Polynomial Preserving Jump-Diffusions on the Unit Interval

Sara Svaluto-Ferro
(Joint work with Christa Cuchiero and Martin Larsson)

ETHzürich

February 8, 2016

Definitions

Consider the filtered probability space $\left(\Omega, \mathcal{F},\left(\mathcal{F}_{t}\right)_{t \geq 0}, \mathbb{P}\right)$ and choose the state space $E:=[0,1]$. Denote by

- $\operatorname{Pol}_{n}(E)$ the set of all polynomials of degree at most n on E,
- $\operatorname{Pol}(E)$ the set of all polynomials on E.

Polynomial Preserving Operator

Consider a linear operator \mathcal{G} acting on $\operatorname{Pol}(E)$ of the form $\mathcal{G} f(x):=\frac{a(x)}{2} f^{\prime \prime}(x)+b(x) f^{\prime}(x)+\int_{\mathbb{R}} f(x+\xi)-f(x)-f^{\prime}(x) \xi \nu(x, \mathrm{~d} \xi)$,
where a and b are functions on E and $\nu(x, \cdot)$ is a Levy measure supported on $E-x$, for all $x \in E$.

Definition

The operator \mathcal{G} is called polynomial preserving if and only if

$$
\mathcal{G} p \in \operatorname{Pol}_{n}(E) \quad \forall p \in \operatorname{Pol}_{n}(E)
$$

for all $n \in \mathbb{N}$.

Martingale Problem for (\mathcal{G}, E)

Let $X:=\left(X_{t}\right)_{t \geq 0}$ be an adapted RCLL process and ρ be a probability measure supported on E. Then the law of X is called a solution to the martingale problem for (\mathcal{G}, E, ρ) if

$$
\mathbb{P}\left(X_{0} \in \cdot\right)=\rho, \quad \mathbb{P}\left(X_{t} \in E\right)=1 \quad \forall t \geq 0
$$

and the process $\left(N_{t}^{p}\right)_{t \geq 0}$, where

$$
N_{t}^{p}:=p\left(X_{t}\right)-p\left(X_{0}\right)-\int_{0}^{t} \mathcal{G} p\left(X_{s-}\right) \mathrm{d} s
$$

is a martingale $\forall p \in \operatorname{Pol}(E)$.

Polynomial Preserving Jump-Diffusions

Definition

An adapted RCLL process $X:=\left(X_{t}\right)_{t \geq 0}$ is called polynomial preserving if its law is a solution to the martingale problem for (\mathcal{G}, E, ρ) for some polynomial preserving operator \mathcal{G} and some probability measure ρ supported on E.

Remark

Since E is compact, one can show that the law of the process X is the unique solution to the martingale problem for (\mathcal{G}, E, ρ).

Question 1

Recall that

$$
\mathcal{G} f(x):=\frac{a(x)}{2} f^{\prime \prime}(x)+b(x) f^{\prime}(x)+\int_{\mathbb{R}} f(x+\xi)-f(x)-f^{\prime}(x) \xi \nu(x, \mathrm{~d} \xi) .
$$

Question: How to choose a, b, and ν such that \mathcal{G} is polynomial preserving?

- Cuchiero, Keller-Ressel,Teichmann, 2012

1. $b \in \operatorname{Pol}_{1}(E)$,
2. $a+\int_{\mathbb{R}} \xi^{2} \nu(\cdot, \mathrm{~d} \xi) \in \operatorname{Pol}_{2}(E)$,
3. $\int \xi^{n} \nu(\cdot, \mathrm{~d} \xi) \in \operatorname{Pol}_{n}(E)$ for all $n \geq 3$.

Question 2

Recall that

$$
\mathcal{G} f(x):=\frac{a(x)}{2} f^{\prime \prime}(x)+b(x) f^{\prime}(x)+\int_{\mathbb{R}} f(x+\xi)-f(x)-f^{\prime}(x) \xi \nu(x, \mathrm{~d} \xi) .
$$

Question: How to choose a, b, and ν such that the martingale problem for (\mathcal{G}, E, ρ) has a solution for every initial distribution ρ ?

