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Evaluating the risk of a portfolio

• We consider the variations of a portfolio value Vt between t = 0 and t = T

R := Φ(X ) = VT − V0 +

∫ T

0
CF , with X ∼ µ0(dx) = p(x)dx ,

where X ∈ Rd is a random variable (r.v.) modeling the risk factors impacting the
portfolio value between 0 and T .

• The portfolio value variations, R, is a real valued r.v. which can be characterized by
its probability distribution.
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Coherent risk measure [ArtznerEtal99]
This notion was introduced in mathematical finance to define the level of banks
capital reserves, then it was extended to other domains. . .

• Definition
R is a real random variable (r.v) representing the variations of the portfolio value.
A risk measure ρ : R 7→ ρ(R) ∈ R is said to be coherent if it verifies

Positive homogeneity : ρ(aR) = aρ(R) for any a ≥ 0

Non penalization of non risky positions : R ≥ 0 a.s. ⇒ ρ(R) ≤ 0.

Risk compensation by capital reserve : ρ(R + a) = ρ(R)− a

Sub-additivity : ρ(R + Y ) ≤ ρ(R) + ρ(Y )

• Difficulty Build a risk measure that both :

characterizes properly the owner risk vision (situations to avoid);

easy to integrate as a constraint in an optimization problem
ex : Homogeneity + Sub-additivity ⇒ convexity : allowing to formulate convex
optimization problems under risk constraints for which efficient resolution
techniques have been developed[Bertsekas82, RockafellarWets98].
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Examples of usual risk measures

• Standard deviation is not a coherent risk measure symmetry w.r.t. losses and gains.

• VaR (Value at Risk) of level (1− α) ∈ (0, 1)

VaR1−α = −inf{s ∈ R | P(R ≤ s) ≥ α} = −ξα α-quantile associated to R

= −F−(α) ,

where F is the cumulative distribution of R i.e. F (s) = P(R ≤ s) for all s ∈ R .
VaR is not a coherent risk measure since it is not sub-additive.

• CVaR (Conditional Value at Risk) expected losses of the portfolio variations in the
α-proportion of worst cases is a coherent risk measure.
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Parametric quantile estimation

• Let (R1, · · · ,RN) be N i.i.d. realizations according to the cumulative distribution F ,
obtained by simulations or by historical data.
• Goal: To compute an estimation of ξα, the α-quantile associated to F , based on the
sample (R1, · · · ,RN).

• The real r.v. R is supposed to belong to a parametric family parametrized by its
mean µ and standard deviation σ with cumulative distribution Fµ,σ i.e.

Fµ,σ(x) := P(R ≤ x) , for any x ∈ R .

• If F is invertible, ξα is s.t. P(R ≤ ξα) = Fµ,σ(ξα) = α , which gives

P
(
R − µ
σ
≤
ξα − µ
σ

)
= α , i.e. F0,1

(
ξα − µ
σ

)
= α , since

R − µ
σ

∼ F0,1 .

⇒ It results in estimating the mean and variance (µ, σ2)

ξα = F−1
0,1 (α)σ + µ ≈ ξ̂α = F−1

0,1 (α)σ̂ + µ̂ .

where σ̂ and µ̂ are the empirical standard deviation and mean based on (R1, · · · ,RN).

• However this estimation is very sensitive to the choice of the parametric family that
characterizes the tails distribution

Gaussian case F−1
0,1 (5%) = −1.65 , bi-exponential case F−1

0,1 (5%) = −2.33
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Non parametric quantile estimation

• Let (R1, · · · ,RN) be N i.i.d. realizations according to the cumulative distribution F ,
obtained by simulations or by historical data.
• Goal: To compute an estimation of ξα based on the sample (R1, · · · ,RN)

• The order statistics denoted by (R(1), · · · ,R(N)) is obtained by sorting the sample in
the increasing order

R(1) ≤ · · · ≤ R(N)

• The empirical quantile, ξ̂α, associated to the sample (R1, · · · ,RN) is defined by

ξ̂α := R({Nα}) where {Nα} =

 [Nα] + 1 if [Nα] < Nα

Nα if Nα = [Nα]

where for any a, [a] denotes the integer part of a ∈ R+.
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Convergence and confidence interval for the empirical quantile

• Suppose F is continuous and admits a unique solution ξα s.t. F (ξα) = α.

The empirical quantile ξ̂α converges almost surely (a.s.) to the quantile ξα when the
size of the sample grows to infinity :

|ξ̂α − ξα|
a.s.−−−−→

N→∞
0 .

• When the density f of X is continuous with f (ξα) > 0, ξ̂α satisfies a Central Limit
Theorem

√
N|ξ̂α − ξα|

Law−−−−→
N→∞

N (0, σα) , where σα =

√
α(1− α)

f (ξα)
. (1)

We can derive the following confidence interval

P(ξα ∈ [ξ̂α − s , ξ̂α + s]) = x , with s =
σα√
N
F−1
N (0,1)

(
x + 1

2

)
.

where FN (0,1) is the cumulative distribution function of the standard and centered
Gaussian law.
σα can be estimated by density estimation techniques [Silverman86, Devroye87]

σ̂α =

√
α(1− α)

f hN (ξ̂α)
where f hN ≈ f . (2)

8 / 51



Risk evaluation
Numerical methods for stochastic control

Measuring risk
Standard approaches for quantile estimation
Advanced techniques for quantile estimation

Non asymptotic confidence interval for the empirical quantile

• We look for a confidence interval of the form P(R(r) ≤ ξα ≤ R(s)) = x ∈ (0, 1) .

