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Definitions

Consider the filtered probability space (Ω,F , (Ft)t≥0,P) and
choose the state space E := [0, 1]. Denote by

Poln(E ) the set of all polynomials of degree at most n on E ,

Pol(E ) the set of all polynomials on E .
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Polynomial Preserving Operator

Consider a linear operator G acting on Pol(E ) of the form

Gf (x) :=
a(x)

2
f ′′(x)+b(x)f ′(x)+

∫
R
f (x+ξ)−f (x)−f ′(x)ξ ν(x , dξ),

where a and b are functions on E and ν(x , ·) is a Levy measure
supported on E − x , for all x ∈ E .

Definition

The operator G is called polynomial preserving if and only if

Gp ∈ Poln(E ) ∀p ∈ Poln(E ),

for all n ∈ N.
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Martingale Problem for (G,E )

Let X := (Xt)t≥0 be an adapted RCLL process and ρ be a
probability measure supported on E . Then the law of X is called a
solution to the martingale problem for (G,E , ρ) if

P(X0 ∈ ·) = ρ, P(Xt ∈ E ) = 1 ∀t ≥ 0,

and the process (Np
t )t≥0, where

Np
t := p(Xt)− p(X0)−

∫ t

0
Gp(Xs−)ds

is a martingale ∀p ∈ Pol(E ).
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Polynomial Preserving Jump-Diffusions

Definition

An adapted RCLL process X := (Xt)t≥0 is called polynomial
preserving if its law is a solution to the martingale problem for
(G,E , ρ) for some polynomial preserving operator G and some
probability measure ρ supported on E .

Remark

Since E is compact, one can show that the law of the process X is
the unique solution to the martingale problem for (G,E , ρ).
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Question 1

Recall that

Gf (x) :=
a(x)

2
f ′′(x) + b(x)f ′(x) +

∫
R

f (x + ξ)− f (x)− f ′(x)ξ ν(x , dξ).

Question: How to choose a, b, and ν such that G is polynomial
preserving?

Cuchiero, Keller-Ressel,Teichmann, 2012

1. b ∈ Pol1(E ),
2. a +

∫
R ξ

2ν(·, dξ) ∈ Pol2(E ),
3.
∫
ξnν(·, dξ) ∈ Poln(E ) for all n ≥ 3.
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Question 2

Recall that

Gf (x) :=
a(x)

2
f ′′(x) + b(x)f ′(x) +

∫
R

f (x + ξ)− f (x)− f ′(x)ξ ν(x , dξ).

Question: How to choose a, b, and ν such that the martingale
problem for (G,E , ρ) has a solution for every initial distribution ρ?

Positive maximum principle:

f ∈Pol(E ), x0∈E , and sup
x∈E

f (x) = f (x0) ⇒ Gf (x0) ≤ 0.

Ethier, Kurtz 2005; Filipović, Larsson 2014.
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Suppose that ν = 0: the diffusion case

In this case

Gf (x) :=
a(x)

2
f ′′(x) + b(x)f ′(x).

b ∈ Pol1(E ) and a ∈ Pol2(E ).

a ≥ 0 on E .

b(0) ≥ 0, b(1) ≤ 0, and a(0) = a(1) = 0.

Hence,

a(x) = σ2x(1− x) and b(x) = −β(x − θ),

for some θ ∈ [0, 1], and β, σ ≥ 0.
The solution of the martingale problem associated to this G is
called Jacobi process.
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The structure of ν: simple polynomial jump sizes

Assume now that
(
ν(x , ·)

)
x∈E

has simple polynomial jump sizes,
i.e. for all A ∈ B(R) we have

ν(x ,A) =

∫
A
ν(x , dξ) = λ(x)

∫
supp(µ)

1A

(
γ(x , y)

)
µ(dy),

where

The measure µ is a σ-finite measure on some space (B,B).

The jump size γ(x , ·) is polynomial in x on E , namely

γ(x , ·) =
N∑

k=0

ak (·)xk for all x ∈ E ,

for square integrable random variables (ak )N
k=0 on (B,B, µ).

The jump intensity λ : E → R+ is a measurable function.
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The operator G

In this setting the operator G can be written in the following form

Gf (x) =
a(x)

2
f ′′(x) + b(x)f ′(x)

+ λ(x)

∫
supp(µ)

f
(
x + γ(x , y)

)
− f (x)− f ′(x)γ(x , y) µ(dy),

where γ(x , ·) =
∑N

k=0 ak (·)xk .
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Characterisation

Recall the operator

Gf (x) =
a(x)

2
f ′′(x)+b(x)f ′(x)+λ(x)

∫
supp(µ)

f
(
x +γ(x , y)

)
−f (x)−f ′(x)γ(x , y)µ(dy).

