Polynomial Preserving Jump-Diffusions on the Unit
Interval

Sara Svaluto-Ferro
(Joint work with Christa Cuchiero and Martin Larsson)

ETH:zirich

February 8, 2016



Definitions

Definitions

Consider the filtered probability space (2, F, (F¢)t>0, P) and
choose the state space E := [0, 1]. Denote by

@ Pol,(E) the set of all polynomials of degree at most n on E,

@ Pol(E) the set of all polynomials on E.



Definitions

Polynomial Preserving Operator

Consider a linear operator G acting on Pol(E) of the form

gf (x) = a(zx)f"(x)wLb(x)f’(x)Jr/ f(x+&)—f(x)—Ff'(x)€ v(x, dE),
R
where a and b are functions on E and v(x,-) is a Levy measure

supported on E — x, for all x € E.

Definition

The operator G is called polynomial preserving if and only if
Gp € Pol,(E) Vp € Pol,(E),

for all n € N.




Definitions

Martingale Problem for (G, E)

Let X := (Xt)t>0 be an adapted RCLL process and p be a
probability measure supported on E. Then the law of X is called a
solution to the martingale problem for (G, E, p) if

P(Xoe)=p,  PXe€E)=1 Vt>0,

and the process (NF)>0, where

is a martingale Vp € Pol(E).



Definitions

Polynomial Preserving Jump-Diffusions

Definition
An adapted RCLL process X := (X;)¢>0 is called polynomial
preserving if its law is a solution to the martingale problem for

(G, E, p) for some polynomial preserving operator G and some
probability measure p supported on E.

RENEILS

| A

Since E is compact, one can show that the law of the process X is
the unique solution to the martingale problem for (G, E, p).




Characterisation

Question 1

Recall that
Gf (x) := a(x) ' (x) + b(x)f'(x) + /f(x+§ — f(x) — f'(x)€ v(x, d€).

Question: How to choose a, b, and v such that G is polynomial
preserving?

@ Cuchiero, Keller-Ressel, Teichmann, 2012
1. b e Poly(E),
2. a+ [, &v(-,d€) € Poly(E),
3. [€"(,dE) € Pol,(E) for all n > 3.



Characterisation

Question 2

Recall that
6 () = 2V (0 4 b0 () + / Fx+ €) — F(x) — F(x)€ w(x,d€).

Question: How to choose a, b, and v such that the martingale
problem for (G, E, p) has a solution for every initial distribution p?

@ Positive maximum principle:

fePol(E), xo€E, and supf(x)=f(x) = Gf(x)<0.
xeE

@ Ethier, Kurtz 2005; Filipovi¢, Larsson 2014.



Suppose that v = 0: the diffusion case

In this case

Gf (x) := a(2x)f,,(x) + b(x)f'(x).



Characterisation

Suppose that v = 0: the diffusion case

In this case

Gf (x) := a(;)f”(x) + b(x)f'(x).

@ b€ Poli(E) and a € Poly(E).



Characterisation

Suppose that v = 0: the diffusion case

In this case

Gf (x) := a(;)f”(x) + b(x)f'(x).

@ b€ Poli(E) and a € Poly(E).
@a>0oneE.



Suppose that v = 0: the diffusion case

In this case

Gf (x) := a(;)f”(x) + b(x)f'(x).

@ b€ Poli(E) and a € Poly(E).
@a>0oneE.
e b(0) >0, b(1) <0, and a(0) = a(1) = 0.



Characterisation

Suppose that v = 0: the diffusion case

In this case

Gf (x) := a(;)f”(x) + b(x)f'(x).

@ b€ Poli(E) and a € Poly(E).
@a>0oneE.
e b(0) >0, b(1) <0, and a(0) = a(1) = 0.

Hence,
a(x) = 0?x(1—x) and b(x) = —5(x —0),

for some 6 € [0,1], and 3,0 > 0.
The solution of the martingale problem associated to this G is
called Jacobi process.



