

Polynomial Preserving Jump-Diffusions on the Unit Interval

Sara Svaluto-Ferro (Joint work with Christa Cuchiero and Martin Larsson)

ETH zürich

February 8, 2016

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Motivations	Definitions	Characterisation	Examples	Conclusion
Definition	2			

Consider the filtered probability space $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \ge 0}, \mathbb{P})$ and choose the state space E := [0, 1]. Denote by

• $\operatorname{Pol}_n(E)$ the set of all polynomials of degree at most n on E,

• Pol(E) the set of all polynomials on E.

Definitions

Characterisation

Examples

Conclusion

Polynomial Preserving Operator

Consider a linear operator \mathcal{G} acting on $\operatorname{Pol}(E)$ of the form

$$\mathcal{G}f(x) := \frac{a(x)}{2}f''(x) + b(x)f'(x) + \int_{\mathbb{R}} f(x+\xi) - f(x) - f'(x)\xi \,\nu(x,d\xi),$$

where a and b are functions on E and $\nu(x, \cdot)$ is a Levy measure supported on E - x, for all $x \in E$.

Definition

The operator \mathcal{G} is called *polynomial preserving* if and only if

$$\mathcal{G}p \in \operatorname{Pol}_n(E) \qquad \forall p \in \operatorname{Pol}_n(E),$$

for all $n \in \mathbb{N}$.

Martingale Problem for (\mathcal{G}, E)

Let $X := (X_t)_{t \ge 0}$ be an adapted RCLL process and ρ be a probability measure supported on E. Then the law of X is called a *solution to the martingale problem for* (\mathcal{G}, E, ρ) if

$$\mathbb{P}(X_0 \in \cdot) =
ho, \qquad \mathbb{P}(X_t \in E) = 1 \quad \forall t \ge 0,$$

and the process $(N_t^p)_{t\geq 0}$, where

$$N_t^p := p(X_t) - p(X_0) - \int_0^t \mathcal{G}p(X_{s-}) \mathrm{d}s$$

is a martingale $\forall p \in \operatorname{Pol}(E)$.

Polynomial Preserving Jump-Diffusions

Definition

An adapted RCLL process $X := (X_t)_{t\geq 0}$ is called *polynomial preserving* if its law is a solution to the martingale problem for $(\mathcal{G}, \mathcal{E}, \rho)$ for some polynomial preserving operator \mathcal{G} and some probability measure ρ supported on \mathcal{E} .

Remark

Since E is compact, one can show that the law of the process X is the unique solution to the martingale problem for (\mathcal{G}, E, ρ) .

Motivations	Definitions	Characterisation	Examples	Conclusion
Question 1				

Recall that

$$\mathcal{G}f(x) := \frac{a(x)}{2}f''(x) + b(x)f'(x) + \int_{\mathbb{R}} f(x+\xi) - f(x) - f'(x)\xi \ \nu(x,d\xi).$$

Question: How to choose *a*, *b*, and ν such that \mathcal{G} is polynomial preserving?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

• Cuchiero, Keller-Ressel, Teichmann, 2012

1.
$$b \in \operatorname{Pol}_1(E)$$
,
2. $a + \int_{\mathbb{R}} \xi^2 \nu(\cdot, d\xi) \in \operatorname{Pol}_2(E)$,
3. $\int \xi^n \nu(\cdot, d\xi) \in \operatorname{Pol}_n(E)$ for all $n \geq 3$.

Motivations	Definitions	Characterisation	Examples	Conclusion
Question 2				

Recall that

$$\mathcal{G}f(x) := \frac{a(x)}{2}f''(x) + b(x)f'(x) + \int_{\mathbb{R}} f(x+\xi) - f(x) - f'(x)\xi \ \nu(x,d\xi).$$

Question: How to choose *a*, *b*, and ν such that the martingale problem for (\mathcal{G}, E, ρ) has a solution for every initial distribution ρ ?

