chain Z to be Markov chains with respect to
their natural filtrations, with generator functions AX(t) = [f i

j(t)]i,j∈S and AY (t) = [gℎk (t)]k,ℎ∈O, respec-
tively, it is necessary that the following conditions hold for almost all t ≥ 0, ℚ− a.s. :

(
oxΛij

)px

t
=

∫ t

0

11{Xu−=i}f
i
j(u)du, (40)

(
oyΓℎk

)py

t
=

∫ t

0

11{Yu−=i}g
ℎ
k (u)du, (41)

where ox(⋅) [(⋅)px] and oy (⋅) [(⋅)py ] denote the optional [predictable] projection on F
X and F

Y respectively,
and where

Λij
t =

∫ t

0

∑

k∈O

∑

ℎ∈O

11{Xu−=i,Yu−=ℎ}�
iℎ
jk(u)du
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and

Γℎk
t =

∫ t

0

∑

j∈S

∑

i∈S

11{Xu−=i,Yu−=ℎ}�
iℎ
jk(u)du.

The following corollary addresses question (Q2),

Corollary 3.4 Consider two Markov chains X and Y , with respect to their own filtrations, and with values
in S and O, respectively. Suppose that their respective generators are AX(t) = [�i

j(t)]i,j∈S and AY (t) =

[�ℎ
k (t)]ℎ,k∈O . Next, consider the system of equations in the unknowns �iℎ

jk(t), where i, j ∈ S, ℎ, k ∈ O and
(i, ℎ) ∕= (j, k):

∑

k∈O

�iℎ
jk(t) = �i

j(t), ∀ℎ ∈ O, ∀i, j ∈ S, i ∕= j (42)

∑

j∈S

�iℎ
jk(t) = �ℎ

k (t), ∀i ∈ S, ∀ℎ, k ∈ O, ℎ ∕= k. (43)

Suppose that the above system admits solution such that the matrix function A(t) = [�iℎ
jk(t)]i,j∈S,k,ℎ∈O ,

with
�iℎ
iℎ(t) = −

∑

(j,k)∈S×O,(j,k)∕=(i,ℎ)

�iℎ
jk(t), (44)

properly defines an infinitesimal generator function of a Markov chain with values in S × O. Consider,
a bivariate Markov chain Z := (Z1, Z2) on S × O with generator function AZ(t) = A(t). Then, the
components Z1 and Z2 are Markov chains with respect to to their own filtrations, and their generators are
AZ1(t) = AX (t) and AZ2(t) = AY (t).

Note that, typically, system (42) –(43) contains many more unknowns than equations. In fact, given that
cardinalities of S and O are KS and KO, respectively, the system consists of KS(KS − 1) +KO(KO − 1)
equations in KSKO(KSKO − 1) unknowns.

Thus, in principle, one can create several bivariate Markov chains Z with the given margins X and Y .
Thus, indeed, the system (42) –(43) essentially serves as a “copula” between the Markovian margins X , Y
and the bivariate Markov chain Z. This observation leads to the following definition,

Definition 3.4 A Markov copula between the Markov chains X and Y is any solution to system (42) –(43)
such that the matrix function A(t) = [�iℎ

jk(t)]i,j∈S,k,ℎ∈O , with �iℎ
iℎ(t) given in (44), properly defines an

infinitesimal generator function of a Markov chain with values in S ×O.

Different Markov copulae will entail different dependence structure between the margins X and Y.

Markovian Changes of Measure For pricing purposes the probability ℙ above typically denotes the statis-
tical probability, which needs to be changed to the EMM . Typically, the Radon-Nikodym density is chosen
in such a way that the resulting (risk-neutral) default probabilities are consistent with the term structure of
CDS spreads. In addition, we require that the process Z, which is Markovian under the statistical measure, is
also Markovian under the pricing measure. As a consequence, such change of measure must be chosen with
some care.

In the case of a finite state Markov chain, Theorem 3.1 yields the following corollary (cf. [41])

Corollary 3.5 Let Zt be a finite state Markov chain on K with cardinality K and generator A = aij . In
addition let ℎ = (ℎ1, . . . , ℎK) be a positive vector. Then Zt is a Markov process under ℚℎwith generator
Aℎ = [aijℎjℎ

−1
i ].

Remark 3.5 We note that in case of Markov chains the formula for the Markovian change of measure pre-
sented in Proposition 2.12 (cf. formula (25)) appears to be more general than the change of measure resulting
from the theory of Palmowski and Rolski presented in [41], and leading to Aℎ = [aijℎjℎ

−1
i ]. However, for

the purpose of the following section about ratings triggered bonds, this less general result is sufficient.
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3.3.1 Application to Ratings Triggered Step-Up Bonds

This application is taken from [12], to which we refer the reader for more examples of application of the
above theory to valuation and hedging of credit derivatives. Even though the ratings triggered setp-up bonds
are not credit derivatives per se, we nevertheless give a brief account of their valuation, as the techniques
exploited in this case may as well be used for valuation of credit derivatives whose cash flows may depend
on history of credit ratings assigned to an obligor by various rating agencies.

Ratings triggered step-up bonds were issued by some European telecom companies in the recent 6-7 years.
As of now, to our knowledge, these products are not traded in baskets, however they are of interest because
they offer protection against credit events other than defaults. In particular, ratings triggered corporate step-
up bonds (step-up bonds for short) are corporate coupon issues for which the coupon payment depends on
the issuer’s credit quality: in principle, the coupon payment increases when the credit quality of the issuer
declines. In practice, for such bonds, credit quality is reflected in credit ratings assigned to the issuer by at
least one credit ratings agency (Moody’s-KMV or Standard&Poor’s). The provisions linking the cash flows
of the step-up bonds to the credit rating of the issuer have different step amounts and different rating event
triggers. In some cases, a step-up of the coupon requires a downgrade to the trigger level by both rating
agencies. In other cases, there are step-up triggers for actions of each rating agency. Here, a downgrade by
one agency will trigger an increase in the coupon regardless of the rating from the other agency. Provisions
also vary with respect to step-down features which, as the name suggests, trigger a lowering of the coupon if
the company regains its original rating after a downgrade. In general, there is no step-down below the initial
coupon for ratings exceeding the initial rating.

Let Rt stand for some indicator of credit quality at time t (note that in this case, the process R may be
composed of two, or more, distinct rating processes). Assume that ti, i = 1, 2, . . . , n are coupon payment
dates. In this paper we assume the convention that coupon paid at date tn depends only on the rating history
through date tn−1, that is: cn = c(Rt, t ≤ tn−1) are the coupon payments. In other words, we assume that
no accrual convention is in force.

Assuming that the bond’s notional amount is 1, the cumulative discounted cash flow of the step-up bond
is (as usual we assume that the current time is 0):

(1−HT )�T +

∫

(0,T ]

(1−Hu)�u dCu + ��Z�HT , (45)

where Ct =
∑

ti≤t ci, � is the bond’s default time, Ht = 11�≤t, and where Zt is a (predictable) recovery
process.

Pricing Ratings Triggered Step-Up Bonds via Simulation Here, using our results on Markov copulae,
we shall apply a simulation approach to pricing ratings triggered step-up bonds.