Characterisation

The structure of v: simple polynomial jump sizes

Assume now that (v(x,-)) g has simple polynomial jump sizes,
i.e. for all A € B(R) we have

v(x, A) = /A y(x,d€) = A(x) / 10 G n)a(@)

where
@ The measure p is a o-finite measure on some space (B, B).

e The jump size y(x, -) is polynomial in x on E, namely

v(x,) = Z a()xk for all x € E,

for square integrable random variables (ak)LV:o on (B,B, ).
@ The jump intensity A : E — R, is a measurable function.



Characterisation

The operator G

In this setting the operator G can be written in the following form
Gf(x) :a(zx)f"(x) + b(x)f'(x)

+A() / G ) = 0 P07 0) ),

where v(x, ) = ZLV:o ak(~)xk.



Characterisation

Characterisation

Recall the operator

Gf(x) = #f”(X)er(X)f'(X)H(X)/ f(x+v(x,y)) = F(x) = ' (x)7(x, y)u(dy).

supp(p)

Theorem

The operator G is polynomial preserving and there exists a solution to the
martingale problem for (G, E, p) for each initial distribution p on E, iff

@ The measure p and the jump size ~y can be chosen such that
supp(i) C 0,1, v(x,¥) = ya(=x) + y2(1 = x),

and y1, y» are p-square integrable.

@ b € Poli(E), b(0) is positive enough, and b(1) is negative enough.

@ One of the following four cases holds true.




Characterisation

@ )\ = const.

@ y1 and y» are p-integrable.

W

@ a(x) = Ax(1—x) for some A > 0.




Characterisation

Case 2: “No jump point” x* € OE, wlog x* = 0.

For p-almost every y € [0,1]* and x € E:
(X y) = —(n +y2)x.

@ For all x € E:

gi(x
A(x) = #ﬂ{m}

for some nonnegative g1 € Poli(E). N

x*=0

—

If g1(1) #0, y1 and y» are u-integrable.

a(x) = Ax(1 —x) for some A > 0.



Characterisation

Case 3: “No jump point” x* € int(E).

@ For p-almost every y € [0,1]? and x € E:
Y(x,y) = =+ y2)(x — x7). )
1 .
@ Forall x e E:
92(x)
)\ = 7]]' XAx*
(x) (x — x*)2 {x#x*}
for some nonnegative g2 € Poly(E).
@ If g2(0) #0 or g2(1) #0, y1,y» are u-integrable. 0 X'* 1
@ For some A > 0:
a(x) =Ax(1 —x)+ Cl—»y VYx€E
41—

for some C > 0 uniquely determined by A and pu.



Characterisation

Case 4: No “no jump points”

@ For some o € C\ R:
/’y"(a,y),u(dy) =0 Vn>3.

@ For all x € E:

q2(x)
AB) = (x—a)(x—@)

for some nonnegative g2 € Poly(E).

¥ S
@ If g2(0) # 0, y» is p-integrable and ?

if ¢2(1) #0, y1 is p-integrable.

@ For some g5 € Poly(E):

_1 -
a(x) = g3(x) — X)/ Vx € E.



Characterisation

Does Case 4 really exist?

Until now no probability measure j on [0,1]? has been found, such
that for all n > 3

/ 2",y )u(dy) = / (yi(=a) + ya(1 — @) "(dy) = 0

for some a € C\ R.
Can this condition be satisfied?

@ This condition cannot be satisfied if a (or its conjugate) is not
contained in the circle of radius 1/+/3 centered in
(1/2,-1/(2v/3)).

@ This condition cannot be satisfied if p is the Lebesgue
measure on [0, 1]2.



Examples

Example 1: Extension of the Jacobi P. (Cuchiero, 2011)

Definition
The Jacobi process is the solution of the stochastic differential
equation

dXt = _B(Xt — G)dt +o (Xt(]- - Xt))d Wt, Xo =X € [O’ 1],

on [0,1], where 6 € [0,1] and 3,0 > 0.

Its (extended) infinitesimal generator is given by

Gf(x) = %0'2(X(1 — x))f"(x) — B(x — 0)f'(x).

Hence the Jacobi process is a PP process on [0, 1].