• Positive maximum principle:

$$f \in \operatorname{Pol}(E), x_0 \in E, \text{ and } \sup_{x \in E} f(x) = f(x_0) \Rightarrow \mathcal{G}f(x_0) \leq 0.$$

• Ethier, Kurtz 2005; Filipović, Larsson 2014.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Suppose that $\nu = 0$: the diffusion case

In this case

$$Gf(x) := \frac{a(x)}{2}f''(x) + b(x)f'(x).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Suppose that $\nu = 0$: the diffusion case

In this case

$$Gf(x) := \frac{a(x)}{2}f''(x) + b(x)f'(x).$$

• $b \in \operatorname{Pol}_1(E)$ and $a \in \operatorname{Pol}_2(E)$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Suppose that $\nu = 0$: the diffusion case

In this case

$$\mathcal{G}f(x) := \frac{a(x)}{2}f''(x) + b(x)f'(x).$$

- $b \in \operatorname{Pol}_1(E)$ and $a \in \operatorname{Pol}_2(E)$.
- $a \ge 0$ on E.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Suppose that $\nu = 0$: the diffusion case

In this case

$$\mathcal{G}f(x) := \frac{a(x)}{2}f''(x) + b(x)f'(x).$$

- $b \in \operatorname{Pol}_1(E)$ and $a \in \operatorname{Pol}_2(E)$.
- $a \ge 0$ on E.
- $b(0) \ge 0$, $b(1) \le 0$, and a(0) = a(1) = 0.

Suppose that $\nu = 0$: the diffusion case

In this case

$$\mathcal{G}f(x) := \frac{a(x)}{2}f''(x) + b(x)f'(x).$$

- $b \in \operatorname{Pol}_1(E)$ and $a \in \operatorname{Pol}_2(E)$.
- $a \ge 0$ on E.
- $b(0) \ge 0$, $b(1) \le 0$, and a(0) = a(1) = 0.

Hence,

$$a(x) = \sigma^2 x(1-x)$$
 and $b(x) = -\beta(x-\theta)$,

for some $\theta \in [0, 1]$, and $\beta, \sigma \geq 0$.

The solution of the martingale problem associated to this \mathcal{G} is called *Jacobi process*.

The structure of ν : simple polynomial jump sizes

Assume now that $(\nu(x, \cdot))_{x \in E}$ has simple polynomial jump sizes, i.e. for all $A \in \mathcal{B}(\mathbb{R})$ we have

$$\nu(x, A) = \int_{A} \nu(x, d\xi) = \lambda(x) \int_{supp(\mu)} \mathbb{1}_{A}(\gamma(x, y)) \mu(dy),$$

where

- The measure μ is a σ -finite measure on some space (B, \mathcal{B}) .
- The jump size $\gamma(x, \cdot)$ is polynomial in x on E, namely

$$\gamma(x,\cdot) = \sum_{k=0}^{N} a_k(\cdot) x^k$$
 for all $x \in E$,

for square integrable random variables $(a_k)_{k=0}^N$ on (B, \mathcal{B}, μ) .

• The jump intensity $\lambda: E \to \mathbb{R}_+$ is a measurable function.

Motivations Definitions Characterisation Examples Conclusion The operator
$${\cal G}$$

In this setting the operator ${\mathcal G}$ can be written in the following form

$$\begin{aligned} \mathcal{G}f(x) = & \frac{a(x)}{2} f''(x) + b(x)f'(x) \\ &+ \lambda(x) \int_{\mathrm{supp}(\mu)} f(x + \gamma(x, y)) - f(x) - f'(x)\gamma(x, y) \ \mu(\mathrm{d}y), \end{aligned}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

where $\gamma(x, \cdot) = \sum_{k=0}^{N} a_k(\cdot) x^k$.

Motivations	Definitions	Characterisation	Examples	Conclusion
Character	ication			

Recall the operator

$$\mathcal{G}f(x) = \frac{a(x)}{2}f^{\prime\prime}(x) + b(x)f^{\prime}(x) + \lambda(x)\int_{\mathrm{supp}(\mu)} f(x+\gamma(x,y)) - f(x) - f^{\prime}(x)\gamma(x,y)\mu(\mathrm{d}y).$$

Theorem

The operator G is polynomial preserving and there exists a solution to the martingale problem for (G, E, ρ) for each initial distribution ρ on E, iff

• The measure μ and the jump size γ can be chosen such that

$$\operatorname{\mathsf{supp}}(\mu)\subseteq \left[0,1
ight]^2, \qquad \gamma(x,y)=y_1(-x)+y_2(1-x),$$

and y_1, y_2 are μ -square integrable.

