Microsimulation and population dynamics in longevity, credit, HFT modelling

Nicole El Karoui, Alexandre Boumezoued, Sarah Kaakai

UPMC(Paris VI), LPMA Probability and Random Models Laboratory, UMR-CNRS 7599 Work partially funded by the Chair "Risques financiers", the Chair "Marchés en mutation, and the ANR project "Lolita"

Padoue, Fevrier 2016

Nicole El Karoui, Sarah Kaakai Cours I

1 Motivation to model global population

- 2 The demographic transition in a nutshell
- 3 Individual based centered dynamic model
- 4 Random set point of view and Thinning of Poisson population
- 5 Hawkes processes

ヘロト 人間ト 人団ト 人団

Population dynamics and Longevity

- First motivation, longevity risk
- ▶ To take into account the complexity of the gobal population
- General Model for population dynamics in Ecology

Marked Point Process: Renew of interest

Useful tool, under different denominations, for other domains:

- Credit risk Modelling
- Hawkes processes in Hight Frequency Trading
- Brain study
- Data Mining

Probability Theory and Simulation

- ▶ Based on useful in probability theory, Poisson Point measure,
- Birth and Death process
- Particular Method for Monte Carlo Simulation

Data and Calibration

- Completely different situations for different domains
- Hard to calibrate
- Hard to simulate

1 Motivation to model global population

2 The demographic transition in a nutshell

- 3 Individual based centered dynamic model
- 4 Random set point of view and Thinning of Poisson population
- 5 Hawkes processes

ヘロト 人間ト 人団ト 人団

Demographic Transition in a nutshell

Nicole El Karoui, Sarah Kaakai Cours I

Padoue 2016

Mortality Transition, Canning (2011)

+30 years for Life Expectancy (LE) in the last century The demographic observation

- Substantial decline in mortality rate, in particular in small ages
- followed by reduction in fertility rate
- Heath transition (physical and cognitive development) and compression of morbidity

Economics aspects

- Economic growth, (income by head) and
- increase in social and political policy (education, democratie..)
- Growth in world population, citer Cohen

イロト イヨト イヨト イヨト

Health Determinants of mortality improvement

Health point of view from Cutler, Deaton, alii (2006)

- Decline in infectious disease (60% of deaths in1848, < 5% in 1971 in UK)
- Nutritional improvement (debate on the importance)
- Progress in medecine, vaccins, …

Public policies

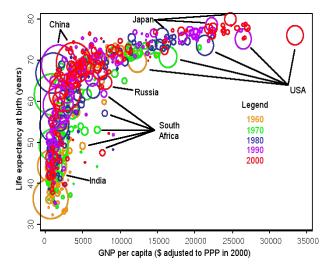
8/49

- ► Macro public health: big public work projects (water purifica- tion explain half of mortality reduction in US (1900 ~ 1930)
- Reduction in alcoholism, in smoking
- public and private health,...also contribute with complex impacts,
- ► large heterogenity with differences by age, type of sub-population, countries, with reverse or delayed effects.

Economic and Wealth Point of view

- Strong evidence on the links, but only 20% as impact
- Relation non-linear and concave
- Unexplained recent slower pace for LifeExp in US /Europa

Wealth and longevity: complex dependency



Nicole El Karoui, Sarah Kaakai Cours I

イロト イヨト イヨト イヨ

Evolutionary theory for aging

Example of Biological views

- Aging is characterized by the decline of physiological capacity
- Explain heterogeneity and randomness in individual patterns
- Nevertheless a robust observation in evolution theory, Gompertz (1825): The log mortality rate between 35-80y is linear in age.
- After 80y, large debate on the rectangularization of the survival curve, the question of "limited human life span"?