Let us consider a ratings triggered step-up bond issued by an obligor XY Z. Recall that, typically, cash-
flows associated with a step-up bond depend on ratings assigned to XY Z by both Moody‘s Investors Service
(Moody’s in what follows) and Standard & Poor’s (S&P in what follows). Thus, a straightforward way to
model joint credit migrations would be to consider a credit migration process K such that Rt = (Mt, SPt),
where Mt and SPt denote the time t credit rating assigned to XY Z by Moody’s and SPt, respectively. We
assume that process M is a time-homogeneous Markov chain w.r.t. its natural filtration, under the statistical
probability ℙ, and that its state space is K = {1, 2, . . . ,K}. Likewise, we assume that process SP is a time-
homogeneous Markov chain w.r.t. its natural filtration, under the statistical probability ℙ, and that its state
space is K = {1, 2, . . . ,K}.

Typically, we are only provided with individual statistical characteristics of each of the processes M and
SP. Thus, in a sense, we know the marginal distributions of the joint process R under the measure ℙ (where
M and SP are considered as the “univariate” margins). The crucial issue is thus the appropriate modeling of
dependence between processes M and SP . In particular, we want to model dependence, under ℙ, between
M and SP so that the joint process R is a time-homogeneous Markov chain, and so that the components
M and SP are time-homogeneous Markov chains with given ℙ-generators, say AM and ASP , respectively.
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Thus, essentially, we need to model a ℙ-generator matrix, say AR, so that process R is a time-homogeneous
Markov chain with ℙ-generatorAR and that processes M and SP are time-homogeneous Markov chains with
ℙ-generators AM and ASP . We can of course deal with this problem using the theory of Markov copulae.

Towards this end, we fix an underlying probability space (Ω,ℱ ,ℙ). On this space we consider two
univariate Markov chains M and SP, with given infinitesimal ℙ-generators AM = [aMij ] and ASP = [aSP

ℎk ],
respectively. Next, we consider the system equations in variables

∑

k∈K

aRiℎ,jk = aMij , ∀i, j ∈ K, i ∕= j, ∀ℎ ∈ K, (46)

∑

j∈K1

aRiℎ,jk = aSP
ℎk , ∀ℎ, k,∈ K, ℎ ∕= k, ∀i ∈ K. (47)

Now, provided that the system (46) –(47) has a positive solution, then it follows from Corollary 3.4 that
resulting matrix2 AR = [aRiℎ,jk]i,j∈K1, ℎ,k∈K2

satisfies conditions for a ℙ−generator matrix of a bivariate
time-homogenous Markov chain, say R = (R1, R2) whose components take values in finite state spaces K1

and K2 with cardinalities K1 and K2, respectively, and, more importantly, they are Markov chains with the
same distributions as M and SP under under ℙ. Thus, indeed, the system (46)–(47) essentially serves as a
Markov copula between the Markovian margins M , SP and the bivariate Markov chain R.

Note that, typically, the system (46)–(47) contains many more variables than equations. Thus, one can
create several bivariate Markov chains R with the given margins M and SP . In financial applications this
feature leaves a lot of room for various modeling options and for calibration of the model. For example,
as observed by Lando and Mortensen [35] although the ratings assigned by S&P and Moody’s to the same
company do not necessarily coincide, split ratings are rare and are usually only observed in short time inter-
vals. This feature can easily be modelled using the Markovian copula system (46) –(47) via imposing side
constraints for the unknowns aRiℎ,jk’s. In order to model such observed behavior of the joint rating process,
we thus impose additional constraints on the variables in the system (46) –(47). Specifically, we postulate
that

aRiℎ,jk =

{
0, if i ∕= j and ℎ ∕= k and j ∕= k,
�min(aMij , a

SP
ℎk ), if i ∕= j and ℎ ∕= k and j = k,

(48)

where � ∈ [0, 1] is a modelling parameter. Using constraint (48) we can easily solve system (46) –(47) (in
this case the system actually becomes fully decoupled) and we can obtain the generator of the joint process.
The interpretation of constraint (48) is the following: The components M and SP of the process R migrate
according to their marginal laws, but they tend to join, that is, they tend to both take the same values. The
strength of such tendency is measured by the parameter �. When � = 0 then, in fact, the two components are
independent processes; when � = 1 the intensity of both components migrating simultaneously to the same
rating category is maximum (given the specified functional form for the intensities of common jumps).

For pricing purposes the statistical probability measure is changed to the EMM . Typically, the Radon-
Nikodym density is chosen in such a way that the resulting (risk-neutral) default probabilities are consistent
with the term structure of CDS spreads. In addition, we require that the process R, which is Markovian under
the statistical measure, is also Markovian under the pricing measure.

We recall thatAR = [aRiℎ,jk] is the generator ofR under the statistical measureℙ. In view of Corollary 3.5,
or, more generally, in view of formula (25) in Proposition 2.12, given a vector ℎ = [ℎ11, ⋅ ⋅ ⋅ , ℎKK ] ∈ ℝK2

,
we can change statistical measure ℙ to an equivalent “risk-neutral” measure ℚ in such a way that process R
is a time-homogeneous Markov chain under ℚ, and its ℚ-infinitesimal generator is given by

ÃR = [ãiℎ,jk],

where ãiℎ,jk = aiℎ,jk
ℎjk

ℎiℎ
for iℎ ∕= jk and ãiℎ,jk = −

∑
jk ∕=iℎ aiℎ,jk

ℎjk

ℎiℎ
for iℎ = jk.

2System (46) –(47) does not include diagonal elements of AR. These elements are obtained as aR
iℎ,iℎ

= −
∑

(j,k)∈K aR
iℎ,jk

.
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Remark 3.6 Not that, although the change of measure preserves Markov property of the joint process R, its
components may not be Markov (in their natural filtration) under the new probability measure. This however
is not an issue for us, as all we need to conduct computations is the Markov property of the joint process R
under the new measure.

An arbitrary choice of vector ℎ may lead to a heavy parametrization of the pricing model. We suggest
that the vector ℎij be chosen as follows:

ℎij = exp(�1i+ �2j), ∀i, j ∈ K,

where �1 and �2 are parameters to be calibrated. It turns out, as the calibration results provided in [12]
indicate, that this is a good choice.

Remark 3.7 Note that the formalism of Markovian copulae can be exploited in a wide range of applications.
See for instance [18] for a recent use in the modeling of counterparty credit risk.

4 Multivariate phase-type distributions and matrix-analytical meth-
ods

In the remaining sections of this article we consider the intensity-based models for default contagion (with
constant coefficients) which are studied in [25, 26, 27, 28, 29]. These intensity-based models are reinter-
preted in terms of a time-homogeneous Markov jump process, a so called multivariate phase-type distribu-
tion, introduced in [4]. The translation makes it possible to use a matrix-analytic approach to derive practical
formulas for all quantities that we want to study. To be more specific, we present convenient analytical
formulas for multivariate default and survival distributions, conditional multivariate distributions, marginal
default distributions, multivariate default densities, default correlations, and expected default times. Further-
more, computationally tractable closed-form expressions for credit derivatives such as synthetic CDO tranche
spreads, index CDS spreads, ktℎ-to-default swap spreads and single-name CDS spreads can also be obtained.
However, these formulas are omitted in this article and we instead refer to the details in the litterature.