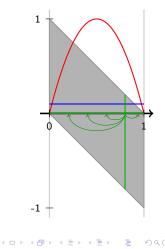
- $b \in Pol_1(E)$, b(0) is positive enough, and b(1) is negative enough.
- One of the following four cases holds true.

Motivations	Definitions	Characterisation	Examples	Conclusion
C 1				
Case 1				

• $\lambda \equiv \text{const.}$

• y_1 and y_2 are μ -integrable.

•
$$a(x) = Ax(1-x)$$
 for some $A \ge 0$.



Case 2: "No jump point" $x^* \in \partial E$, wlog $x^* = 0$.

• For μ -almost every $y \in [0,1]^2$ and $x \in E$:

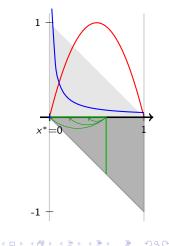
$$\gamma(x,y)=-(y_1+y_2)x.$$

• For all $x \in E$:

$$\lambda(x) = \frac{q_1(x)}{x} \mathbb{1}_{\{x \neq 0\}}$$

for some nonnegative $q_1 \in \operatorname{Pol}_1(E)$.

• If $q_1(1) \neq 0$, y_1 and y_2 are μ -integrable.



Case 3: "No jump point" $x^* \in int(E)$.

• For μ -almost every $y \in [0,1]^2$ and $x \in E$:

$$\gamma(x,y) = -(y_1 + y_2)(x - x^*).$$

• For all $x \in E$:

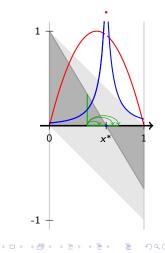
$$\lambda(x) = \frac{q_2(x)}{(x - x^*)^2} \mathbb{1}_{\{x \neq x^*\}}$$

for some nonnegative $q_2 \in \operatorname{Pol}_2(E)$.

- If $q_2(0) \neq 0$ or $q_2(1) \neq 0$, y_1, y_2 are μ -integrable.
- For some $A \ge 0$:

$$a(x) = Ax(1-x) + C\mathbb{1}_{\{x=x^*\}} \quad \forall x \in E$$

for some C > 0 uniquely determined by λ and μ .



Motivations Definitions Characterisation Examples Conclusion

Case 4: No "no jump points".

• For some $\alpha \in \mathbb{C} \setminus \mathbb{R}$:

$$\int \gamma^n(\alpha, y) \mu(\mathsf{d} y) = 0 \quad \forall n \geq 3.$$

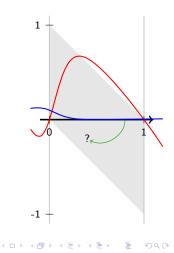
• For all $x \in E$:

$$\lambda(x) = \frac{q_2(x)}{(x-\alpha)(x-\overline{\alpha})}$$

for some nonnegative $q_2 \in \operatorname{Pol}_2(E)$.

- If q₂(0) ≠ 0, y₂ is μ-integrable and if q₂(1) ≠ 0, y₁ is μ-integrable.
- For some $q_2^a \in \operatorname{Pol}_2(E)$:

$$a(x) = q_2^a(x) - \lambda(x) \int \gamma^2(x, y) \mu(\mathrm{d} y) \quad \forall x \in E.$$



Does Case 4 really exist?

Until now no probability measure μ on $[0,1]^2$ has been found, such that for all $n \geq 3$

$$\int \gamma^{n}(\alpha, y) \mu(\mathrm{d}y) = \int \left(y_{1}(-\alpha) + y_{2}(1-\alpha) \right)^{n} \mu(\mathrm{d}y) = 0$$

for some $\alpha \in \mathbb{C} \setminus \mathbb{R}$. Can this condition be satisfied?

٥ . . .

• This condition cannot be satisfied if α (or its conjugate) is not contained in the circle of radius $1/\sqrt{3}$ centered in $(1/2, -1/(2\sqrt{3})).$

(日) (同) (三) (三) (三) (○) (○)

• This condition cannot be satisfied if μ is the Lebesgue measure on $[0, 1]^2$.