Example of data: EU15, 2011, Age-specific mortality rates per 100.000

- **1** [0, 1*y*], 486(382)
- [1y, 10y], 19(15)| [11y, 20y, 41(19)| [21y, 30y], 93(32)
- **B** [31y, 40y], 133(63)| [41y, 50y], 313(163)| [51y, 60y], 750(385)
- 4 [61*y*, 70*y*], 1869(953) | [71*y* -

イロト イボト イヨト イヨ

Aggregate mortality indicators

Life exptectancy at birth

- Lifetime of an individual: au
- Life expectancy at birth: $\mathbb{E}[\tau]$, at ten $\mathbb{E}[\tau 10/\tau > 10]$

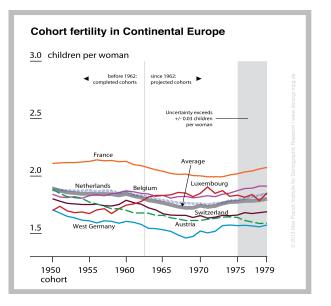
Death rate

- Death rate d(a) such that $\mathbb{P}(\tau > a) = e^{-\int_0^a d(s)ds}$
- ▶ In practice annual death probability reduction $q(a) = \mathbb{P}(\tau < a + 1 \mid \tau \ge a)$
- Mortality plateau (old ages)

Fertility rate

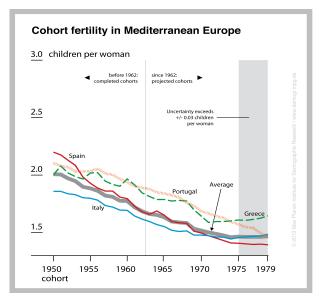
- Complex notion
- ▶ With large political connotation (Fertility, Immigration)

Fertility rate in Continental Europa/1950-80



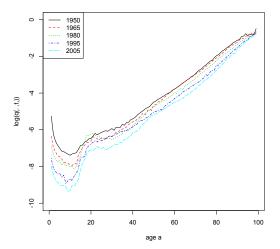
イロト イヨト イヨト イヨト ニヨー のくで

Fertility rate in Mediterranean Europa

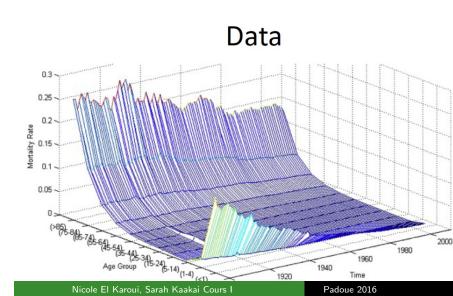


National mortality: $\log q(a,t)$

- Looking at $\log q(a, t)$ age a in [0,100]
- ▶ for different years *t* (1950,1965,1980,1995,2005)

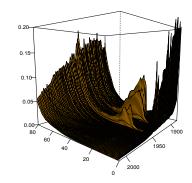


National mortality Surface



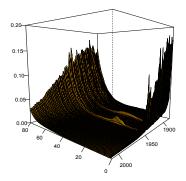
16/49

National mortality by gender (France)



probabilités de décès (hommes, FR)

probabilités de décès (femmes, FR)



Padoue 2016

E

・ロト ・四ト ・ヨト ・ヨト

New economic and social challenge

Aging populations: new phenomenon, without past historical reference

- viability of shared collective systems, in particular (state or private) pension systems
- new generational equilibrium
- role and place of aging population in the society

Complex phenomenon, multi-causes

- Difficult to model.
- The role of age
- The heterogenity

Complex Estimation

- Coherence of the data
- Age, cohort, period

- 1 Motivation to model global population
- 2 The demographic transition in a nutshell
- 3 Individual based centered dynamic model
- 4 Random set point of view and Thinning of Poisson population
- 5 Hawkes processes

ヘロト 人間ト 人団ト 人団

Individual based centered dynamic model

Aims of microscopic models

- Provide population evolution at the scale of individual
- allows to understand paterns of aggregate indicators

Two examples in these lessons

- Impact of aging
- How individual birth patterns in heterogeneous population can create artificial mortality changes ("Cohort effect")

Microscopic models in different fields:

Individual-Based models in Public Economy:

- ► Agent-based models in economics (Orcutt, 1957)
- Microsimulation models of government bodies (Ex : INSEE, model "DESTINIE")
- Individual-Based models in ecology (mathematical framework):

Individual-Based models in ecology:

- Modelling a population with birth, death, and mutation at birth
- Population structured by traits (*i.e.* individual characteristics) (Fournier-Méléard 2004) (Champagnat-Ferrière-Méléard 2006), with age (Tran 2006, Ferrière-Tran 2009)

イロト イヨト イヨト イヨト

Microsimulation exercise

First step Define clear specification of the objectives, for determining methods, assumptions and scenarios, in view of constitution of *Data base* storing the information on all individuals on study

- State space: state of variables to be projected, as traits, attributes of individuals, (as age, sex, residence, level of schooling, wealth)
- ▶ *support variables* (marital statuts, children..) used to predict events.
- Covariates Y or factors of type demographic or environmental.

