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Securities, Derivatives and Trading Strategies Market Securities

Market Securities – I

We start with the simple setting of a market with default-free
securities.
−→ We later add counterparty credit risk, funding costs and

collateralization.
We assume that the market quotes the prices of some securities we
name {S1

t , . . . ,Sn
t }.

When holding a security we may face the possibility to receive or pay
a quantity of cash.
−→ The owner of a bond receives coupons on a regular basis.
−→ Share holders receive dividends over time.
−→ Many bilateral contracts consists in a strip of random cash flows.
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Securities, Derivatives and Trading Strategies Market Securities

Market Securities – II

We name {γT1 , . . . , γTN} the coupons, dividends or cash flows
received or paid while holding a security
We define the cumulative dividend process as

Dt :=
N∑
i=1

γTi1{Ti≤t}

The profits and losses achieved holding a security are described by the
gain process, which is defined as

Gt := St + Dt
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Securities, Derivatives and Trading Strategies Market Securities

Trading Portfolios and Total Wealth – I

A trading strategy in the market securities consists in holding a
portfolio of securities.
We name {q1

t , . . . , qn
t } the quantities of each security held in the

portfolio.
−→ At each time the trader may change the composition of the portfolio.
−→ The quantities qi

t may be either positive or negative.
The total wealth realized by the strategy can be computed by taking
into account the profit and losses along time.
If we can trade only on times {t0 = 0, t1, . . . , tm = t}, we can write
the total wealth as

Wt :=
n∑

i=1
qi
t0S

i
t0 +

m∑
k=1

n∑
i=1

qi
tk−1

(G i
tk − G i

tk−1
)
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Securities, Derivatives and Trading Strategies Market Securities

Trading Portfolios and Total Wealth – II

We can substitute the definition of gain process in the total wealth
formula to highlight how the dividends contribute to it.

Wt =
n∑

i=1
qi
t0S

i
t0 +

m∑
k=1

n∑
i=1

qi
tk−1

(
S i
tk − S i

tk−1
+

N∑
i=1

γTi1{tk−1<Ti≤tk}

)

A simple example of trading strategy is entering a position and never
changing it, namely qt does not depend on time.
−→ In this case we should obtain that the total wealth is simply the sum of

the gain processes of each security times their quantities.
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Securities, Derivatives and Trading Strategies Market Securities

Trading Portfolios and Total Wealth – III

The wealth of a constant-quantity trading strategy

Wt
.=

n∑
i=1

qiS i
t0 +

n∑
i=1

qi
m∑

k=1

(
S i
tk − S i

tk−1
+

N∑
i=1

γTi1{tk−1<Ti≤tk}

)

=
n∑

i=1
qiS i

t0 +
n∑

i=1
qi

(
S i
tm − S i

t0 +
N∑
i=1

γTi1{Ti≤tm}

)

=
n∑

i=1
qi (S i

tm + Dtm
)

=
n∑

i=1
qiG i

t
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Securities, Derivatives and Trading Strategies Self-Financing Trading Strategies

Self-Financing Trading Strategies – I

An interesting class of trading strategies is given by the self-financing
strategies.
The wealth process of a self financing strategy is always equal to the
liquidation value of the portfolio.

Wt
.=

n∑
i=1

qi
tS i

t

Which is the consequence of such constraint on the quantities qt ?
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Securities, Derivatives and Trading Strategies Self-Financing Trading Strategies

Self-Financing Trading Strategies – II

We focus on the increment in the wealth process over time.

Wtk −Wtk−1 =
n∑

i=1
qi
tk−1

(S i
tk − S i

tk−1
+ Di

tk − Di
tk−1

)

If we require that the strategy is self-financing, we get

Wtk −Wtk−1 =
n∑

i=1
(qi

tk S
i
tk − qi

tk−1
S i
tk−1

)

If we equate the two expressions, we obtain
n∑

i=1
qi
tk S

i
tk =

n∑
i=1

qi
tk−1

(
S i
tk + Di

tk − Di
tk−1

)
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Securities, Derivatives and Trading Strategies Self-Financing Trading Strategies

Self-Financing Trading Strategies – III

Thus, the quantities are selected so that
−→ dividends are re-invested in the strategy;
−→ further cash is not required and no cash outflow is generated.
In this sense the strategy is self-financing.
Some examples are:
−→ A strategy in shares of a company. This strategy is self-financing if,

every time a dividend is paid, the trader buys more shares.
−→ A strategy in a zero-coupon bond. At maturity the zero-coupon bond

pays the notional, but we cannot re-invest in it since the contract is
terminated. We need a second security to build a self-financing
strategy.
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Securities, Derivatives and Trading Strategies Self-Financing Trading Strategies

Trading Strategies in Continuous Time

In the following we use a continuous-time notation, and we express
the cumulative dividend process as

Dt := D0 +
∫ t

0
dπu , πt :=

N∑
i=1

γTi1{Ti≤t}

while the wealth process for the trading strategy qt is given by

Wt := q0 · S0 +
∫ t

0
qu · dGu

where the internal products is in security space. If the strategy is
self-financing we write

Wt
.= qt · St
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Securities, Derivatives and Trading Strategies Funding and Discounting

The Treasury Bank Account – I

Implementing trading strategies requires to access some cash-paying
(and cash-receiving) securities to fund (and to invest) dividends.
−→ For instance, if we have to pay at a future time T a unit of cash, we

can buy a zero-coupon bond paying such cash at T .
Since trading strategies have their own trading horizons, we wish to
access cash-paying (and cash-receiving) securities without a maturity
time.
In practice we need a bank account.
−→ We can enter into a bank account by paying one unit of cash at

inception, and receiving it back at any later time along with a
compensation.

−→ On the other hand, we can also get one unit of cash at inception to
pay it back at a later time along with a fee.

Do bank accounts exist in the market ?

A. Pallavicini Funding and Counterparty Risks 10-11 February 2016 16 / 156



Securities, Derivatives and Trading Strategies Funding and Discounting

The Treasury Bank Account – II

On the market we have saving accounts, but their are intended for
retail operations.
Traders may access a special bank account, named the treasury Bank
Account (TBA), which is managed by the bank treasury department.
−→ The TBA is not a real security traded on the market, but it behaves as

a security from the point of view of traders.
−→ The TBA is implemented by the treasury by issuing bonds, using

collateral portfolios, accessing saving accounts, etc. . . .
The compensation rate, received when borrowing cash, and the fees,
required when lending cash, are decided by the treasury.
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Securities, Derivatives and Trading Strategies Funding and Discounting

The Treasury Bank Account – III

If we assume that the lending and borrowing rates are the same,
name them rt , we can calculate the price process Bt of the TBA as
the solution of

dBt = rtBt dt , B0 = 1

namely

Bt = exp
{∫ t

0
du ru

}
In the following we assume that the TBA is one of the security used
to implement trading strategies.
−→ We discuss again this assumption when funding costs are introduced.
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Securities, Derivatives and Trading Strategies Funding and Discounting

Price Deflators

When we say that the price process of a security is given by St we are
thinking of liquidating the security to obtain an amount of cash equal
to St .
−→ Cash behaves as a unit of measure for prices.
Yet, we cannot access cash without paying fees or receiving
compensations, since we lend and borrow cash by means of the TBA.
Thus, to take into account the cost of money, we need to express the
wealth processes in term of the TBA, namely

W̄t := Wt
Bt

where W̄ is the deflated wealth.
How can we define deflated price and cumulative dividend processes ?

A. Pallavicini Funding and Counterparty Risks 10-11 February 2016 19 / 156



Securities, Derivatives and Trading Strategies Funding and Discounting

Invariance of Self-Financing Trading Strategies – I

We require that the property of a trading strategy of being
self-financing is invariant under deflation.
−→ We define the deflated price and cumulative dividend processes to

ensure this property.
If qt is a self-financing strategy (Wt

.= qt · St) we can write

W̄t = Wt
Bt

= qt · S̄t

where we define the deflated price process as

S̄t := St
Bt

The definition of the deflated cumulative dividend process is less
obvious, since we must consider that dividends are paid over time,
and the TBA value depends on time too.
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Securities, Derivatives and Trading Strategies Funding and Discounting

Invariance of Self-Financing Trading Strategies – II

Starting from the definition of deflated wealth, we can write

W̄t = W̄0 +
∫ t

0

(
dWu
Bu
−WuruBu du

)
= q0 · S0 +

∫ t

0
qu ·

(
dGu
Bu
− SuruBu du

)
= q0 · S0 +

∫ t

0
qu ·

(
dSu
Bu
− SuruBu du + dDu

Bu

)
= q0 · S0 +

∫ t

0
qu · dḠu

where we define the deflated cumulative dividend and gain processes

D̄t := D0 +
∫ t

0

dDu
Bu

, Ḡt := S̄t + D̄t
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Securities, Derivatives and Trading Strategies Funding and Discounting

Invariance of Self-Financing Trading Strategies – III

If the bank account is risky, as in a foreign-currency account, the
definition of the deflated processes must take into account the
covariation of the dividend process with the deflator.
For a generic positive process Yt (deflator) we can follow Duffie
(2001) to write:

W Y
t = q0 · SY

0 +
∫ t

0
qu · dGY

u , GY
t := SY

t + DY
t

where we define the deflated price and cumulative dividend processes

SY
t := YtSt , DY

t := Y0D0 +
∫ t

0
(Yu dDu + d〈Y ,D〉u)
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Arbitrage-Free Pricing Pricing Formuale and Derivative Replication

Arbitrages – I

In efficient markets securities are always traded at their fair value.
−→ Investors can possibly obtain higher returns only by purchasing riskier

investments.
The possibility “to make money from nothing without risks” should
be excluded from the set of possible trading strategies.
−→ We name arbitrages such strategies.
A more formal definition of arbitrage is needed to going on.
We refer again to Duffie (2001) for the huge literature on arbitrages
and their relationship with martingale pricing.
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Arbitrage-Free Pricing Pricing Formuale and Derivative Replication

Arbitrages – II
We introduce a probability space (Ω,F ,P) endowed with
−→ the standard filtration F := (Ft)t≥0 generated by the security price

processes, and
−→ the physical probability measure P representing the actual distribution

of supply-and-demand shocks on security prices.
We can define arbitrages as a self-financing trading strategy qt whose
wealth at inception time t is non-positive, namely

Wt ≤ 0

while at maturity T it is never negative, and it is strictly positive in
some state, so that we can write

WT ≥ 0 , P {WT > 0 } > 0

To avoid arbitrages we can impose some conditions on the wealth
process W .
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Arbitrage-Free Pricing Pricing Formuale and Derivative Replication

Equivalent Martingale Pricing – I

Given the TBA as price deflator, we can ensure the absence of
arbitrages, if we can find a measure Q, equivalent to the physical
measure P, such that the deflated gain process Ḡt is a martingale
under such measure.
−→ The measure Q is known as risk-neutral measure.
Arbitrages are forbidden even if we use a generic deflator Yt .
−→ In this case the measure QY depends on the choice of the deflator, and

it is known as equivalent martingale measure.
The reverse is not true in general.
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Arbitrage-Free Pricing Pricing Formuale and Derivative Replication

Equivalent Martingale Pricing – II

Under suitable technical conditions on the trading strategy qt , the
martingale condition allows us to write

E
[

W̄T | Ft
]

= W̄t +
∫ T

t
E
[

qu · dḠu | Ft
]

= W̄t

where the expectations are taken under the risk-neutral measure.
If qt is an arbitrage, we have Wt ≤ 0 and

WT ≥ 0 =⇒ W̄T ≥ 0 =⇒ W̄t = E
[

W̄T | Ft
]
≥ 0

on the other hand, the equivalence between the measures implies

P {WT > 0 } > 0 =⇒ Q {WT > 0 } > 0 =⇒ Q
{

W̄T > 0
}
> 0

leading to W̄t > 0 which contradicts the hypothesis.
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Arbitrage-Free Pricing Pricing Formuale and Derivative Replication

Equivalent Martingale Pricing – III
If we assume the existence of a risk-neutral measure, we can price
market securities with maturity date T by exploiting the martingale
condition of deflated gain processes.