Example 1: Extension of the Jacobi P. (Cuchiero, 2011)

Definition

The Jacobi process is the solution of the stochastic differential equation

$$dX_t = -\beta(X_t - \theta)dt + \sigma\sqrt{(X_t(1 - X_t))}dW_t, \quad X_0 = x \in [0, 1],$$

on [0, 1], where $\theta \in [0, 1]$ and $\beta, \sigma > 0$.

Its (extended) infinitesimal generator is given by

$$\mathcal{G}f(x) := \frac{1}{2}\sigma^2(x(1-x))f''(x) - \beta(x-\theta)f'(x).$$

Hence the Jacobi process is a PP process on [0, 1].

Example 1: Extension of the Jacobi P. (Cuchiero, 2011)

This example can be extended by adding jumps, where the jump times correspond to those of a Poisson process with intensity λ and if a jump occurs, then the process is reflected at $\frac{1}{2}$. The (extended) infinitesimal generator is then given by (Case1)

$$\begin{aligned} \mathcal{G}f &= \frac{1}{2} \sigma^2 (x(1-x)) f''(x) + \big(-\beta(x-\theta) + \lambda(1-2x) \big) f'(x) \\ &+ \lambda \int_{[0,1]^2} f \big(x + \gamma(x,y) \big) - f(x) - f'(x) \gamma(x,y) \, \delta_{(1,1)}(\mathrm{d}y), \end{aligned}$$

where, $\gamma(x,y) := y_1(-x) + y_2(1-x) = 1 - 2x \ \delta_{(1,1)}$ -almost sure.

$$\begin{aligned} \mathcal{G}f(x) &= \frac{a(x)}{2}f''(x) + b(x)f'(x) + \lambda(x)\int_{[0,1]^2} f(x+\gamma(x,y)) - f(x) - \gamma(x,y)f'(x)\mu(\mathrm{d}y) \\ &= (-2x)f'(x) + \frac{1}{x}\int_{[0,1]} f(x+\gamma(x,y_1)) - f(x) - \gamma(x,y_1)f'(x)\gamma(x,y_1) \,\mathrm{d}y_1. \end{aligned}$$

where

$$\gamma(x, y_1) := \sin^2((x + y_1)\pi)(-x).$$

One can show that \mathcal{G} is polynomial preserving and the martingale problem for $(\mathcal{G}, \mathcal{E}, \rho)$ has a solution for every initial distribution ρ .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$$\begin{aligned} \mathcal{G}f(x) &= \frac{a(x)}{2}f''(x) + b(x)f'(x) + \lambda(x)\int_{[0,1]^2} f(x+\gamma(x,y)) - f(x) - \gamma(x,y)f'(x)\mu(\mathrm{d}y) \\ &= (-2x)f'(x) + \frac{1}{x}\int_{[0,1]} f(x+\gamma(x,y_1)) - f(x) - \gamma(x,y_1)f'(x)\gamma(x,y_1) \,\mathrm{d}y_1. \end{aligned}$$

where

$$\gamma(x,y_1):=\sin^2((x+y_1)\pi)(-x).$$

One can show that \mathcal{G} is polynomial preserving and the martingale problem for $(\mathcal{G}, \mathcal{E}, \rho)$ has a solution for every initial distribution ρ .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Is this example not covered by our theory?

$$\begin{aligned} \mathcal{G}f(x) &= \frac{a(x)}{2}f''(x) + b(x)f'(x) + \lambda(x)\int_{[0,1]^2} f(x+\gamma(x,y)) - f(x) - \gamma(x,y)f'(x)\mu(\mathrm{d}y) \\ &= (-2x)f'(x) + \frac{1}{x}\int_{[0,1]} f(x+\gamma(x,y_1)) - f(x) - \gamma(x,y_1)f'(x)\gamma(x,y_1) \,\mathrm{d}y_1. \end{aligned}$$

where

$$\gamma(x,y_1):=\sin^2((x+y_1)\pi)(-x).$$

One can show that \mathcal{G} is polynomial preserving and the martingale problem for $(\mathcal{G}, \mathcal{E}, \rho)$ has a solution for every initial distribution ρ .