Theorem

The operator G is polynomial preserving and there exists a solution to the
martingale problem for (G,E , ρ) for each initial distribution ρ on E, iff

The measure µ and the jump size γ can be chosen such that

supp(µ) ⊆ [0, 1]2, γ(x , y) = y1(−x) + y2(1− x),

and y1, y2 are µ-square integrable.

b ∈ Pol1(E), b(0) is positive enough, and b(1) is negative enough.

One of the following four cases holds true.
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Case 1

λ ≡ const.

y1 and y2 are µ-integrable.

a(x) = Ax(1− x) for some A ≥ 0.

1

-1

0 1
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Case 2: “No jump point” x∗ ∈ ∂E , wlog x∗ = 0.

For µ-almost every y ∈ [0, 1]2 and x ∈ E :

γ(x , y) = −(y1 + y2)x .

For all x ∈ E :

λ(x) =
q1(x)

x
1{x 6=0}

for some nonnegative q1 ∈ Pol1(E).

If q1(1) 6= 0, y1 and y2 are µ-integrable.

a(x) = Ax(1− x) for some A ≥ 0.

1

-1

x∗=0 1
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Case 3: “No jump point” x∗ ∈ int(E ).

For µ-almost every y ∈ [0, 1]2 and x ∈ E :

γ(x , y) = −(y1 + y2)(x − x∗).

For all x ∈ E :

λ(x) =
q2(x)

(x − x∗)2
1{x 6=x∗}

for some nonnegative q2 ∈ Pol2(E).

If q2(0) 6= 0 or q2(1) 6= 0, y1, y2 are µ-integrable.

For some A ≥ 0:

a(x) = Ax(1− x) + C1{x=x∗} ∀x ∈ E

for some C > 0 uniquely determined by λ and µ.

1

-1

0 1x∗x∗
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Case 4: No “no jump points”.

For some α ∈ C \ R:∫
γn(α, y)µ(dy) = 0 ∀n ≥ 3.

For all x ∈ E :

λ(x) =
q2(x)

(x − α)(x − α)

for some nonnegative q2 ∈ Pol2(E).

If q2(0) 6= 0, y2 is µ-integrable and
if q2(1) 6= 0, y1 is µ-integrable.

For some qa
2 ∈ Pol2(E):

a(x) = qa
2(x)− λ(x)

∫
γ2(x , y)µ(dy) ∀x ∈ E .

1

-1

0 1
?
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Does Case 4 really exist?

Until now no probability measure µ on [0,1]2 has been found, such
that for all n ≥ 3∫

γn(α, y)µ(dy) =

∫ (
y1(−α) + y2(1− α)

)n
µ(dy) = 0

for some α ∈ C \ R.
Can this condition be satisfied?

This condition cannot be satisfied if α (or its conjugate) is not
contained in the circle of radius 1/

√
3 centered in(

1/2,−1/(2
√

3)
)
.

This condition cannot be satisfied if µ is the Lebesgue
measure on [0, 1]2.

...
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Example 1: Extension of the Jacobi P. (Cuchiero, 2011)

Definition

The Jacobi process is the solution of the stochastic differential
equation

dXt = −β(Xt − θ)dt + σ
√

(Xt(1− Xt))dWt , X0 = x ∈ [0, 1],

on [0, 1], where θ ∈ [0, 1] and β, σ > 0.

Its (extended) infinitesimal generator is given by

Gf (x) :=
1

2
σ2(x(1− x))f ′′(x)− β(x − θ)f ′(x).