At the macrolevel, the state space is the set of all combinations of individual state variables.

Dynamic simulation over the time

- to predict the future state, be careful on the causality of the events, since demographic events influences population,
- ► and intensity of demographic events are themselves influenced by the composition of the population.

Analysis of the "artificial" database

The classical point of view in population dynamics

- As a family of individual biographies influenced by the others, or by covariates
- Valid only in the linear case
- Essential assumption in demographic practice

Cross-sectional point of view

- The population is described every date by the characteristics of its individuals
- well- adapted to interacting individuals
- ▶ very similar description as for interacting particules system in physics

The "macro point of view" is cross-sectional (similar to continuous time Markov chain

イロト イヨト イヨト イヨト

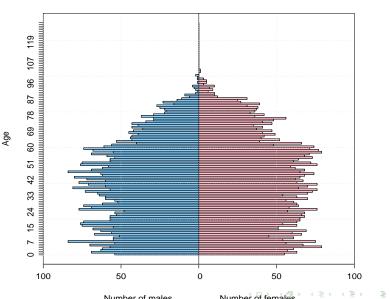
Sources of randomness

From Vanimhoff 1998

- inherent randomness due to Monte Carlo Methods, reduced by increase the number of runs, or the size of the database or variance reduction. Not equivalent in general
- starting-population randomness: in general a subsample of the population; be careful that any deviation of the sample distribution impact future projections
- Specification randomness Choice of the number of state variables: more variables increase the MC randomness, calibrations errors, implied correlation due to calibration.
- Reduced by *sorting methods*, or alignment methods to respect of some macro properties

イロト イヨト イヨト

Initial population for $N=10\ 000$ in 2008



- **1** Motivation to model global population
- 2 The demographic transition in a nutshell
- 3 Individual based centered dynamic model
- 4 Random set point of view and Thinning of Poisson population
- 5 Hawkes processes

イロト イボト イヨト イヨ

Classical example: Poisson population

- A marked population χ is a finite set of individuals, points, particles, characterized by quantitative attributes with values in E
- Uncertainty concerns card(ξ)=nb of individuals, and the "vector" of attributes (X₁,...X_n...)

Poisson population:

- Let (X₁,...X_n..) be an iid sample of μ(dx) on E, stopped randomly at ν, an independent ~ Pois(λ).
- The marked population ξ = {X₁,...X_ν} is a Poisson population, with mean η(dx) = λμ(dx), iff N^ξ(B) = card(ξ ∩ B) = ∑^ν_k 1_{X_n∈B} is a Poisson variable Pois(λμ(B)).

Restricted or thinned Poisson population:

► The population $\xi^B = \{X_1, ..., X_\nu\} \cap B$ restricted to B is still a Poisson population with Poisson parameter $\lambda^B = \lambda \mu(B)$ and spatial distribution $\mu^B(dx) = \mu(dx | B) = \mathbf{1}_B(x)\mu(dx)/\mu(B)$.

Classical example: Poisson population II

► All standard properties of finite Poisson measure are satisfied:

- $N(B) = \sum_{n=1}^{\nu} \mathbf{1}_B(X_n) = \text{card} \sim \text{Pois}(\eta(B))$
- $(N(B_i))$ are independent if $B_i \cap B_j) = \emptyset$
- Assume η is only σ-finite, and finite on an increasing sequence of (finite measure) windows K_k, with reunion E.
 - By assumption, the Poisson set restricted to K_k is a finite Poisson population ξ^k.
 - The "countable " reunion of these sets ξ^k is now countable. The decomposition is not unique.

Random marked population

- A marked population χ is an at most countable set of individual with patterns in E. The space of outcomes is the so-called population (configuration) space Γ(E)
- To study the spatial distribution of ξ , we introduce
 - $N(B)(\xi)$ the number of individuals of ξ in B, that is $N(B)(\xi) = \operatorname{card}(\xi \cap B)$ (additive properties)
 - V(B)(ξ) the vacancy indicator and the vacancy set
 V(B) = {ξ : N(B)(ξ) = 0} = {ξ : no points in B}

•
$$N_{R\cup Y}(B) = N_R(B) + N_Y(B)$$
 if $\xi_R \cap \xi_Y = \emptyset$ and
 $V_{R\cup Y}(B) = V_R(B)V_Y(B)$

- ► The first moment, called *mean measure*, η(B) = ℝ(N(B)) is often viewed as the main information on the population
- ► The remarkable property of V(B) is that this "minimal" operator characterizes the distribution of the marked population.