Is this example not covered by our theory? The answer is no.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Motivations	Definitions	Characterisation	Examples	Conclusion
_				
Example 2				

Indeed, the described operator coincide with

$$\widetilde{\mathcal{G}}f := (-2x)f'(x) + \frac{1}{x}\int_{[0,1]} f(x+\gamma(x,y_1)) - f(x) - f'(x)\gamma(x,y_1) \ \widetilde{\mu}(dy_1),$$

where $\tilde{\mu} := \sin^2(y_1\pi) * \mu$ and

$$\gamma(x,y_1):=y_1(-x).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ● ● ●

We can see that $\widetilde{\mathcal{G}}$ is of the form considered until now (Case 2).

Consider the operator of Case 3 given by

$$\mathcal{G}f(x) = b(x)f'(x) + \frac{x(1-x)}{(x-1/2)^2} \int_{[0,1]^2} f(x+\gamma(x,y)) - f(x) - \gamma(x,y)f'(x)\mu(dy)$$

where

$$\gamma(x,y) := -(y_1 + y_2)(x - 1/2)$$
 μ -a.s.

Since $\lambda(0) = \lambda(1) = 0$ we are free to choose $b \equiv 0$. The solution of the associated martingale problem will then be a true martingale on [0, 1].

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

A cone of PP operators

Let \mathcal{G}_1 and \mathcal{G}_2 be PP such that the respective martingale problems have a solution for each initial distribution.

 $\Rightarrow \mathcal{G} := c_1 \mathcal{G}_1 + c_2 \mathcal{G}_2 \text{ is a PP operator such that the respective} \\ \text{martingale problem has a solution for each initial distribution,} \\ \text{for all } c_1, c_2 \geq 0. \end{aligned}$

Combining Cases (1)-(3) we thus obtain a cone of operators with those properties.

An element of this cone is given by

$$\mathcal{G}f(x) = \frac{1}{2}a(x)f''(x) + b(x)f'(x) + \int_{\mathbb{R}\setminus\{0\}} f(x+\xi) - f(x) - \xi f'(x)\nu(x,d\xi)$$

such that

•
$$a(x) = Ax(1-x)$$
 for a.e. $x \in E$,
• $b(x) \in Pol_1(E)$ enough inward pointed at the boundary, and
• $\nu(x, \cdot) = \gamma(x, \cdot)_* F(x, \cdot)$ where $\gamma(x, y) = y_1(-x) + y_2(1-x)$ and
 $F(x, dy) = m(dy) + \frac{1-x}{x} \mu_1^{(1)}(dy) + \frac{x}{1-x} \mu_2^{(1)}(dy)$
 $+ \sum_{k=3}^{K} \frac{1}{(x-x_k)^2} \left(x^2 \mu_k^{(0)}(dy) + 2x(1-x) \mu_k^{(1)}(dy) + (1-x)^2 \mu_k^{(2)}(dy) \right)$

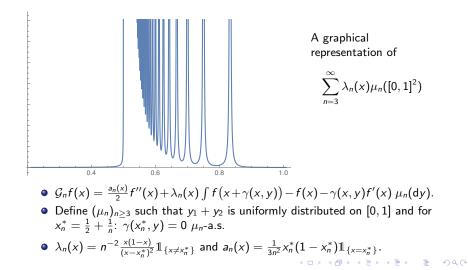
for (signed) measures $m, \mu_k^{(j)}$ on $(0, 1]^2$ and distinct points $x_k \in (0, 1)$, satisfying some technical conditions.

A CLOSED cone of PP operators

Let $(\mathcal{G}_n)_{n \in \mathbb{N}}$ be PP such that the respective martingale problems have a solution for each initial distribution.

- Suppose that $\mathcal{G}f(x) := \lim_{n \to \infty} \mathcal{G}_n f(x)$ is well defined for all $f \in \operatorname{Pol}(E)$ and $x \in E$,
- $\Rightarrow \mathcal{G}$ is a PP operator and the respective martingale problem has a solution for each initial distribution.

