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Why a course on population dynamics ?

Population dynamics and Longevity

I First motivation, longevity risk

I To take into account the complexity of the gobal population

I General Model for population dynamics in Ecology

Marked Point Process: Renew of interest

Useful tool, under different denominations, for other domains:

I Credit risk Modelling

I Hawkes processes in Hight Frequency Trading

I Brain study

I Data Mining
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Why a course on population dynamics II

Probability Theory and Simulation

I Based on useful in probability theory, Poisson Point measure,

I Birth and Death process

I Particular Method for Monte Carlo Simulation

Data and Calibration

I Completely different situations for different domains

I Hard to calibrate

I Hard to simulate
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Demographic Transition in a nutshell
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Mortality Transition, Canning (2011)

+30 years for Life Expectancy (LE) in the last century The demographic

observation

I Substantial decline in mortality rate, in particular in small ages

I followed by reduction in fertility rate

I Heath transition (physical and cognitive development) and

compression of morbidity

Economics aspects

I Economic growth, (income by head) and

I increase in social and political policy ( education, democratie..)

I Growth in world population, citer Cohen

7/49 Nicole El Karoui, Sarah Kaakai Cours I Padoue 2016



Health Determinants of mortality improvement

Health point of view from Cutler,Deaton,alii (2006)

I Decline in infectious disease (60% of deaths in1848, < 5% in 1971

in UK)

I Nutritional improvement (debate on the importance)

I Progress in medecine, vaccins, ...

Public policies

I Macro public health: big public work projects (water purifica- tion

explain half of mortality reduction in US (1900 ∼ 1930)

I Reduction in alcoholism, in smoking

I public and private health,..also contribute with complex impacts,

I large heterogenity with differences by age, type of sub-population,

countries, with reverse or delayed effects.
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Economic and Wealth Point of view

I Strong evidence on the links, but only 20% as impact

I Relation non-linear and concave

I Unexplained recent slower pace for LifeExp in US /Europa
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Wealth and longevity: complex dependency
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Evolutionary theory for aging

Example of Biological views

I Aging is characterized by the decline of physiological capacity

I Explain heterogeneity and randomness in individual patterns

I Nevertheless a robust observation in evolution theory, Gompertz

(1825): The log mortality rate between 35-80y is linear in
age.

I After 80y, large debate on the rectangularization of the survival

curve, the question of ”limited human life span”?

Example of data: EU15, 2011, Age-specific mortality rates per 100.000

1 [0, 1y ], 486(382)

2 [1y , 10y ], 19(15)| [11y , 20y , 41(19)| [21y , 30y ], 93(32)

3 [31y , 40y ], 133(63)| [41y , 50y ], 313(163)| [51y , 60y ], 750(385)

4 [61y , 70y ], 1869(953) | [71y −
80y ], 5111(2996)| [81y ,+), 22945(19968)11/49 Nicole El Karoui, Sarah Kaakai Cours I Padoue 2016



Aggregate mortality indicators

Life exptectancy at birth

I Lifetime of an individual: τ

I Life expectancy at birth: E[τ ], at ten E[τ − 10/τ > 10]

Death rate

I Death rate d(a) such that P(τ > a) = e−
∫ a

0
d(s)ds

I In practice annual death probability reduction

q(a) = P(τ < a + 1 | τ ≥ a)

I Mortality plateau (old ages)

Fertility rate

I Complex notion

I With large political connotation (Fertility, Immigration)
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Fertility rate in Continental Europa/1950-80



Fertility rate in Mediterranean Europa



National mortality: log q(a,t)

I Looking at log q(a, t) age a in [0,100]

I for different years t (1950,1965,1980,1995,2005)
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Figure: Logarithm of annual death probabilities (national population)
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National mortality Surface

Figure: Mortality rate 1900:2004
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National mortality by gender (France)
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New economic and social challenge

Aging populations: new phenomenon, without past historical reference

I viability of shared collective systems, in particular (state or private)

pension systems

I new generational equilibrium

I role and place of aging population in the society

Complex phenomenon, multi-causes

I Difficult to model.