- Positive maximum principle:

$$
f \in \operatorname{Pol}(E), x_{0} \in E, \quad \text { and } \sup _{x \in E} f(x)=f\left(x_{0}\right) \quad \Rightarrow \quad \mathcal{G} f\left(x_{0}\right) \leq 0 .
$$

- Ethier, Kurtz 2005; Filipović, Larsson 2014.

Suppose that $\nu=0$: the diffusion case

In this case

$$
\mathcal{G} f(x):=\frac{a(x)}{2} f^{\prime \prime}(x)+b(x) f^{\prime}(x)
$$

Suppose that $\nu=0$: the diffusion case

In this case

$$
\mathcal{G} f(x):=\frac{a(x)}{2} f^{\prime \prime}(x)+b(x) f^{\prime}(x)
$$

- $b \in \operatorname{Pol}_{1}(E)$ and $a \in \operatorname{Pol}_{2}(E)$.

Suppose that $\nu=0$: the diffusion case

In this case

$$
\mathcal{G} f(x):=\frac{a(x)}{2} f^{\prime \prime}(x)+b(x) f^{\prime}(x)
$$

- $b \in \operatorname{Pol}_{1}(E)$ and $a \in \operatorname{Pol}_{2}(E)$.
- $a \geq 0$ on E.

Suppose that $\nu=0$: the diffusion case

In this case

$$
\mathcal{G} f(x):=\frac{a(x)}{2} f^{\prime \prime}(x)+b(x) f^{\prime}(x)
$$

- $b \in \operatorname{Pol}_{1}(E)$ and $a \in \operatorname{Pol}_{2}(E)$.
- $a \geq 0$ on E.
- $b(0) \geq 0, b(1) \leq 0$, and $a(0)=a(1)=0$.

Suppose that $\nu=0$: the diffusion case

In this case

$$
\mathcal{G} f(x):=\frac{a(x)}{2} f^{\prime \prime}(x)+b(x) f^{\prime}(x)
$$

- $b \in \operatorname{Pol}_{1}(E)$ and $a \in \operatorname{Pol}_{2}(E)$.
- $a \geq 0$ on E.
- $b(0) \geq 0, b(1) \leq 0$, and $a(0)=a(1)=0$.

Hence,

$$
a(x)=\sigma^{2} x(1-x) \quad \text { and } \quad b(x)=-\beta(x-\theta),
$$

for some $\theta \in[0,1]$, and $\beta, \sigma \geq 0$.
The solution of the martingale problem associated to this \mathcal{G} is called Jacobi process.

The structure of ν : simple polynomial jump sizes

Assume now that $(\nu(x, \cdot))_{x \in E}$ has simple polynomial jump sizes, i.e. for all $A \in \mathcal{B}(\mathbb{R})$ we have

$$
\nu(x, A)=\int_{A} \nu(x, \mathrm{~d} \xi)=\lambda(x) \int_{\operatorname{supp}(\mu)} \mathbb{1}_{A}(\gamma(x, y)) \mu(\mathrm{d} y),
$$

where

- The measure μ is a σ-finite measure on some space (B, \mathcal{B}).
- The jump size $\gamma(x, \cdot)$ is polynomial in x on E, namely

$$
\gamma(x, \cdot)=\sum_{k=0}^{N} a_{k}(\cdot) x^{k} \quad \text { for all } x \in E
$$

for square integrable random variables $\left(a_{k}\right)_{k=0}^{N}$ on (B, \mathcal{B}, μ).

- The jump intensity $\lambda: E \rightarrow \mathbb{R}_{+}$is a measurable function.

The operator \mathcal{G}

In this setting the operator \mathcal{G} can be written in the following form

$$
\begin{aligned}
\mathcal{G} f(x)= & \frac{a(x)}{2} f^{\prime \prime}(x)+b(x) f^{\prime}(x) \\
& +\lambda(x) \int_{\operatorname{supp}(\mu)} f(x+\gamma(x, y))-f(x)-f^{\prime}(x) \gamma(x, y) \mu(\mathrm{d} y)
\end{aligned}
$$

where $\gamma(x, \cdot)=\sum_{k=0}^{N} a_{k}(\cdot) x^{k}$.