• We define the r.v. Bα1:N :=
∑N

i=1 IRi≤ξα ∼ Binomial(α,N) such that ,

P(Bα1:N = k) = C k
Nα

k (1− α)N−k , for any k ∈ {0, 1, · · · ,N} .

• For any r ≤ s in {1, · · · ,N},

P(R(r) ≤ ξα ≤ R(s)) = P(R(r) ≤ ξα)− P(R(s) ≤ ξα)

= P(Bα1:N ≥ r)− P(Bα1:N ≥ s)

=
N∑

k=r

P(Bα1:N = k)−
N∑

k=s

P(Bα1:N = k)

=

s−1∑
k=r

C k
Nα

k (1− α)N−k .

=> This is the type of confidence interval which is mostly used in practice
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Idealized Multilevel splitting

• Suppose X is a random vector in Rd with law µ that we can simulate
• Goal: To estimate α := P(Φ(X ) > s) for a threshold s lying in the tails of Φ(X ),
where the score function Φ : Rd → R is a black box

• The crude Monte Carlo approach uses an i.i.d. sample (X1, · · · ,XN)

α̂N :=

∑N
i=1 IΦ(Xi )>s

N
with a relative error

Var(α̂N)

α2
=

1− α
α

1

N
.

• Consider a sequence of increasing levels −∞ = L0 < L1 < · · · < Ln0 = s

P(Φ(X ) > s) =

n0−1∏
m=0

P(Φ(X ) > Lm+1|Φ(X ) > Lm) .

• Idealized Multilevel Splitting
Estimate each probability αm := P(Φ(X ) > Lm+1|Φ(X ) > Lm) separately

Choose for all m, αm = α0 = α
1
n0 to minimize the variance.

Consider α̂N
0 , · · · , α̂N

n0−1 some independent crude Monte Carlo estimators using N
runs each

E[α̂N
0 · · · α̂N

n0−1] = α , and
Var(α̂N

0 · · · α̂N
n0−1)

α2
≈

1− α0

α0

n0

N
.
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Multilevel splitting

• The ideal setting is impractical because

it is difficult to a priori choose the levels −∞ = L0 < L1 < · · · < Ln0 = s so as
to obtain for any m = 0, · · · , n0 − 1

αm := P(Φ(X ) > Lm+1|Φ(X ) > Lm) = α
1
n0

it is difficult to build independent estimates (α̂N
0 , · · · , α̂N

n0−1)

• Key points of this approach:

1 Finding an efficient algorithm to compute the conditional probabilities

2 Selecting properly the sequence of levels
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Reversible shaking kernels for splitting [GobetEtLiu15]

• Let E := {x ∈ Rd s.t. Φ(x) > s} and Ek := {x ∈ Rd s.t. Φ(x) > Lk} recall that

P(X ∈ E) =

n0−1∏
k=0

P(X ∈ Ek+1|X ∈ Ek ) =

n0−1∏
k=0

αk .

• Consider the restriction of µ to Ek

µk := P(·|X ∈ Ek ) =
Ix∈Ekµ∫

x∈Ek
)µ(dx)

=
Ix∈Ekµ
µ(Ix∈Ek )

=: Ix∈Ek · µ

• Find a kernel Qk which leaves invariant µk :

µkQk :=

∫
Rd
µk (dx)Qk (x , ·) = µk

• Use Markov Chain Monte Carlo Methods (MCMC) to approximate αk :
Find X k

0 ∈ Ek , then for i = 1, · · · ,N generate X k
i ∼ Qk (X k

i−1, ·)
Under ergodicity conditions on the transition kernel Qk for any ϕ ∈ Cb(Rd ,R)

1

N

N∑
i=1

ϕ(X k
i )

a.s.−−−−→
N→∞

µk (ϕ) :=

∫
Rd
µk (dx)ϕ(x) and E[|

1

N

N∑
i=1

ϕ(X k
i )−µk (ϕ)|2] ≤

Ck (ϕ)

N
.

=> α̂N
k :=

∑N
i=1 IX k

i ∈Ek+1

N

a.s.−−−−→
N→∞

αk and E[|α̂N
k − αk |2] ≤

Ck

N
.
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Building a transition kernel that leaves invariant the Gaussian probability measure

• The notion of reversible kernel
Let µ be a probability measure on Rd , and Q a transition kernel, Q is said to be
µ-reversible if

µ(dx)Q(x , dx ′) = µ(dx ′)Q(x ′, dx) , for any (x , x ′) ∈ Rd × Rd . (3)

• Any µ-reversible kernel Q leaves µ invariant Integrating w.r.t. x ′∫
x′∈Rd

µ(dx)Q(x , dx ′) = µ(dx) =

∫
x′∈Rd

µ(dx ′)Q(x ′, dx) = (µQ)(dx) , for any x ∈ Rd .