Subsection 4.1 is devoted to inhomogeneous portfolios, whilst Subsection 4.2 deals with homogenous
portfolios. Section 5 presents numerical results for some of the above quantities, in a homogeneous portfolio
calibrated against CDO tranches from the iTraxx Europe series.

Note that multivariate phase-type distributions (MPH) can be viewed as a special case of the Markov
models presented in Section 2 and Section 3. However, the practical formulas that can be derived in MPH
settings, used particulary in reliability and queuing theory, has made MPH-distributions and matrix-analytical
approaches, to grow into a subject of its own, see e.g. [2], [3], [4], [39], [40] and [43].

4.1 Inhomogeneous Portfolios

In this subsection we study inhomogeneous credit portfolios. First, Subsection 4.1.1 presents an intensity-
based model with intuitive and explicit contagion effects. This model is then reformulated into a time-
homogeneous Markov jump process which is used in Subsection 4.1.2 - 4.1.4 in order to find practical formu-
las for multivariate default and survival distributions, conditional multivariate distributions, marginal default
distributions, multivariate default densities, default correlations, and expected default times.

Subsection 4.1.6 shortly discuss the calibration of the parameters in our framework. Finally, Subsection
4.1.7 outlines alternative parameterizations of the model presented in Subsection 4.1.1
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4.1.1 Intensity based models reinterpreted as Markov jump processes

For the default times �1, �2 . . . , �m, define the point process Nt,i = 1{�i≤t} and introduce the filtrations

ℱt,i = � (Ns,i; s ≤ t) , ℱt =

m⋁

i=1

ℱt,i.

Let �t,i be the ℱt-intensity of the point processes Nt,i. Below, we will for convenience often omit the filtra-
tion and just write intensity or “default intensity”. With a further extension of language we will sometimes
also write that the default times {�i} have intensities {�t,i}. The model studied in this section is specified by
requiring that the default intensities have the following form,

�t,i = ai +
∑

j ∕=i

bi,j1{�j≤t}, t ≤ �i, (49)

and �t,i = 0 for t > �i. Further, ai ≥ 0 and bi,j are constants such that �t,i is non-negative.

The financial interpretation of (49) is that the default intensities are constant, except at the times when
defaults occur: then the default intensity for obligor i jumps by an amount bi,j if it is obligor j which has
defaulted. Thus a positive bi,j means that obligor i is put at higher risk by the default of obligor j, while a
negative bi,j means that obligor i in fact benefits from the default of j, and finally bi,j = 0 if obligor i is
unaffected by the default of j.

Equation (49) determines the default times through their intensities as well as their joint distribution.
However, it is by no means obvious how to find these expressions. Here we will use the following observation,
proved in [26].

Proposition 4.1 There exists a Markov jump process (Yt)t≥0 on a finite state space E and a family of sets
{Δi}

m
i=1 such that the stopping times

�i = inf {t > 0 : Yt ∈ Δi} , i = 1, 2, . . . ,m, (50)

have intensities (49). Hence, any distribution derived from the multivariate stochastic vector (�1, �2, . . . , �m)
can be obtained from {Yt}t≥0.

The joint distribution of (�1, �2, . . . , �m) is sometimes called a multivariate phase-type distribution (MPH),
and was first introduced in [4]. Such constructions have largely been developed for queueing theory and
reliability applications, see e.g. [2] and [4]). In this section, Proposition 4.1 is throughout used for computing
distributions. However, we still use Equation (49) to describe the dependencies in a credit portfolio since it
is more compact and intuitive.

Each state j in E is of the form j = {j1, . . . jk} which is a subsequence of {1, . . .m} consisting of k
integers, where 1 ≤ k ≤ m. The interpretation is that on {j1, . . . jk} the obligors in the set have defaulted.
Furthermore, every permutation of {j1, . . . jk} is treated as the same state, that is, the order in which the
obligors j1, . . . jk default is of no concern to us, which also is clear from Equation (49). This implies that
the cardinality of E will be 2m, while keeping track of the ordering of {j1, . . . jk} implies that ∣E∣ =∑m

n=0 n!
(
m
n

)
which increases the number of states in E violently. For a more detailed discussion about

ordered and unordered default contagion, see [26].

Before we continue, further notation are needed. In the sequel, we let Q and � denote the generator
and initial distribution on E for the Markov jump process in Proposition 4.1. The generator Q is found by
using the structure of E, the definition of the states j, and Equation (49). To be more specific, for a state
j = {j1, j2, . . . , jk} a transition can only occur to a state j ′ = (j, jk+1) where jk+1 ∕= ji for i = 1, 2, . . . , k.
Further, the intensity for transitions from j = {j1, j2, . . . , jk} to such a j′ is

Qj,j′ = ajk+1
+

k∑

i=1

bjk+1,ji (51)
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where we remind the reader that every permutation of {j1, . . . jk} is treated as the same state. The diagonal
elements of Q are determined by the requirement that the row sums of an intensity matrix is zero. The set Δi

is defined as
Δi = {j ∈ E : jn = i for some jn ∈ j}

and since we define �i as �i = inf {t > 0 : Yt ∈ Δi} for i = 1, 2, . . . ,m, is clear from the construction that
�1, . . . , �m have the intensities (49), see e.g. [30], Chapter 4. The construction is illustrated in Figure 1 for
the case m = 3.
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Figure 1: Illustration of the construction for m = 3. Arrows indicate possible transitions, and the transition
intensities are given on top of the arrows.

The states in E are ordered so that Q is upper triangular, see [26]. In particular, the final state {1, . . .m}
is absorbing and {0} is always the starting state. The latter implies that � = (1, 0, . . . , 0). Furthermore,
define the probability vector p (t) = (ℙ [Yt = j])j∈E . From Markov theory we know that

p (t) = �eQt, and ℙ [Yt = j] = �eQtej , (52)

where ej ∈ ℝ∣E∣ is a column vector where the entry at position j is 1 and the other entries are zero. Recall that
eQt is the matrix exponential which has a closed form expression in terms of the eigenvalue decomposition
of Q.

4.1.2 The multivariate default distributions

In this subsection we present some formulas for multivariate default and survival distributions, conditional
multivariate default distributions, and multivariate default densities. Let Gi be ∣E∣ × ∣E∣ diagonal matrices,
defined by

(Gi)j,j = 1{j∈ΔC
i }

and (Gi)j,j′ = 0 if j ∕= j ′. (53)

Further, for a vector (t1, t2, . . . , tm) in ℝm
+ = [0,∞)m, let the ordering of (t1, t2, . . . , tm) be ti1 < ti2 <

. . . < tim where (i1, i2, . . . , im) is a permutation of (1, 2, . . . ,m). The following proposition was stated in
[4], but without a proof. A detailed proof is given in [29].

Proposition 4.2 Consider m obligors with default intensities (49). Let (t1, t2, . . . , tm) ∈ ℝm
+ and let ti1 <

ti2 < . . . < tim be its ordering. Then,

ℙ [�1 > t1, . . . , �m > tm] = �

(
m∏

k=1

eQ(tik−tik−1)Gik

)
1 (54)
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where ti0 = 0.