Characterisation

Recall the operator

$$
\mathcal{G} f(x)=\frac{a(x)}{2} f^{\prime \prime}(x)+b(x) f^{\prime}(x)+\lambda(x) \int_{\operatorname{supp}(\mu)} f(x+\gamma(x, y))-f(x)-f^{\prime}(x) \gamma(x, y) \mu(\mathrm{d} y) .
$$

Theorem

The operator \mathcal{G} is polynomial preserving and there exists a solution to the martingale problem for (\mathcal{G}, E, ρ) for each initial distribution ρ on E, iff

- The measure μ and the jump size γ can be chosen such that

$$
\operatorname{supp}(\mu) \subseteq[0,1]^{2}, \quad \gamma(x, y)=y_{1}(-x)+y_{2}(1-x)
$$

and y_{1}, y_{2} are μ-square integrable.

- $b \in \operatorname{Pol}_{1}(E), b(0)$ is positive enough, and $b(1)$ is negative enough.
- One of the following four cases holds true.

Case 1

- $\lambda \equiv$ const.
- y_{1} and y_{2} are μ-integrable.
- $a(x)=A x(1-x)$ for some $A \geq 0$.

Case 2: "No jump point" $x^{*} \in \partial E$, wlog $x^{*}=0$.

- For μ-almost every $y \in[0,1]^{2}$ and $x \in E$:

$$
\gamma(x, y)=-\left(y_{1}+y_{2}\right) x
$$

- For all $x \in E$:

$$
\lambda(x)=\frac{q_{1}(x)}{x} \mathbb{1}_{\{x \neq 0\}}
$$

for some nonnegative $q_{1} \in \operatorname{Pol}_{1}(E)$.

- If $q_{1}(1) \neq 0, y_{1}$ and y_{2} are μ-integrable.
- $a(x)=A x(1-x)$ for some $A \geq 0$.

Case 3: "No jump point" $x^{*} \in \operatorname{int}(E)$.

- For μ-almost every $y \in[0,1]^{2}$ and $x \in E$:

$$
\gamma(x, y)=-\left(y_{1}+y_{2}\right)\left(x-x^{*}\right)
$$

- For all $x \in E$:

$$
\lambda(x)=\frac{q_{2}(x)}{\left(x-x^{*}\right)^{2}} \mathbb{1}_{\left\{x \neq x^{*}\right\}}
$$

for some nonnegative $q_{2} \in \operatorname{Pol}_{2}(E)$.

- If $q_{2}(0) \neq 0$ or $q_{2}(1) \neq 0, \quad y_{1}, y_{2}$ are μ-integrable.
- For some $A \geq 0$:

$$
a(x)=A x(1-x)+C \mathbb{1}_{\left\{x=x^{*}\right\}} \quad \forall x \in E
$$

for some $C>0$ uniquely determined by λ and μ.

Case 4: No "no jump points".

- For some $\alpha \in \mathbb{C} \backslash \mathbb{R}$:

$$
\int \gamma^{n}(\alpha, y) \mu(\mathrm{d} y)=0 \quad \forall n \geq 3
$$

- For all $x \in E$:

$$
\lambda(x)=\frac{q_{2}(x)}{(x-\alpha)(x-\bar{\alpha})}
$$

for some nonnegative $q_{2} \in \operatorname{Pol}_{2}(E)$.

- If $q_{2}(0) \neq 0, y_{2}$ is μ-integrable and if $q_{2}(1) \neq 0, \quad y_{1}$ is μ-integrable.
- For some $q_{2}^{a} \in \operatorname{Pol}_{2}(E)$:

$$
a(x)=q_{2}^{a}(x)-\lambda(x) \int \gamma^{2}(x, y) \mu(\mathrm{d} y) \quad \forall x \in E
$$

Does Case 4 really exist?