Ḡt = E
[

ḠT | Ft
]

Then, we can expand the gain process to obtain the arbitrage-free
pricing formula under Q-expectation

St = Bt E

[
ST
BT

+
∫ T

t

dDu
Bu
| Ft

]

or for a generic deflator Yt under QY-expectation

St = 1
Yt

EY

[
YTST +

∫ T

t
(Yu dDu + d〈Y ,D〉u) | Ft

]
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Arbitrage-Free Pricing Pricing Formuale and Derivative Replication

Replication of Derivative Contracts – I

We can extend pricing formulae to derivative securities not traded on
the market.
We consider a derivative with price process Vt and cumulative
dividend process Qt .
In order to replicate the derivative in terms of market securities, we
can implement a strategy qt to invest (or to fund) the dividends
received (or paid) by the derivative, namely

Qt
.= Wt − qt · St

Furthermore, we require that at maturity the price of the constituents
of the strategy is equal to the price of the derivative.

VT
.= qT · ST
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Arbitrage-Free Pricing Pricing Formuale and Derivative Replication

Replication of Derivative Contracts – II

The derivative price can be calculated at any time from the market
security prices.
We consider a trading strategy q′ which invests in the market
securities as the strategy qt and shorts one unit of the derivative,
namely

q′t := (qt ,−1)

The wealth generated by such strategy is given by

W ′
t = q0 · S0 − V0 +

∫ t

0
(qu · dGu − dVu − dQu) = qt · St − Vt

so that we can conclude that the strategy q′ is self-financing with null
final wealth, W ′

T = 0.
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Arbitrage-Free Pricing Pricing Formuale and Derivative Replication

Replication of Derivative Contracts – III

If we require absence of arbitrages, we obtain that at any time t < T
we must have

W ′
T ≥ 0 =⇒ W ′

t ≥ 0 =⇒ qt · St ≥ Vt

On the other hand, we can consider the strategy (−qt , 1) leading to

qt · St ≤ Vt

Thus, we have at any time t up to matuirty T that

Vt = qt · St

We can write that the derivative gain process is equal to the wealth
generated by the replicating strategy qt .

Wt = Vt + Qt
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Arbitrage-Free Pricing Pricing Formuale and Derivative Replication

Replication of Derivative Contracts – IV

If we assume the existence of a risk-neutral measure for the market
securities, we have that the deflated gain process of the derivative is a
martingale too, leading to the pricing equation

Vt = Bt E

[
VT
BT

+
∫ T

t

dQu
Bu
| Ft

]

or for a generic deflator Yt under QY-expectation

Vt = 1
Yt

EY

[
YTVT +

∫ T

t
(Yu dQu + d〈Y ,Q〉u) | Ft

]

which can be solved once a terminal condition for VT is selected.
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Arbitrage-Free Pricing Counterparty Credit Risk

Market and Enlarged Filtrations – I

The next element we add to the pricing framework is the possibility of
default of one of the counterparties of the contract.
How can we deal with the default event under the risk-neutral
measure?
−→ We need to describe the filtration to adopt to calculate the risk-neutral

expectations.
Market risks for contracts with defaultable counterparties arise from
the uncertainty both in default probabilities and in the default times.
−→ We could add risks specific of the underlying asset and recoveries as

well.
As a first step we introduce the market filtration Ft representing all
the observable market quantities but the default events.
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Arbitrage-Free Pricing Counterparty Credit Risk

Market and Enlarged Filtrations – II

Then, we define the default events of the counterparty τC and of the
investor τI along with the first default time

τ := τC ∧ τI

We define the enlarged filtration G containing also the default
monitoring.
−→ See Bielecki and Rutkowski (2001) for details.

Gt := Ft ∨HC
t ∨HI

t ⊇ Ft

Hk
t := σ({τk ≤ u} : u ≤ t) , k ∈ {C , I}
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Arbitrage-Free Pricing Counterparty Credit Risk

Market and Enlarged Filtrations – III

From the definition of G, we can write

∀gt ∈ Gt ∃ft ∈ Ft : gt ∩ {τC > t} ∩ {τI > t} = ft ∩ {τC > t} ∩ {τI > t}

or simply

∀gt ∈ Gt ∃ft ∈ Ft : gt ∩ {τ > t} = ft ∩ {τ > t}

Thus, for any G-adapted process xt we can introduce the pre-default
F-adapted process x̃t such that

1{τ>t}xt = 1{τ>t}x̃t

We can use this property for numerical implementations to express
expectations under the enlarged G filtration as expectations under the
market F filtration.
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Arbitrage-Free Pricing Counterparty Credit Risk

Trading Strategies with Defaultable Counterparties – I

The counterparty credit risk is defined as the risk that the
counterparty to a transaction could default before the final settlement
of the transaction cash flows.
−→ When one of the counterparty defaults the trade is terminated.
−→ An economic loss would occur if the transaction with the counterparty

has a positive economic value at the time of default.
We can accommodate counterparty risk by terminating the dividend
process at the first default event, and setting the terminal condition
for the security price accordingly.

ST∧τ := 1{τ≤T}θτ , Dt := D0 +
∫ t

0
1{τ>u}dπu

where θτ is the cash flow paid if the default occurs, and without loss
of generality we set 1{τ>T}ST

.= 0.
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Arbitrage-Free Pricing Counterparty Credit Risk

Trading Strategies with Defaultable Counterparties – II

To avoid arbitrages we require that the deflated gain processes are
martingale under the G filtration.
The pricing equation becomes

St = Bt E

[
1{τ≤T}

θτ
Bτ

+
∫ T

t
1{τ>u}

dDu
Bu
| Gt

]

A similar expression holds for generic deflators Yt .
Since credit default risk introduces an element of non-predictability,
we cannot implement a replication strategy to price derivative
securities, but in simple cases.
−→ However, we can price them as any other market security.
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Arbitrage-Free Pricing Counterparty Credit Risk

Close-Out Netting Rules – I

In case of default of one party, the surviving party should evaluate the
transactions just terminated, due to the default event occurrence, to
claim for a reimbursement after the application of netting rules to
consolidate the transactions.
−→ The amount of the cash flow θτ results from such analysis.
The cash flow θτ is described by the ISDA documentation as given by

θτ := 1{τC<τI}
(
RCε

+
τ + ε−τ

)
+ 1{τI<τC}

(
ε+
τ + RIε

−
τ

)
= ετ − 1{τC<τI}(1− RC )ε+

τ

CVA cash flow

− 1{τI<τC}(1− RI)ε−τ
DVA cash flow

where RC and RI are the recovery rates, and ετ is the close-out
amount representing the exposure measured by the surviving party on
the default event.
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Arbitrage-Free Pricing Counterparty Credit Risk

Close-Out Netting Rules – II

It is difficult to define the close-out amount, and also ISDA is not
very assertive on the topic.
−→ See Brigo, Morini and Pallavicini (2013) for a review.
You may have a risk-free close-out, where the residual deal is priced
at mid market without any residual counterparty risk.

ετ
.= Bτ E

[∫ T

τ∧T

dπu
Bu
| Gτ

]

You may have a replacement close-out, where the remaining deal is
priced by taking into account the credit quality of the surviving party
and of the party that replaces the defaulted one.
A possible guess is the pre-default replacement close-out given by

ετ
.= S̃τ
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Arbitrage-Free Pricing Counterparty Credit Risk

Close-Out Netting Rules – III

The pre-default replacement close-out is the first example of
non-linearities in the pricing equation.
Indeed, if we write the pre-default price we get

1{τ>t}S̃t = 1{τ>t}Bt E

[
1{τ≤T}

θτ (S̃τ )
Bτ

+
∫ T

t
1{τ>u}

dDu
Bu
| Gt

]

The above expression is an implicit equation for the the pre-default
price of the security, which could be without solutions.
In the following, when we introduce collateralization and funding
costs, we discuss again such problem.
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Arbitrage-Free Pricing Margining Procedures

Collateralization and Counterparty Credit Risk

The growing attention on counterparty credit risk is transforming
OTC derivatives money markets:
−→ an increasing number of derivative contracts is cleared by CCPs, while
−→ most of the remaining contracts are traded under collateralization.
Both cleared and bilateral deals require collateral posting, along with
its remuneration.
Collateralized bilateral trades are regulated by ISDA documentation,
known as Credit Support Annex (CSA).
Centralized clearing is regulated by the contractual rules described by
each CCP documentation.
See Brigo et al. (2012) and Brigo and Pallavicini (2014) for a
description of bilateral-traded and centrally-cleared contracts.
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Arbitrage-Free Pricing Margining Procedures

Trading Strategies with Margining Procedures – I

We can include the margining procedure within arbitrage-free pricing
by extending the definition of the gain and the cumulative dividend
process.
In general, a margining practice consists in a pre-fixed set of dates
during the life of a deal when both parties post or withdraw
collaterals, according to their current exposure, to or from an account
held by the Collateral Taker.
We consider that a positive collateral account Ct is held by the
investor, otherwise by the counterparty. Moreover, as we set a null
terminal condition for the security price, we set CT

.= 0.
The Collateral Taker remunerates the account at rate ct fixed by the
collateralization agreement.
−→ The collateral rate may depend on the sign of the collateral account.
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Arbitrage-Free Pricing Margining Procedures

Trading Strategies with Margining Procedures – II

Thus, the cumulative dividend process can be extended in the
following way

Dt := D0 +
∫ t

0
1{τ>u} (dπu + dCu − cuCu du)

Notice that including the collateral account in the cumulative
dividend process means that we can re-hypothecate its content.
Moreover, at trade termination we have to withdraw collateral assets
kept in our accounts, so that the gain process can be re-defined as

Gt := St + Dt − Ct
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Arbitrage-Free Pricing Margining Procedures

Trading Strategies with Margining Procedures – III

To avoid arbitrages we require that the deflated gain processes are
martingale under the G filtration.
Thus, we get

Ḡt = E
[

ḠT∧τ | Gt
]

=⇒ S̄t = C̄t + E

[
S̄T∧τ − C̄T∧τ +

∫ T

t
1{τ>u}dD̄u | Gt

]

The integral over deflated dividends can be written as∫ T

t
1{τ>u}dD̄u =

∫ T

t
1{τ>u}

(
dπu
Bu

+ dCu
Bu
− cuCu du

Bu

)
= CT∧τ

BT∧τ
− Ct∧τ

Bt∧τ
+
∫ T

t
1{τ>u}

(
dπu
Bu

+ (ru − cu)Cu du
Bu

)
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Arbitrage-Free Pricing Margining Procedures

Trading Strategies with Margining Procedures – IV

If we substitute the expression for the dividend integral, we get the
pricing equation

1{τ>t}S̃t = 1{τ>t}Bt E

[
1{τ≤T}

θτ
Bτ

+
∫ T

t
1{τ>u}

(
dπu
Bu

+ (ru − cu)Cu du
Bu

)
| Gt

]

According to ISDA the definition of the on-default cash flow in
presence of collateralization and re-hypothecation is given by

θτ := ετ − 1{τC<τI}(1− RC )(ετ − Cτ )+

CVA cash flow

− 1{τI<τC}(1− RI)(ετ − Cτ )−

DVA cash flow

In the above equation we are assuming that the collateral account is
continuous on default events.
−→ Otherwise, we should evaluate the collateral account (not the close-out

amount) just before the default event, namely at τ−.
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Arbitrage-Free Pricing Margining Procedures

Trading Strategies with Margining Procedures – V

The value of the collateral account is specified by the CSA contract.
−→ Usually contracts with the same counterparty are grouped within one

or more netting sets with the same CSA rules.
−→ Collateral evaluations and CVA/DVA adjustments are calculated by

summing (netting) the price of all contracts within a single netting set.
A common approximation for the collateral process is setting it
proportional to the pre-default price of the derivative.