Let (ti1 , ti2 , . . . , tim) be the ordering of (t1, t2, . . . , tm) ∈ ℝm
+ and fix a p, 1 ≤ p ≤ m − 1. We next

consider conditional distributions of the types

ℙ
[
�ip+1

> tip+1
, . . . , �im > tim

∣∣ �i1 ≤ ti1 , . . . , �ip ≤ tip
]
.

These probabilities may of course be computed from (54) without any further use of the structure of the
problem. However, using this structure leads to compact formulas. For this, further notation is needed.
Define Δ as the final absorbing state for Yt, i.e.

Δ =
m∩

i=1

Δi, (55)

and let F i and Hi be ∣E∣ × ∣E∣ diagonal matrices, defined by

(F i)j,j = 1{j∈Δi∖Δ} and (F i)j,j′ = 0 if j ∕= j′. (56)

(H i)j,j = 1{j∈Δi} and (Hi)j,j′ = 0 if j ∕= j′. (57)

Then we can state the following proposition, proved in [29].

Proposition 4.3 Consider m obligors with default intensities (49). Let (t1, t2, . . . , tm) ∈ ℝm
+ and let ti1 <

ti2 < . . . < tim be its ordering. If 1 ≤ p ≤ m− 1 then,

ℙ
[
�i1 ≤ ti1 , . . . , �ip ≤ tip , �ip+1

> tip+1
, . . . , �im > tim

]

= �

(
p∏

k=1

eQ(tik−tik−1)F ik

)⎛
⎝

m∏

k=p+1

eQ(tik−tik−1)Gik

⎞
⎠1.

(58)

and

ℙ
[
�ip+1

> tip+1
, . . . , �im > tim

∣∣ �i1 ≤ ti1 , . . . , �ip ≤ tip
]

=
�
(∏p

k=1 e
Q(tik−tik−1)F ik

)(∏m
k=p+1 e

Q(tik−tik−1)Gik

)
1

�
(∏p

k=1 e
Q(tik−tik−1)H ik

)
1

.
(59)

where ti0 = 0.

The following corollary is an immediate consequence of Equation (58) in Proposition 4.3.

Corollary 4.4 Consider m obligors with default intensities (49). Let {i1, . . . , ip} and {j1, . . . , jq} be two
disjoint subsequences in {1, . . . ,m}. If t < s then

ℙ
[
�i1 > t, . . . , �ip > t, �j1 < s, . . . , �jq < s

]
= �eQt

(
p∏

k=1

Gik

)
eQ(s−t)

(
q∏

k=1

Hjk

)
1

A similar expression can be found when s < t.

We can of course generalize, the above proposition for three time points t < s < u, four time points
t < s < u < etc. Using the notation of Corollary 4.4 we conclude that if t < s then

ℙ
[
�j1 < s, . . . , �jq < s

∣∣ �i1 > t, . . . , �ip > t
]
=

�eQt (
∏p

k=1 Gik) e
Q(s−t) (

∏q
k=1 Hjk )1

�eQt (
∏p

k=1 Gik )1

and a similar expression can be found for s < t.
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Let f(t1, . . . , tm) be the density of the multivariate random variable (�1, . . . , �m). For (t1, t2, . . . , tm),
let (ti1 , ti2 , . . . , tim) be its ordering where (i1, i2, . . . , im) is a permutation of (1, 2, . . . ,m). We denote
(i1, i2, . . . , im) by i, that is, i = (i1, i2, . . . , im). Furthermore, in view of the above notation, we let
fi(t1, . . . , tm) denote the restriction of f(t1, . . . , tm) to the set ti1 < ti2 < . . . < tim . The following
proposition was stated in [4], but without a proof. A detailed proof can be found in [29].

Proposition 4.5 Consider m obligors with default intensities (49). Let (t1, t2, . . . , tm) ∈ ℝm
+ and let ti1 <

ti2 < . . . < tim be its ordering. Then, with notation as above

fi(t1, . . . , tm) = (−1)m�

(
m−1∏

k=1

eQ(tik−tik−1) (QGik −GikQ)

)
eQ(tim−tim−1)QGim1 (60)

where ti0 = 0.

4.1.3 The marginal distributions

In this subsection we state expressions for the marginal survival distributions ℙ [�i > t] and ℙ [Tk > t], and
forℙ [Tk > t, Tk = �i] which is the probability that the k-th default is by obligor i and that it not occurs before
t. The first ones are more or less standard, while the second one is less so. These marginal distributions are
needed to compute single-name CDS spreads and ktℎ-to-default spreads, see e.g [26]. Note that CDS-s are
used as calibration instruments when pricing portfolio credit derivatives. The following lemma is trivial, and
borrowed from [26].

Lemma 4.6 Consider m obligors with default intensities (49). Then,

ℙ [�i > t] = �eQtg(i) and ℙ [Tk > t] = �eQtm(k) (61)

where the column vectors g(i), m(k) of length ∣E∣ are defined as

g
(i)
j = 1{j∈(Δi)

C} and m
(k)
j = 1{j∈∪k−1

n=0
En}

and En is set of states consisting of precisely n elements of {1, . . .m} where E0 = {0}.

The lemma immediately follows from the definition of �i in Proposition 4.1. The same holds for the distri-
bution for Tk, where we also use that m(k) sums the probabilities of states where there has been less than k
defaults. For more on this, see in [26].

We next restate the following result, proved in [26].

Proposition 4.7 Consider m obligors with default intensities (49). Then,

ℙ [Tk > t, Tk = �i] = �eQt

k−1∑

l=0

⎛
⎝

k−1∏

p=l

Gi,pP

⎞
⎠h

i,k, (62)

for k = 1, . . .m, where

P j,j′ =
Qj,j′∑
k∕=j Qj,k

, j, j ′ ∈ E,

and hi,k is column vectors of length ∣E∣ and Gi,k is ∣E∣ × ∣E∣ diagonal matrices, defined by

h
i,k
j = 1{j∈Δi∩Ek} and G

i,k
j,j = 1{j∈(Δi)

C∩Ek} and G
i,k
j,j′ = 0 if j ∕= j′.
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Equipped with the above distributions, we can derive closed-form solutions for single-name CDS spreads and
ktℎ-to-default swaps for a nonhomogeneous portfolio, see [26].

>From Equation (61) and (62) we see that all model parameters, including the jump parameters {bi,j} cre-
ating the default dependence, influence the marginal distributions {ℙ [�i > t]}, {ℙ [Tk > t]} and {ℙ [Tk > t, Tk = �i]}.
This have to be compared with copula models used in portfolio credit risk, where {ℙ [�i > t]} are modelled
by idiosyncratic parameters unique for each obligor. Further, in a copula model, the joint dependence is intro-
duced by the copula and its parameters, which are separated from the parameters describing each individual
default distribution.

4.1.4 The default correlations and expected default times

In this subsection we derive expressions for pairwise default correlations, i.e. �i,j(t) = Corr(1{�i≤t}, 1{�j≤t})
between the obligors i ∕= j belonging to a portfolio of m obligors satisfying (49).