• The following kernel, Q, is N (0, Im)-reversible

Q(x , dx ′) :=
1√

2π(1− c2)
exp

{
−

1

2

(x ′ − cx)2

1− c2

}
dx ′ , with |c| < 1 . (4)

• Indeed consider W ∼ N (0, Im) independent of X then

X ′ := cX +
√

1− c2W , is such that P(X ′ ∈ dx ′ |X = x) = Q(x , dx ′) (5)

If X ∼ N (0, Im) (X ,X ′) ∼ N
(

0,

[
Im cIm
cIm Im

])
is symmetric.
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From a µ-reversible kernel to a kernel leaving µk invariant

• If Q is a µ−reversible kernel then Qk leaves invariant µk :=
Ix∈Ek µ
µ(IEk )

=: Ix∈Ek · µ,

where

Qk (x , dx ′) := Q(x , dx ′)Ix′∈Ek +
[
1− Q(x ,Ek )

]
δx (dx ′) , for any (x , x ′) ∈ E2 .

Indeed, by integrating w.r.t. µk (dx) and using the µ−reversibility of Q yields
∀ x ′ ∈ E ,∫

x∈E µk (dx)Qk (x , dx ′) =
∫
x∈E

µ(dx)
µ(Ek )

Ix∈EkQ(x , dx ′)Ix′∈Ek +
∫
x∈E

µ(dx)
µ(Ek )

Ix∈EkQ(x ,E c
k )δx (dx ′) ,

=
∫
x∈E

µ(dx′)
µ(Ek )

Ix∈EkQ(x ′, dx)Ix′∈Ek + µ(dx′)
µ(Ek )

Ix′∈EkQ(x ′,E c
k ) ,

= µ(dx′)
µ(Ek )

Ix′∈EkQ(x ′,Ek ) + µ(dx′)
µ(Ek )

Ix′∈EkQ(x ′,E c
k ) = µk (dx ′) .

• To simulate a r.v. X ′ ∼ Qk (x , ·) notice that Qk rewrites

Qk (x , dx ′) = Q(x ,Ek )
Q(x , dx ′)Ix′∈Ek

Q(x ,Ek )
+
[
1− Q(x ,Ek )

]
δx (dx ′) , for any (x , x ′) ∈ E2 .

which provides the following procedure
1 generate X̃ ′ suivant Q(x , ·) according to (5),
2 set X ′ = X̃ ′ if X̃ ′ ∈ Ek else set X ′ = x .
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Interacting particle methods [DelMoral04, DelMoralEtal06, CerouEtal06] Principle

• Consider the sequence of probability measures (µk )k=0,··· ,n0−1 s.t.

µk (dx) := P(X ∈ dx |X ∈ Ek ) ,

and transition kernels Qk that leave µk invariant.

• Define the sequence of Potential functions Gk on Rd s.t.

Gk (x) = Ix∈Ek+1
.

• (µk )k=0,··· ,n0−1 satisfies the following dynamics

µk = Gk−1 · µk−1 :=
Gk−1µk−1

µk−1(Gk−1)

= (Gk−1 · µk−1)Qk , since µkQk = µk .

• (µk )k=0,···n0
can be approximated by (µNk )k=0,···n0

satisfying the dynamics{
µN0 = SN(µ0)

µNk = SN
(

(Gk−1 · µNk−1)Qk

)
,

where for any π ∈ P(E) defined on Rd , SN(π) denotes a random discrete measure

SN(π) =
1

N

N∑
i=1

δξi , with (ξ1, · · · , ξN) i.i.d. ∼ π .
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Interacting particle methods [DelMoral04, DelMoralEtal06, CerouEtal06] Algorithm

• Initialization : Generate independently

(ξ1
0 , · · · , ξN0 ) i.i.d. ∼ µ0 := µ then set µN0 = SN(µ0) :=

1

N

N∑
i=1

δξi0

• For k = 0, · · · , n0

• Weighting : For each particle i ∈ {1, · · · ,N}, compute

ωi
k =

Gk (ξik )∑N
j=1 Gk (ξjk )

then set νNk :=
N∑
i=1

ωi
k δξi

k

• Selection : Generate independently

(ξ̃1
k , · · · , ξ̃

N
k ) i.i.d. ∼ νNk =

N∑
i=1

ωi
k δξi

k

• Mutation : Generate independently for each i ∈ {1, · · · ,N},

ξik+1 ∼ Qk+1(ξ̃ik , ·) then set µNk+1 = SN(Gk · µNk ) :=
1

N

N∑
i=1

ξik+1
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Interacting Particle Systems
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Adaptive choice of the levels (Lk )k≥0

[MussoEtal01, Homem-de-MelloEtRubinstein02, CerouEtGuyader07, CerouEtal11,
GobetEtLiu15, AgarwalEtal15]

• To reduce the variance and get closer to the idealized Multilevel splitting setting
where α1, · · ·αn0−1 = α0, the threshold Lk can be chosen as a r.v. depending on the
current particle system

Lk = inf

{
L such that

N∑
i=1

IΦ(ξi
k

)≤L ≥ (1− α0N)

}

• The algorithm ends in a random number of iterations K as soon as LK ≥ s then we
consider the estimate

α̂ = αK−1
0

∑N
i=1 IΦ(ξi

K
)≥s

N
.