Dynamic Poisson population

On-line Poisson process = Poisson population on \mathbb{R}^+ with mean measure proportional to Lebesgue $\eta(dt) = \lambda \text{Leb}(dt)$

- ▶ Restricted to a window [0, T], $N_T = N(]0, T]) \sim Poi(\lambda T)$
- Conditionally to N_T = n, the temporal characteristics (θ^T_i) are uniformly distributed on [0, T]
- ► Process representation as non decreasing function in T, with jumps times T_j and waiting times $\tau_j = T_j T_{j-1}$ exponential with parameter Λ

Dynamic Poisson population = marks added at the temporal component

- ► Finite total mass *m*. Simple extension of the static construction with iid sample (X_n) of m(dx)/m(E), $\xi_t = \{X_1, \dots, X_{N_t}\}$
- Extension to σ finite case, without difficulty

・ロン ・雪と ・ヨン・ヨン

General population with stochastic intensity

Notation $z \mapsto \langle m, f_z \rangle = \int_{x \in E} \int_{y \in F} f(x, y, z)m(dx, dy) =$ function General filtration and Martingale point of view

- ► Stochastic intensity $\mu(t, dx)dt$: $N_t(B) \int_0^t \mu(s, B)ds$ is a \mathcal{F}_t martingale
- ► \mathcal{F}_t -Poisson process: martingale property for $(N_t(B) \mu(B)t)$ is equality to the independence of $(N_{t+h} N_t)$ to \mathcal{F}_t
- Extension to $\mathcal{P} \otimes \mathcal{B}(E)$ integrable predictable processes f_t : $(\langle N_t, f \rangle - \int_0^t \langle \mu, f_s \rangle ds)$ is a martingale

First projection point of view, with digital predictable intensity

- Assume that $\mathbf{1}_D(\omega, t, x)$ is $\mathcal{P} \otimes \mathcal{B}(E)$ mesurable, with $\int_0^t \int_E \mathbf{1}_D(\omega, s, x) ds\mu(dx) < \infty$, $\eta(dt, dx) = dt\mu(dx)$
- ► The marked population $N^D(dt, dx) = \mathbf{1}_D(\omega, t, x) \cdot N(dt, dx)$ has the intensity: $\eta^D(dt, dx) = \mathbf{1}_D(t, x) \cdot \eta(dt, dx) = \mu_t^D(dx) dt$

Density assumption and thinning procedure

- Let us consider a predictable measure, η^λ(ω, dt, dx) = λ(ω, t, x)η(dt, dx), where η is a deterministic product measure on ℝ⁺ × E. (Density assumption)
- ► How the construct a dynamic random population with intensity $\eta^{\lambda}(dt, dx)$ from the Poisson measure Q(dt, dx) with intensity $\eta(dt, dx)$?

Thinning of extended Poisson measure

32/49

- Introduce a thinning parameter θ erasing all the points (t, x) such that λ(t, x) < θ. Put D(ω, t, x, θ) = {θ ≤ λ(ω, t, , x)}</p>
- On $E \times \mathbb{R}^+ \times \mathbb{R}_+$, with current point (t, x, θ) and product measure $q(dt, dx, d\theta) = dt m(dx) d\theta$, and Poisson measure $Q(dt, dx, d\theta)$,
- Restricted $Q(dt, dx, d\theta)$, to $Q^D(dt, dx, d\theta)$
- Projected $Q^D(dt, dx, d\theta)$ on $E \times \mathbb{R}^+$ into N(dt, dx)

Birth Dates in on-line Poisson process

- ► From a set point of view, put \$\xi_t = {T₁, T_{Nt}}, where T_k is the date of birth (of entry time) of the k individual in the population. Obviously, (\$\xi_t\$) is not a Poisson population.