Until now no probability measure μ on $[0,1]^{2}$ has been found, such that for all $n \geq 3$

$$
\int \gamma^{n}(\alpha, y) \mu(\mathrm{d} y)=\int\left(y_{1}(-\alpha)+y_{2}(1-\alpha)\right)^{n} \mu(\mathrm{~d} y)=0
$$

for some $\alpha \in \mathbb{C} \backslash \mathbb{R}$.
Can this condition be satisfied?

- This condition cannot be satisfied if α (or its conjugate) is not contained in the circle of radius $1 / \sqrt{3}$ centered in $(1 / 2,-1 /(2 \sqrt{3}))$.
- This condition cannot be satisfied if μ is the Lebesgue measure on $[0,1]^{2}$.
- ...

Example 1: Extension of the Jacobi P. (Cuchiero, 2011)

Definition

The Jacobi process is the solution of the stochastic differential equation

$$
\mathrm{d} X_{t}=-\beta\left(X_{t}-\theta\right) \mathrm{d} t+\sigma \sqrt{\left(X_{t}\left(1-X_{t}\right)\right)} \mathrm{d} W_{t}, \quad X_{0}=x \in[0,1],
$$

on $[0,1]$, where $\theta \in[0,1]$ and $\beta, \sigma>0$.
Its (extended) infinitesimal generator is given by

$$
\mathcal{G} f(x):=\frac{1}{2} \sigma^{2}(x(1-x)) f^{\prime \prime}(x)-\beta(x-\theta) f^{\prime}(x) .
$$

Hence the Jacobi process is a PP process on $[0,1]$.

Example 1: Extension of the Jacobi P. (Cuchiero, 2011)

This example can be extended by adding jumps, where the jump times correspond to those of a Poisson process with intensity λ and if a jump occurs, then the process is reflected at $\frac{1}{2}$. The (extended) infinitesimal generator is then given by (Case1)

$$
\begin{aligned}
\mathcal{G} f=\frac{1}{2} & \sigma^{2}(x(1-x)) f^{\prime \prime}(x)+(-\beta(x-\theta)+\lambda(1-2 x)) f^{\prime}(x) \\
& +\lambda \int_{[0,1]^{2}} f(x+\gamma(x, y))-f(x)-f^{\prime}(x) \gamma(x, y) \delta_{(1,1)}(\mathrm{d} y)
\end{aligned}
$$

where, $\gamma(x, y):=y_{1}(-x)+y_{2}(1-x)=1-2 x \delta_{(1,1)}$-almost sure.

Example 2

Consider an operator of the form

$$
\begin{aligned}
\mathcal{G} f(x) & =\frac{a(x)}{2} f^{\prime \prime}(x)+b(x) f^{\prime}(x)+\lambda(x) \int_{[0,1]^{2}} f(x+\gamma(x, y))-f(x)-\gamma(x, y) f^{\prime}(x) \mu(\mathrm{d} y) \\
& =(-2 x) f^{\prime}(x)+\frac{1}{x} \int_{[0,1]} f\left(x+\gamma\left(x, y_{1}\right)\right)-f(x)-\gamma\left(x, y_{1}\right) f^{\prime}(x) \gamma\left(x, y_{1}\right) d y_{1} .
\end{aligned}
$$

where

$$
\gamma\left(x, y_{1}\right):=\sin ^{2}\left(\left(x+y_{1}\right) \pi\right)(-x) .
$$

One can show that \mathcal{G} is polynomial preserving and the martingale problem for (\mathcal{G}, E, ρ) has a solution for every initial distribution ρ.