The asymptotic variance is similar to the idealized multilevel splitting approach with a
small additional bias of order 1/N.
• The same algorithm can be used to estimate quantiles by changing the stopping rule.
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Importance Sampling

Goal Computing m = Ef [ϕ(X )] =

∫
x∈Rd

ϕ(x) f (x) dx .

• Change of measure f −→ g where g dominates ϕf

m = Ef [ϕ(X )] = Eg [ϕ(Y )
f

g
(Y )] , where X ∼ f and Y ∼ g

• Monte Carlo approximation Generate (Y1, · · · ,YM) i.i.d. ∼ g

m̂g
M =

1

M

M∑
i=1

ϕ(Yi )
f

g
(Yi )

a.s. L2

−−−−−→
M→∞

Ef [ϕ(X )] (when Var
(
ϕ(Y )

f

g
(Y )

)
) .

• Optimal change of measure f −→ g∗ (zero variance for ϕ ≥ 0)

g∗ =
|ϕ|f∫

|ϕ|(x)f (x) dx
=

|ϕ|f
Ef [|ϕ|(X )]

= |ϕ| · f

⇒ How to simulate and evaluate (at least approximately) g∗ ?
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Some approaches to approximate importance distributions

• Large deviation approximation for rare events simulation [Bucklew04]

• Approximation of ϕ to obtain a simple expression for g∗ ex : [GlassermanEtal00]
for computing VaR, ∆-Γ approximation of the portfolio value ϕ

• Cross-entropy [Homem-de-MelloEtRubinstein02] gθ is chosen in a parametric family
such as to minimize the entropy K(gθ, g∗)

• Mixture of kernels to approximate posterior distributions [West93],
[GivensEtRaftery96], [Zhang96]

• Progressive correction [MussoEtal01]

• Review of different approaches [EvansEtSwartz95] and [GivensEtRaftery96]

• . . .
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Variance of adaptive Importance Sampling estimate

• Let g be a (possibly random) importance probability density dominating g∗

Var(m̂g
M) = E

[
Var [m̂g

M | Fg ]
]

+ Var
[
E[m̂g

M | Fg ]
]︸ ︷︷ ︸

=0

,

where Fg denotes the sigma-algebra generated by g
• The variance of the IS estimate is given by the Chi-square distance between g and
g∗

Var(m̂g
M) =

m2

M
E
[ ∫

[(g∗ − g)
g∗

g
](x)dx

]
.

• Idea: use a first set of N-simulations to approximate g∗ by gN to achieve variance

reduction for N and M = M(N) sufficiently large

Var(m̂gN

M ) ≤ C

MNβ
≤ Var(m̂g

M+N) =
C ′

M + N
with 0 < β < 2/(d+4)
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Simulation results: Adaptive Importance Sampling vs Interacting Particle Method

• Several test cases depending on the form of function x 7→ Φ(x) have been studied:
results are all comparable
• X is a d dimensional Gaussian variable and m = Ef [IΦ(X )≥s ]
• Particles N = 500; Iterations n ≈ 10 to 60; Simulations M = 10 000
• The performance of adaptive importance sampling (using IPS) has been compared
to simple Interacting Particle Systems without IS [DelMoralEtal06]

d = 1 d = 2 d = 3 d = 4 d = 5

m = 10−2 150
10−1 50 50 30 25

m = 10−3 1000
2

300 300 200 140

m = 10−6 2.105

200
105

400
105

300
5.104

460
2.104

480

d = 6 d = 7 d = 8 d = 9 · · · d = 30

m = 10−2 22 14 11 8 · · · 5.10−3

m = 10−3 100 70 55 40 · · · 10−3

m = 10−6 104

250
2.103

480
2.103

300
4.103

300
· · · 1

360

Variance ratio of IS-IPS ans simple IPS w.r.t. crude Monte Carlo (indicates a variance
reduction when greater than 1) 22 / 51
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• Stochastic control problems are standard in energy management

Short-term: unit commitment problem minimizing production costs to satisfy a
(stochastic) demand;

Long-term: investment decisions evaluating power plants flexibility (Gas turbines
etc.), real options, when to invest ?

Increasing stochasticity due to demand, market prices (electricity, fuels, Co2),
production (with the emergence of intermittent energies) . . .

v0(x) = sup
ν

E

[
n∑

k=0

fk (X
νk
k , νk )

]
.

• Ex: American option pricing is a specific stochastic control problem from financial
mathematics, for which a great variety of numerical methods and variance reduction
techniques have been proposed

u0(x) = sup
τ∈Tn

E

[
n∑

k=0

f (Xk )Ik=τ

]
.

Control variate, Quasi Monte Carlo, Antithetic variables, Importance
Sampling [LongstaffEtSchwartz01, BroadieEtGlasserman04, Arouna04,
Moreni03, JunejaEtKalra09] . . .
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For a given finite time horizon T > 0, consider the stochastic control problem

V (t, x)︸ ︷︷ ︸
Value function

:= sup
ν∈U

E
[∫ T

t
f (s,X t,x,ν

s , νs)ds + g(X t,x,ν
T )

]
︸ ︷︷ ︸

J(t, x , ν) =Gain function

for (t, x) ∈ [0,T )×Rd .