Cohort Market Dynamic population

- ▶ With marks, the random set becomes $\xi_t = \{(T_1, X_1), (T_{N_t}, X_{N_t})\}$ with intensity measure $\Delta(dt, du)m(dx)$.
- The population is said to be structured by cohort, with a natural order of enumeration of individuals in the population.

Dynamic population structured by age

- The new population becomes $\tilde{\xi}_t = \{(t T_1, X_1), (t T_{N_t}, X_{N_t})\}.$
- The mark is now depending on the point of time t by $r_t(a) = (t a)^+$,
- $\tilde{N}_t^a(A \times B) = N_t(r_t(A) \times B)$ is no more a measure in t, although if its expectation $\int_0^t \mathbf{1}_A(t-s)dsm(B) = \int_0^t \mathbf{1}_A(s)ds$

Deterministic formula for counting measure with age

- ► For differentiable f in age, coupled with integration by parts (formula for the online process) $z_t(f) = f(0)z_t(1) + \int_0^t z_v(f')dv.$
- $z_t(f)$ is of finite variation
- Application to Hawkes process

イロト イヨト イヨト イヨト

Thinning equations for Birth processes

The thinning construction can be used to define a wide variety of processes as solution to stochastic equations.

Intensity for linear Birth Process

- Generalisation of Poisson process, but pure jump Markov process on \mathbb{N} , (N_t) non decreasing in time with jump 1 and intensity λn
- The time between two jumps is exponential of parameter λn , and independent

Representation as solution of SDE

- Stochastic intensity $\lambda_t N_{t-}$
- Equation $dN_t = \int_{\mathbb{R}_+} \mathbf{1}_{\{\theta \leq \lambda_t N_{t-}\}} Q(dt, d\theta), N_0 = x$
- ► Solution by recursive method starting with the process $dX_t^1 = \int_{\mathbb{R}_+} \mathbf{1}_{\{\theta \le \lambda_t x\}} Q(dt, d\theta),$ $dX_t^2 = \int_{\mathbb{R}_+} \mathbf{1}_{\{X_{t-}^1 > x\}} \mathbf{1}_{\{\theta \le \lambda_t X_{t-}^1\}} Q(dt, d\theta) \text{ and so on....}$

- **1** Motivation to model global population
- 2 The demographic transition in a nutshell
- 3 Individual based centered dynamic model
- 4 Random set point of view and Thinning of Poisson population
- 5 Hawkes processes

ヘロト 人間ト 人団ト 人団

Linear self-exciting processes

A point process N with jump times (T_n) and path-dependent intensity λ_t, (N_t = N₀ + ∫_{(0,t]} λ_sdt + F-martingale)

Hawkes (1971): Linear self-excitation

$$\lambda_t = \bar{\mu} + \int_{(0,t)} \phi(t-s) N_s = \bar{\mu} + \sum_{T_n < t} \phi(t-T_n),$$

• ϕ =fertility function

- ► Simple Hawkes example: Autoregressive point process, $\phi(t) = \alpha e^{-\beta t} \quad \lambda_t = \bar{\mu} + \alpha \int_{(0,t)} e^{-\beta(t-s)} N_s$
- Credit: (Gieseke, Dufie,....) (i) $\lambda_t = \overline{\mu} + \int_{(0,t)} \psi(s) N_s = \overline{\mu} + \sum_{T_n < t} \psi(T_n)$, (ii) λ_t is differentiable in time,
- No true in general for Hawkes intensity

Self-exciting models for applications

Physics and Biology

- seismology (AfterShoks), epidemiology
- ecology
- neuroscience, DNA modelling

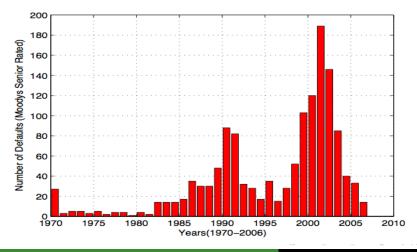
Social Sciences

- epidemics in Socio-Economic networks
- ▶ finance: credit risk, contagion, mortgage prepayments
- ▶ insurance: risk processes, ruin theory, surrender lapse
- High Frequency trading and market microstructure

Default Clusters, US compagnies Senior rates

from Gieseke,1970-2006

Defaults cluster



Nicole El Karoui, Sarah Kaakai Cours I

Financial applications

"Low frequency"