Example 2

Consider an operator of the form

$$
\begin{aligned}
\mathcal{G} f(x) & =\frac{a(x)}{2} f^{\prime \prime}(x)+b(x) f^{\prime}(x)+\lambda(x) \int_{[0,1]^{2}} f(x+\gamma(x, y))-f(x)-\gamma(x, y) f^{\prime}(x) \mu(\mathrm{d} y) \\
& =(-2 x) f^{\prime}(x)+\frac{1}{x} \int_{[0,1]} f\left(x+\gamma\left(x, y_{1}\right)\right)-f(x)-\gamma\left(x, y_{1}\right) f^{\prime}(x) \gamma\left(x, y_{1}\right) d y_{1} .
\end{aligned}
$$

where

$$
\gamma\left(x, y_{1}\right):=\sin ^{2}\left(\left(x+y_{1}\right) \pi\right)(-x) .
$$

One can show that \mathcal{G} is polynomial preserving and the martingale problem for (\mathcal{G}, E, ρ) has a solution for every initial distribution ρ.

Is this example not covered by our theory?

Example 2

Consider an operator of the form

$$
\begin{aligned}
\mathcal{G} f(x) & =\frac{a(x)}{2} f^{\prime \prime}(x)+b(x) f^{\prime}(x)+\lambda(x) \int_{[0,1]^{2}} f(x+\gamma(x, y))-f(x)-\gamma(x, y) f^{\prime}(x) \mu(\mathrm{d} y) \\
& =(-2 x) f^{\prime}(x)+\frac{1}{x} \int_{[0,1]} f\left(x+\gamma\left(x, y_{1}\right)\right)-f(x)-\gamma\left(x, y_{1}\right) f^{\prime}(x) \gamma\left(x, y_{1}\right) d y_{1} .
\end{aligned}
$$

where

$$
\gamma\left(x, y_{1}\right):=\sin ^{2}\left(\left(x+y_{1}\right) \pi\right)(-x) .
$$

One can show that \mathcal{G} is polynomial preserving and the martingale problem for (\mathcal{G}, E, ρ) has a solution for every initial distribution ρ.

Is this example not covered by our theory?
The answer is no.

Example 2

Indeed, the described operator coincide with

$$
\widetilde{\mathcal{G}} f:=(-2 x) f^{\prime}(x)+\frac{1}{x} \int_{[0,1]} f\left(x+\gamma\left(x, y_{1}\right)\right)-f(x)-f^{\prime}(x) \gamma\left(x, y_{1}\right) \tilde{\mu}\left(\mathrm{d} y_{1}\right),
$$

where $\tilde{\mu}:=\sin ^{2}\left(y_{1} \pi\right) * \mu$ and

$$
\gamma\left(x, y_{1}\right):=y_{1}(-x)
$$

We can see that $\widetilde{\mathcal{G}}$ is of the form considered until now (Case 2).

Example 3

Consider the operator of Case 3 given by
$\mathcal{G} f(x)=b(x) f^{\prime}(x)+\frac{x(1-x)}{(x-1 / 2)^{2}} \int_{[0,1]^{2}} f(x+\gamma(x, y))-f(x)-\gamma(x, y) f^{\prime}(x) \mu(\mathrm{d} y)$
where

$$
\gamma(x, y):=-\left(y_{1}+y_{2}\right)(x-1 / 2) \quad \mu \text {-a.s. }
$$

Since $\lambda(0)=\lambda(1)=0$ we are free to choose $b \equiv 0$.
The solution of the associated martingale problem will then be a true martingale on $[0,1]$.

A cone of PP operators

Let \mathcal{G}_{1} and \mathcal{G}_{2} be PP such that the respective martingale problems have a solution for each initial distribution.
$\Rightarrow \mathcal{G}:=c_{1} \mathcal{G}_{1}+c_{2} \mathcal{G}_{2}$ is a PP operator such that the respective martingale problem has a solution for each initial distribution, for all $c_{1}, c_{2} \geq 0$.

Combining Cases (1)-(3) we thus obtain a cone of operators with those properties.