Examples

Example 1: Extension of the Jacobi P. (Cuchiero, 2011)

This example can be extended by adding jumps, where the jump
times correspond to those of a Poisson process with intensity A
and if a jump occurs, then the process is reflected at % The
(extended) infinitesimal generator is then given by (Casel)

Gf = 507 (x(1 = x))f"(x) + (= Blx = 6) + A(1 — 2x)) /()

A [O 1]2f(X—‘,—'y(X7y)> —f(X) — f/(X)’\/(ij) (5(171)(dy),

where, v(x, y) :=y1(—x)+y2(1 — x) = 1 — 2x §1,1)-almost sure.



Examples

Example 2

Consider an operator of the form

61(x) = 220000 () +A06) [ 7k (x,)) =) =10 )F (Il dy)

[0,1?
= (297004 1 [ Pt n) ~F00 3 ) () di
where
(% y1) = sin?((x + y1)m)(—x).

One can show that G is polynomial preserving and the martingale
problem for (G, E, p) has a solution for every initial distribution p.



Examples

Example 2

Consider an operator of the form

61(x) = 220000 () +A06) [ 7k (x,)) =) =10 )F (Il dy)

[0,12

= (297004 1 [ Pt n) ~F00 3 ) () di

where

Y(x, y1) := sin®((x + y1)7)(—x).
One can show that G is polynomial preserving and the martingale
problem for (G, E, p) has a solution for every initial distribution p.

Is this example not covered by our theory?



Examples

Example 2

Consider an operator of the form

61(x) = 220000 () +A06) [ 7k (x,)) =) =10 )F (Il dy)

[0,12

= (297004 1 [ Pt n) ~F00 3 ) () di

where

Y(x, y1) := sin®((x + y1)7)(—x).
One can show that G is polynomial preserving and the martingale
problem for (G, E, p) has a solution for every initial distribution p.

Is this example not covered by our theory?  The answer is no.



Examples

Example 2

Indeed, the described operator coincide with

GF == (—2)F (x)+ /[ F000) = F) = () ),

X
where fi := sin?(y17) * p and
1% x1) = yi(=x).

We can see that G is of the form considered until now (Case 2).



Examples

Example 3

Consider the operator of Case 3 given by

x(1—x) f(x+7(x,y)) = F(x) =7 (x, y)f (x)u(dy)

gf(x) — b(x)f (X) + m [0,1]2

where
Y(x,y) == +y2)(x —1/2) p-as.
Since A(0) = A(1) = 0 we are free to choose b = 0.

The solution of the associated martingale problem will then be a
true martingale on [0, 1].



Examples

A cone of PP operators

Let G1 and G, be PP such that the respective martingale problems
have a solution for each initial distribution.

= G := c1G1 + Gy is a PP operator such that the respective
martingale problem has a solution for each initial distribution,
for all ¢, > 0.

Combining Cases (1)-(3) we thus obtain a cone of operators with
those properties.



Examples

A cone of PP operators

An element of this cone is given by
GF(x) = 32" () + bUF () + [ x4 €)= £0x) = €7 (v, d)
R\{0}

such that
@ a(x) = Ax(1 —x) for a.e. x € E,
@ b(x) € Poli(E) enough inward pointed at the boundary, and
@ v(x,-) =~(x, )«F(x,-) where y(x,y) = y1(—x) + y2(1 — x) and

1—x X
F(x,dy) = m(dy) + = =i (dy) + 1= u(dy)
K

+3 (Xz’“‘(ko (dy) + 2x(1 = ) (dy) + (1 - x)2uf>(dy)>

k=3

for (signed) measures m, ,ui on (0,1]? and distinct points xx € (0,1),
satisfying some technical conditions.



Examples

A CLOSED cone of PP operators

Let (Gn)nen be PP such that the respective martingale problems
have a solution for each initial distribution.

@ Suppose that Gf(x) := limp_00 Gnf(x) is well defined for all
f € Pol(E) and x € E,

= G is a PP operator and the respective martingale problem has
a solution for each initial distribution.



Examples

Example: G :=>"".G,

A graphical
representation of

oo

S M (x)in((0, 1)

n=3

UL

0.4 0.6 0.8 1.0

© Gof(x) = 2ELF" (x) + An(x) [ £ (x+7(x,¥)) = F() =7(x, ¥) (%) a(dy).
@ Define (pn)n>3 such that y1 + y» is uniformly distributed on [0, 1] and for
Xy =3+ % y(xy,y) =0 ppas.

