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Demographic rates at individual Level

Demographic rates: an individual of traits xt ∈ X ⊂ Rd and age

at ∈ [0, ā] at time t, (born at time 0)

I Dies at rate d (xt , at , t,Y )

I Gives birth at rate b (xt , at , t,Y )

and the new individual has traits x ′ ∼ K b(xt , at , dx
′)

I Evolves during life at rate e (xt , at , t,Y )

from traits xt to x ′ ∼ K e(xt , at , dx
′)

Environmental factors

I Demographic rates depend on characteristics, age, time and on the

stochastic environment Y

I Conditionally on the environment Y , the events for a given

individual are jumps of a counting process

4/48 Nicole El Karoui, Sarah Kaakai Cours I Padoue 2016



Thinning equations for spatial birth processes

The thinning construction can be used to define a wide variety of

processes as solution to stochastic equations.

Intensity for spatial Birth Process

I naissance +”mutation”individual = rate becomes

b(x ′)kb(x ′, x)m(dx ′)

I aggregated rate of birth mutation=

β(ξ, x) =
∑

x′∈ξ b(x ′)kb(x ′, x)

I Equation Z (dt, dx) =
∫
R+

1θ≤β(Zt−,x)Qb(dt, dx , dθ)

Birth with age

I First define the new kernel with the age

I Applied the previous relation to process

d〈Zt , f 〉 = 〈I bZt−
f (., 0),Qb〉(dt) + 〈Zt , ∂af 〉dt

I Existence result similar to the linear case
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Death process

Fondamental asymmetry

I since the newborn is from outside,

I then the death remove an individual in the population

How to select an individual by its characteristics

I the counting measure on E is not a ”Radon” σ-finite measure on E

I Necessity to give a measurable and adapted process to select

individual in a given population
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Numbering a population and Death process

Envelop process of population path without accumulation

I The age desagregated population ξ̃s(dx) = ξs(dx ,R+)

I The non decreasing envelop ξ̄t =
⋃

s∈[0,t] ξ̃s process

I ξ̄t has only finite number of jumps on [0, t], denoted by (Sk)

I (Sk) are also times of jumps for the path ξt

I The sequence (Xk ,Ak(.))k≥N0+1, Xk = ξ̄Sk−N0
\ ξ̄S−k−N0

, and

Ak(t) = t − Sk

Spatial death process

I A Poisson point measure Qd(ds, di , dθ) on R+ × N∗ × R+

I with intensity measure qd(ds, di , dθ) = ds n(di) dθ

I I d(Zt−, i , θ) = 1Xi∈Zt−1θ≤d(Xi )

I Using the previous numbering, we see that

Z (dt, dx) = −
∫
i∈N∗

∫
θ∈R+

I d(Zt−, i , θ)δX i (dx)Qd(dt, di , dθ),

I Same transformation with age
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Coupling and comparison of Birth,Death, Spatial process

Theorem Bezborodov (2014), Garcia 1999, ...

I If ξ1
0 ⊂ ξ2

0 ,

I β1(x , η1) ≤ β2(x , η2) η1 ⊂ η2

I d1(x , η1) ≥ d2(x , η2) η2 ⊂ η1, x ∈ η1

The comparison theorem

There exists a cadlag process (ηt) such that ηt ⊂ ξ2
t having the same law

that (ξ1
t )

Sketch of the proof without age, and swap

η(dt,B) =

∫
B×R+

1[0,b1(x,ηs−)](θ)dQb(dt, dx , dθ)

−
∫
N×R+

1{x2
i ∈ηs−∩B}1[0,d1(x2

i ,ηs−)](θ)dQd(dt, di , dθ)
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Applications of comparison theorem

In progess

Study classical properties of population processes

I Agregation by traits and convexity

I Localisation and explosion

I Monotonic convergence

Stochastic order on the space of configuration

I Starting from the result of Preston (1975) on the stochastic order

for the Point random field

I Property of the stochastic order on the distributions of the

population processes Zt in terms of demographic characteristics
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General birth-death-swap process

The Poisson measures driving the equation

I Qb, Qd , Qe

I I b(Zt−, t, x , θ), I d(Zt−, t, i , x , θ), I e(Zt−, t, i , x , θ)

The BSD Population equation

d〈Zt , f 〉 = 〈I bZt−,t f (., 0),Qb〉(dt)− 〈I dZt−,t f (X.,A.(t)),Qd〉(dt)

+ 〈I eZt−,t [f (.,A.(t))− f (X.,A.(t))],Qe〉(dt) + 〈Zt , ∂af 〉dt.
(1)

Hypotheses, E = Rd ,m(dx) = l(dx)

I
∫
b(x , η)dx ≤ c1|η|+ c2

I supx sup{|η|≤m} d(x , η) <∞

Then, existence and strong uniqueness
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Cohort Effect

Cohort effect

An example of numerical experiment to explain an
observed phenomenon
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Cohort effect

Birth cohort for the period [t1, t2]: group of individuals born between t1

and t2.