A cone of PP operators

An element of this cone is given by

$$
\mathcal{G} f(x)=\frac{1}{2} a(x) f^{\prime \prime}(x)+b(x) f^{\prime}(x)+\int_{\mathbb{R} \backslash\{0\}} f(x+\xi)-f(x)-\xi f^{\prime}(x) \nu(x, \mathrm{~d} \xi)
$$

such that

- $a(x)=A x(1-x)$ for a.e. $x \in E$,
- $b(x) \in \operatorname{Pol}_{1}(E)$ enough inward pointed at the boundary, and
- $\nu(x, \cdot)=\gamma(x, \cdot)_{*} F(x, \cdot)$ where $\gamma(x, y)=y_{1}(-x)+y_{2}(1-x)$ and

$$
\begin{aligned}
F(x, \mathrm{~d} y) & =m(\mathrm{~d} y)+\frac{1-x}{x} \mu_{1}^{(1)}(\mathrm{d} y)+\frac{x}{1-x} \mu_{2}^{(1)}(\mathrm{d} y) \\
& +\sum_{k=3}^{K} \frac{1}{\left(x-x_{k}\right)^{2}}\left(x^{2} \mu_{k}^{(0)}(\mathrm{d} y)+2 x(1-x) \mu_{k}^{(1)}(\mathrm{d} y)+(1-x)^{2} \mu_{k}^{(2)}(\mathrm{d} y)\right)
\end{aligned}
$$

for (signed) measures $m, \mu_{k}^{(j)}$ on $(0,1]^{2}$ and distinct points $x_{k} \in(0,1)$, satisfying some technical conditions.

A CLOSED cone of PP operators

Let $\left(\mathcal{G}_{n}\right)_{n \in \mathbb{N}}$ be PP such that the respective martingale problems have a solution for each initial distribution.

- Suppose that $\mathcal{G} f(x):=\lim _{n \rightarrow \infty} \mathcal{G}_{n} f(x)$ is well defined for all $f \in \operatorname{Pol}(E)$ and $x \in E$,
$\Rightarrow \mathcal{G}$ is a PP operator and the respective martingale problem has a solution for each initial distribution.

Example: $\mathcal{G}:=\sum_{n=3}^{\infty} \mathcal{G}_{n}$

A graphical representation of

- $\mathcal{G}_{n} f(x)=\frac{a_{n}(x)}{2} f^{\prime \prime}(x)+\lambda_{n}(x) \int f(x+\gamma(x, y))-f(x)-\gamma(x, y) f^{\prime}(x) \mu_{n}(\mathrm{~d} y)$.
- Define $\left(\mu_{n}\right)_{n \geq 3}$ such that $y_{1}+y_{2}$ is uniformly distributed on $[0,1]$ and for $x_{n}^{*}=\frac{1}{2}+\frac{1}{n}: \gamma\left(x_{n}^{*}, y\right)=0 \mu_{n}$-a.s.
- $\lambda_{n}(x)=n^{-2} \frac{x(1-x)}{\left(x-x_{n}^{*}\right)^{2}} \mathbb{1}_{\left\{x \neq x_{n}^{*}\right\}}$ and $a_{n}(x)=\frac{1}{3 n^{2}} x_{n}^{*}\left(1-x_{n}^{*}\right) \mathbb{1}_{\left\{x=x_{n}^{*}\right\}}$.

Conclusion

- We defined PP processes as solution of a MP, whose operator \mathcal{G} is of the form

$$
\mathcal{G} f(x)=\frac{a(x)}{2} f^{\prime \prime}(x)+b(x) f^{\prime}(x)+\int_{[0,1]^{2}} f(x+\xi)-f(x)-f^{\prime}(x) \xi \nu(x, \mathrm{~d} y)
$$

and maps $\operatorname{Pol}_{n}(E)$ to itself.

Conclusion

- We defined PP processes as solution of a MP, whose operator \mathcal{G} is of the form

$$
\mathcal{G} f(x)=\frac{a(x)}{2} f^{\prime \prime}(x)+b(x) f^{\prime}(x)+\int_{[0,1]^{2}} f(x+\xi)-f(x)-f^{\prime}(x) \xi \nu(x, \mathrm{~d} y)
$$

and maps $\operatorname{Pol}_{n}(E)$ to itself.