© M(x) =220 10 ey and an(x) = 55 xi (1 — x0) L ey

(x=x3)



Conclusion

Conclusion

@ We defined PP processes as solution of a MP, whose operator
G is of the form

61(x) = 2507+ b0 () +

[0,1]

F(x+€) —F()—F/(x)€ v(x,dy)

and maps Pol,(E) to itself.



Conclusion

Conclusion

@ We defined PP processes as solution of a MP, whose operator
G is of the form

Gf(x) = 0L (040 0+ [ Flxt6) ~F ()= ()€ vlx.y)

[0,1]
and maps Pol,(E) to itself.
@ We completely characterised the parameters a, b, v, and A s.t.

G#() =20 (x PO (A £ (kalx))F GO (2 (x,5) ()

supp(p)

is PP and the MP for (G, E, p) has a solution for every initial
distribution p on E, assuming ~ polynomial in x.



Conclusion

Conclusion

Case 1 Case 2 Case 3 Case 4



Conclusion

Conclusion

And now?

o Find a probability measure z on [0,1]? and an o € C\ R s.t.

/ (i(—a) +y2(1 =) "u(dy) =0  Vn>3;

or show that they do not exist.
@ What about boundary attainment?

@ What about higher dimensional simplices as state space?



Conclusion
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Thank you!



Conclusion

The structure of v (generalisation)

Consider N polynomial preserving operators (G;)"_; of the form

Gif(x) = 2 7() + bi()F (1)
0 [ (Flera0) =00 F(0205) sl

where y(x,y) = y1(—x) + y2(1 — x), such that for each i the
martingale problem for (G;, E, p) has a solution for every initial
distribution p.



Conclusion

The structure of v (generalisation)

Then the operator G given by

1 N
Ggf(x) = EZ ai(x)f"(x) + Z bi(x)F(x)
i=1 i=1
N
+ ;A;(X) /[0’1]2(f(X+7(X,)/))—f(X)—f (X)’y(x,y)) pi(dy).

is polynomial preserving and the martingale problem for (G, E, p)
has a solution for every initial distribution p. Note that in this case
v(x, ) = ZlNzl Ai(xX)pi(x, -), where

pi(x, A) = / La(v(x,y))pi(dy).
0.1



Example 3

We have seen that given N PP operators (G;); of the form
Gif(x) := ai(2x)f”(x) + bi(x)f'(x)
) [ (Fletaon) =7 F 00 ) i),
the operator G given by
1 N
//

N

Z

is PP, too.

/[0 112( (x+7(x, ¥)) = F(x) = £ (x)y(x, y)) pi(dy).



Conclusion

Example 3

We have also seen that the measures (v(x, -))xecg associated to G
are then given by

N

v(x, ) =Y Ni(ui(x,-),  pi(x, A) ::/1A(7(X7Y))Mi(d)/)- (1)

i=1

The natural question is then: given a collection of measures
(7(x, -))xee of the form described in (1) and associated to a PP
operator 5 there always exist PP operators (g,),'\’:1 with
associated measures A\;(x)ui(x, ), respectively?



Conclusion

Example 3

We have also seen that the measures (v(x, -))xecg associated to G
are then given by

N

v(x, ) =Y Ni(ui(x,-),  pi(x, A) ::/1A(7(X7Y))Mi(d)/)- (1)

i=1

The natural question is then: given a collection of measures
(7(x, -))xee of the form described in (1) and associated to a PP
operator 5 there always exist PP operators (g,),'\’:1 with
associated measures A\;(x)ui(x, ), respectively?

The answer is no.



Conclusion

Example 3

Consider an operator of the form

where b(x)=1-2x, xl(x):ﬁ, S\Q(X):m. Computing
3 n (_X)n_l
q1(x) 1 = A1(x) [7"(x,y) d1,0)(dy) = — 1
. 1—x)/2)"t
(o) = 3a(x) [1705.) Bgamay) = (222

we see that g1 +q2 € Pol,(E) but neither g1 nor ga.is in Pol,(E).
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