I Individuals of the same birth cohort share similar demographic

characteristics (”cohort effect”)

I Age, Period, Cohort analysis put a lot of problems in practice, in

different domains, medecine, sociology,...due to the lag in

data,..insurance...

I Huge literature on APC problems
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Golden cohort

Golden cohort: generations born between 1925 and 1940
Cairns et al. (2009) ra,t = (qa,t−1 − qa,t)/qa,t

The Golden cohort has experienced more rapid improvements than earlier

and later generations.
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Figure 3: Improvement rates in mortality for England & Wales by calendar year
and age relative to mortality rates at the same age in the previous year. Red cells
imply that mortality is deteriorating; green small rates of improvement, and blue
and white strong rates of improvement. The black diagonal line follows the progress
of the 1930 cohort.

2.1.2 The cohort eÆect

Some of the models we employ incorporate what is commonly called the “cohort
eÆect”. The rationale for its incorporation lies in an analysis of the rates at which
mortality has been improving at diÆerent ages and in diÆerent years. Rates of
improvement are plotted in Figure 3 (see, also Willets, 2004, and Richards et al.,
2006). A black and white version of this graph can be found in the Appendix, Figure
38.

In line with previous authors (see, for example, Willets, 2004, Richards et al., 2006)
we can note the following points. In certain sections of the plot, we can detect
strong diagonals of similar colours. Most obviously, cohorts born around 1930 have
strong rates of improvement between ages 40 and 70 relative to, say, cohorts born
10 years earlier or 10 years later. The cohort born around 1950 seems to have worse
mortality than the immediately preceeding cohorts.

There are other ways to illustrate the cohort eÆect and these can be found in Ap-
pendix A.
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Analysis of R. C. Willets, 2004

Some possible explanations:

I Impact of World War II on previous generations,

I Changes on smoking prevalence: tobacco consumption in next

generations,

I Impact of diet in early life,

I Post World War II welfare state,

I Patterns of birth rates

”One possible consequence of rapidly changing birth rates is that the

average child is likely to be different in periods where birth rates are very

different. For instance, if trends in fertility vary by socio-economic class,

the class mix of a population will change.”

The Cohort Effect: Insights And Explanations, 2004, R. C. Willets
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Cohort effect and Fertility
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Simple toy model

The different rates

I Reference death rate d̄(a) = A exp(Ba)

I Parameters A ∼ 0.0004 and B ∼ 0.073 estimated on French national

data for year 1925 to capture a proper order of magnitude

I ”Upper class”: time independent death rate d1(a) = d̄(a) and birth

rate b1(a) = c1[20,40](a) (c=0.1)

I ”Lower class”: time independent death rate d2(a) = 2d̄(a) but birth

rate b2(a, t) = 4c1[20,40](a)1[0,t1]∪[t3,∞)(t) + 2c1[20,40](a)1[t2,t3](t)

Comment Constant death rates but reduction in overall fertility between

times t1 (=10) and t2 (=20).

I Aim: Test the cohort effect by computing standard demographic

indicators on the population
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Aggregate fertility

I One trajectory with 20000 individuals (randomly) splitted between

groups. Estimation of aggregate fertility
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Life expectancy by year of birth

I ”Cohort effect” for aggregate life expectancy
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Figure: Observed fertility (left) and estimated life expectancy by year of birth

(right)

I Death rates by specific group remain the same

I But reduction in fertility for ”lower class” during 10-20 modifies the

generations composition

⇒ ”upper class” is more represented among those born between 10

and 20
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General birth-death-swap process

The Poisson measures driving the equation

I Qb, Qd , Qe

I I b(Zt−, t, x , θ), I d(Zt−, t, i , x , θ), I e(Zt−, t, i , x , θ)

The BSD Population equation

d〈Zt , f 〉 = 〈I bZt−,t f (., 0),Qb〉(dt)− 〈I dZt−,t f (X.,A.(t)),Qd〉(dt)