I The role of age

I The heterogenity

Complex Estimation

I Coherence of the data

I Age, cohort, period
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Individual based centered dynamic model

Aims of microscopic models

I Provide population evolution at the scale of individual

I allows to understand paterns of aggregate indicators

Two examples in these lessons

I Impact of aging

I How individual birth patterns in heterogeneous population can

create artificial mortality changes (”Cohort effect”)
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Microscopic models in different fields:

Individual-Based models in Public Economy:

I Agent-based models in economics (Orcutt, 1957)

I Microsimulation models of government bodies (Ex : INSEE, model

”DESTINIE”)

I Individual-Based models in ecology (mathematical framework):

Individual-Based models in ecology:

I Modelling a population with birth, death, and mutation at birth

I Population structured by traits (i.e. individual characteristics)

(Fournier-Méléard 2004) (Champagnat-Ferrière-Méléard 2006), with age

(Tran 2006, Ferrière-Tran 2009)
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Microsimulation exercise

First step Define clear specification of the objectives, for determining

methods, assumptions and scenarios, in view of constitution of Data base

storing the information on all individuals on study

I State space: state of variables to be projected, as traits, attributes

of individuals, (as age, sex, residence, level of schooling, wealth)

I support variables (marital statuts, children..) used to predict events.

I Covariates Y or factors of type demographic or environmental.

At the macrolevel, the state space is the set of all combinations of

individual state variables.

Dynamic simulation over the time

I to predict the future state, be careful on the causality of the events,

since demographic events influences population,

I and intensity of demographic events are themselves influenced by the

composition of the population.
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Analysis of the ”artificial” database

The classical point of view in population dynamics

I As a family of individual biographies influenced by the others, or by

covariates

I Valid only in the linear case

I Essential assumption in demographic practice

Cross-sectional point of view

I The population is described every date by the characteristics of its

individuals

I well- adapted to interacting individuals

I very similar description as for interacting particules system in physics

The ”macro point of view” is cross-sectional (similar to continuous time

Markov chain
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Sources of randomness

From Vanimhoff 1998

I inherent randomness due to Monte Carlo Methods, reduced by

increase the number of runs, or the size of the database or variance

reduction. Not equivalent in general

I starting-population randomness: in general a subsample of the

population; be careful that any deviation of the sample distribution

impact future projections

I Specification randomness Choice of the number of state variables:

more variables increase the MC randomness, calibrations errors,

implied correlation due to calibration.

I Reduced by sorting methods, or alignment methods to respect of

some macro properties
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Initial population for N=10 000 in 2008

Age pyramid in 2008 Age pyramid in 2008 
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Classical example: Poisson population

I A marked population χ is a finite set of individuals, points, particles,

characterized by quantitative attributes with values in E

I Uncertainty concerns card(ξ)=nb of individuals, and the ”vector” of

attributes (X1, ...Xn..)

Poisson population:

I Let (X1, ...Xn..) be an iid sample of µ(dx) on E , stopped randomly

at ν, an independent ∼ Pois(λ).

I The marked population ξ = {X1, ...Xν} is a Poisson population, with

mean η(dx) = λµ(dx), iff Nξ(B) = card(ξ ∩ B) =
∑ν

k 1Xn∈B is a

Poisson variable Pois(λµ(B)).

Restricted or thinned Poisson population:

I The population ξB = {X1, ...Xν} ∩B restricted to B is still a Poisson

population with Poisson parameter λB = λµ(B) and spatial

distribution µB(dx) = µ(dx |B) = 1B(x)µ(dx)/µ(B).
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Classical example: Poisson population II

I All standard properties of finite Poisson measure are satisfied:

N(B) =
∑ν

n=1 1B(Xn) = card ∼ Pois(η(B)

(N(Bi )) are independent if Bi ∩ Bj) = ∅

I Assume η is only σ-finite, and finite on an increasing sequence of

(finite measure) windows Kk , with reunion E .

By assumption, the Poisson set restricted to Kk is a finite Poisson

population ξk .