Hence the Jacobi process is a PP process on [0, 1].
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Example 1: Extension of the Jacobi P. (Cuchiero, 2011)

This example can be extended by adding jumps, where the jump
times correspond to those of a Poisson process with intensity λ
and if a jump occurs, then the process is reflected at 1

2 . The
(extended) infinitesimal generator is then given by (Case1)

Gf =
1

2
σ2(x(1− x))f ′′(x) +

(
− β(x − θ) + λ(1− 2x)

)
f ′(x)

+ λ

∫
[0,1]2

f
(
x+γ(x , y)

)
−f (x)− f ′(x)γ(x , y) δ(1,1)(dy),

where, γ(x , y) :=y1(−x)+y2(1− x) = 1− 2x δ(1,1)-almost sure.
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Example 2

Consider an operator of the form

Gf (x) =
a(x)

2
f ′′(x)+b(x)f ′(x)+λ(x)

∫
[0,1]2

f
(
x +γ(x , y)

)
−f (x)−γ(x , y)f ′(x)µ(dy)

= (−2x)f ′(x)+
1

x

∫
[0,1]

f
(
x +γ(x , y1)

)
−f (x)−γ(x , y1)f ′(x)γ(x , y1) dy1.

where
γ(x , y1) := sin2((x + y1)π)(−x).

One can show that G is polynomial preserving and the martingale
problem for (G,E , ρ) has a solution for every initial distribution ρ.

Is this example not covered by our theory? The answer is no.
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Example 2

Indeed, the described operator coincide with

G̃f := (−2x)f ′(x)+
1

x

∫
[0,1]

f
(
x +γ(x , y1)

)
−f (x)−f ′(x)γ(x , y1) µ̃(dy1),

where µ̃ := sin2(y1π) ∗ µ and

γ(x , y1) := y1(−x).

We can see that G̃ is of the form considered until now (Case 2).
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Example 3

Consider the operator of Case 3 given by

Gf (x) = b(x)f ′(x) +
x(1− x)

(x − 1/2)2

∫
[0,1]2

f
(
x +γ(x , y)

)
−f (x)−γ(x , y)f ′(x)µ(dy)

where
γ(x , y) := −(y1 + y2)(x − 1/2) µ-a.s.

Since λ(0) = λ(1) = 0 we are free to choose b ≡ 0.
The solution of the associated martingale problem will then be a
true martingale on [0, 1].
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A cone of PP operators

Let G1 and G2 be PP such that the respective martingale problems
have a solution for each initial distribution.

⇒ G := c1G1 + c2G2 is a PP operator such that the respective
martingale problem has a solution for each initial distribution,
for all c1, c2 ≥ 0.

Combining Cases (1)-(3) we thus obtain a cone of operators with
those properties.
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A cone of PP operators

An element of this cone is given by

Gf (x) =
1

2
a(x)f ′′(x) + b(x)f ′(x) +

∫
R\{0}

f (x + ξ)− f (x)− ξf ′(x)ν(x , dξ)

such that

a(x) = Ax(1− x) for a.e. x ∈ E ,

b(x) ∈ Pol1(E) enough inward pointed at the boundary, and

ν(x , ·) = γ(x , ·)∗F (x , ·) where γ(x , y) = y1(−x) + y2(1− x) and

F (x , dy) = m(dy) +
1− x

x
µ

(1)
1 (dy) +

x

1− x
µ

(1)
2 (dy)

+
K∑

k=3

1

(x − xk )2

(
x2µ

(0)
k (dy) + 2x(1− x)µ

(1)
k (dy) + (1− x)2µ

(2)
k (dy)

)

for (signed) measures m, µ
(j)
k on (0, 1]2 and distinct points xk ∈ (0, 1),

satisfying some technical conditions.
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A CLOSED cone of PP operators

Let (Gn)n∈N be PP such that the respective martingale problems
have a solution for each initial distribution.

Suppose that Gf (x) := limn→∞ Gnf (x) is well defined for all
f ∈ Pol(E ) and x ∈ E ,

⇒ G is a PP operator and the respective martingale problem has
a solution for each initial distribution.
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Example: G :=
∑∞

n=3 Gn

��� ��� ��� ���
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����

�

A graphical
representation of

∞∑
n=3

λn(x)µn([0, 1]2)

Gnf (x) = an(x)
2

f ′′(x)+λn(x)
∫

f
(
x +γ(x , y)

)
− f (x)−γ(x , y)f ′(x) µn(dy).

Define (µn)n≥3 such that y1 + y2 is uniformly distributed on [0, 1] and for
x∗n = 1

2
+ 1

n
: γ(x∗n , y) = 0 µn-a.s.

λn(x) = n−2 x(1−x)

(x−x∗n )21{x 6=x∗n } and an(x) = 1
3n2 x∗n (1− x∗n )1{x=x∗n }.
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Conclusion

We defined PP processes as solution of a MP, whose operator
G is of the form

Gf (x) =
a(x)

2
f ′′(x)+b(x)f ′(x)+

∫
[0,1]2

f
(
x +ξ

)
−f (x)−f ′(x)ξ ν(x , dy)

and maps Poln(E ) to itself.