Lemma 4.8 Consider m obligors with default intensities (49). Then, for any pair of obligors i ∕= j,

�i,j(t) =
�eQtc(i,j) −�eQth(i)�eQth(j)

√
�eQth(i)�eQth(j)

(
1−�eQth(i)

)(
1−�eQth(j)

) (63)

where the column vectors h(i), c(i,j) of length ∣E∣ are defined as

h
(i)
j = 1{j∈Δi} and c

(i,j)
j = 1{j∈Δi∩Δj} = h

(i)
j h

(j)
j . (64)

The default correlations {�i,j(T )} can be used to calibrate the parameters in (49), as will be shortly discussed
in Subsection 4.1.6 (see also in [29]). In the standard copula model, �i,j(t) is assumed to be constant, and
given by the correlation of some latent factor variables driving the individual defaults.

Next, let us consider the expected moments of {�i} and {Tk}. By construction (see Proposition 4.1), the
intensity matrix Q for the Markov jump process Yt on E has the form

Q =

(
T t

0 0

)

where t is a column vector with ∣E∣ − 1 rows. The j-th element tj is the intensity for Yt to jump from
the state j to the absorbing state Δ = ∩m

i=1Δi. Furthermore, T is invertible since it is upper diagonal with
strictly negative diagonal elements. Thus, we have the following lemma, proved in [29].

Lemma 4.9 Consider m obligors with default intensities (49). Then, with notation as above

E [�ni ] = (−1)nn!�̃T−ng̃
(i) and E [Tn

k ] = (−1)nn!�̃T−nm̃
(k)

for n ∈ ℕ where �̃, g̃(i), m̃
(k) are the restrictions of �, g(i),m(k) from E to E ∖Δ.

In the paper [29], the implied quantities E [�i] are computed for two different calibrated portfolios.

4.1.5 Pricing single-name credit default swaps and ktℎ-to-default swap spreads

Given the marginal distributions {ℙ [�i > t]}, {ℙ [Tk > t]} and {ℙ [Tk > t, Tk = �i]} presented in Lemma
4.6 and Proposition 4.7 we can find compact, computationally tractable closed-form expression for single-
name credit default swaps (CDS-s) and ktℎ-to-default swap spreads. A detailed discussion derivation of these
spreads can be found in [26] and [29].

The CDS spreads are used as our main calibration tools when finding the parameters in the model (49).
A short discussion of this topic is given in the next section.
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4.1.6 Calibration the model via CDS-spreads and correlation matrices

The parameters in (49) can be obtained by calibrating the model against market CDS spreads and market CDS
correlations. In [26] and [29] the authors reparameterize the basic description (49) of the default intensities
to the form

�t,i = ai

⎛
⎝1 +

m∑

j=1,j ∕=i

�i,j1{�j≤t}

⎞
⎠ , (65)

where the ai-s are the base default intensities and the �i,j measure the “relative dependence structure”. In
[26] the authors assumed that the matrix {�i,j} is exogenously given and then calibrated the ai-s against
the m market CDS spreads. In [29] the author determine the {�i,j} from market data on CDS correltaions.
To be more specific, if �i,j(T ) = Corr(1{�i≤T}, 1{�j≤T}) denotes the default correlation matrix computed

under the risk neutral measure then [29] used �{�(CDS)
i,j (T )} as a proxy for {�i,j(T )}. Here {�(CDS)

i,j (T )} is the
observed correlation matrix for the T -years market CDS spreads, and� is a exogenously given parameter. The
matrix {�i,j(T )} is a function of the parameters {�i,j}, and [29] use this fact in the calibration by matching
�i,j(T ) against �{�(CDS)

i,j (T )} together with the corresponding market spreads, in order to determine {�i,j},
and the base default intensities ai-s. However, in the calibration some restrictions have to be imposed on
{�i,j} and we refer to [29] for more on this issue.

Furthermore, in the calibration as well as computation of the quantities presented in Subsection 4.1.2-
Subsection 4.1.5, we need efficent methods to compute the matrix exponential eQt. For such discussions, we
refer to the Appendix in the full version of the paper.

4.1.7 Alternative parameterizations of the default-intensities

Finally we remark that MPH framework presented in this section also works for other parameterizations of
the intensities than given by (49). To be more specific, in the inhomogeneous case, (49) can be replaced by

�t,i = fi(Nt,1, . . . , Nt,i−1, Nt,i+1, . . . , Nt,m), t ≤ �i, (66)

and �t,i = 0 for t > �i where the function fi can be arbitrary chosen, as long as �t,i is non-negative. Recall
that Nt,j = 1{�j≤t}. One can for example choose a multiplicative parametrization of the default intensities,
that is

�t,i = ai

m∏

j=1,j ∕=i

(1 + bi,j)
Nt,j , t ≤ �i, (67)

and �t,i = 0 for t > �i where ai > 0. This parametrization has the intuitive feature that Δ��j ,i = bi,j��j−,i

for �i > �j which implies that the jump in the default intensity is given by the pre-jump intensity times the
constant bi,j . Furthermore, the only constraints on bi,j is that bi,j > −1 where the case 0 > bi,j > −1
implies negative default contagion (the intensities jump down at a default). Note that in calibrations with
negative jumps, the multiplicative form (67) is much more practical (from an implementation point of view)
than the additive framework (49), where we have to put constraints on the parameters to make sure we have
non-negative intensities.

Similar multiplicative parameterizations can also be done for the homogeneous model to be presented in
Subsection 4.2.1.

4.2 Homogeneous Portfolios

In the nonhomogeneous portfolio presented in Subsection 4.1.1, we have ∣E∣ = 2m which in practice will
force us to work with portfolios of size m less or equal to 25, say ([26] used m = 15). Standard synthetic
CDO portfolios typically contains 125 obligors so we will therefore, in this subsection, consider a special case
of (49) which leads to a symmetric portfolio where the state space E can be simplified to make ∣E∣ = m+1.
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This allows us to practically work with the Markov setup in Proposition 4.1 for large m, where m ≥ 125
with no further complications.

First, Subsection 4.2.1 gives a short introduction the model. Then, Subsection 4.2.3-Subsection 4.2.5 dis-
cuss mariginal and multivariate distributions and related quantites. Finally, Subsection 4.2.6 gives a practical
description how to calibrate the model against portfolio credit derivatives (which is performed in Section 5).

4.2.1 The intensity specification for a homogeneous portfolio

We consider a special case of (49) where all obligors have the same default intensities �t,i = �t specified by
parameters a and b1, . . . , bm, as

�t = a+

m−1∑

k=1

bk1{Tk≤t} (68)

where {Tk} is the ordering of the default times {�i} and �1 = . . . = �m = � where � is constant. In this
model the obligors are exchangeable. The parameter a is the base intensity for each obligor i, and given that
�i > Tk, then bk is how much the default intensity for each remaining obligor jumps at default number k in
the portfolio. We start with the simpler version of Proposition 4.1. A detailed proof can be found in [27].

Corollary 4.10 There exists a Markov jump process (Yt)t≥0 on a finite state space E = {0, 1, 2, . . . ,m},
such that the stopping times

Tk = inf {t > 0 : Yt = k} , k = 1, . . . ,m

are the ordering of m exchangeable stopping times �1, . . . , �m with intensities (68). The generator Q to Yt

is given by

Qk,k+1 = (m− k)

⎛
⎝a+

k∑

j=1

bj

⎞
⎠ and Qk,k = −Qk,k+1 for k = 0, 1, . . . ,m− 1

where the other entries in Q are zero. The Markov process always starts in {0}.