The ”countable ” reunion of these sets ξk is now countable. The

decomposition is not unique.
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Abstract representation of marked population

Random marked population

I A marked population χ is an at most countable set of individual

with patterns in E . The space of outcomes is the so-called

population (configuration) space Γ(E)

I To study the spatial distribution of ξ, we introduce

N(B)(ξ) the number of individuals of ξ in B, that is

N(B)(ξ) = card(ξ ∩ B) (additive properties)

V(B)(ξ) the vacancy indicator and the vacancy set

V (B) = {ξ : N(B)(ξ) = 0} = {ξ : no points in B}

I NR∪Y (B) = NR(B) + NY (B) if ξR ∩ ξY = ∅ and

VR∪Y (B) = VR(B)VY (B)

I The first moment, called mean measure, η(B) = E(N(B)) is often

viewed as the main information on the population

I The remarkable property of V(B) is that this ”minimal” operator

characterizes the distribution of the marked population
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Dynamic Poisson population

On-line Poisson process = Poisson population on R+ with mean measure

proportional to Lebesgue η(dt) = λLeb(dt)

I Restricted to a window [0,T ], NT = N(]0,T ]) ∼ Poi(λT )

I Conditionally to NT = n, the temporal characteristics (θTi ) are

uniformly distributed on [0,T ]

I Process representation as non decreasing function in T , with jumps

times Tj and waiting times τj = Tj − Tj−1 exponential with

parameter Λ

Dynamic Poisson population= marks added at the temporal component

I Finite total mass m. Simple extension of the static construction with

iid sample (Xn) of m(dx)/m(E ), ξt = {X1.....XNt}
I Extension to σ finite case, without difficulty
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General population with stochastic intensity

Notation z 7→ 〈m, fz〉 =
∫
x∈E

∫
y∈F f (x , y , z)m(dx , dy)= function

General filtration and Martingale point of view

I Stochastic intensity µ(t, dx)dt: Nt(B)−
∫ t

0
µ(s,B)ds is a Ft

martingale

I Ft-Poisson process: martingale property for (Nt(B)− µ(B)t) is

equqival to the independence of (Nt+h − Nt) to Ft

I Extension to P ⊗ B(E ) integrable predictable processes ft :

(〈Nt , f 〉 −
∫ t

0
〈µ, fs〉ds) is a martingale

First projection point of view, with digital predictable intensity

I Assume that 1D(ω, t, x) is P ⊗ B(E ) mesurable, with∫ t

0

∫
E
1D(ω, s, x) dsµ(dx) <∞, η(dt, dx) = dtµ(dx)

I The marked population ND(dt, dx) = 1D(ω, t, x).N(dt, dx) has the

intensity: ηD(dt, dx) = 1D(t, x).η(dt, dx) = µD
t (dx)dt
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Density assumption and thinning procedure

I Let us consider a predictable measure,

ηλ(ω, dt, dx) = λ(ω, t, x)η(dt, dx), where η is a deterministic

product measure on R+ × E . (Density assumption)

I How the construct a dynamic random population with intensity

ηλ(dt, dx) from the Poisson measure Q(dt, dx) with intensity

η(dt, dx)?

Thinning of extended Poisson measure

I Introduce a thinning parameter θ erasing all the points (t, x) such

that λ(t, x) < θ. Put D(ω, t, x , θ) = {θ ≤ λ(ω, t, , x)}
I On E × R+ × R+, with current point (t, x , θ) and product measure

q(dt, dx , dθ) = dt m(dx) dθ, and Poisson measure Q(dt, dx , dθ),

I Restricted Q(dt, dx , dθ), to QD(dt, dx , dθ)

I Projected QD(dt, dx , dθ) on E × R+ into N(dt, dx)

I The new dynamic population has the desired intensity.
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Cohort structured Poisson population

Birth Dates in on-line Poisson process

I From a set point of view, put ξt = {T1,TNt}, where Tk is the date

of birth (of entry time) of the k individual in the population.

Obviously, (ξt) is not a Poisson population.

I Put N̄(dt, du) =
∑

n≥1 δTn(dt)δTn(du). As point process with two

components, the mean measure is proportional to the Lebesgue

measure on the diagonal of R2
+ denoted ∆(dt, du) = dt δt(du).

It is not a product measure, so N̄ is not a Poisson process

Cohort Market Dynamic population

I With marks, the random set becomes ξt = {(T1,X1), (TNt ,XNt )}
with intensity measure ∆(dt, du)m(dx).