+ 〈I eZt−,t [f (.,A.(t))− f (X.,A.(t))],Qe〉(dt) + 〈Zt , ∂af 〉dt.
(2)

Hypotheses, E = Rd ,m(dx) = l(dx)

I
∫
b(x , η)dx ≤ c1|η|+ c2

I supx sup{|η|≤m} d(x , η) <∞

Then, existence and strong uniqueness
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Martingale problem

(No evolution for simplicity of notations)

Conditionally on the complete path of Y , in conditionally independency

framework

Mt(f ) =< Zt , ft > − < Z0, f0 > −
∫ t

0

ds

∫
Zs(dx , da)

[(∂fs
∂a

+
∂fs
∂s

)
(x , a)

+b(x , a, s,Y )

∫
χ

fs(x ′, 0)K b(x , a, dx ′) − d(x , a, s,Y )fs(x , a)
]

(3)

is a square integrable martingale with quadratic variation

< M(f ) >t=

∫ t

0

ds

∫
χ×[0,ā]

Zs(dx , da) ×

[
b(x , a, s,Y )

∫
χ

f 2
s (x ′, 0)K b(x , a, dx ′) + d(x , a, s,Y )f 2

s (x , a)
]

(4)(5)
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Macroscopic approximation

Assumptions

I Renormalization: pop. described by the measure

Z̄ n
t (dx , da) = 1

n

∑Nn
t

i=1 δ(x i
t ,a

i
t)

(each individual has weight 1/n)

I Weak convergence of the initial population as n→ +∞:

Z̄ n
0 (dx , da)⇒ g0(x , a)γ(dx)da (initial size is of order n)

I By homogeneity, the quadratic variation of M̄n(f ) is of order 1
n and

so goes to 0

I Cv in distribution on the canonical space of cadlag measure valued

process of the process (Z̄ n
t ))
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Conditionnaly to Y , limit PDE

I Law of Large Numbers (Heuristic): the noise vanishes as the size n

of the initial population goes to infinity

⇒ deterministic behavior in time for large populations

Limit PDE

I Limit process as the size → +∞
I Weak convergence of (Z n

t (dx , da))t≥0 to the solution(
gt(x , a)γ(dx , da

)
t≥0

of conditional (wrt Y) deterministic PDE

Link between two description in a given environment:

I microscopic: stochastic behavior of each individual

I macroscopic: deterministic evolution of the whole population
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Deterministic equations in demography

I Malthus (1798), Verhulst (1838): pop. structured by traits g(x , t):

density of individuals of trait x at time t

∂g

∂t
(x , t) =

∫
χ

g(y , t)b(y)kb(y , x)dy − d(x)g(x , t),

g(x , 0) = g0(x).

I McKendrick (1926), VonFoerster (1959): structured by age g(a, t):

density of individuals of age a at time t

∂g

∂t
(a, t) +

∂g

∂a
(a, t)︸ ︷︷ ︸

transport

= −d(a)g(a, t), g(0, t) =

∫ +∞

0

b(a)g(a, t)da︸ ︷︷ ︸
renewal

g(a, 0) = g0(a).
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Large population limit

PDE for the population density g(x , a, t): approximation (a.s) for large

populations with

I stochastic environment Y

I evolution during life(
∂g

∂t
+
∂g

∂a

)
(x , a, t) = −d

(
x , a, t,Y

)
g(x , a, t)

−e
(
x , a, t,Y

)
g(x , a, t) +

∫
χ

e(x
′
, a, t,Y )ke(x

′
, a, x)g(x

′
, a, t)γ(dx

′
)

g(x , 0, t) =

∫
X×[0,ā]

b
(
x
′
, a, t,Y

)
kb(x

′
, a, x)g(x

′
, a, t)γ(dx

′
)da

g(x , a, 0) = g0(x , a)

I Take advantage of the impact of pure environment noise
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Heterogeneity

Longevity patterns and longevity improvements are very different for

different countries, and different geographic area.

Factor affecting mortality

I socio-economic level (occupation, income, education, wealth...)

I gender

I marital status

I living environment (pollution, nutritional standards, hygienic...)