- Credit risk (e.g. Gieseke, Errais et al. 2010)
- ▶ Daily financial data (e.g. Embrechts et al. 2011)
- ▶ Financial contagion (e.g. At-Sahalia et al. 2010)

"High frequency "

- Midquote and transaction prices, market impact (e.g. Bacry & Muzy, 2013)
- Limit order book (e.g. Large, 2007)
- Scaling limits (e.g. Jaisson & Rosenbaum, 2013)

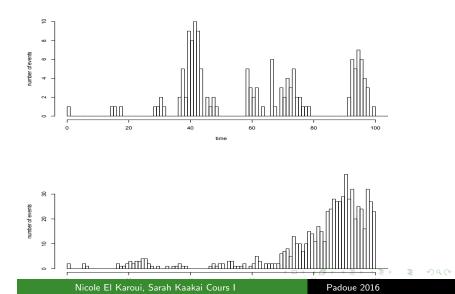
[Review from Jaisson & Rosenbaum (2013)]

ヘロト 人間ト 人団ト 人団

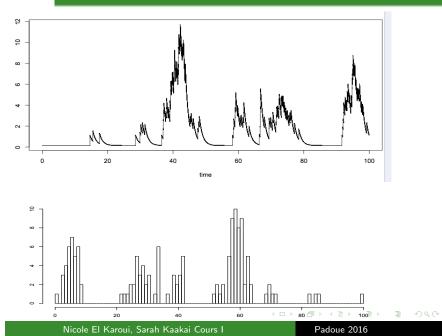
History for two Populations

Human population: $\phi^2(a) = \mu + k \exp -c(t - t_f)^{+,2}$

41/49



Intensity and Age Pyramid for Hawkes



42/49

Population point of view

Birth process with immigration

- Each individual has an age a
- Immigrants arrive according to a Poisson $(\bar{\mu})$
- Any individual aged a gives birth with rate $\phi(a)$

Same definition as in Hawkes process

Age pyramid at time *t*:

Fix t. $Z_t([\alpha, \beta))$ is the number of events with age in $[\alpha, \beta)$.

$$\blacktriangleright N_t = Z_t(\mathbb{R}^+) = \langle Z_t, \mathbf{1} \rangle$$

- $\blacktriangleright \langle Z_t, f \rangle = \int_{\mathbb{R}_+} f(a) Z_t(da) = \sum_n \mathbf{1}_{[0,T_n]}(t) f(t-T_n) = \int_0^t f(t-s) dN_s$
- Intensity process: $\lambda_t = \bar{\mu} + \langle Z_{t-}, \phi \rangle$

ヘロト 人間ト 人団ト 人団

Dynamics

Differential property

- What is the dynamics of the age pyramid $Z_t(da)$ over time ?
- Recall that $N_t = \langle Z_t, \mathbf{1} \rangle$

Key (!) lemma

For each differentiable
$$f_{,\langle Z_t, f \rangle} = f(0)dN_t + \underbrace{\langle Z_t, f' \rangle}_{\text{ageing}} dt.$$

Proof Use that $f(t-s) - f(0) = \int_{s}^{t} f(t-u) du$ and make an integration by parts.

ヘロア 人間ア 人間ア 人間ア

Hawkes process as strong solution of SDE

Define the Hawkes process as the solution to the stochastic equation

$$N_t = \int_{(0,t)} \int_{\mathbb{R}_+} \mathbf{1}_{[0,\bar{\mu}+\int_{(0,s)}\phi(s-u)dN_u]}(\theta)Q(ds,d\theta),$$

- Existence easy if φ is bounded by K, by using 1_[0,K].dθ = dθ^K and the sequence (S_n, Θ_n) associated with dt ⊗ dθ^K.
- By Picard iteration, starting with $N_t^0 = N_0$ and

$$N_t^{K} = N_0 + \int_{(0,t)} \int_{\mathbb{R}_+} \mathbf{1}_{[0,\bar{\mu} + \int_{(0,s)} \phi(s-u) d N_u^{K-1}]}(\theta) Q(d, d\theta),$$

Avantage of the SDE representation

- Strong solution even in the non linear case
- Allows comparison theorem since same noise
- Study the sensitivity to the initial condition