Ct
.= αt S̃t

where αt is a F-adapted process.
This is another source of non-linearities in the pricing equation.
−→ Pricing equations under such approximations are derived in Pallavicini

and Brigo (2013).
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Arbitrage-Free Pricing Margining Procedures

Perfect Collateralization – I

In order to further simplify the pricing equation, by removing all
non-linearities, we adopt a further approximation known as “perfect
collateralization”.
First, we assume a risk-free close-out, where the residual deal is priced
at mid market without any residual counterparty risk, but with
collateral costs.

εt
.= Bt E

[∫ T

t

(
dπu
Bu

+ (ru − cu)Cu du
Bu

)
| Gt

]

Second, we assume that the collateral account is always able to
remove all CVA/DVA risks.

εt
.= Ct

Such assumptions are usually holding for liquid non-credit-linked
market instruments.
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Arbitrage-Free Pricing Margining Procedures

Perfect Collateralization – II

We plug the expressions for Ct and ετ in the price equation to get

1{τ>t}S̃t = 1{τ>t}Bt E

[
1{τ≤T}

Cτ
Bτ

+
∫ T

t
1{τ>u}

(
dπu
Bu

+ (ru − cu)Cu du
Bu

)
| Gt

]

= 1{τ>t}Bt E

[∫ T

t

(
dπu
Bu

+ (ru − cu)Cu du
Bu

)
| Gt

]
= 1{τ>t}Ct

Then, if we apply the Feynman-Kac theorem, we can write

1{τ>t}S̃t = 1{τ>t}Bc
t E

[∫ T

t

dπu
Bc
u
| Gt

]
, Bc

t := exp
{∫ t

0
ct du

}
Perfect collateralization means that we can “discount” at collateral
rate discarding default events.
−→ This result is discussed in Piterbarg (2010) and in Brigo et al. (2012).
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Arbitrage-Free Pricing Margining Procedures

Perfect Collateralization – III

Liquid market instruments are usually collateralized on a daily basis at
overnight rate et .
In particular, non-credit-linked instruments can be approximated with
a continuous price process on investor or counterparty default event.
−→ See Schönbucher and Schubert (2001) for a discussion of the impact of

default events on FX derivatives.
−→ See Brigo, Capponi and Pallavicini (2011) for a discussion of gap risk

for CDS contracts.
In the following, we use liquid market instruments as hedging
instruments, and we price them under perfect collateralization
assumption by disregarding these problems.
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Arbitrage-Free Pricing Margining Procedures

Perfect Collateralization – IV

An possible exception are markets trading directly the underlying
asset, or its future contract (stock, bond or commodity markets).
In the first case borrowing and lending instruments (repurchase
agreements, or repo) are usually actively traded to allow short
positions.
−→ Repo contracts behave like collateralized contracts with remuneration

rate ht .
In the second case contracts are traded on central financial exchange
platforms requiring margin exchange.
−→ Future contracts behave like collateralized contracts with null

remuneration rate.
Hence, we always assume that hedging instruments can be priced as
perfectly collateralized with the proper remuneration rate.
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Wrong-Way Risk and Gap Risk in Derivative Contracts
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Wrong-Way Risk and Gap Risk in Derivative Contracts Numerical Investigations on IRS Portfolios

Netted IRS Portfolios – I

Here, we investigate the case of bilateral counterparty credit for
netted portfolios of interest-rate swaps (IRS).
−→ We discard margining and funding costs: ct

.= rt where rt is the
risk-free rate.

−→ We consider a risk-free close-out amount.
Interest-rates are modeled by means of a two-factor Gaussian model,
while default intensities and the liquidity basis by means of a shifted
CIR model.
Market risks dependencies are created by correlating the driving
Brownian motions, while default events are coupled by means of a
Gaussian copula.
A Least Square Monte Carlo simulation is used to value all the
payoffs. See Brigo, et al. (2009,2011) and references therein for
details.
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Wrong-Way Risk and Gap Risk in Derivative Contracts Numerical Investigations on IRS Portfolios

Netted IRS Portfolios – II

P1 – A portfolio of 10 swaps, where all the swaps start at date T0
and the i-th swap matures i years after the starting date. The netting
of the portfolio is equal to an amortizing swap with decreasing
outstanding.
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Wrong-Way Risk and Gap Risk in Derivative Contracts Numerical Investigations on IRS Portfolios

Netted IRS Portfolios – III

P2 – A portfolio of 10 swaps, where all the swaps mature in 10 years
from date T0, but they start at different dates, namely the i-th swap
starts i − 1 years from date T0. The netting of the portfolio is equal
to an amortizing swap with increasing outstanding.
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Wrong-Way Risk and Gap Risk in Derivative Contracts Numerical Investigations on IRS Portfolios

Netted IRS Portfolios – IV

P3 – A portfolio of 10 swaps, where all the swaps start at date T0 and
mature in 10 years. The netting of the portfolio is equal to a swap
similar to the ones in the portfolio but with 10 times larger notional.
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Wrong-Way Risk and Gap Risk in Derivative Contracts Numerical Investigations on IRS Portfolios

Wrong-Way Risk

ρ̄C ρ̄I P1 P2 P3
-60% 0% -117 -382 -237
-40% 0% -74 -297 -138
-20% 0% -32 -210 -40
0% 0% -1 -148 31
20% 0% 24 -96 87
40% 0% 44 -50 131
60% 0% 57 -22 159

ρ̄C ρ̄I P1 P2 P3
-60% -60% -150 -422 -319
-40% -40% -98 -329 -197
-20% -20% -46 -230 -74
0% 0% -1 -148 31
20% 20% 38 -77 121
40% 40% 75 -6 208
60% 60% 106 49 280

Bilateral credit valuation adjustment for three different receiver IRS portfolios for
a maturity of ten years, using high-risk parameter set for the counterparty and
mid-risk parameter set for the investor with uncorrelated default times. Every IRS
has unitary notional. Prices are in basis points.
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Wrong-Way Risk and Gap Risk in Derivative Contracts Numerical Investigations on IRS Portfolios

Changing the Parameter Set

ρ̄C ρ̄I H/M H/H M/H
-60% -60% -150 -76 47
-40% -40% -98 -12 97
-20% -20% -46 48 135
0% 0% -1 110 187
20% 20% 38 173 241
40% 40% 75 239 297
60% 60% 106 304 361

ρ̄C ρ̄I H/M H/H M/H
-60% -60% -422 -284 -40
-40% -40% -329 -179 36
-20% -20% -230 -77 102
0% 0% -148 16 179
20% 20% -77 112 262
40% 40% -6 218 351
60% 60% 49 315 450

Bilateral credit valuation adjustment, by changing the parameter set, for a
decreasing (P1, left panel) and an increasing (P2, right panel) IRS portfolio for a
maturity of ten years, with uncorrelated default times. Every IRS has unitary
notional. Prices are in basis points.
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Wrong-Way Risk and Gap Risk in Derivative Contracts Numerical Investigations on IRS Portfolios

Changing the Default-Time Coupling

ρ̄C ρ̄I -80% 0% 80%
-60% -60% -150 -150 -169
-40% -40% -91 -98 -122
-20% -20% -33 -46 -72
0% 0% 18 -1 -34
20% 20% 61 38 -3
40% 40% 102 75 29
60% 60% 140 106 53

ρ̄C ρ̄I -80% 0% 80%
-60% -60% 32 47 61
-40% -40% 86 97 103
-20% -20% 146 135 137
0% 0% 194 187 183
20% 20% 256 241 232
40% 40% 320 297 287
60% 60% 384 361 344

Bilateral credit valuation adjustment, by changing the Gaussian copula parameter
ρG for a decreasing IRS portfolio (P1) for a maturity of ten years, using high-risk
parameter set for the counterparty and mid-risk parameter set for the investor
(left panel), and inverted settings (right panel). Every IRS has unitary notional.
Prices are in basis points.
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Wrong-Way Risk and Gap Risk in Derivative Contracts Numerical Investigations on IRS Portfolios

Re-Hypothecation vs. Segregation

Collateralized bilateral CVA for an IRS with ten year maturity and one year
coupon tenor with different choices of interest-rate/credit-spread correlation
(left-side axis) and default-time correlation (right-side axis) with collateral update
intervals of three months with (left panel) or without (right panel) collateral
re-hypothcation. H/M settings.
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Wrong-Way Risk and Gap Risk in Derivative Contracts Numerical Investigations on IRS Portfolios

Collateral Update Frequency

Collateralized bilateral CVA for an IRS with ten year maturity and one year
coupon tenor with different choices of interest-rate/credit-spread correlation
(left-side axis) and default-time correlation (right-side axis) with collateral update
intervals of one week (left panel) and three months (right panel). H/M settings.
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Wrong-Way Risk and Gap Risk in Derivative Contracts CDS Pricing and Survival Probability Bootstrapping

Gap Risk and Default Contagion

Counterparty credit risk may be mitigated by margining practice,
namely by using a collateral account as insurance against
counterparty’s default.
Yet, there are contracts that cannot be completely collateralized,
since their mark-to-market value jumps at default event.
Credit derivatives, e.g. CDS. At default time the intensity of the
reference name jumps, if its default time is correlated with
counterparty’s one.
→ See Fujii and Takahashi (2011a); Bielecki, Cialenco and Iyigunler

(2011); Brigo, Capponi and Pallavicini (2011).
Cross-currency derivatives, e.g. CCS. At default time the FX rate may
jump, as we can deduce from quotes of counterparty’s CDS contracts
in different currencies.
→ See Ehler and Schönbucher (2006).

Here, we focus on the CDS case.
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Wrong-Way Risk and Gap Risk in Derivative Contracts CDS Pricing and Survival Probability Bootstrapping

CDS Payoff

CDS are contracts that have been designed to offer protection
LGDU := 1−RU against default of a reference name at τU in exchange
for a periodic premium SU .