- We completely characterised the parameters a, b, γ, and λ s.t.

$$
\mathcal{G} f(x)=\frac{a(x)}{2} f^{\prime \prime}(x)+b(x) f^{\prime}(x)+\lambda(x) \int_{\operatorname{supp}(\mu)} f(x+\gamma(x, y))-f(x)-f^{\prime}(x) \gamma(x, y) \mu(\mathrm{d} y)
$$

is PP and the MP for (\mathcal{G}, E, ρ) has a solution for every initial distribution ρ on E, assuming γ polynomial in x.

Conclusion

Case 1
Case 2
Case 3
Case 4

Conclusion

And now?

- Find a probability measure μ on $[0,1]^{2}$ and an $\alpha \in \mathbb{C} \backslash \mathbb{R}$ s.t.

$$
\int\left(y_{1}(-\alpha)+y_{2}(1-\alpha)\right)^{n} \mu(\mathrm{~d} y)=0 \quad \forall n \geq 3 ;
$$

or show that they do not exist.

- What about boundary attainment?
- What about higher dimensional simplices as state space?

References

- Cuchiero, Keller-Ressel and Teichmann, Polynomial processes and their applications to mathematical finance, Finance and Stochastics, 2012
- Cuchiero, Affine and Polynomial Processes, PhD thesis, 2011
- Ethier, Kurtz, Markov processes: characterisation and convergence, Wiley Interscience, 2005
- Filipović, Larsson, Polynomial Preserving Diffusions and Applications in Finance, Swiss Finance Institute, 2014

Thank you!

The structure of ν (generalisation)

Consider N polynomial preserving operators $\left(\mathcal{G}_{i}\right)_{i=1}^{N}$ of the form

$$
\begin{aligned}
\mathcal{G}_{i} f(x) & :=\frac{a_{i}(x)}{2} f^{\prime \prime}(x)+b_{i}(x) f^{\prime}(x) \\
& +\lambda_{i}(x) \int_{[0,1]^{2}}\left(f(x+\gamma(x, y))-f(x)-f^{\prime}(x) \gamma(x, y)\right) \mu_{i}(\mathrm{~d} y) .
\end{aligned}
$$

where $\gamma(x, y)=y_{1}(-x)+y_{2}(1-x)$, such that for each i the martingale problem for (\mathcal{G}_{i}, E, ρ) has a solution for every initial distribution ρ.

The structure of ν (generalisation)

Then the operator \mathcal{G} given by

$$
\begin{aligned}
\mathcal{G} f(x) & =\frac{1}{2} \sum_{i=1}^{N} a_{i}(x) f^{\prime \prime}(x)+\sum_{i=1}^{N} b_{i}(x) f^{\prime}(x) \\
& +\sum_{i=1}^{N} \lambda_{i}(x) \int_{[0,1]^{2}}\left(f(x+\gamma(x, y))-f(x)-f^{\prime}(x) \gamma(x, y)\right) \mu_{i}(\mathrm{~d} y)
\end{aligned}
$$

is polynomial preserving and the martingale problem for (\mathcal{G}, E, ρ) has a solution for every initial distribution ρ. Note that in this case $\nu(x, \cdot)=\sum_{i=1}^{N} \lambda_{i}(x) \mu_{i}(x, \cdot)$, where

$$
\mu_{i}(x, A):=\int_{[0,1]^{2}} \mathbb{1}_{A}(\gamma(x, y)) \mu_{i}(\mathrm{~d} y)
$$