Classical Exponential fertility function

 $\langle Z_t, f \rangle = f(0)N_t + \int_0^t \langle Z_s, f' \rangle ds.$

• If $\phi(a) = \alpha e^{\beta a}$, $\phi' = \beta \phi$ and

$$\langle \mathsf{Z}_t,\phi\rangle=\langle \mathsf{Z}_u,\phi\rangle+\alpha\int_u^t\int_{\mathbb{R}_+}\mathbf{1}_{[0,\bar{\mu}+\langle \mathsf{Z}_{s-},\phi\rangle]}(\theta)\mathsf{Q}(ds,d\theta)+\beta\int_u^t\langle \mathsf{Z}_s,\phi\rangle ds.$$

• EDS in $\langle Z_t, \phi \rangle$ only, and $\lambda_t = \overline{\mu} + \langle Z_{t-}, \phi \rangle$ is a Markov process

Distribution properties for $\phi(a) = \alpha e^{-\beta a}$

- Errais, Gieseken et al. (2010)
- At-Sahalia et al. (2010)
- ▶ DASSIOS, (2011)
- Da Fonseca and Zaatour (2014)

イロト イヨト イヨト イヨ

Fertility function: setting

The map $a \in \mathbb{R}_+ \mapsto \phi(a)$ is of class $C^n(\mathbb{R}_+)$ and is solution to the equation $\phi^{(n)} = c_{-1} + \sum_{k=0}^{n-1} c_k \phi^{(k)},$

with initial conditions $\phi^{(k)}(0) = m_k$, for $0 \le k \le n-1$. For instance exponential functions multiplied by a polynome

Fertility function: examples

 Approximation of a power law kernel (~ ¹/_{t^{1+e}}) with cut-off (Hardiman-Bercot-Bouchaud, 2013)

$$\phi(t) = \frac{n}{Z} \left(\sum_{i=0}^{M-1} \frac{e^{-t/(\tau_0 m^i)}}{(\tau_0 m^i)^{1+\epsilon}} - S e^{-t/(\tau_0 m^i)} \right)$$

- Z is such that $\int_0^\infty \phi = n$ and S such that $\phi(0) = 0$.
- Used to allow tractable likelihood

イロト イヨト イヨト イヨ

Dynamics

$$\phi^{(n)} = c_{-1} + \sum_{k=0}^{n-1} c_k \phi^{(k)}, \ \phi^{(k)}(0) = m_k$$

A system differential linear

$$N_{t} = \int_{0}^{t} \int_{\mathbb{R}_{+}} frm[o] - -_{[0,\bar{\mu}+\langle Z_{s-},\phi\rangle]}(\theta)Q(ds,\theta)$$
$$\langle Z_{t},\phi\rangle = m_{0}N_{t} + \int_{0}^{t} \langle Z_{s},\phi'\rangle ds$$
$$\vdots$$
$$\langle Z_{t},\phi^{(k)}\rangle = m_{k}N_{t} + \int_{0}^{t} \langle Z_{s},\phi^{(k+1)}\rangle ds$$
$$\vdots$$
$$\langle Z_{t},\phi^{(n-1)}\rangle = m_{n-1}N_{t} + \int_{0}^{t} \langle Z_{s},\phi^{(n)}\rangle ds$$

E

イロト イヨト イヨト イヨト

Dynamics

A linear system of affine type

▶ The (n + 1)-dimensional process $X_t := (\langle Z_t, 1 \rangle, \langle Z_t, \phi \rangle, ..., \langle Z_t, \phi^{(n-1)} \rangle)$ is solution of the affine differential sytem

$$X_t = N_t \hat{m} + \int_0^t C X_s ds, \quad N_t - \int_0^t X_s^1 ds =$$
martingale

• The Laplace transform has a closed form $\mathbb{E}\left[\exp\left(v.X_{T}\right)\right] = \exp\left(-\bar{\mu}\int_{0}^{T}(1-e^{A_{s}.\hat{m}})ds\right),$

- Martingale = exp $(\alpha_t N_t \int_0^t \alpha'_s N_s ds \int_0^t (e^{\alpha_s} 1)(\bar{\mu} + \lambda_s) ds)$
- The matrix A is solution of the deterministic equation

$$^{t}CA_{t} + A'_{t} + (e^{A_{t} \cdot \hat{m}} - 1)\mathbf{1}_{i=2} = 0, \quad A_{T} = v$$