I The population is said to be structured by cohort, with a natural

order of enumeration of individuals in the population.
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Dynamic population structured by age

I The new population becomes ξ̃t = {(t − T1,X1), (t − TNt ,XNt )}.
I The mark is now depending on the point of time t by

rt(a) = (t − a)+,

I Ña
t (A× B) = Nt(rt(A)× B) is no more a measure in t, although if

its expectation
∫ t

0
1A(t − s)dsm(B) =

∫ t

0
1A(s)ds

Deterministic formula for counting measure with age

I For differentiable f in

age, coupled with integration by parts (formula for the online process)

zt(f ) = f (0)zt(1) +
∫ t

0
zv (f ′)dv .

I zt(f ) is of finite variation

I Application to Hawkes process
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Thinning equations for Birth processes

The thinning construction can be used to define a wide variety of

processes as solution to stochastic equations.

Intensity for linear Birth Process

I Generalisation of Poisson process, but pure jump Markov process on

N, (Nt) non decreasing in time with jump 1 and intensity λn

I The time between two jumps is exponential of parameter λn, and

independent

Representation as solution of SDE

I Stochastic intensity λtNt−

I Equation dNt =
∫
R+

1{θ≤λtNt−}Q(dt, dθ),N0 = x

I Solution by recursive method starting with the process

dX 1
t =

∫
R+

1{θ≤λtx}Q(dt, dθ),

dX 2
t =

∫
R+

1{X 1
t−>x}1{θ≤λtX 1

t−}Q(dt, dθ) and so on....
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Linear self-exciting processes

I A point process N with jump times (Tn) and path-dependent

intensity λt , (Nt = N0 +
∫

(0,t]
λsdt + F-martingale)

I Hawkes (1971): Linear self-excitation

λt = µ̄+
∫

(0,t)
φ(t − s)N. s = µ̄+

∑
Tn<t φ(t − Tn),

I φ=fertility function

I Simple Hawkes example: Autoregressive point process,

φ(t) = αe−βt λt = µ̄+ α

∫
(0,t)

e−β(t−s)N. s

I Credit: (Gieseke, Dufie,....)

(i) λt = µ̄+
∫

(0,t)
ψ(s)N. s = µ̄+

∑
Tn<t ψ(Tn),

(ii) λt is differentiable in time,

I No true in general for Hawkes intensity
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Self-exciting models for applications

Physics and Biology

I seismology (AfterShoks), epidemiology

I ecology

I neuroscience, DNA modelling

Social Sciences

I epidemics in Socio-Economic networks

I finance: credit risk, contagion, mortgage prepayments

I insurance: risk processes, ruin theory, surrender lapse

I High Frequency trading and market microstructure
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Default Clusters, US compagnies Senior rates

from Gieseke,1970-2006
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Financial applications

”Low frequency”

I Credit risk (e.g. Gieseke,Errais et al. 2010 )

I Daily financial data (e.g. Embrechts et al. 2011)

I Financial contagion (e.g. At-Sahalia et al. 2010)

”High frequency ”

I Midquote and transaction prices, market impact (e.g. Bacry &

Muzy, 2013)

I Limit order book (e.g. Large, 2007)

I Scaling limits (e.g. Jaisson & Rosenbaum, 2013)

[Review from Jaisson & Rosenbaum (2013)]
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History for two Populations

Human population: φ2(a) = µ+ k exp−c(t − tf )+,2)
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Intensity and Age Pyramid for Hawkes
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Population point of view

Birth process with immigration

I Each individual has an age a

I Immigrants arrive according to a Poisson (µ̄)

I Any individual aged a gives birth with rate φ(a)

Same definition as in Hawkes process

Age pyramid at time t:

I Fix t. Zt([α, β)) is the number of events with age in [α, β).

I Nt = Zt(R+) = 〈Zt , 1〉
I 〈Zt , f 〉 =

∫
R+

f (a)Zt(da) =
∑

n 1[0,Tn](t) f (t − Tn) =
∫ t

0
f (t − s)dNs

I Intensity process: λt = µ̄+ 〈Zt−, φ〉
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Dynamics

Differential property

I What is the dynamics of the age pyramid Zt(da) over time ?