By Corollary 4.10, the states in E can be interpreted as the number of defaulted obligors in the portfolio.
In the sequel, we let � = (1, 0, . . . , 0) denote the initial distribution on E. Further, if k belongs to E then
ek denotes a column vector in ℝm+1 where the entry at position k is 1 and the other entries are zero. From
Markov theory we know that ℙ [Yt = k] = �eQtek where eQt is the matrix exponential which has a closed
form expression in terms of the eigenvalue decomposition of Q.

We remark that the framework (68) is equivalent to the local intensity model which was the starting point
in the papers [5], [36], [44] and [45].

4.2.2 Pricing CDO-s and index CDS-s in a homogeneous portfolio

By using Corollary 4.10 we can derive practical formulas for CDO tranche spreads and index CDS spreads.
The derivations and other issues regarding the computations, can be found in [27] and [28].

The formulas for CDO tranches are used to calibrate the parameters in a homogeneous model specified
by (68), under the risk neutral measure. We will discuss this in Subsection 4.2.6 and Section 5.

4.2.3 The multivariate distributions

In this subsection we present formulas for multivariate default and survival distributions both for ordered
as well as unordered default times. We start with the latter. Let M k be (m + 1) × (m + 1) diagonal
matrices, defined by (M k)j,j = 1{j<k} and (Mk)j,j′ = 0 if j ∕= j′. The following proposition is similar to
Proposition 4.2.
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Proposition 4.11 Consider m obligors with default intensities (68) and let k1 < . . . < kq be an increasing
subsequence in {1, . . . ,m} where 1 ≤ q ≤ m. Furthermore, let t1 < t2 < . . . < tq . Then,

ℙ
[
Tk1

> t1, . . . , Tkq
> tq

]
= �

(
q∏

i=1

eQ(ti−ti−1)Mki

)
1 (69)

where ti0 = 0.

A similar expression can also be found for ℙ
[
Tk1

≤ t1, . . . , Tkq
≤ tq

]
, see in [28]. An explicit proof of

Proposition 4.11 is given in [28].

Finding joint distributions for {�i} in a homogeneous model with default intensities (68) is a more com-
plicated task than in an inhomogeneous model. For 1 ≤ q ≤ m, fix a vector t1, . . . , tq ∈ ℝ

q
+. For a set

of q distinct obligors i1, i2, . . . , iq, the probability ℙ
[
�i1 ≤ t1, . . . , �iq ≤ tq

]
is by exchangeability the same

for any such distinct sequence of q obligors. Therefore we will in this subsection without loss of generality
only consider ℙ [�1 ≤ t1, . . . , �q ≤ tq ] where t1 ≤ . . . ≤ tq and similarly for ℙ

[
�i1 > t1, . . . , �iq > tq

]
. To

exemplify, we state the following proposition proved in [28], where we let q = 2 and t1 < t2.

Proposition 4.12 Consider m obligors with default intensities (68) and let t1 < t2. Then,

ℙ [�1 ≤ t1, �2 ≤ t2] =
(m− 2)!

m!
�eQt1n+

(m− 2)!

m!

m∑

k1=1

m∑

k2=k1+1

�eQt1Nk1
eQ(t2−t1)Nk2

1. (70)

where n is a column vector in ℝm+1 such that nj =
j(j−1)

2 .

A similar expression can also be found for ℙ [�1 > t1, �2 > t2], see in [28].

It is possible to generalize Proposition 4.12 to more that two default times. These expressions do not
seem to be easily simplified. However, if t1 = . . . = tq = t we can find compact formulas.

Proposition 4.13 Consider m obligors with default intensities (2.1) and let q be a integer where 1 ≤ q ≤ m.
Then,

ℙ [�1 ≤ t, . . . , �q ≤ t] = �eQtd(q) and ℙ [�1 > t, . . . , �q > t] = �eQts(q) (71)

where d(q) and s(q) are column vectors in ℝm+1 defined by

d
(q)
j =

(
j
q

)
(
m
q

)1{j≥q} and s
(q)
j =

(
m−j
q

)
(
m
q

) 1{j≤m−q}. (72)

A proof of Proposition 4.13 can be found in [28].

4.2.4 The marginal distributions

By Proposition 4.13 with q = 1 we get ℙ [�i > t] = �eQts(1) where s
(1)
j = (m − j)/m = 1 − j/m.

Furthermore, letting m(k) denote m(k) = Mk1, then Proposition 4.11 with q = 1 for any 1 ≤ k ≤ m,
renders that ℙ [Tk > t] = �eQtm(k) where m(k)

j = 1{j<k}.

Recall that ℙ [�i > t] is used to find formulas for the CDS spread in the model specified by (68).

4.2.5 The default correlations and expected default times

In this subsection we use Proposition 4.13 to state expressions for pairwise default correlations between two
different obligors belonging to a homogeneous portfolio of m obligors satisfying (68). By exchangeability,
Corr(1{�i≤t}, 1{�j≤t}) is the same for all pairs i ∕= j so we let �(t) denote Corr(1{�i≤t}, 1{�j≤t}).
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Lemma 4.14 Consider m obligors with default intensities (68). Then, with notation as in Subsection 4.2.3

�(t) =
�eQtd

(2) −
(
�eQtd

(1)
)2

�eQtd(1)
(
1−�eQtd(1)

) . (73)

In Section 5 we shall calibrate CDO portfolio for against market data on CDO’s and then use Proposition
4.14 to plot the implied default correlation �(t) as function of time t.

Next, let us consider the expected moments of {Tk} in a homogeneous portfolio. By construction, the
intensity matrix Q for the Markov jump process (see Proposition 4.10) has the form

Q =

(
T t

0 0

)

where t is a column vector such that tm−1 is nonzero and tk = 0 for k = 0, 1, . . . ,m − 2, because the
k-th element tk, k ≤ m − 1 is the intensity for the Markov jump process Yt to jump from the state k to the
absorbing state {m}. Furthermore, T is invertible since it is upper diagonal with strictly negative diagonal
elements. The following lemma is proved as in Lemma 4.8.

Lemma 4.15 Consider m obligors with default intensities (68). Then,

E [�ni ] = (−1)nn!�̃T−ns̃
(1) and E [Tn

k ] = (−1)nn!�̃T−nm̃
(k)

for n ∈ ℕ where �̃, s̃(1), m̃
(k) are the restrictions of �, s(1),m(k) from E to E ∖ {m}.

In Section 5 we shall study the implied expected default times E [Tk] as function of the number of defaults k.
This is done for three different calibrated CDO portfolios.

4.2.6 Calibrating the homogeneous portfolio using CDO-trances and index CDS-s

In this subsection we discuss how to calibrate the model (68) against portfolio credit derivatives.