Protection
Seller

Protection
Buyer

LGDU at default τU ∈ (Ta,Tb)

SU at Ta+1, . . . ,Tb or up to τU

Thus, the coupon process for a receiver CDS is given by

dπCDS
t := SU

b∑
i=a+1

(min{Ti , τU} − Ti−1)1{τU>Ti−1}δt(Ti) dt

− LGDU1{Ta<τ<Tb}δt(τU) dt
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Wrong-Way Risk and Gap Risk in Derivative Contracts CDS Pricing and Survival Probability Bootstrapping

CDS Pricing

The risk-neutral price of a receiver CDS, without taking into account
counterparty risk or funding costs, is given by

VCDS
0 :=

∫ Tb

0
E
[

D(0, t)dπCDS
t | G0

]
= SU

b∑
i=a+1

E
[

D(0,Ti)(min{Ti , τU} − Ti−1)1{τU>Ti−1} | G0
]

− E
[

D(0, τ)LGDU1{Ta<τU<Tb} | G0
]

where we define D(t,T ) := BT/Bt .
If we approximate the payments on a continuous basis we can write a
simpler expression

VCDS
0 =

∫ Tb

Ta

E
[

D(0, t)
(
SU1{τU>t} dt + LGDU d1{τU>t}

)
| G0
]
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Wrong-Way Risk and Gap Risk in Derivative Contracts CDS Pricing and Survival Probability Bootstrapping

Bootstrapping the Survival Probabilities – I

Survival probabilities can be bootstrapped from CDS quotes.
Many approximations are required to avoid a model-dependent
procedure.
−→ Recovery rates are uncertain and difficult to estimate.
−→ CDS contracts are collateralized, but counterparty risk is still relevant

due to contagion effects.
−→ If CDS contracts are cleared via a CCP, funding costs may alter the

quotes.
−→ Interest-rates are usually correlated to default probabilities, so that they

may impact the quotes as well.
Moreover, the default event may be poorly defined as the recent
Greece case shown.
Yet, CDS are still the best candidate for a bootstrap procedure.
−→ Rate agencies quotes default probabilities under historical measure in

term of rating classes.
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Wrong-Way Risk and Gap Risk in Derivative Contracts CDS Pricing and Survival Probability Bootstrapping

Bootstrapping the Survival Probabilities – II
In the practice CDS are quoted with a deterministic recovery rate.
Moreover, the analysis of Brigo and Alfonsi (2005) shows that we can
safely assume independence of default probabilities from interest-rates
when pricing CDS.
Thus, since Q{ τU > T | G0 } = Q{ τU > T | F0 }, we can write

VCDS
0

.=
∫ Tb

Ta

P0(t) (SU Q{ τU > t | F0 } dt + LGDU dQ{ τU > t | F0 })

where we define Pt(T ) := Et [ D(t,T ) ].
We can bootstrap the survival term structure as given by

T 7→ Q{ τU > T | F0 }

What happens if the protection seller defaults? Should we add a
counterparty valuation adjustment?
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Wrong-Way Risk and Gap Risk in Derivative Contracts CDS Pricing and Survival Probability Bootstrapping

Bootstrapping the Survival Probabilities – III

Change of par CDS spread for different maturities versus Clayton copula
parameter. Details in Fujii and Takahashi (2011).

A. Pallavicini Funding and Counterparty Risks 10-11 February 2016 66 / 156



Wrong-Way Risk and Gap Risk in Derivative Contracts CDS Pricing and Survival Probability Bootstrapping

Contagion Effects in CDS Pricing – I

The instantaneous gap risk on counterparty default is given by

∆VCDS
τC

:= VCDS
τC

− VCDS
τ−C

and similarly for the investor case.
The CDS price in our approximation depends only on default
probabilities, so that it may jump only if

Q{ τU > t | GτC } 6= Q{ τU > t | GτC− }

which happens only in presence of dependencies among the default
times.
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Wrong-Way Risk and Gap Risk in Derivative Contracts CDS Pricing and Survival Probability Bootstrapping

Contagion Effects in CDS Pricing – II

What happens to the reference name default probabilities after the
counterparty default event?
−→ We assume that the counterparty defaults at time t < u, while the

reference name defaults after u.
−→ After time t we have a single-name market.
Thus, given a G-adapted process xt , we can write

1{τU>u}1{τC=t}xu = 1{τU>u}1{τC=t}x̃u

where x̃t is the corresponding F-adapted pre-default process.
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Wrong-Way Risk and Gap Risk in Derivative Contracts CDS Pricing and Survival Probability Bootstrapping

Contagion Effects in CDS Pricing – III

If we take expecations w.r.t. the market filtration we obtain

x̃u ∂vQ{ τU > u, τC > v | Fu }|v=t = E
[
1{τU>u}1{τC=t}xu | Fu

]
We can consider the case xt

.= E[1{τU>T}φ| Gt ], where φ is a
FT -integrable random variable, to get the generalization of the
filtration switching theorem to a two-name market.

1{τU>u}1{τC=t}E
[
1{τU>T}φ | Gu

]
=

1{τU>u}1{τC=t}
E[ ∂vQ{ τU > T , τC > v | Fu }|v=t φ | Fu ]

∂vQ{ τU > u, τC > v | Fu }|v=t
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Wrong-Way Risk and Gap Risk in Derivative Contracts CDS Pricing and Survival Probability Bootstrapping

Contagion Effects in CDS Pricing – IV

Two-Name Default Probabilities
In a market with two defaultable names before any default event the
default probabilities are given by

1{τU>t}1{τC>t}Q{ τU > T | Gt } = 1{τU>t}1{τC>t}
Q{ τU > T , τC > t | Ft }
Q{ τU > t, τC > t | Ft }

while on a default event the probabilities jump to

1{τU>τC}Q{ τU > T | GτC } = 1{τU>τC} limt↓τC

∂vQ{ τU > T , τC > v | Ft }|v=t
∂vQ{ τU > t, τC > v | Ft }|v=t

The first part of the theorem can be obtained from the single-name
case by defining the pre-default process w.r.t. the first default event.
The theorem can be generalized to many names.
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Wrong-Way Risk and Gap Risk in Derivative Contracts Numerical Investigations on CDS contracts

Default Probabilities On-Default Jump

Comparison between on-default survival probabilities and pre-default survival
probabilities at 1.75 years. Left panel: Gaussian copula parameter is 40%. Right
panel: Gaussian copula parameter is 40%. Details in Brigo, Capponi, Pallavicini
(2011).
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Wrong-Way Risk and Gap Risk in Derivative Contracts Numerical Investigations on CDS contracts

CDS Instantaneous Gap Risk

CDS Instantaneous Gap Risk
Collateralization cannot remove all counterparty risk from a CDS.

1{τC>t}CVACDS
t = −1{τC>t}LGDC

∫ Tb

t
du Pt(u)E

[
1{τC∈du}

(
∆VCDS

u
)+ | Gt

]

1{τU>t}VCDS
t = 1{τU>t}

∫ Tb

t
du Pt(u) (SU Q{ τU>u | Gt }+ LGDU dQ{ τU>u | Gt })

1{τU>τC}Q{ τU>T | GτC− } = 1{τU>τC} limt↑τC

Q{ τU>T , τC> t | Ft }
Q{ τU> t, τC> t | Ft }

1{τU>τC}Q{ τU>T | GτC } = 1{τU>τC} limt↓τC

∂vQ{ τU>T , τC>v | Ft }|v=t
∂vQ{ τU> t, τC>v | Ft }|v=t

The theorem can be generalized to include the investor default event.
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Wrong-Way Risk and Gap Risk in Derivative Contracts Numerical Investigations on CDS contracts

CVA and DVA for CDS Contracts

Bilateral credit adjustment, namely the algebraic sum of CVA and DVA, versus
default correlation under different collateralization strategies for a five-year payer
CDS contract. Left panel: the CDS spread is 100bp. Right panel: the CDS
spread is 500bp. Details in Brigo, Capponi, Pallavicini (2011).
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Funding Costs
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Funding Costs The Treasury Department

Funds Transfer Pricing – I

Funds transfer pricing (FTP) is a process used in banking to adjust
the performance of different units to reflect funding costs.
A FTP policy is usually implemented by means of an intermediary
unit, such as the treasury department, which centralizes cash lending
and borrowing.
−→ Lending and borrowing rates are issued by the treasury for all the other

units of the bank.
−→ These rates define the Treasury Bank Account (TBA).
In the previous sections we introduced the TBA as a risk-free bank
account available to traders to implement their activities.
−→ The TBA rates are defined by the FTP policy adopted by the bank.
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Funding Costs The Treasury Department

Funds Transfer Pricing – II

Before the crisis derivatives are usually not subject to FTP because
they were assumed to be products focusing on risks transfer rather
than funds transfer.
After the crisis, the increasing costs of funding and the advancing in
the regulatory framework moved banks on including derivatives in
FTP policies.
Traders in their daily activity should be aware of lending and
borrowing operations needed to fund their positions, since they are
generating risks for the bank.
Inspecting the needs of funding the netting set, or even each
derivative within it, allow to reduce risks and to implement a
profitability analysis.
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Funding Costs The Treasury Department

Treasury Funding Operations – I

The TBA rate is determined by the treasury department according to
the FTP policy:
−→ trading positions may be netted before funding on the market (funding

netting sets);
−→ different rates may be applied to gauge the performances of different

business units;
−→ a maturity-transformation rule can be used to link portfolios to

effective maturity dates;
−→ many source of funding can be mixed.
We refer to Castagna and Fede (2013) for a review of the activity of
the treasury.
Here, we follow Pallavicini, Perini, Brigo (2011) to describe in a
stylized way the funding operations closed by the treasury to fund the
trading desks so to explicitly define the TBA rate.
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Funding Costs The Treasury Department

Treasury Funding Operations – II

Starting from this section we reserve the symbol rt for the risk-free
rate, and we name ft the TBA rate.
Bank accounts are used by traders both for cash lending and
borrowing.
−→ Trading strategies to borrow and to lend cash are differently

implemented, leading to different bank accounts.
−→ See Bergman (1995), Crépey (2011), Pallavicini, Perini and Brigo

(2011).
We consider the following stylized procedure up to time t.
−→ Lending: a trading desk has a surplus of cash to be invested at time 0,

at time t the desk gets the cash back with a premium.
−→ Borrowing: a trading desk needs cash at time 0, at time t the desk

gives the cash back with a fee.
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Treasury Funding Operations – III

Bank

Trader 1

...

Trader N

TreasuryMarket

f b
t

f l
t

f b
t

f l
t

y l
t

yb
t

The treasury department can lend money on the market at rate y l
t while

borrowing at rate yb
t . Traders experience a TBA rate f lt for lending from the

treasury and f bt for borrowing.
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Lending Cash to the Market – I

We start by discussing the lending case.
In particular, we assume that a bank “I” invests cash in zero-coupon
bonds of a counterparty “C”.
Along with the position in bonds the bank shall buy protection for
losses due to the default of the counterparty.
−→ The bank can buy a Credit Default Swap (CDS) for each bond in the

strategy.
−→ A CDS contract protects the bond owner from losses occurring on

default time by paying a fee s lt .
If the counterparty defaults the CDS covers all losses, and the bank
may open a new position with another counterparty.
The strategy can be implemented up to time t or up to the default of
the bank. In particular, we assume to roll the positions on a time grid

{t0 = 0, t1, . . . , tm = t}
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Lending Cash to the Market – II

At time t0 the bank buys a zero-coupon bond of the counterparty
with maturity t1 and notional

qlt0 := 1
P l
t0(t1)

where P l
t0(t1) is the bond market price, so that we have a cash flow of

1{τ>t0}γ
buy
t0 := −1{τ>t0}qlt0P

l
t0(t1)

At the same time the bank enters at par into a CDS contract with
maturity t1 on the same bond.

A. Pallavicini Funding and Counterparty Risks 10-11 February 2016 81 / 156



Funding Costs The Treasury Department

Lending Cash to the Market – III
At time t1 the notional of the bond is returned to the bank and the
CDS fee is paid, if neither the bank nor the counterparty has
defaulted between t0 and t1.

1{τ>t1}γ
receive
t1 := 1{τ>t1}qlt0 , 1{τ>t1}γ

fee
t1 := −1{τ>t1}qlt0s

l
t(t1 − t0)

If a default happens, and the defaulting party is the counterparty, the
CDS covers all losses, and on the next time-step the position is
opened with another counterparty.
If the bank survives, all contracts are opened again with notional

qlt1 :=
qlt0(1− s lt(t1 − t0))

P l
t1(t2)

so to build a self-financing strategy, namely

γreceivet1 + γfeet1 + γbuyt1 = 0
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Lending Cash to the Market – IV

Thus, we can sum all the contributions up to time t, or up to the
default of the bank, to define the wealth generated by the investing
strategy.