We completely characterised the parameters a, b, γ, and λ s.t.

Gf (x)=
a(x)

2
f ′′(x)+b(x)f ′(x)+λ(x)

∫
supp(µ)

f
(
x+γ(x , y)

)
−f (x)−f ′(x)γ(x , y) µ(dy)

is PP and the MP for (G,E , ρ) has a solution for every initial
distribution ρ on E , assuming γ polynomial in x .
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Conclusion

1

-1

0 1

Case 1

1

-1

x∗=0 1

Case 2

1

-1

0 1x∗x∗

Case 3

1

-1

0 1?

Case 4



Motivations Definitions Characterisation Examples Conclusion

Conclusion

And now?

Find a probability measure µ on [0, 1]2 and an α ∈ C \ R s.t.∫ (
y1(−α) + y2(1− α)

)n
µ(dy) = 0 ∀n ≥ 3;

or show that they do not exist.

What about boundary attainment?

What about higher dimensional simplices as state space?
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Thank you!
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The structure of ν (generalisation)

Consider N polynomial preserving operators (Gi )
N
i=1 of the form

Gi f (x) :=
ai (x)

2
f ′′(x) + bi (x)f ′(x)

+ λi (x)

∫
[0,1]2

(
f
(
x+γ(x , y)

)
−f (x)−f ′(x)γ(x , y)

)
µi (dy).

where γ(x , y) = y1(−x) + y2(1− x), such that for each i the
martingale problem for (Gi ,E , ρ) has a solution for every initial
distribution ρ.
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The structure of ν (generalisation)

Then the operator G given by

Gf (x) =
1

2

N∑
i=1

ai (x)f ′′(x) +
N∑

i=1

bi (x)f ′(x)

+
N∑

i=1

λi (x)

∫
[0,1]2

(
f
(
x+γ(x , y)

)
−f (x)−f ′(x)γ(x , y)

)
µi (dy).

is polynomial preserving and the martingale problem for (G,E , ρ)
has a solution for every initial distribution ρ. Note that in this case
ν(x , ·) =

∑N
i=1 λi (x)µi (x , ·), where

µi (x ,A) :=

∫
[0,1]2

1A

(
γ(x , y)

)
µi (dy).
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Example 3

We have seen that given N PP operators (Gi )
N
i=1 of the form

Gi f (x) :=
ai (x)

2
f ′′(x) + bi (x)f ′(x)

+ λi (x)

∫
[0,1]2

(
f
(
x+γ(x , y)

)
−f (x)−f ′(x)γ(x , y)

)
µi (dy),

the operator G given by

Gf (x) =
1

2

N∑
i=1

ai (x)f ′′(x) +
N∑

i=1

bi (x)f ′(x)

+
N∑

i=1

λi (x)

∫
[0,1]2

(
f
(
x+γ(x , y)

)
−f (x)−f ′(x)γ(x , y)

)
µi (dy).

is PP, too.
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Example 3

We have also seen that the measures (ν(x , ·))x∈E associated to G
are then given by

ν(x , ·)=
N∑

i=1

λi (x)µi (x , ·), µi (x ,A) :=

∫
1A

(
γ(x , y)

)
µi (dy). (1)

The natural question is then: given a collection of measures
(ν̃(x , ·))x∈E of the form described in (1) and associated to a PP
operator G̃, there always exist PP operators (G̃i )

N
i=1 with

associated measures λi (x)µi (x , ·), respectively?

The answer is no.
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Example 3

Consider an operator of the form

G̃f (x) : = b(x)f ′(x)

+ λ̃1(x)

∫
f (x + γ(x , y))−f (x)−f ′(x)γ(x , y) δ(1,0)(dy)

+ λ̃2(x)

∫
f (x + γ(x , y))−f (x)−f ′(x)γ(x , y) δ(0,1/2)(dy)

where b(x)=1−2x , λ̃1(x)= 1
x(x+1) , λ̃2(x)= 2

(1−x)(x+1) . Computing

q1(x) : = λ̃1(x)

∫
γn(x , y) δ(1,0)(dy) = −(−x)n−1

x + 1

q2(x) : = λ̃2(x)

∫
γn(x , y) δ(0,1/2)(dy) =

((1− x)/2)n−1

x + 1

we see that q1+q2∈Poln(E ) but neither q1 nor q2 is in Poln(E ).
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