Let a = (a, b1, b2, . . . , bm−1) denote the m parameters in (68). Furthermore, let {Cj(T ;a)} be the �+2
model spreads which are: the CDS spread, the index CDS spread and the � different CDO tranche spreads.
We let {Cj,M (T )} denote the corresponding market spreads. In Cj(T ;a) we have emphasized that the model
spreads are functions of a = (a, b1, b2, . . . , bm−1) but suppressed the dependence of interest rate, payment
frequency, etc. The vector a is then obtained as

a = argmin
â

�∑

j=1

(Cj(T ; â)− Cj,M (T ))
2 (74)

with the constraint that all elements in a are nonnegative. For a fixed maturity T , we use � = 5 tranche
spreads. This gives us 7 market observations, while the model can contain up to m = 125 parameters. In
order to reduce the number of unknown parameters to as many as the market observations, we make following
assumption on the parameters bk for 1 ≤ k ≤ m− 1

bk =

⎧
⎨
⎩

b(1) if 1 ≤ k < �1

b(2) if �1 ≤ k < �2

...
b(c) if �5 ≤ k < �6 = m

(75)

where 1, �1, �2, . . . , �6 is an partition of {1, 2, . . . ,m}. This means that all jumps in the intensity at the
defaults 1, 2, . . . , �1 − 1 are same and given by b(1), all jumps in the intensity at the defaults �1, . . . , �2 − 1
are same and given by b(2) and so on. Hence, in (74) we now minimize over the unknown vector a =
(a, b(1), . . . , b(6). Furthermore, if we for example want to calibrate our model against CDO-tranches from
the iTraxx-series, we can use a recovery of � = 40% with m = 125 and let �1, �2, . . . , �6 be given as in
Table 1. In this way we assign one parameter for each trance [0, 3], [3, 6], [6, 9], [6, 12] [12, 22] and also one
parameter for the loss interval [22, 60].
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Table 1: The integers 1, �1, �2, . . . , �c define a partition of {1, 2, . . . ,m} used in the models that generates
the spreads in Table 2.

partition �1 �2 �3 �4 �5 �6

7 13 19 25 46 125

5 Numerical studies

This section presents few illustrative numerical results on CDO tranches and related quantities. We consider
the simple case of a time-homogeneous and exchangeable model of portfolio credit risk. We will therefore
use the results of Subsection 4.2. First, Subsection 5.1 discuss the data sets used in the calibration, as well
as the obtained parameters and related quantities. In Subsection 5.2 we present and study the implied loss
distribution. The topic of Subsection 5.3 is the implied expected ordered default times. Finally, Subsection
5.4 studies the implied default correlations which posses some interesting features.

5.1 Model Calibration

We first calibrate the model (68) against credit derivatives on the iTraxx Europe series with maturity of five
years. We do this for three different data sets, sampled on 2004-08-04, 2006-10-15 and 2008-03-07. The
spreads in these series differ substantially, where the last set was collected during the subprime crises. Each
data set contain five different CDO tranche spreads with tranches [0, 3], [3, 6], [6, 9], [9, 12] and [12, 22], the
index CDS spreads and the average CDS spread. We use the same parametrization of the jumps {bk}mk=1 as
described in Subsection 4.2.6. We choose the partition �1, �2, . . . , �6 so that it roughly coincides with the
number of defaults needed to reach the upper attachment point for each tranche, see Table 1. In all three
calibrations the interest rate was set to 3%, the payment frequency was quarterly and the recovery rate was
40%.

In all three data sets we obtain perfect fits, although in the 2008 portfolio the accumulated calibration
error is around nine times higher than it is in the 2006 portfolio. The relative calibration errors is, however,
very good. Furthermore, due to the subprime crises some of the corresponding spreads in the 2008 data has
increased by a factor 50 compared with the 2006 portfolio, see Table 2.

The calibrated parameters, displayed in Table 3 are obtained by using an stiff-ODE solver, as discussed
in the Appendix in the full version of the paper. For more details on different numerical methods used in
the calibration, see in [27]. In Figure 2 we have displayed the next-to-default intensities, that is Qk,k+1, for
the three calibrated portfolios with parameters given by Table 3. The next-to-default intensities have similar
shapes for the three portfolios, but differ in magnitude, especially when k is bigger than 25 defaults.

Having calibrated the portfolio, we can compute implied quantities that are relevant to credit portfolio
management, for example the implied loss distribution (and the loss surface), the implied default correlations
and the implied expected ordered default times. To do this we use the calibrated parameters in Table 3 and
the closed formulas presented in Subsection 4.2.3 - 4.2.5. All computations of the matrix-exponential are
performed with either a stiff ODE-solver, or the Padé-method, both discussed in the Appendix in the full
version of the paper.

Besides the above quantities, we can also compute more exotic credit derivatives that are not liquidly
quoted on the market, such as tranchlets and basket default swaps on subportfolios in the CDO portfolio. The
latter quantities are not treated in this chapter, and we refer to [27] for such studies.

5.2 Loss distributions

The implied loss distribution on the interval 0 ≤ x ≤ 22% for t = 5 is displayed in Figure 3 and the
distribution for the whole loss-interval 0 ≤ x ≤ 60% is shown in the first subfigure of Figure 4. Furthermore,
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Table 2: iTraxx Europe Series 3, 6 and 8 collected at August 4tℎ 2004, November 28tℎ, 2006 and March 7tℎ,
2008. The market and model spreads and the corresponding absolute errors, both in bp and in percent of the
market spread. The [0, 3] spread is quoted in %. All maturities are for five years.

2004-08-04 Market Model error (bp) error (%)
[0, 3] 27.6 27.6 3.851e-005 1.4e-006
[3, 6] 168 168 0.000316 0.0001881
[6, 9] 70 70 0.000498 0.0007115
[9, 12] 43 43 0.0005563 0.001294
[12, 22] 20 20 0.0004006 0.002003
index 42 42.02 0.01853 0.04413

avg CDS 42 41.98 0.01884 0.04486
Σ abs.cal.err 0.03918 bp

2006-11-28 Market Model error (bp) error (%)
[0, 3] 14.5 14.5 0.008273 0.0005705
[3, 6] 62.5 62.48 0.02224 0.03558
[6, 9] 18 18.07 0.07275 0.4042
[9, 12] 7 6.872 0.1282 1.831
[12, 22] 3 3.417 0.4169 13.9
index 26 26.15 0.1464 0.5632

avg CDS 26.87 26.13 0.7396 2.752
Σ abs.cal.err 1.534 bp

2008-03-07 Market Model error (bp) error (%)
[0, 3] 46.5 46.5 0.0505 0.001086
[3, 6] 567.5 568 0.4742 0.08356
[6, 9] 370 370 0.04852 0.01311
[9, 12] 235 234 1.035 0.4404
[12, 22] 145 149.9 4.911 3.387
index 150.3 144.3 5.977 3.978

avg CDS 145.1 143.8 1.296 0.8933
Σ abs.cal.err 13.79 bp

Table 3: The calibrated parameters that gives the model spreads in Table 2
a b(1) b(2) b(3) b(4) b(5) b(6)

2004/08/04 33.07 16.3 86.24 126.2 200.3 0 1379 ×10−4

2006/11/28 24.9 13.93 73.36 62.9 0.2604 2261 5904 ×10−4

2008/03/07 44.2 22.66 159.8 0 6e-008 1107 779700 ×10−4
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(a) The next-to-default intensities for 0 ≤ k ≤ 125
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(b) The next-to-default intensities for 0 ≤ k ≤ 26