W l
t∧τI := 1 +

m−1∑
k=0

1{τI>tk}γ
buy
tk +

m∑
k=1

1{τI>tk}
(
γreceivetk + γfeetk

)
=

m∏
k=1

1{τI>tk}
1− s ltk (tk − tk−1)

P l
tk−1(tk)

We can write the wealth of the strategy in continuous time as

W l
t∧τI = exp

{∫ t∧τI

0

(
y l
u − s lu

)
du
}
, y l

t := −∂T logP l
t(T )|T=t

where y l
t is the market yield of the bond issued by the counterparty.
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The Lending Bank Account – I

Up to the default of the bank (included) the wealth process generated
by the lending operations is a locally risk-free bank account,
whichever is the counterparty issuing the bonds.
We can define the lending bank account as

Bl
t := W l

t = exp
{∫ t

0

(
y l
u − s lu

)
du
}

Moreover, since the lending bank account is locally risk-free, and
obtained by means of a self-financing strategy, we have that all the
bond/CDS bases must be equal to the risk-free rate rt to avoid
arbitrages

rt = y l
t − s lt
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The Lending Bank Account – II

In practice many factors, like bond and CDS market liquidity, CDS
collateralization and gap risk, default event specification, etc. . . ,
prevent to extract rt from bond and CDS quotes.
For later convenience, we cast the bond/CDS basis as a spread `lt
over the overnight rate et , and we write

`lt := y l
t − s lt − et

Thus, we can write

Bl
t = Be

t exp
{∫ t

0
`lu du

}
, Be

t := exp
{∫ t

0
et du

}
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Borrowing Cash from the Market – I

We continue the discussion with the borrowing case.
In particular, we assume that a bank “I” obtains cash by issuing
zero-coupon bonds.
Notice that the bank cannot sell protection on herself when hedging
its own default event.
At time t0 the bank issues a zero-coupon bond with maturity t1 and
notional

qbt0 := 1
Pb
t0(t1)

where Pb
t0(t1) is the bond market price, so that we have a cash flow of

1{τI>t0}γ
issue
t0 := 1{τI>t0}qbt0P

b
t0(t1)
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Borrowing Cash from the Market – II

If the bank defaults, the strategy is terminated and the bond owner
recovers only a fraction R f

I of the notional.

1{t0<τI≤t1}γ
recovery
τI

:= −1{t0<τI≤t1}R
f
I qbt0

If the bank survives, at time t1 the notional of the bond is returned to
the counterparty.

1{τI>t1}γ
pay
t1 := −1{τI>t1}qbt0

and all contracts are opened again with notional

qbt1 :=
qbt0

Pb
t1(t2)

so to build a self-financing strategy (but on bank default event),
namely

γpayt1 + γissuet1 = 0
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Borrowing Cash from the Market – III

Thus, we can sum all the contributions up to time t, or up to the
default of the bank, to define the wealth generated by the funding
strategy.

W b
t∧τI := −1 +

m−1∑
k=0

1{τI>tk}
(
γissuetk + 1{τI≤tk+1}γ

recovery
τI

)
+

m∑
k=1

1{τI>tk}γ
pay
tk

= −
m∏

k=1
1{τI>tk}

1
Pb
tk−1(tk)

− R f
I

m−1∑
k=0

1{tk<τI≤tk+1}

k∏
j=1

1
Pb
tj−1(tj)

We can write the wealth of the strategy in continuous time as

W b
t∧τI = 1{τI>t}W̃ b

t + 1{t=τI}R
f
I W̃ b

τI
, W̃ b

t := − exp
{∫ t

0
yb
u du

}
where yb

t is the market yield of the bond issued by the bank.
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The Borrowing Bank Account – I

Only up to the default of the bank (excluded) the wealth process is a
locally risk-free bank account.
Thus, we cannot build a locally risk-free bank account for borrowing
cash as we did for the lending case.
First, we need some algebra to re-write the wealth of the borrowing
strategy as given by

W b
t∧τI = W̃ b

t∧τI − 1{t=τI}(1− R f
I )W̃ b

τI

The first term is locally risk-free up to the default of the bank
(included).
−→ Yet, we cannot replicate it by means of a self-financing strategy based

on instruments available to the bank for trading.
The second term can be interpreted as a funding benefit occurring on
the bank default event.
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The Borrowing Bank Account – II

A possible solution is including the funding benefit in the cash flows
of the netting set, and using the pre-default wealth generated by the
borrowing strategy as a bank account.

Bb
t := −W̃ b

t = exp
{∫ t

0
yb
u du

}
For later convenience, we express the yield of bank bonds as a spread
`bt over the overnight rate et , and we write

`bt := yb
t − s It − et

where s It is the CDS spread of the bank, so that we can write

Bb
t = Be

t exp
{∫ t

0
(s Iu + `bu) du

}
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The Borrowing Bank Account – III

Yet, in such way we are not taking into account the funding risks
generated by the trading activity, since we are offsetting them by
means of the funding benefit.
The FTP policy implemented by the treasury should adjust prices to
make funding costs apparent.
−→ The simplest way is removing the funding benefit from trading books.
−→ We will see how to tune the FTP policy to avoid the non-linearities of

the pricing equation.
In the following section (i) we will derive an arbitrage-free pricing
formula without FTP adjustments, (ii) we will check the conditions
under which funding costs disappear, then (iii) we introduce FTP
adjustments (funding valuation adjustments, or FVA).
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Funding with Bonds in Different Seniorities – I

The previous borrowing strategy based on trading a strip of
zero-coupon bonds fails to produce a self-financing strategy on the
bank default event.
An alternative strategy is described in Burgard and Kjaer (2011) by
means of bonds with different seniorities.
At time t0 the bank issues one zero-coupon bond with maturity t1
and recovery R1

I and pay backs one bond with the same maturity but
with recovery R2

I . Their notionals are

qb,it0 := 1
Pb,i
t0 (t1)

, i = {1, 2}

where Pb,i
t0 (t1) are the bond market prices, so that we have a cash

flow of

1{τI>t0}γ
issue′
t0 := 1{τI>t0}

(
qb,1t0 Pb,1

t0 (t1)− qb,2t0 Pb,2
t0 (t1)

)
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Funding with Bonds in Different Seniorities – II

If the bank survives, at time t1 the notional of the bonds are returned.

1{τI>t1}γ
pay′
t1 := −1{τI>t1}

(
qb,1t0 − qb,2t0

)
Otherwise, if the bank defaults, the strategy is terminated with the
following cash flow.

1{t0<τI≤t1}γ
recovery′
τI

:= −1{t0<τI≤t1}
(

R1
I qb,1t0 − R2

I qb,2t0

)
The notionals are chosen so to build a self-financing strategy also on
bank default event, when the debt must be paid to the funder.

γrecovery
′

t1 = γpay
′

t1
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Funding with Bonds in Different Seniorities – III

Thus, the quantities of the two bonds are linked by

qb,1t0 = −qb,2t0
1− R2

I
1− R1

I

so that if we are short in the first bond, then we must be long in the
second one.
If the bank survives, all contracts are opened again with notionals

qb,1t1 := 1
Pb,1
t0 (t1)− 1−R1

I
1−R2

I
Pb,2
t0 (t1)

, qb,2t1 := 1
Pb,2
t0 (t1)− 1−R2

I
1−R1

I
Pb,1
t0 (t1)

so to build a self-financing strategy, namely

γpay
′

t1 + γissue
′

t1 = 0
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Default-Free Borrowing Bank Accounts – I

Thus, we can sum all the contributions up to time t, or up to the
default of the bank, to define the wealth generated by the funding
strategy.

W b′
t∧τI := −1 +

m−1∑
k=0

1{τI>tk}

(
γissue

′

tk + 1{τI≤tk+1}γ
recovery′
τI

)
+

m∑
k=1

1{τI>tk}γ
pay′
tk

= −
m∏

k=1
1{τI>tk−1}

R1
I − R2

I

(1− R2
I )Pb,1

tk−1(tk)− (1− R1
I )Pb,2

tk−1(tk)

We can write the wealth of the strategy in continuous time as

W b′
t∧τI = − exp

{∫ t∧τI

0
du (1− R2

I )yb,1
t − (1− R1

I )yb,2
t

R1
I − R2

I

}

where yb,1
t and yb,2

t are the yields of the bonds issued by the bank.
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Default-Free Borrowing Bank Accounts – II

Up to the default of the bank (included) the wealth process is a
locally risk-free bank account, whatever are the bond recoveries.
All these accounts are derived securities, so that, to avoid arbitrages,
the accrual rate of these strategies must be equal to rt .

rt = (1− R2
I )yb,1

t − (1− R1
I )yb,2

t
R1
I − R2

I

The above equation must be valid for any choice of recovery rates
with 0 ≤ R1

I < R2
I ≤ 1, so that the market yields can be written as

yb,i
t = rt + s I,it , s I,i := λIt (1− R i

I ) , i ∈ {1, 2}

where λIt is a proportionality factor which can be interpreted as the
default intensity of the bank.
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Default-Free Borrowing Bank Accounts – III

As done for the previous funding strategy, in presence of liquidity
basis we can write the market yields as

yb,i
t = et + λIt (1− R i

I ) + `b,it , i ∈ {1, 2}

In practice a funding strategy based on trading own bonds is difficult
to implement without restrictions on volumes and timings.
−→ See Castagna and Fede (2013).
Furthermore, the bank cannot short selling its debt, but it can only
buy back the bonds already issued.
−→ Yet, such problem may involve only institutions whose unique activity is

derivative trading.
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Netting Sets – I

We can focus on a particular trading strategy in market or derived
securities which is funded by the treasury on a netting base (funding
netting set).
The assignment of a security to a particular netting set is decided by
the treasury.
−→ A possible choice is a netting set including all the trades of the bank.
−→ We assume that contracts of the same counterparty are not split

among different netting sets.
−→ See Pallavicini, Perini and Brigo (2011), Albanese and Andersen

(2015).
In particular, we consider a netting set formed by N securities.
−→ We name V f

t the adapted price process of the netting set.
−→ We name W f

t the predictable wealth process generated (or consumed)
by holding the netting set.
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Netting Sets – II

The treasury invests the wealth by lending cash to the market, while
cash is borrowed to compensate consumed wealth.
We recall that a positive price means that selling the netting set we
get cash from the market, so that we assume that a positive wealth
means the treasury is borrowing cash.
As an example we consider that at inception the netting set is built by
buying a non-collateralized call option on the market, so that we have
V f
t = W f

t > 0.
Then, at each time t we select the lending or the borrowing bank
account according to the sign of the wealth process.
−→ If W f

t > 0 the treasury needs borrowing cash.
−→ If W f

t ≤ 0 the treasury can lend cash.
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Netting Sets – III

We can consider the general case with collateral posting, and we can
define the treasury bank account as

Bf
t := exp

{∫ t

0
fu du

}
, ft := 1{W f

t >C f
t }f

b
t + 1{W f

t ≤C f
t }f

l
t

where we set C f
t :=

∑N
i=1 C i

t , while the borrowing and lending rates
can be defined as

f bt := et + s It + `bt , f lt := et + `lt

If we extract the dependency on the overnight rate, we can also write

Bf
t = Be

t

(
1{W f

t >C f
t } exp

{∫ t

0
(s It + `bt ) du

}
+ 1{W f

t ≤C f
t } exp

{∫ t

0
`lt du

})
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The Price-and-Hedge Problem – I

For sake of simplicity we consider the simpler case of only one
counterparty.
−→ The generalization is straightforward.
For ease of notation we do not distinguish among market and derived
securities, and we include both exotic trades and all the hedging
instruments within the netting set.
We name θit , πit , C i

t and c it respectively the on-default cash flow, the
cumulative coupon process, the collateral account and its accrual rate
for each security.
The terminal condition on the netting-set price process includes the
funding benefit and the on-default cash flows.