(6)
where

the stochastic controlled process (X t,x,ν
s )t≤s≤T is the solution of the SDE{

dX t,x,ν
s = b(s,X t,x,ν

s , νs)ds + σ(s,X t,x,ν
s , νs)dWs

X t,x,ν
t = x ,

where (7)

N the control process ν ∈ U , the set of all locally bounded predictable processes
ν = {νt , t < T} in L2(Ω× [0,T )) taking values in a subset U ⊂ Rk ;
N the coefficients b : (t, x , u) ∈ R+ × Rd × U 7→ b(t, x , u) ∈ Rd and

σ : (t, x , u) ∈ R+ ×Rd ×U 7→ σ(t, x , u) ∈ Rd×d′ satisfy the usual Lipschitz and
linear growth conditions.

the running reward function f : [0,T )× Rd × U → R and the terminal gain
function g : Rd → R satisfy the quadratic growth condition:

|f (t, x , u)|+ |g(x)| ≤ C(1 + |x |2) , (8)
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Hamilton Jacobi Bellman equation

• Markovian control
There exists a measurable function u : [0,T )× Rd → U s.t. νt = u(t,Xt).

• Infinitesimal generator associated to the EDS (7) Lu s.t. for any ϕ ∈ C2(Rd ,R)

(Lu)ϕ(t, x) := b(t, x , u)′Dϕ(x) +
1

2
Tr [σσ′(t, x , u)D2ϕ(x)] , (9)

where D and D2 denote the gradient and the Hessian operators.
• Dynamic Programming Principle (DPP) gives that V is a viscosity solution of the
nonlinear PDE

∂V

∂t
(t, x) + sup

u∈U
(LuV (t, x) + f (t, x , u)) = 0 , (10)

• Consider the function F on [0,T ]× Rd × Rd × Sd

F (t, x , δ, γ) := sup
u∈U

(
f (t, x , u) + b(t, x , u)′δ(t, x) +

1

2
Tr [σσ′(t, x , u)γ(t, x)]

)
, (11)

(Sd denoting the set of symmetric matrices in Rd×d ), then the HJB equation can be
rewritten as the non linear Partial Differential Equation (PDE):

∂V

∂t
(t, x) + F (t, x ,DV ,D2V ) = 0 . (12)
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Several approaches for the numerical solving of HJB equation

Numerical analysis methods finite differences, finite elements. . .
V is interpreted as the viscosity solution of PDE (10). To prove the convergence
of the numerical scheme, one can consider monotone approximation schemes in
the sense of Barles and Souganidis [BarlesEtSouganidis91]
(see [BonnansEtZidani03, ForsythEtVetzal12] etc).
Discrete time and finite state space Dynamic Programming with the Markov
chain approximation method [KushnerEtDupuis92].
This approach is closely related to the finite differences approach since
time-space discretization is obtained by renormalizing the finite differences
scheme such as to obtain a proper Markov chain.
The advantage is that the probabilistic setting helps to rely on probabilistic
arguments to prove the convergence of the numerical scheme.
Discrete time Dynamic Programming
V is interpreted as the solution to the control problem (6). Then one can try to
solve a time discrete approximation of this control problem by using the time
discrete DPP [BertsekasEtShreve78] and then optimizing backwardly in time the
conditional expectation of the value function over the controls.
When V can be viewed as the solution of a semi-linear PDE, it can be related to
the solution of a Forward Backward Stochastic differential
Equation [PardouxEtPeng92]
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Finite differences scheme (in dimension 1): space discretization

• Consider the simplified case of a linear (and time homogeneous coefficients b and σ)
PDE  ∂v

∂t
(t, x) +

1

2
σ2(x)

∂2

∂x2
v(t, x) + b(x)

∂

∂x
v(t, x) + f (t, x) = 0

v(T , x) = g(x) .

• Localization in space in [−L, L] find judicious limit conditions
Ex. Dirichlet conditions: v(t,−L) = v(t); v(t,−L) = v̄(t) ∀ t ∈ [0,T ).
For simplicity, we suppose here that v̄ = v = 0 allows to control the localization error.

• Space discretization x1 = −L < x1 < · · · < xm = L , s.t. xi+1 − xi = 2L
m−1

= δx .

∂v

∂x
(t, xi ) ≈

v(t, xi+1)− v(t, xi−1)

2δx
;

∂2v

∂x2
(t, xi ) ≈

v(t, xi+1)− 2v(t, xi ) + v(t, xi−1)

(δx)2
.

• Finite differences approximation For i = 2, · · · ,m − 1, set

αi = −
σ2(xi )

(δx)2
, βi =

σ2(xi )

2(δx)2
+

b(xi )

2δx
, and γi =

σ2(xi )

2(δx)2
−

b(xi )

2δx
.