Figure 2: The next-to-default intensities, i.e. Qk,k+1, in the three calibrated portfolios with parameters given
by Table 3. The upper plot is for 0 ≤ k ≤ 125, while the lower displays Qk,k+1 when 0 ≤ k ≤ 26.
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Figure 3: The five year implied loss distributions ℙ [L5 = x%] (in %) for the 2004-08-04, 2006-11-28 and
2008-03-07 portfolios, where 0 ≤ x ≤ 12 (upper) and 0 ≤ x < 22 (lower). The lower graph is in log-scale.
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Table 4 displays the probabilities ℙ [L5 ≥ x%] for x = 3, 6, 9, 12, 22 and x = 60. With 40% recovery,
ℙ [L5 ≥ 60%] = ℙ [L5 = 60%] = ℙ [Y5 = 125] is the so called five-year “Armageddon probability”, i.e. the
probability that all obligors in the portfolio have defaulted within 5 years from the date the portfolio was
calibrated. The five year “Armageddon probabilities” are negligible for the 2004 and 2006 portfolios(0.08 %
and 0.127 respectively), but very big for the 2008 data-set, where ℙ [L5 = 60%] = 7.11%. Thus, there is
7% probability (under the risk-neutral measure) that all 125 obligors in the portfolio have defaulted within 5
years from March 2008. The huge differences in the “Armageddon probabilities” between the 2006 and 2008
portfolios are due to the subprime-crises, that emerged 2007 and continued into 2008.

Table 4: The probabilities ℙ [L5 ≥ x%] (in %) where x = 3, 6, 9, 12, 22 and x = 60, for the 2004-08-04,
2006-11-28 and 2008-03-07 portfolios.

ℙ [L5 ≥ x%] x = 3 x = 6 x = 9 x = 12 x = 22 x = 60
2004/08/04 14.7 4.976 2.793 1.938 0.4485 0.07997
2006/11/28 6.466 1.509 0.5935 0.2212 0.1674 0.1265
2008/03/07 35.67 22.26 15.44 9.552 7.122 7.108

We also study the dynamics of the implied loss model over time, Figure 5 displays the loss-distribution
at the time points t = 1, 5, 10 and t = 15 (time measured in years) and where the loss x ranges between 0%
to 24%. Furthermore, Figure 6 shows the whole implied loss-surface, i.e. the loss probabilities as function of
time and loss, for the calibrated 2006 portfolio. The four subpictures in Figure 6 clearly depicts the shift of
probability mass due to contagion, as time progresses. This shift of probability mass can also be seen in the
first (t = 5) and second (t = 15) subplot in Figure 4 where, for example in the 2006 portfolio it holds that
ℙ [L5 = 60%] = ℙ [Y5 = 125] = 0.127% while ℙ [L15 = 60%] = 64.5%.
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Figure 4: The five year (upper) and fifteen year (lower) implied loss distributions (in %) for the 2004-08-04,
2006-11-28 and 2008-03-07 portfolios, where 0 ≤ x ≤ 60. Both graphs are in log-scale.

Further, for the 2006-11-28 and 2008-03-07 portfolios, we clearly see the effect of default contagion on
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Figure 5: The implied loss distributions ℙ [Lt = x%] (in %) for the 2004-08-04, 2006-11-28 and 2008-03-07
portfolios at the time points t = 1, 5, 10, 15 and where the loss x ranges from 0% to 24%.
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Figure 6: The implied loss surface for iTraxx Europe Nov 28, 2006, from different angels and for different
loss regions.
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Figure 7: The implied portfolio losses in % of nominal, for the 2004-08-04, 2006-11-28 and 2008-03-07
portfolios.

the upper tranche-losses, making them lie close to each other, see Figure 8. >From Figure 7 we conclude that
our model, with a constant recovery rate of 40%, calibrated to market spreads on the five year iTraxx Europe
Series in Table 2, implies that the whole portfolio has defaulted within approximately 30 years, under the risk-
neutral measure, (for all three data sets). In reality, this will likely not happen, since risk-neutral (implied)
default probabilities are substantially larger than the “real”, so called actuarial, default probabilities.

5.3 Expected ordered default times

Next, let us study the implied expected ordered default times E [Tk]. In Figure 9, left, we note that the implied
expected ordered default times take values roughly between 3.5 years and 14 years. A striking feature in the
2006-11-28 portfolio is that after the 25-th default, the E [Tk] cluster around 14 years. This is a consequence
of the explosion in the jump intensities for k ≥ 25, see Table 3. Under the risk-neutral measure, implied by
the market data in Table 2, this clustering of E [Tk] means that we expect extreme losses in year 13 and 14
for the 2006-11-28 portfolio. The clustering effect is also present in the 2008 data-set, which indicates that
the whole portfolio is expected to be wiped out within 9 years. Again, recall that all computations are under
the risk-neutral measure, and should not be confused with real default probabilities and their expectations.
These are likely to be substantially smaller for the loss probability and much bigger for the expected ordered
default times.

5.4 Default correlations

Finally, we study the implied pairwise default correlation �(t) = Corr(1{�i≤t}, 1{�j≤t}) for two distinct
obligors i, j, as function of time t, see Figure 10. In e.g. the 2006-11-28 portfolio, we see that �(t) is less
than 2% when t ≤ 4, but then starts to increase rapidly, first to 4% for t = 4.5, then to 77% for t = 10
and reaches 88% at t = 15. After this drastic development, the implied default correlation flattens out and
converges to 91% as time increases against 30 years. The explosive increase of �(t) from 2% to 88% in the
time interval [4.5, 15] is due to the default contagion and is also consistent with the clustering of {Tk} around
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Figure 8: The implied tranche losses in % of tranche nominal for the 2006-11-28 (left) and 2008-03-07 (right)
portfolios.

20 40 60 80 100 120
2

4

6

8

10

12

14

E
[T

k], 
(in

 y
ea

rs
)

number of defaults, k

 

 

04/08/04 : E[T
k
], k =1,...,125

06/11/28 : E[T
k
], k =1,...,125

08/03/07 : E[T
k
], k =1,...,125

40 60 80 100 120
13.7

13.75

13.8

13.85

13.9

13.95

14

14.05

E
[T

k], 
(in

 y
ea

rs
)

number of defaults, k

 

 

06/11/28 : E[T
k
], k =26,...,125

Figure 9: The implied expected ordered default times E [Tk] for the 2004-08-04, 2006-11-28 and 2008-03-07
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t = 14. We also note that the implied default correlation for the 2004-08-04 portfolio follows an almost
identical trend up to 8 years. This is consistent with the jump-to-default parameters for the first 13 defaults,
which are in the same order as in 2006-11-28 case, see also Figure 9. Even though there is a big difference
between the corresponding contagious parameters for k > 13 in the 2004 and 2006 portfolio, the implied
default correlations never differ more than 10%−12% during the first 30 years between these portfolios. The
default correlation for 2008 portfolio has similar shape as the 2004 and 2006 portfolios, but the steep increase
in the correlation curve (due to contagion) starts earlier in the 2008 portfolio. Given the huge spreads in the
2008 set compared with the 2004 and 2006 portfolios, this does not come as a surprise.

For more numerical studies of the model (68) we refer to the papers [27] and [28].
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