I Take them into account in a stochastic mortality model

Conditional calibration

I On national mortality data and on specific data (with information on

individual characteristics)

I In France, specific data=Permanent demographic sample=992711

persons, died only from 1967, born in October only from 1866
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Male Life Expectancy from age 65
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Female Life Expectancy from age 65
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Social Heterogenity of Life Expectancy
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Basis risk I

Difference : national mortality versus that of specific group

I Insurance companies can use national reliable mortality estimates on

large samples

I but the final goal is to model mortality rates specific to

subpopulations with owns traits

population of a small country or region,

individuals with a specific disease,

insurance portfolio,

annuitants of sectorial pension funds.

I But also how take into account other informations

They know the exact ages at death and not only the year of death

(time continuous data)

Cause of death are specified
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Basis risk II

Characteristics of the policyholders : socio economic level, living

conditions ...

selection bias

I BUT

limited size of their portfolios (in comparison to national populations

: 700 000 individuals from 19 different insurance companies)

small range of the observation period

This heterogeneity is very important for longevity risk transfer based on

national indices: for too important basis risk, the hedge would be too

imperfect
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Permanent Demographic Sample

I Number of individuals at each year by 5 years age groups in the

sample
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Heterogeneity of mortality

Some tests on three characteristics of interest

I Education level

Group 1: Diploma ≤ Baccalaurat (high school diploma)

Group 2: Diploma > Baccalaurat (high school diploma)

I Socio-professional category

Groupe 1: Employees and workers

Groupe 2: Executives and higher intellectual professions,

intermediaries professional categories

I Marital status

Group 1: Single or divorced

Group 2: Married or widowed
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Mortality heterogeneity: education level

● ● ● ● ●

●
● ●

●

●

●

●

40 50 60 70 80

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

Death probabilities for year 1990 in EDP

● ● ●
● ●

● ●

●

●

●

●

●

● ●
● ● ●

●

●

●

●

●

●

● ●
● ●

●

●

●

●

●

●

●

Female diploma sup
Female diploma inf
Male diploma sup
Male diploma inf

● ● ● ● ●
● ●

● ●

●

●

●

40 50 60 70 80

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

Death probabilities for year 2007 in EDP

● ● ●
● ● ●

●

●

●

●

●

●

● ● ●
●

● ●
●

●

●

●

●

●

● ● ●
●

●
●

●

●

●

●

●

Female diploma sup
Female diploma inf
Male diploma sup
Male diploma inf

Figure: Death probabilities by education level: years 1990 and 2007
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Mortality heterogeneity: socio-professional cat.
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Figure: Logit of death probabilities by socio-professional category: years 1990

and 2007
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Mortality heterogeneity: marital status
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Figure: Logit of death probabilities by marital status: years 1990 and 2007
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Classical Statistical Models

Cairns-Blake-Dowd model

I Logit of annual death probabilities for years 1980 and 2000 (French

males)
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CBD Model: Reference for Pension funds industry

Model for high ages (Cairns, Blake, Dowd, 2006):

logit (q(a, t)) = Y1(t) + a.Y2(t) + εa,t ,

I Y1(t): overall reduction in mortality through time, for all ages,

I Y2(t): specific adjustment at each age,

I εa,t is the residual noise.

⇒ choice of a particular form of age dependency (Compertz=linear)

⇒ 2 time factors

Estimating parameters: for each year t between 1980 and 2007, we

perform the linear regression over ages between 60 and 95, which gives

parameters Y1(t) and Y2(t) (for men and women separately)
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CBD Model Compression

I Compression effect: constraint linking Y1 and Y2

⇒ Mortality improvement transferred from old (∼ 95) to younger

ages (∼ 60)
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Figure: Processes Y1 (left) and Y2 (right) estimated for French males (ages

60-95) between 1950 and 2010

42/48 Nicole El Karoui, Sarah Kaakai Cours I Padoue 2016



Cairns-Blake-Dowd model, IV

Time series Y1 and Y2 can be viewed as a fluctuating environment
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Figure: Estimated environment four factors on French data for ages 60-95 and

years 1980-2007.
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Numerical example: French sub-population

I Cohort of French (males and females) aged 61 at the beginning of

year 2005 in the Permanent Demographic Sample

I Confidence intervals at 90% for the number of individuals without

environment noise
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Numerical example: French sub-population

I The model allows to simulate the evolution of the population,

subject to various death rates dues to different environment scenarios
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Numerical example: French sub-population

I Application to an insurance portfolio: initial age distribution

Figure: Confidence interval at 90% on the size of the insured population
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Numerical example: French sub-population

I Application to an insurance portfolio: pension amount
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With the indulgence of Sau, Gold of health and longevity

Thank you
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