=>
∂v

∂t
(t, xi ) + γiv(t, xi−1) + αiv(t, xi ) + βiv(t, xi+1) + f (t, xi ) ≈ 0 .
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Finite differences scheme in dimension 1: time discretization

• Consider the time mesh t1 = 0 < · · · < tj < · · · < tn = nδt = T .

v(tj+1, xi )− v(tj , xi )

δt
+ γiv(tj , xi−1) + αiv(tj , xi ) + βiv(tj , xi+1) + f (tj , xi ) ≈ 0 .

• Matrix representation We make the approximation v(tj , xi ) ≈ vij , where
(vij )1≤i≤m,1≤j≤n are the elements of a m × n-matrix with column v·j s.t.

vin = g(xi ) , for i = 2, · · · ,m − 1 Terminal condition
v1j = 0 = vmj , for j = 1, · · · , n Localization condition(
I − θδtA

)
ṽ·j =

(
I + (1− θ)δtA

)
ṽ·j+1 + δtf̃·j , for j = n − 1, · · · , 1 .

• ṽ·j is the (m − 2) vector
ṽ·j = (vij )i=2,··· ,m−1;

• f̃·j = (f (tj , xi ))i=2,··· ,m−1;

• Parameter θ ∈ [0, 1];

• A (m − 2)× (m − 2)
tridiagonal matrix s.t.



α2 β2 0 · · · · · · 0
γ3 α3 β3 0 · · · 0

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0
...

. . . γm−2 αm−2 βm−2

0 · · · · · · 0 γm−1 αm−1
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Finite differences scheme in dimension 1: convergence conditions [Ciarlet88]


vin = g(xi ) , for i = 2, · · · ,m − 1 Terminal condition
v1j = 0 = vmj , for j = 1, · · · , n Localization condition(
I − θδtA

)
ṽ·j =

(
I + (1− θ)δtA

)
ṽ·j+1 + δtf̃·j , for j = n − 1, · · · , 1 ,

Under regularity assumptions on b σ and f , vij allows to build a stepwise (on the mesh
(xi )i=1,··· ,m convergent approximation of v .
• 0 ≤ θ < 1/2 convergence requires

δt → 0,

δx → 0

(1− θ)σ(xi )
δt

(δx)2 <
1
2

for any xi in the mesh (CFL condition).

In particular,

θ = 0 is called Explicit scheme

θ = 1/2 is called Crank-Nicholson scheme (with a time discretization error of
order 2 instead of 1 when A is time homogeneous)

θ = 1 is called fully implicit scheme
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Finite differences scheme in dimension 1: HJB case

• Non-linear matrix equation v(tj , xi ) ≈ vij , where (vij )1≤i≤m,1≤j≤n are the elements
of a m × n-matrix with column v·j s.t.

vin = g(xi ) , for i = 2, · · · ,m − 1 Terminal condition
v1j = 0 = vmj , for j = 1, · · · , n Localization condition
ṽ·j = Tṽ·j+1

(ṽ·j ) , for j = n − 1, · · · , 1 , where ṽ·j = (vij )i=2,··· ,m−1

T is defined for any (v ,w) ∈ Rm−2 × Rm−2 by

Tw (v) = max
u

T u
w (v) , (supposed to exist)

T u
w (v) = θδtAuv +

(
I + (1− θ)δtAu

)
w + δtf̃ u·j ,

where the maximum is taken over functions u : xi ∈ {x2, · · · , xm−1} 7→ u(xi ) ∈ U

One can prove that T u
w and Tw are contractions (for δt sufficiently small) so that one

can rely on fixed point algorithms to solve v = Tw (v)
• Value iteration Choose v0 (ex: v0 = ṽ·j+1) then for ` = 0, · · · , L v`+1 = Tw (v`) .
• Policy iteration or Howard method Choose u0 then for ` = 0, · · · , L

v` = T u`
w (v`)

u`+1 = argmax
u∈U

T u
w (v`) .
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Discretizing the control problem in time

• Let t0 = 0, · · · , tn = T = nδt be a regular time discretization of [0,T ].
For a given sequence of controls uk:p−1 := (uk , · · · up−1) ∈ Up−k (U being the set of

U-valued measurable functions defined on Rd ) we consider the Euler scheme of X i.e{
X̄

k,x,uk:p

p+1 = X̄
k,x,uk:p−1
p + bpδt + σp

√
δtεp+1 for all p ≥ k,

X̄
tk ,x,uk:n−1
t = x ,

with

(εp+1)p≥k being a sequence of i.i.d. ∼ N (0, Id ) and

bp = b
(
tp , X̄

k,x,uk:p−1

p−1 , up(X̄
k,x,uk:p−1

p−1 )
)

and σp = σ
(
tp , X̄

k,x,uk:p−1

p−1 , up(X̄
tk ,x,uk:p−1

p−1 )
)
.

• We consider the time discretized gain function Jk : Rd × Un−k → R defined by

Jk (x , uk:n−1) := E

g(X̄
k,x,uk:n−1

T ) + δt

n−1∑
p=k

f (tp , X̄
k,x,uk:p−1
p )

 .
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Discrete time Dynamic Programming Principle

• Time disctretization of the value function Vk For any k ∈ {0, · · · , n},

Vk (x) := sup
uk:n−1∈Un−k

Jk (x , uk:n−1) for x ∈ Rd , (13)

• By the discrete DPP, the value function, Vk , follows a backward recursion Vn(x) = g(x)

Vk (x) = fk (x) + sup
uk∈U

E[Vk+1(X̄
k,x,uk
k+1 )] , for any k = 0, · · · n − 1 , (14)

where fk (x) := f (tk , x).