V f
T∧τ := 1{τ≤T}

N∑
i=1

θiτ + 1{τ=τI≤T}(1− R f
I )(W f

τI
− C f

τI
)+
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The Price-and-Hedge Problem – II

To avoid arbitrages we require that the gain processes, deflated by the
TBA, are martingales under the G filtration.
−→ The equivalent martingale measure depends on the netting set, so that

we are removing only the arbitrages within the netting set.
−→ See Bielecki and Rutkowski (2014) for a discussion of arbitrages.
The pricing equation becomes

1{τ>t}Ṽ f
t = Bf

t Ef

[∫ T

t
1{τ>u}

N∑
i=1

(
dπiu
Bf
u

+ (fu − c iu)C i
u du

Bf
u

)
| Gt

]

+ Bf
t Ef

[
1{t<τ≤T}

N∑
i=1

θiτ
Bf
τ

+ 1{t<τ=τI≤T}
(1− R f

I )(W f
τI
− C f

τI
)+

Bf
τI

| Gt

]

where the f over the expectation symbols is a reminder of the
dependency of the measure on the funding strategy.
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The Price-and-Hedge Problem – III

On the other hand, the wealth process has an initial condition given
by the amount of cash needed to buy the netting set.

W f
0 := V f

0

Then, we can introduce a self-financing hedging strategy (qf
t , qt) in

cash and hedging instruments St , where
−→ the quantity qf

t invested in the cash account is the same we use to
fund the netting set, namely qf

t Bf
t = W f

t − C f
t , and

−→ the coupons paid by the netting set are invested in the strategy.

dW f
t = W f

t ft dt −
N∑
i=1

(
dπit + (ft − c it)C i

t dt
)

+ qt · (dSt + dπt − Stet dt)

where the hedging instruments are perfectly collateralized at
overnight rate et , and πt is their cumulated coupon process.
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The Price-and-Hedge Problem – IV
The resulting price-and-hedge problem requires to jointly solve
−→ the backward SDE for the netting set price V f

t , and
−→ the forward SDE for the hedging strategy wealth W f

t ,
by selecting a strategy qt minimizing the hedging error ρft := V f

t −W f
t .

We refer to Crépey (2011) for a broader discussion.
In general, the existence of a solution for the price-and-hedge problem
is difficult to prove.
−→ Here, we consider a simpler framework by following Pallavicini, Perini,

Brigo (2011,2012).
−→ A similar approximation is considered in Burgard and Kjaer

(2011,2013) and termed semi-replication.
We assume that the wealth generated by the hedging strategy is
equal to the pre-default value of the netting set, namely we set

W f
t
.= Ṽ f

t
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Martingale Pricing – I

We continue with the approximation W f
t
.= Ṽ f

t , and we apply the
Feynman-Kac theorem to extract the dependency of funding rates on
the overnight rate et .

1{τ>t}Ṽ f
t =

N∑
i=1

∫ T

t
Ef
[
1{τ>u}

Be
t

Be
u

(
dπiu − (c iu − eu)C i

u du + 1{τ∈du}θiu
)
| Gt
]

−
∫ T

t
Ef
[
1{τ>u}

Be
t

Be
u

(fu − eu)
(

Ṽ f
u − C f

u

)
du | Gt

]
+
∫ T

t
Ef
[
1{τ=τI∈du}

Be
t

Be
u

(1− R f
I )
(

Ṽ f
u − C f

u

)+
| Gt
]
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Martingale Pricing – II

We recall that funding rates, when the investor is alive, can be
expressed in term of liquidity bases as

1{τI>t}ft = 1{τI>t}

(
et + 1{Ṽ f

t >C f
t }

(
`bt + s It

)
+ 1{Ṽ f

t ≤C f
t }
`lt

)
where s It is the CDS spread of the bank, so that we can write

1{τI>t} (ft − et) dt = 1{τI>t}1{Ṽ f
t >C f

t }

(
`bt dt + (1− R f

I )E
[
1{τI∈dt} | Gt

])
+ 1{τI>t}1{Ṽ f

t ≤C f
t }
`lt dt

We can substitute the above expression in the pricing equation to
gather funding costs.
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Martingale Pricing – III

We obtain the following expression for the netting set.

1{τ>t}Ṽ f
t =

N∑
i=1

∫ T

t
Ef
[
1{τ>u}

Be
t

Be
u

(
dπiu − (c iu − eu)C i

u du + 1{τ∈du}θiu
)
| Gt
]

−
∫ T

t
Ef
[
1{τ>u}

Be
t

Be
u

(
1{Ṽ f

u>C f
u}
`bu + 1{Ṽ f

u<C f
u}
`lu

)(
Ṽ f
u − C f

u

)
du | Gt

]
The first line represents the price of contractual coupons,
collateralization costs, and CVA/DVA contributions.
The second line collects the funding costs due to a mismatch between
bond yields and CDS spreads (bond/CDS basis).
Other dependencies on the funding strategy have disappeared.
−→ In particular, we notice the cancellation between the funding term

depending on the CDS spread and the funding benefit.
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Martingale Pricing – IV

Martingale Pricing of a Netting Set
A netting set, when (i) it is funded by means of a TBA with lending and
borrowing bases `lt and `bt , (ii) it is hedged against market risks by means
of perfectly collateralized instruments, and (iii) it generates a wealth equal
to its pre-default value, can be priced as

1{τ>t}Ṽ f
t =

N∑
i=1

∫ T

t
Ef
[
1{τ>u}

Be
t

Be
u

(
dπiu − (c iu − eu)C i

u du + 1{τ∈du}θiu
)
| Gt
]

−
∫ T

t
Ef
[
1{τ>u}

Be
t

Be
u

(
(Ṽ f

u − C f
u )+`bu + (Ṽ f

u − C f
u )−`lu

)
du | Gt

]

Since the bases can be asymmetric, the above expectation cannot be
solved explicitly.
−→ We can write and numerically solve the corresponding backward SDE

problem, as in Brigo and Pallavicini (2014).
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Martingale Pricing – V

We now consider the case of null lending and borrowing bases.
−→ In other terms there is not a liquidity basis between bond and CDS

markets.
In such case the netting-set pricing formula reduces to the usual
formula with credit and collateral adjustments, see for instance Brigo
et al. (2011).

1{τ>t}Ṽ f
t
.=

N∑
i=1

∫ T

t
E
[
1{τ>u}

Be
t

Be
u

(
dπiu − (c iu − eu)C i

u du + 1{τ∈du}θiu
)
| Gt
]

where we drop the f from the expectation, since the dependency on
the funding strategy has disappeared.
Thus, under these assumptions, funding costs disappear, as shown by
many papers in the literature.
−→ See for a discussion Brigo et al. (2013) or Crépey et al. (2014).
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Funding Costs Pricing the Whole Netting Set

Martingale Pricing – VI

In the following numerical examples is useful to write the pricing
equation as

1{τ>t}Ṽ f
t =

N∑
i=1

∫ T

t
Ef
[
1{τ>u}

Be
t

Be
u

(
dπiu − (c iu − eu)C i

u du + 1{τ∈du}θiu
)
| Gt
]

−
∫ T

t
Ef
[
1{τ>u}

Be
t

Be
u

(Ṽ f
u − C f

u )(f `u − eu) du | Gt
]

where we define f `t as the component of the funding rate depending
only on liquidity bases, namely

f `t := et + 1{Ṽ f
t >C f

t }
`bt + 1{Ṽ f

t ≤C f
t }
`lt
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Funding Costs Numerical Investigations on Funding Costs

Effective Discount Approximation – I

Here, we investigate the case of a netting set formed by a single
interest-rate swap (IRS).
−→ For a lighter notation we omit any symbol f referring to the netting set.
We follow Pallavicini and Brigo (2013), and we define the collateral
process and the close-out amount as

Ct
.= αt Ṽt , ετ

.= βτ Ṽτ

where αt ≥ 0 is the collateral fraction, and βτ the devaluation factor.
We have some special cases:
−→ no collateralization: αt = 0, e.g. IRS with a corporate;
−→ partial collateralization: 0 < αt < 1, e.g. IRS with asymmetric CSA;
−→ perfect collateralization: αt = 1, e.g. standard IRS;
−→ over-collateralization: αt > 1, e.g. IRS with haircuts.
In the numerical examples we set βτ

.= 1.
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Funding Costs Numerical Investigations on Funding Costs

Effective Discount Approximation – II

We obtain after some algebra in case of F-conditional independence
between the default times

1{τ>t}Ṽt = 1{τ>t}

∫ T

t
E
[
exp

{
−
∫ u

t
(f `v + ξv ) dv

}
dπu | Ft

]
where we define the spread ξt as

ξt := −αt(f `t − et) + (λIt + λCt )(1− βt)
+ (βt − αt)+ (λCt LGDC1{Vt>0} + λItLGDI1{Vt<0}

)
+ (βt − αt)−

(
λItLGDI1{Vt>0} + λCt LGDC1{Vt<0}

)
and the pre-default intensities are defined as

λIt dt := Q{ τI ∈ dt | τI > t,Ft } , λCt dt := Q{ τC ∈ dt | τC > t,Ft }
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Funding Costs Numerical Investigations on Funding Costs

Effective Discount Approximation – III

We consider the following proxy for funding rates

f `t
.= et + w `t + 1{(1−αt)Ṽt>0}w

bλIt

where w and wb are non-negative weights, et is the overnight rate, `t
is a liquidity basis, and λIt is the default intensity of the bank.
Interest-rates are modeled by means of a two-factor Gaussian model,
while default intensities and the liquidity basis by means of a shifted
CIR model.
−→ Market data and calibration details on Pallavicini and Brigo (2013).
Market risks dependencies are created by correlating the driving
Brownian motions, while we assume F-conditional independence of
default times.
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Funding Costs Numerical Investigations on Funding Costs

Funding Costs and Partial Collateralization

Price for a receiver IRS (left) and for shorting a payer IRS (right) vs. collateral
fraction α for different borrowing rates, while keeping the lending rate equal to
the overnight rate. wb ∈ {0, 0.2, 0.4, 0.6, 0.8, 1}, w = 0.
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Funding Costs Numerical Investigations on Funding Costs

Bid-Ask Spreads and Partial Collateralization

Bid-ask spread for an IRS vs. collateral fraction α for different borrowing rates,
while keeping the lending rate equal to the overnight rate.
wb ∈ {0, 0.2, 0.4, 0.6, 0.8, 1}, w = 0.
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Funding Costs Numerical Investigations on Funding Costs

Funding Costs and Wrong-Way Risk

Price for a receiver IRS vs. correlation between credit-spreads and overnight rate
for different funding rates. Collateralization is off (α = 0).
Left: wb = 0, w ∈ {0, 0.2, 0.4, 0.6, 0.8, 1}.
Right: wb = 1, w ∈ {0, 0.2, 0.4, 0.6, 0.8, 1}.
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Funding Valuation Adjustments Derivative Pricing in Non-Collateralized Markets