Example 3

We have seen that given N PP operators $\left(\mathcal{G}_{i}\right)_{i=1}^{N}$ of the form

$$
\begin{aligned}
\mathcal{G}_{i} f(x) & :=\frac{a_{i}(x)}{2} f^{\prime \prime}(x)+b_{i}(x) f^{\prime}(x) \\
& +\lambda_{i}(x) \int_{[0,1]^{2}}\left(f(x+\gamma(x, y))-f(x)-f^{\prime}(x) \gamma(x, y)\right) \mu_{i}(\mathrm{~d} y),
\end{aligned}
$$

the operator \mathcal{G} given by

$$
\begin{aligned}
\mathcal{G} f(x) & =\frac{1}{2} \sum_{i=1}^{N} a_{i}(x) f^{\prime \prime}(x)+\sum_{i=1}^{N} b_{i}(x) f^{\prime}(x) \\
& +\sum_{i=1}^{N} \lambda_{i}(x) \int_{[0,1]^{2}}\left(f(x+\gamma(x, y))-f(x)-f^{\prime}(x) \gamma(x, y)\right) \mu_{i}(\mathrm{~d} y) .
\end{aligned}
$$

is PP , too.

Example 3

We have also seen that the measures $(\nu(x, \cdot))_{x \in E}$ associated to \mathcal{G} are then given by

$$
\begin{equation*}
\nu(x, \cdot)=\sum_{i=1}^{N} \lambda_{i}(x) \mu_{i}(x, \cdot), \quad \mu_{i}(x, A):=\int \mathbb{1}_{A}(\gamma(x, y)) \mu_{i}(\mathrm{~d} y) . \tag{1}
\end{equation*}
$$

The natural question is then: given a collection of measures $(\tilde{\nu}(x, \cdot))_{x \in E}$ of the form described in (1) and associated to a PP operator $\widetilde{\mathcal{G}}$, there always exist PP operators $\left(\widetilde{\mathcal{G}}_{i}\right)_{i=1}^{N}$ with associated measures $\lambda_{i}(x) \mu_{i}(x, \cdot)$, respectively?

Example 3

We have also seen that the measures $(\nu(x, \cdot))_{x \in E}$ associated to \mathcal{G} are then given by

$$
\begin{equation*}
\nu(x, \cdot)=\sum_{i=1}^{N} \lambda_{i}(x) \mu_{i}(x, \cdot), \quad \mu_{i}(x, A):=\int \mathbb{1}_{A}(\gamma(x, y)) \mu_{i}(\mathrm{~d} y) . \tag{1}
\end{equation*}
$$

The natural question is then: given a collection of measures $(\tilde{\nu}(x, \cdot))_{x \in E}$ of the form described in (1) and associated to a PP operator $\widetilde{\mathcal{G}}$, there always exist PP operators $\left(\widetilde{\mathcal{G}}_{i}\right)_{i=1}^{N}$ with associated measures $\lambda_{i}(x) \mu_{i}(x, \cdot)$, respectively?

The answer is no.

Example 3

Consider an operator of the form

$$
\begin{aligned}
\widetilde{\mathcal{G}} f(x):= & b(x) f^{\prime}(x) \\
& +\tilde{\lambda}_{1}(x) \int f(x+\gamma(x, y))-f(x)-f^{\prime}(x) \gamma(x, y) \delta_{(1,0)}(\mathrm{d} y) \\
& +\tilde{\lambda}_{2}(x) \int f(x+\gamma(x, y))-f(x)-f^{\prime}(x) \gamma(x, y) \delta_{(0,1 / 2)}(\mathrm{d} y)
\end{aligned}
$$

where $b(x)=1-2 x, \tilde{\lambda}_{1}(x)=\frac{1}{x(x+1)}, \tilde{\lambda}_{2}(x)=\frac{2}{(1-x)(x+1)}$. Computing

$$
\begin{aligned}
& q_{1}(x):=\tilde{\lambda}_{1}(x) \int \gamma^{n}(x, y) \delta_{(1,0)}(\mathrm{d} y)=-\frac{(-x)^{n-1}}{x+1} \\
& q_{2}(x):=\tilde{\lambda}_{2}(x) \int \gamma^{n}(x, y) \delta_{(0,1 / 2)}(\mathrm{d} y)=\frac{((1-x) / 2)^{n-1}}{x+1}
\end{aligned}
$$

we see that $q_{1}+q_{2} \in \operatorname{Pol}_{n}(E)$ but neither q_{1} nor q_{2} is in $\operatorname{Pol}_{n}(E)$.