• Estimating the conditional expectations could be approximated by numerical
methods such as PDE, Fourier, lattice or Monte Carlo methods,. . . Many numerical
approximation schemes that have been developed for computing American
option [BroadieEtGlasserman04, LongstaffEtSchwartz01, BallyEtal05,
TsitsiklisEtVanRoy01, DelMoralEtal11, BouchardEtWarin12] prices or BSDE
solutions [BouchardEtTouzi04, Zhang04, GobetEtal05] are then available.

• Maximizing the expectation over the controls at time step k can be done via a
parametrization of the control x 7→ uθk (x) so that parametric optimization methods
such as the stochastic gradient algorithm could be applied to maximize the
expectation over the parameter θ [KushnerEtYin97]. 33 / 51
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Maximizing the expectation over the controls Back to the continuous time formulation

• Assume that for any (t, x) ∈ [0,T )× Rd , the following argmin reduces to one point
in U then on can define the mapping G on [0,T ]× Rd × Rd × Sd such that

G(t, x , δ, γ) := argmin
u∈U

{
f (t, x , u) + b(t, x , u)′δ(t, x) +

1

2
Tr [σσ′(t, x , u)γ(t, x)]

}
,

then, the HJB equation becomes{
∂V
∂t

(t, x) + LuV (t, x) + f (t, x , u) = 0 Expectation
u(t, x) = G(t, x ,DV ,D2V ) Maximization ,

(15)

• Time discretization explicit scheme
Vk (x) = fk (x) + E[Vk+1(X̄

k,x,uk
k+1 )] Expectation

DVk (x) = fk (x) + DE[Vk+1(X̄
k,x,uk
k+1 )] Expectation derivative

D2Vk (x) = fk (x) + D2E[Vk+1(X̄
k,x,uk
k+1 )] Expectation derivative

uk−1(t, x) = G(t, x ,DVk ,D
2Vk ) Simple evaluation ,

This type of approach was developed in [FahimEtal1], where V is interpreted as a
viscosity solution of (10) and in [Tan12], where V is interpreted as the solution to the
control problem (6).
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Computing Derivatives of expectation can be achieved by

• Without any regularity assumption on ϕ (likelihood ratio) Let ϕ be a real valued
function with sub-exponential growth then for any t > 0 and x ∈ Rd

DE[ϕ(x+Wt)] = E[ϕ(x+Wt)
Wt

t
] ; and D2E[ϕ(x+Wt)] = E[ϕ(x+Wt)

WtWT
t − tId
t2

] .

• Under regularity assumptions on ϕ

DE[ϕ(x + Wt)] = E[Dϕ(x + Wt)] ; and D2E[ϕ(x + Wt)] = E[D2ϕ(x + Wt)] .

• Those formula can be generalized to the case where x +Wt is replaced by a diffusion
process X 0,x

t under suitable regularity assumptions on the SDE coefficients using

Malliavin calculus (Elworthy’s formula) [FournieEtal99];

Tangent process approach [Kunita82] to compute ∇xX
0,x
t .
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FBSDE and semi-linear PDEs [PardouxEtPeng92, ElKarouiEtMazliak97]

• Definition Let (Wt)0≤t≤T be a q-dimensional Brownian.

Under Lipschitz and growth assumptions on the driver f : [0,T ]× Rd × R× Rq → R
the terminal condition g : Rd → R and the coefficients b : [0,T ]× Rd → Rd and
σ : [0,T ]× Rd → Rd × Rq ,

there exists a unique FW
t -adapted triplet on [0,T ], (X ,Y ,Z), such that{

dX t = b(t,Xt)dt + σ(t,Xt)dWt , with X0 = x
dY t = −f (t,Xt ,Yt ,Zt)dt + Z tdWt , with YT = g(XT ) .

Moreover Yt = v(t,Xt).

• Link with PDEs By Ito’s Lemma

Ys − Yt = v(s,Xs)− v(t,Xt) =

∫ s

t
(
∂v

∂t
+ Lv)(r ,Xr )dr +

∫ s

t
Dv(r ,Xr ) · σ(r ,Xr )dWr

=

∫ s

t
−f (r ,Xr ,Yr ,Zr )dr +

∫ s

t
ZrdWr .

=> v satisfies

{
v(T , x) = g(x)

−
∂v

∂t
− Lv − f

(
t, x , v(t, x),Dv(t, x)σ(t, x)

)
= 0

• Under some conditions, the semiliear PDE has a unique solution v∗ which can be
represented as a FBSDE s.t. Yt = v∗(t,Xt) and Zt = Dv∗(t,Xt)σ(t,Xt)
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Numerical schemes for FBSDE [BouchardEtTouzi04, Zhang04, GobetEtal05]

• Let t0 = 0, · · · , tn = T be a regular time discretization of [0,T ], s.t. tk = kδt.
For any k ∈ {0, · · · , n},

Ytk−1 = Ytk +

∫ tk

tk−1

f (t,Xt ,Yt ,Zt)dt−
∫ tk

tk−1

Zt ·σ(t,Xt)dWt , with Ytn = g(Xtn ) .