Derivative Pricing in Non-Collateralized Markets – I

The analysis of the previous section showed that funding costs do not
appear in prices but for liquidity effects.
On the other hand, prices in trader books should reflect funding costs
to represent the risks produced by in the funding activity required by
trading.
The treasury department can implement a FTP policy to charge the
trader book for funding costs.
−→ Derivative prices in the trader book are adjusted to reflect funding

costs (funding valuation adjustment, or FVA).
FTP policies can be designed to mimic the terms in the pricing
equation offset by the funding benefit term.
−→ Usually approximations are introduced to avoid non-linearities.
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Funding Valuation Adjustments Derivative Pricing in Non-Collateralized Markets

Derivative Pricing in Non-Collateralized Markets – II

Before analyzing possible design of FTP policies, we wish to discuss a
relevant practical issues motivating bank attention to funding costs.
Traders charged for FVA will mark losses in their books, unless they
transfer these adjustments to clients.
−→ Such adjustments are not implied by martingale arguments.
−→ Naive FTP policies may result in arbitrages, see Hull and White (2014).
However, if we search for non-collateralized markets, where funding
costs are an issue, we find only non-liquid markets between banks and
corporates, or retail markets.
−→ Interbank markets are always collateralized.
−→ Collateralization requires a great quantity of liquid assets usually

detained only by banks or very large corporates.
Arbitrages due to funding costs in non-collateralized markets are
difficult to lock in by corporate or retail clients
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Funding Valuation Adjustments Derivative Pricing in Non-Collateralized Markets

Derivative Pricing in Non-Collateralized Markets – III

As a consequence banks in non-collateralized markets usually include
funding valuation adjustments in prices to clients.
−→ This can be controversial, since the client often has no transparency on

the bank funding policy.
−→ In a more provocative way we could ask why clients are not charging

their own funding cost to the banks.
In the latest years many papers flourished in the practitioner literature
on this subject without a conclusive answer.
−→ See for instance Hull and White (2012), Alavian (2014), Albanese and

Andersen (2015).
In July 2016 the European Money Market Institute will start a reform
on Euribor rate to track all funding activity of a panel of banks to
build a funding benchmark for EUR zone.
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Funding Valuation Adjustments Derivative Pricing in Non-Collateralized Markets

Design of a FTP Policy for Funding Costs

We summarize two common choices adopted in the bank industry to
formulate a FTP policy to define FVA.
The first choice is a linearized approximation of the netting set pricing
formula without explicitly offsetting the funding costs with the
funding benefits.
The second choice is a further approximation based on the fact that
the treasury is usually short of cash.
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Funding Valuation Adjustments Examples of FTP Policies and FVA Accounting

Linear Approximation of the Pricing Formula – I

We write the netting set pricing formula before offsetting the funding
terms.

1{τ>t}Ṽ f
t =

N∑
i=1

∫ T

t
Ef
[
1{τ>u}

Be
t

Be
u

(
dπiu − (c iu − eu)C i

u du + 1{τ∈du}θiu
)
| Gt
]

−
∫ T

t
Ef
[
1{τ>u}

Be
t

Be
u
`lu

(
Ṽ f
u − C f

u

)−
du | Gt

]
−
∫ T

t
Ef
[
1{τ>u}

Be
t

Be
u

(s Iu + `bu)
(

Ṽ f
u − C f

u

)+
du | Gt

]
+
∫ T

t
Ef
[
1{τ=τI∈du}

Be
t

Be
u

(1− R f
I )
(

Ṽ f
u − C f

u

)+
| Gt
]
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Funding Valuation Adjustments Examples of FTP Policies and FVA Accounting

Linear Approximation of the Pricing Formula – II
We approximate the pre-default price Ṽ f

t entering the right-hand side
with the sum of all close-out amounts εit .
Moreover, we define close-out amounts as overnight-based prices
corrected by collateral costs.
Thus, we set

Ṽ f
t ≈ εft :=

N∑
i=1

εit , εit
.= Be

t E

[∫ T

t

(
dπiu
Be
u
− (c iu − eu)C i

u du
Be
u

)
| Gt

]

We split the pre-default price of the netting set according to the FTP
policy by moving to the treasury the so called funding debit
adjustment (FDA).

FDAt :=
∫ T

t
Ef

[
1{τ=τI∈du}

Be
t

Be
u

(1− R f
I )
( N∑

i=1

(
εiu − C f

i
) )+
| Gt

]
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Funding Valuation Adjustments Examples of FTP Policies and FVA Accounting

Linear Approximation of the Pricing Formula – III

We can group all terms marked in the trader desk on the right.

1{τ>t}(Ṽ f
t − FDAt) = 1{τ>t}

N∑
i=1

εit

CVAt −
∫ T

t
Ef

[
1{τ=τC∈du}

Be
t

Be
u

(1− RC )
N∑
i=1

(
εiu − C i

u
)+ | Gt

]

DVAt −
∫ T

t
Ef

[
1{τ=τI∈du}

Be
t

Be
u

(1− RI)
N∑
i=1

(
εiu − C i

u
)− | Gt ]

FBAt −
∫ T

t
Ef

[
1{τ>u}

Be
t

Be
u
`lu

( N∑
i=1

(
εiu − C i

u
) )−

du | Gt

]

FCAt −
∫ T

t
Ef

[
1{τ>u}

Be
t

Be
u

(s Iu + `bu)
( N∑

i=1

(
εiu − C i

u
) )+

du | Gt

]
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Funding Valuation Adjustments Examples of FTP Policies and FVA Accounting

Linear Approximation of the Pricing Formula – IV

Linear Approximation of Netting Set Pricing Formula
Under the Linear Approximation FTP policy the netting set price marked
in the trader book is given by

P f ,EFB
t := MtMt − CVAt + DVAt + FBAt − FCAt , MtMt := 1{τ>t}

N∑
i=1

εit

while the FDA term is marked by the treasury.

The above pricing equation is also known as External Funder Benefit
approximation (EFB).
The close-out amount can be defined alternatively without the
collateral costs.
−→ In this case an additional collateral adjustment appears in the pricing

equation, sometimes quoted as LVA or ColVA.
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Funding Valuation Adjustments Examples of FTP Policies and FVA Accounting

Linear Approximation of the Pricing Formula – V

If we discard liquidity bases we have that

P f ,EFB
t

.= MtMt − CVAt + DVAt − FCAt , FDAt = FCAt

Thus, we have the trader desk marking funding costs to compensate
on a daily basis the charge paid by the treasury to borrow cash from
the market.
This approximation is discussed also in Burgard and Kjaer (2013),
where is termed “strategy I”, and in Andersen and Albanese (2015),
where is termed “FVA/FDA accounting”.
The fair value of the netting set can be derived by summing up all the
contributions.

V f ,EFB
t := MtMt − CVAt + DVAt
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Funding Valuation Adjustments Examples of FTP Policies and FVA Accounting

Price Adjustments at Contract Level – I

Funding adjustments in the linear approximation are defined at
netting set level.
−→ A recipe to split them on each single contract is needed to effectively

implement the FTP policy.
A possible approach is calculating the marginal contribution of each
contract in the netting set.
−→ When a new contract is added to the netting, we assign to it the

increment in funding costs (and benefits) of the whole netting set.
Thus, we can define the cash borrowed for a particular contract in the
netting set as

Fb,i
u :=

( N∑
j=1

(
εju − C j

u
) )+
−
( N∑

j=1,j 6=i

(
εju − C j

u
) )+
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Funding Valuation Adjustments Examples of FTP Policies and FVA Accounting

Price Adjustments at Contract Level – II

We can now calculate the marginal FCA, namely the amount of FCA
to be market on the trader book when a new contract is entered, as

FCAi
t := −

∫ T

t
Ef
[
1{τ>u}

Be
t

Be
u

(s Iu + `bu)
(

Fb,i
u

)+
du | Gt

]
Similarly we can define the marginal FBA starting from

F l,i
u :=

( N∑
j=1

(
εju − C j

u
) )−
−
( N∑

j=1,j 6=i

(
εju − C j

u
) )−
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Funding Valuation Adjustments Examples of FTP Policies and FVA Accounting

Large Netting Set Approximation – I

We can further approximate the previous pricing equation by
assuming that the netting is always short of cash.
−→ This is a reasonable approximation if we consider a bank with only one

netting set for all the trading activity.
Under this approximation we can set

Ṽ f
t ≈ εft > C f

t

A direct consequence is a null funding benefit term, while the funding
cost term can be written as

FCAt
.=
∫ T

t
Ef

[
1{τ>u}

Be
t

Be
u

(s Iu + `bu)
N∑
i=1

(εiu − C i
u)du | Gt

]

We can continue by splitting the argument of the summation in its
positive and negative parts.
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Funding Valuation Adjustments Examples of FTP Policies and FVA Accounting

Large Netting Set Approximation – II

We can group all terms marked in the trader desk on the right.

1{τ>t}(Ṽ f
t − FDAt) = 1{τ>t}

N∑
i=1

εit

CVAt −
∫ T

t
Ef

[
1{τ=τC∈du}

Be
t

Be
u

(1− RC )
N∑
i=1

(
εiu − C i

u
)+ | Gt

]

DVAt −
∫ T

t
Ef

[
1{τ=τI∈du}

Be
t

Be
u

(1− RI)
N∑
i=1

(
εiu − C i

u
)− | Gt ]

FBA′t −
∫ T

t
Ef

[
1{τ>u}

Be
t

Be
u

(s Iu + `bu)
N∑
i=1

(
εiu − C i

u
)− du | Gt

]

FCA′t −
∫ T

t
Ef

[
1{τ>u}

Be
t

Be
u

(s Iu + `bu)
N∑
i=1

(
εiu − C i

u
)+ du | Gt

]
double
counting

A. Pallavicini Funding and Counterparty Risks 10-11 February 2016 130 / 156



Funding Valuation Adjustments Examples of FTP Policies and FVA Accounting

Large Netting Set Approximation – III

In this approximation we have succeeded in defining per-contract
funding costs adjustments, so that we can leave the netting-set view.
However, the DVA and FBA clearly produce a double counting of the
investor credit charge on each single contract.
Then, the FTP policy is modified to discard one of the two
contributions from the price marked on the trading desk.
−→ Here, we assume that the DVA term is marked by the treasury, or by

another trading desk.
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Funding Valuation Adjustments Examples of FTP Policies and FVA Accounting

Large Netting Set Approximation – IV

Large Netting Set Approximation of Linear Formula
Under the Large Netting Set approximation FTP policy the netting set
price marked in the trader book is given by

P f ,RBB
t := MtMt − CVAt + FBA′t − FCA′t

while the DVA and FDA term are marked by the treasury.

The above pricing equation is also known as Reduced Borrowing
Benefit approximation (RBB).
The close-out amount can be defined alternatively without the
collateral costs.
−→ In this case an additional collateral adjustment appears in the pricing

equation, sometimes quoted as LVA or ColVA.
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Funding Valuation Adjustments Examples of FTP Policies and FVA Accounting

Large Netting Set Approximation – V

If we discard liquidity bases we have that

P f ,RBB
t

.= MtMt − CVAt + FBA′t − FCA′t

FDAt = FCA′t − FBA′t , DVAt = FBA′t
Thus, we have the trader desk marking
−→ funding costs to compensate on a daily basis the charge paid by the

treasury to borrow cash from the market.
−→ funding benefits to compensate on a daily basis the profits coming

from DVA trading.
Similar approximations can be found in Burgard and Kjaer (2013) and
in Andersen and Albanese (2015).
The fair value of the netting set can be derived by summing up all the
contributions.