I Recall that Nt = 〈Zt , 1〉

Key (!) lemma

For each differentiable f ,〈Zt , f 〉 = f (0)dNt + 〈Zt , f
′〉︸ ︷︷ ︸

ageing

dt.

Proof Use that f (t − s)− f (0) =
∫ t

s
f (t − u)du and make an integration

by parts.
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Hawkes process as strong solution of SDE

I Define the Hawkes process as the solution to the stochastic equation

Nt =

∫
(0,t)

∫
R+

1[0,µ̄+
∫

(0,s)
φ(s−u)dNu ](θ)Q(ds, dθ),

I Existence easy if φ is bounded by K , by using 1[0,K ].dθ = dθK and

the sequence (Sn,Θn) associated with dt ⊗ dθK .

I By Picard iteration, starting with N0
t = N0 and

NK
t = N0 +

∫
(0,t)

∫
R+

1[0,µ̄+
∫

(0,s)
φ(s−u)dNK−1

u ](θ)Q(d , dθ),

Avantage of the SDE representation

I Strong solution even in the non linear case

I Allows comparison theorem since same noise

I Study the sensitivity to the initial condition
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Classical Exponential fertility function

〈Zt , f 〉 = f (0)Nt +
∫ t

0
〈Zs , f

′〉ds.

I If φ(a) = αeβa, φ′ = βφ and

〈Zt , φ〉 = 〈Zu, φ〉+ α

∫ t

u

∫
R+

1[0,µ̄+〈Zs−,φ〉](θ)Q(ds, dθ) + β

∫ t

u

〈Zs , φ〉ds.

I EDS in 〈Zt , φ〉 only, and λt = µ̄+ 〈Zt−, φ〉 is a Markov process

Distribution properties for φ(a) = αe−βa

I Errais, Gieseken et al. (2010)

I At-Sahalia et al. (2010)

I DASSIOS, (2011)

I Da Fonseca and Zaatour (2014)
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Fertility function: setting

The map a ∈ R+ 7→ φ(a) is of class Cn(R+) and is solution to the

equation φ(n) = c−1 +
n−1∑
k=0

ckφ
(k),

with initial conditions φ(k)(0) = mk , for 0 ≤ k ≤ n − 1. For instance

exponential functions multiplied by a polynome

Fertility function: examples

I Approximation of a power law kernel (∼ 1
t1+ε ) with cut-off

(Hardiman-Bercot-Bouchaud, 2013)

φ(t) =
n

Z

(
M−1∑
i=0

e−t/(τ0m
i )

(τ0mi )1+ε
− Se−t/(τ0m

i )

)
.

I Z is such that
∫∞

0
φ = n and S such that φ(0) = 0.

I Used to allow tractable likelihood
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Dynamics

φ(n) = c−1 +
∑n−1

k=0 ckφ
(k), φ(k)(0) = mk

A system differential linear

Nt =

∫ t

0

∫
R+

frm[o]−−[0,µ̄+〈Zs−,φ〉](θ)Q(ds, θ. )

〈Zt , φ〉 = m0Nt +

∫ t

0

〈Zs , φ
′〉ds

...

〈Zt , φ
(k)〉 = mkNt +

∫ t

0

〈Zs , φ
(k+1)〉ds

...

〈Zt , φ
(n−1)〉 = mn−1Nt +

∫ t

0

〈Zs , φ
(n)〉ds
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Dynamics

A linear system of affine type

I The (n + 1)-dimensional process

Xt := (〈Zt , 1〉, 〈Zt , φ〉, ..., 〈Zt , φ
(n−1)〉) is solution of the affine

differential sytem

Xt = Ntm̂ +

∫ t

0

C Xsds, Nt −
∫ t

0

X 1
s ds = martingale

• The Laplace transform has a closed form

E [exp (v .XT )] = exp

(
−µ̄
∫ T

0

(1− eAs .m̂)ds

)
,

• Martingale = exp
(
αtNt −

∫ t

0
α′
sNsds −

∫ t

0
(eαs − 1)(µ̄+ λs)ds

)
• The matrix A is solution of the deterministic equation

tCAt + A′t + (eAt .m̂ − 1)1i=2 = 0, AT = v
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