• Taking the conditional expectation w.r.t. Ftk−1 yields

Ytk−1 = E[Ytk |Xtk−1 ] +

∫ tk

tk−1

E[f (t,Xt ,Yt ,Zt)|Xtk−1 ]dt , with Ytn = g(Xtn ) .

(16)
• Most numerical schemes consists of two steps

1 Simulate (approximately) trajectories of the forward Markov chain (Xtk )k≤0,

typically using an Euler scheme (X̂k )k≤0

2 Approximate the backward dynamics (16), by discretizing the integral w.r.t. time
Yn = g(Xn)
Yk−1 = E[Yk |Xk−1] + f (Xk−1,Yk−1,Zk−1)δt
Zk−1 = 1

δt
(σ(tk−1,Xk−1))−1E[Yk (Wtk −Wtk−1 )|Xk−1] .

=> Again one has to rely on numerical approximations of conditional expectations.
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Several approach have been proposed

(X ,Y ) a pair of square integrable r.v. on Rd × R observed via an
N-sample

(Xi ,Yi )i=1,···N i.i.d. ∼ (X ,Y )

Likelihood ratio

Kernel regression

Least square regression

Quantization method . . .
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Likelihood ratio

(X ,Y ) square integrable r.v. on Rd × R observed via an i.i.d. sample (Xi ,Yi )i=1,···N

• Goal : Approximate the conditional expectation E(Y |X ) on the base of the N-sample

E(Y |X ) = v∗(X ) , where v∗(x) :=

∫
y∈R

ypY |X=x (y)dy .

where pY |X=x (y) is the density of Y conditioned on X = x (assumed to exist).

• Assume that pY |X=x (y) can be evaluated at any point (x , y) ∈ Rd × R).

• Approximation of the conditional expectation

v∗(x) ≈
1

N

N∑
i=1

YipY |X=Xi
(Yi ) .
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Kernel regression [GyorfiEtal02]

(X ,Y ) square integrable r.v. on Rd × R observed via an i.i.d. sample (Xi ,Yi )i=1,···N

• Goal : Approximate the conditional expectation E(Y |X ) on the base of the N-sample

E(Y |X ) = v∗(X ) , where v∗(x) :=

∫
y∈R

ypY |X=x (y)dy .

where pY |X=x (y) is the density of Y conditioned on X = x (assumed to exist).

• Bayes Formula pY |X=x (y)dy =
pX ,Y (x , dy)

pX (x)

• Kernel density estimation

pX (x) ≈
1

Nhd

N∑
i=1

K(
x − Xi

h
) , and pX ,Y (x , dy) ≈

1

Nhd

N∑
i=1

K(
x − Xi

h
)δYi

(dy)

N K is regular standard and centered probability density (e.g. N (0, I )).

N h > 0 window bandwidth chosen s.t. h
0−−−−→

N→∞
and Nhd

∞−−−−→
N→∞

.

• Approximation of the conditional expectation

v∗(x) ≈
∑N

i=1 K( x−Xi
h

)Yi∑N
i=1 K( x−Xi

h
)

.
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Least-square regression (i) [GyorfiEtal02]

(X ,Y ) a pair of square integrable r.v. on Rd × R observed via an N-sample

(Xi ,Yi )i=1,···N i.i.d. ∼ (X ,Y )

• Goal : Approximate the conditional expectation E(Y |X ) on the base of the N-sample

E(Y |X ) = v∗(X ) , where v∗ := arg min
v∈L2(X )

E
[(
Y − v(X )

)2
]
.

v∗ can be represented as a weighted sum of basis functions v∗ =
∑∞

p=1 α
∗
pHp with

(α∗p )p≥1 := arg min
αp∈R

E

( ∞∑
p=1

αpHp(X )− Y
)2

 .

where Hp : Rd → R are basis functions of L2(X ).

• Truncation of the basis of L2(X ) v∗ ≈ v̂m :=
∑m

p=1 α̂
m
p Hp with

(α̂m
1 , · · · α̂m

m) := arg min
(α1,··· ,αm)∈Rm

E

( m∑
p=1

αpHp(X )− Y
)2
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Least-square regression (ii)

• Monte Carlo approximation of the error v̂≈v̂m,M =
∑m

p=1 α̂
m,M
p Hp with

α̂m,M := (α̂m,M
1 , · · · , α̂m,M

p ) := arg min
α∈Rm

1

M

M∑
i=1

 m∑
p=1

αpHp(Xi )− Yi

2

.

• Estimation of the coefficients vector α̂m,M := (α̂m,M
1 , · · · , α̂m,M

m )

α̂m,M = arg min
α∈Rm

‖Hα− Y‖2

where

H :=


H1(X1) · · · Hp(X1) · · · Hm(X1)
·
·
H1(XM) · · · Hp(X1) · · · Hm(XM)

 , α :=


α1

·
·
αm

 , Y :=


Y1

·
·
YM


• Approximation of the conditional expectation

v̂p,M :=
m∑

p=1

α̂m,M
p Hp

L2

−−−−−−→
m,M→∞

v
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