Example: $\mathcal{G} := \sum_{n=3}^{\infty} \mathcal{G}_n$



 \bullet We defined PP processes as solution of a MP, whose operator ${\cal G}$ is of the form

$$\mathcal{G}f(x) = \frac{a(x)}{2}f''(x) + b(x)f'(x) + \int_{[0,1]^2} f(x+\xi) - f(x) - f'(x)\xi \ \nu(x,dy)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

and maps $\operatorname{Pol}_n(E)$ to itself.

 \bullet We defined PP processes as solution of a MP, whose operator ${\cal G}$ is of the form

$$\mathcal{G}f(x) = \frac{a(x)}{2}f''(x) + b(x)f'(x) + \int_{[0,1]^2} f(x+\xi) - f(x) - f'(x)\xi \ \nu(x,dy)$$

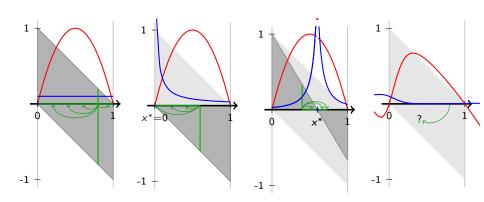
and maps $\operatorname{Pol}_n(E)$ to itself.

• We completely characterised the parameters a, b, γ , and λ s.t.

$$\mathcal{G}f(x) = \frac{a(x)}{2}f''(x) + b(x)f'(x) + \lambda(x) \int_{\operatorname{supp}(\mu)} f(x + \gamma(x, y)) - f(x) - f'(x)\gamma(x, y) \ \mu(dy)$$

is PP and the MP for (\mathcal{G}, E, ρ) has a solution for every initial distribution ρ on E, assuming γ polynomial in x.

Motivations	Definitions	Characterisation	Examples	Conclusion
Conclusior	ו			



Case 1

Case 2

Case 3

◆□ > ◆■ > ◆ ■ > ◆ ■ > ○

Case 4

And now?

• Find a probability measure μ on $[0,1]^2$ and an $\alpha \in \mathbb{C} \setminus \mathbb{R}$ s.t.

$$\int (y_1(-\alpha) + y_2(1-\alpha))^n \mu(\mathsf{d} y) = 0 \qquad \forall n \ge 3;$$

or show that they do not exist.

- What about boundary attainment?
- What about higher dimensional simplices as state space?

References	

- Cuchiero, Keller-Ressel and Teichmann, Polynomial processes and their applications to mathematical finance, Finance and Stochastics, 2012
- Cuchiero, Affine and Polynomial Processes, PhD thesis, 2011
- Ethier, Kurtz, Markov processes: characterisation and convergence, Wiley Interscience, 2005
- Filipović, Larsson, Polynomial Preserving Diffusions and Applications in Finance, Swiss Finance Institute, 2014

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Motivations Definitions Characterisation Examples

Conclusion

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Thank you!

The structure of ν (generalisation)

Consider N polynomial preserving operators $(\mathcal{G}_i)_{i=1}^N$ of the form

$$\begin{aligned} \mathcal{G}_i f(x) &:= \frac{a_i(x)}{2} f''(x) + b_i(x) f'(x) \\ &+ \lambda_i(x) \int_{[0,1]^2} \left(f\left(x + \gamma(x,y)\right) - f(x) - f'(x)\gamma(x,y) \right) \, \mu_i(\mathrm{d}y). \end{aligned}$$

where $\gamma(x, y) = y_1(-x) + y_2(1-x)$, such that for each *i* the martingale problem for $(\mathcal{G}_i, \mathcal{E}, \rho)$ has a solution for every initial distribution ρ .

The structure of ν (generalisation)

Then the operator ${\mathcal G}$ given by

$$\begin{aligned} \mathcal{G}f(x) &= \frac{1}{2} \sum_{i=1}^{N} a_i(x) f''(x) + \sum_{i=1}^{N} b_i(x) f'(x) \\ &+ \sum_{i=1}^{N} \lambda_i(x) \int_{[0,1]^2} \left(f(x + \gamma(x,y)) - f(x) - f'(x) \gamma(x,y) \right) \, \mu_i(\mathrm{d}y). \end{aligned}$$

is polynomial preserving and the martingale problem for (\mathcal{G}, E, ρ) has a solution for every initial distribution ρ . Note that in this case $\nu(x, \cdot) = \sum_{i=1}^{N} \lambda_i(x) \mu_i(x, \cdot)$, where