V f ,RBB
t := MtMt − CVAt + DVAt

A. Pallavicini Funding and Counterparty Risks 10-11 February 2016 133 / 156



Funding Valuation Adjustments Numerical Investigations on Valuation Adjustments

Beyond the Effective Discount Approximation

We continue the numerical investigations with the analysis of Brigo
and Pallavicini (2014).
We consider a netting set formed by a single IRS and FTP policy
based on the RBB approach.
−→ In Brigo and Pallavicini (2014) the linearization step is avoided and a

full BSDE is numerically solved.
In this example we extend the previous framework by allowing a delay
in the default procedure.
−→ At default time τ collateralization is stopped while the close-out

amount is calculated at τ + δ (gap risk).
−→ Gap risk is reduced with additional collateralization (initial margin),

which requires extra funding costs.
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Funding Valuation Adjustments Numerical Investigations on Valuation Adjustments

Variation and Initial Margin Estimates – I

In presence of gap risks collateralization procedures require two
different types of collaterals.
−→ A variation margin account Mt to track the mark-to-market

movements of the contract up to the default event.
−→ Two initial margin accounts N I

t and Nt
C to insure against the worst

market movements of the exposure from default date τ up to the
completion of the default procedure at τ + δ.

Usually, the variation margin may be re-hypothecated, while the initial
margin is segregated.
We can approximate the variation margin, as we did before in case of
plain collateralization.

Mt
.= αt εt

While initial margins should be linked to the variance of the exposure
conditional on the default event.
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Funding Valuation Adjustments Numerical Investigations on Valuation Adjustments

Variation and Initial Margin Estimates – II

Initial margins are strongly dependent on the particular asset class of
the derivative.
LCH, a CCP clearing IRS contracts, consider a single source of risk to
estimate initial margins.
−→ Interest-rate uncertainty, analyzed in term of a historical metric.
ICE, a CCP clearing CDS contracts, considers seven(!) different
sources of risk to estimate initial margins.
−→ Credit-spread, interest-rate and recovery-rate uncertainties.
−→ Jump risk, namely default contagion effects.
−→ Basis risk, namely mismatches between particular contracts and market

proxies.
−→ Liquidity risk, by observing bid/ask spreads and via price discovery.
−→ Concentration risk, namely systemic risk associated with large

portfolios.
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Funding Valuation Adjustments Numerical Investigations on Valuation Adjustments

Variation and Initial Margin Estimates – III
Here, we focus on interest-rate derivatives.
The gap risk arising from the mark-to-market term is usually analyzed
in terms of historical Value-at-Risk (VaR) or Expected Shortfall (ES).
For instance, we can estimate the initial margin posted to protect
from mark-to-market movements as the protection against the worst
movement of the contract due to market risk within δ days at a
confidence level q according to VaR risk metric.

NC
t
.= inf {x ≥ 0 : Q{ εt+δ − εt < x | Ft } > q}

and only for bilateral contracts under CSA

N I
t
.= sup {x ≤ 0 : Q{ εt+δ − εt > x | Ft } > q}

where we approximate the risk metric by using the pricing measure in
spite of the physical measure, since we need to insert such estimates
into a pricing equation.
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Funding Valuation Adjustments Numerical Investigations on Valuation Adjustments

Interest-Rate Swap: bilateral trades without margining

Prices of a ten-year receiver IRS, left ”H/M“, right ”M/H“. The black continuous
line represents the price inclusive of CVA and DVA but not funding costs, with
the dashed black lines representing separately CVA and DVA. The red continuous
line is the price inclusive both of credit and funding costs. On the x -axis the
correlation among market and credit risks.
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Funding Valuation Adjustments Numerical Investigations on Valuation Adjustments

Interest-Rate Swap: bilateral trades with margining – I

Prices of a ten-year receiver IRS, ”H/M“. Left: prices for different
collateralization fractions α without initial margin. Right: prices with α = 1 and
initial margin posted at various confidence levels q. The black continuous line
represents the price inclusive of CVA and DVA but not funding costs, with the
dashed black lines representing separately CVA and DVA. The red continuous line
is the price inclusive both of credit and funding costs.
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Funding Valuation Adjustments Numerical Investigations on Valuation Adjustments

Interest-Rate Swap: bilateral trades with margining – II

Amount of initial margin requested at contract inception for a ten-year receiver
IRS, ”H/M“. Left: the x -axis lists different confidence levels, while the curves
correspond to three different margin period of risks (1, 5 and 10 days). Right the
x -axis lists different margin period of risks, while the curves correspond to three
confidence levels (68%, 95% and 99.7%). Correlation is zero.
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Appendix: Calculation Tools Feynman-Kac Theorem

Probabilistic Interpretation of Pricing Equations – I

The Feynman-Kac Theorem
Consider a vector of Markov risk factors St with infinitesimal generator

Lµt := (µtSt) · ∂S + 1
2Tr∂t〈S, S〉t∂2S

and assume that the derivative price Vt solves the PDE

(∂t + Lµt − νt) Vt + ∂tπt = 0 , VT = 0

Hence, the solution of the PDE is given by

Vt =
∫ T

t
Eµt
[

Bνt
Bνu

dπu
]

where under the pricing measure Qµ the risk factors grow at rate µt .

A. Pallavicini Funding and Counterparty Risks 10-11 February 2016 141 / 156



Appendix: Calculation Tools Feynman-Kac Theorem

Probabilistic Interpretation of Pricing Equations – II

A useful application of the theorem is changing the discount factor by
adding a stream of coupons.

Vt =
∫ T

t
Eµt
[

Bνt
Bνu

dπu
]

=
∫ T

t
Eµt
[

Bρt
Bρu

dπu + (µu − ρu)Vu du
]

=
∫ T

t
Eρt
[

Bρt
Bρu

dπu + (µu − ρu)Vu du − (νu − ρu)Su · ∂SVu du
]

where under the pricing measure Qρ the risk factors grow at rate ρt .
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Appendix: Calculation Tools Filtration Switching Lemmas

Pricing Cash Flows Occurring before the Default Event – I

For any G-adapted process φt , we can consider the G-adapted process

xt
.= E
[
1{τ>T}φT | Gt

]
If we observe xt only before the default event, and we take the
expectations of both side under F filtration, we get

x̃t E
[
1{τ>t} | Ft

]
= E

[
1{τ>t}E

[
1{τ>T}φT | Gt

]
| Ft

]
= E

[
1{τ>T}φT | Ft

]
On the other hand, we have from the definition of pre-default process

1{τ>t}x̃t = 1{τ>t}E
[
1{τ>T}φT | Gt

]
leading to

1{τ>t}E
[
1{τ>T}φT | Gt

]
= 1{τ>t}

E
[
1{τ>T}φT | Ft

]
Q{ τ > t | Ft }
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Appendix: Calculation Tools Filtration Switching Lemmas

Pricing Cash Flows Occurring before the Default Event – II

First Filtration Switching Lemma
In a market with defaultable names, where τ is the first default event, we
can price cash flows occurring before the first default event by switching to
the market filtration F .

1{τ>t}E
[
1{τ>T}φT | Gt

]
= 1{τ>t}

E
[
Q{ τ > T | FT } φ̃T | Ft

]
Q{ τ > t | Ft }

where φt is a G-adapted process, and φx t is the corresponding pre-default
process. In particular, we have also

1{τ>t}Q{ τ > T | Gt } = 1{τ>t}
Q{ τ > T | Ft }
Q{ τ > t | Ft }
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Appendix: Calculation Tools Filtration Switching Lemmas

Pricing Cash Flows Occurring on the Default Event – I

A second useful lemma can be derived for cash flows paid only if a
default occurs.
For any G-adapted process φt we can proceed as before, but, now, we
consider the G-adapted process

xt
.= E
[
1{τ<T}φτ | Gt

]
leading to

1{τ>t}E
[
1{τ<T}φτ | Gt

]
= 1{τ>t}

E
[
1{t<τ<T}φτ | Ft

]
Q{ τ > t | Ft }

As before we wish to remove the explicit dependency on the default
event on the right-hand side.
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Appendix: Calculation Tools Filtration Switching Lemmas

Pricing Cash Flows Occurring on the Default Event – II

We go on by localizing the default event, and we get

1{τ>t}E
[
1{t<τ<T}φτ | Ft

]
= 1{τ>t}

∫ T

t
E
[
1{τ∈du}φu | Ft

]
To proceed further we require that φt is also predictable. We obtain

1{τ>t}E
[
1{t<τ<T}φτ | Ft

]
= 1{τ>t}

∫ T

t
du E

[
1{τ>u}λuφu | Ft

]
where we define the first-default intensity as the density of the
compensator of 1{τ<t}, namely

λt dt := E
[
1{τ∈dt} | Gt

]
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Appendix: Calculation Tools Filtration Switching Lemmas

Pricing Cash Flows Occurring on the Default Event – III

Second Filtration Switching Lemma – First Default
In a market with defaultable names, where τ is the first default event, we
can price cash flows occurring on the first default event by switching to
the market filtration F .

1{τ>t}E
[
1{τ<T}φT | Gt

]
= 1{τ>t}

∫ T

t
du

E
[
Q{ τ > u | Fu } λ̃uφ̃u | Ft

]
Q{ τ > t | Ft }

where λt is the first-default intensity and φt is a G-predictable process,
while λ̃t and φ̃t are the corresponding pre-default processes.

A. Pallavicini Funding and Counterparty Risks 10-11 February 2016 147 / 156



Appendix: Calculation Tools Filtration Switching Lemmas

Pricing Cash Flows Occurring on the Default Event – IV

We can formulate the lemma also in the case of the default of one of
the counterparty, while the other one remains alive.
For instance, if the investor defaults before the counterparty we can
write

xt
.= E
[
1{τ=τI<T}φτ | Gt

]
= E

[
1{τ<T}1{τI<τC}φτ | Gt

]
and the proof follows as in the previous case with the first-default
intensity substituted by the investor default intensity, defined as the
density of the compensator of 1{τ=τI<t}, namely

λIt dt := E
[
1{τ∈dt}1{τI<τC} | Gt

]
Notice that, unless some restrictions are set on the default time
dependencies, the explicit calculation of the default intensities may be
challenging.
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Appendix: Calculation Tools Filtration Switching Lemmas

Pricing Cash Flows Occurring on the Default Event – V

Second Filtration Switching Lemma – Single-Name Default
In a market with defaultable names, where τ is the first default event, we
can price cash flows occurring on the default event of name I by switching
to the market filtration F .

1{τ>t}E
[
1{τ=τI<T}φT | Gt

]
= 1{τ>t}

∫ T

t
du

E
[
Q{ τ > u | Fu } λ̃Iuφ̃u | Ft

]
Q{ τ > t | Ft }

where λIt is the default intensity of name I, while other names are still
alive, and φt is a G-predictable process, while λ̃It and φ̃t are the
corresponding pre-default processes.
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Appendix: Calculation Tools Filtration Switching Lemmas

Pricing Cash Flows Occurring on the Default Event – VI
When the process φt is adapted, but not predictable, we can proceed
as in Duffie (2005).
We apply the tower rule at a time v before the first default event.

xt
.= E
[
1{τ<T}φτ | Gt

]
= lim

v→(τ∧T )−
E
[
E
[
1{τ<T}φτ | Gv

]
| Gt
]

Then, by means of a lemma by Dellacherie and Meyer (1978) we have
that there is a G-predictable process φ◦t such that

φ◦τ∧T = lim
v→(τ∧T )−

E
[
1{τ<T}φτ | Gv

]
Thus, we can proceed as before with

xt = E
[
1{τ<T}φτ | Gt

]
= E[φ◦τ∧T | Gt ] = E

[
1{τ<T}φ

◦
τ | Gt

]
and both versions of the previous lemma are still valid with φ◦t
replacing φt .
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