$$\mu_i(x,A) := \int_{[0,1]^2} \mathbb{1}_A(\gamma(x,y)) \mu_i(\mathsf{d} y).$$

We have seen that given N PP operators $(\mathcal{G}_i)_{i=1}^N$ of the form

$$\begin{aligned} \mathcal{G}_i f(x) &:= \frac{a_i(x)}{2} f''(x) + b_i(x) f'(x) \\ &+ \lambda_i(x) \int_{[0,1]^2} \left(f\left(x + \gamma(x,y)\right) - f(x) - f'(x)\gamma(x,y) \right) \, \mu_i(\mathrm{d}y), \end{aligned}$$

the operator ${\mathcal{G}}$ given by

$$\begin{aligned} \mathcal{G}f(x) &= \frac{1}{2} \sum_{i=1}^{N} a_i(x) f''(x) + \sum_{i=1}^{N} b_i(x) f'(x) \\ &+ \sum_{i=1}^{N} \lambda_i(x) \int_{[0,1]^2} \left(f(x + \gamma(x,y)) - f(x) - f'(x) \gamma(x,y) \right) \, \mu_i(\mathrm{d}y). \end{aligned}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

is PP, too.

We have also seen that the measures $(\nu(x, \cdot))_{x \in E}$ associated to \mathcal{G} are then given by

$$\nu(x,\cdot) = \sum_{i=1}^{N} \lambda_i(x) \mu_i(x,\cdot), \quad \mu_i(x,A) := \int \mathbb{1}_A(\gamma(x,y)) \mu_i(dy).$$
(1)

The natural question is then: given a collection of measures $(\tilde{\nu}(x, \cdot))_{x \in E}$ of the form described in (1) and associated to a PP operator $\tilde{\mathcal{G}}$, there always exist PP operators $(\tilde{\mathcal{G}}_i)_{i=1}^N$ with associated measures $\lambda_i(x)\mu_i(x, \cdot)$, respectively?

We have also seen that the measures $(\nu(x, \cdot))_{x \in E}$ associated to \mathcal{G} are then given by

$$\nu(x,\cdot) = \sum_{i=1}^{N} \lambda_i(x) \mu_i(x,\cdot), \quad \mu_i(x,A) := \int \mathbb{1}_A(\gamma(x,y)) \mu_i(dy).$$
(1)

The natural question is then: given a collection of measures $(\tilde{\nu}(x, \cdot))_{x \in E}$ of the form described in (1) and associated to a PP operator $\tilde{\mathcal{G}}$, there always exist PP operators $(\tilde{\mathcal{G}}_i)_{i=1}^N$ with associated measures $\lambda_i(x)\mu_i(x, \cdot)$, respectively?

The answer is no.

Motivations	Definitions	Characterisation	Examples	Conclusion
Example 3				

$$\begin{split} \widetilde{\mathcal{G}}f(x) &:= b(x)f'(x) \\ &+ \widetilde{\lambda}_1(x) \int f(x+\gamma(x,y)) - f(x) - f'(x)\gamma(x,y) \,\,\delta_{(1,0)}(\mathrm{d}y) \\ &+ \widetilde{\lambda}_2(x) \int f(x+\gamma(x,y)) - f(x) - f'(x)\gamma(x,y) \,\,\delta_{(0,1/2)}(\mathrm{d}y) \end{split}$$

where b(x) = 1 - 2x, $\tilde{\lambda}_1(x) = \frac{1}{x(x+1)}$, $\tilde{\lambda}_2(x) = \frac{2}{(1-x)(x+1)}$. Computing

$$q_1(x) := \tilde{\lambda}_1(x) \int \gamma^n(x, y) \ \delta_{(1,0)}(dy) = -\frac{(-x)^{n-1}}{x+1}$$
$$q_2(x) := \tilde{\lambda}_2(x) \int \gamma^n(x, y) \ \delta_{(0,1/2)}(dy) = \frac{((1-x)/2)^{n-1}}{x+1}$$

we see that $q_1 + q_2 \in \operatorname{Pol}_n(E)$ but neither q_1 nor q_2 is in $\operatorname{Pol}_n(E)$.