Stochastic models for electricity markets Lecture 03 - Structural models of electricity prices Frontiers in Stochastic Modelling for Finance Winter School - Università degli Studi di Padova

> René Aïd EDF R&D Finance for Energy Market Research Centre

1 Introduction

2 Structural models

- The mother of all structural models
- Stack curve models

3 Conclusion

2

イロン イ団 とく ヨン イヨン

Disclaimer

Disclaimer

Any views or opinions presented in this presentation are solely those of the author and do not necessarily represent those of the EDF group.

Introduction

Looking for a power spot price model

- pricing of derivatives on the spot
- asset valuation (strip of hourly fuel spread options)
- hedging
- energy market risk management

Model requirements

- realistic
- robust
- tractable
- consistent

Modeling strategies

Modeling futures prices

pros modeling the real available instruments

cons introduction of many parameters to reconstruct hourly futures prices

Modeling spot prices

Exogeneous

pros tractability cons dependancies

equilibrium

pros dependancies cons complexity

Modeling spot prices dynamic

Electricity prices exogeneous dynamics

Deng (00), Benth et al. (03, 07, 09), Burger et al. (04), Kolodnyi (04), Cartea & Figueroa (05), Geman & Roncoroni (06)

Structural models

• Deduces the spot from very simplified equilibrium models to allow realistic dependencies. Observed factors.

Remark

See recent books by G. Swindle (2015) and A. (2015) for more references on electricity prices modeling.

Structural models

2

Structural models

Idea

- Instead of using non-Gaussian process for the spot, use Gaussian model + non-linear structure on offer and demand.
- Publicly available datas make structural models possible.
- Simplified fundamental economic models to allow forward price computation.

Literature

- Barlow (02), Kanamura & Ohashi(07)
- Cartea & Villaplana (07)
- Pirrong & Jermakayan (09), Cartea, Figueroa & Géman (09), Coulon & Howison (09), Lyle & Helliott (09), A., Campi, Nguyen Huu & Touzi (09),
- A., Campi & Langrené (12), Carmona & Coulon (13)
- Carmona & Coulon (11): survey on structural models.

The mother of all structural models

Barlow (02)

• The spot price S_t is determined by the equilibrium between an increasing offer function u_t(x) and a decreasing demand function d_t(x):

$$u_t(S_t) = d_t(S_t)$$

- Assume constant supply function $u_t = g$ and inelastic demand $d_t(x) = D_t$ with D_t the electricity consumption: $S_t = g^{-1}(D_t)$.
- Basic non-linear form for $g(x) = a bx^{\alpha}$ with $\alpha < 0$.
- Price is caped if demand exceeds maximum capacity a.
- Demand model: simple OU process with mean-reversion parameter λ , long-run value a_1 and volatility σ_1 .

$$S_t = \begin{cases} \left(\frac{a - D_t}{b}\right)^{1/\alpha} & D_t \le a - \varepsilon b\\ \varepsilon^{1/\alpha} & D_t \ge a - \varepsilon b \end{cases}$$

where ε is determined by the level of the price cap.

Illustration



2

イロト 不同 トイヨト イヨト

Forward curve dynamic

Remarks

- Forward flatness
- Mean-reversion still kills forward price volatility

イロト イヨト イヨト イヨト

æ

Stack curve models

Model idea

- Imagine an fictitious economy where electricity is produced only out of coal with generation with the same efficiency
- Then, electricity spot price $P_t = h_c S_t^c$, where h_c is the coal heat rate.
- Assume no-arbitrage in the market of coal
- Then, preceeding relation hodls also for forwards

$$F_t^e(T) = h_c F_t^c(T)$$

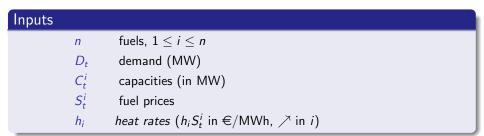
• and no arbitrage relation between spot and forward can be transported to electricity prices:

A structurel model based on a simplified stack curve

Inputs

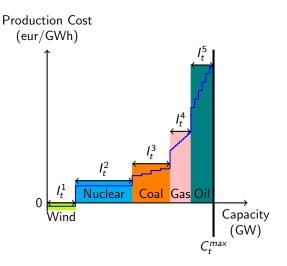
- A., Campi, Nguyen & Touzi (09)
- A., Campi & Langrené (2012)

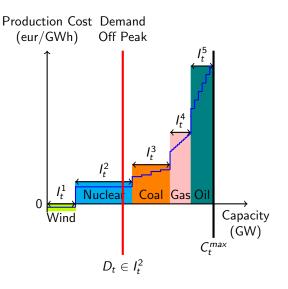
A structurel model based on a simplified stack curve

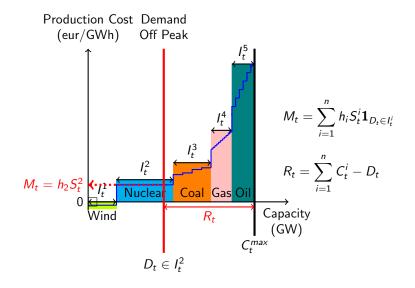


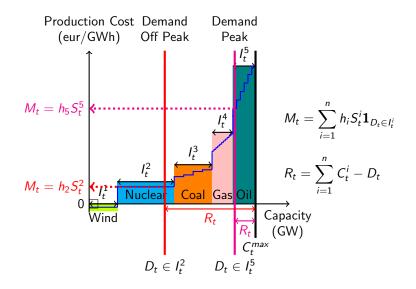
Electricity price (\in /MWh)

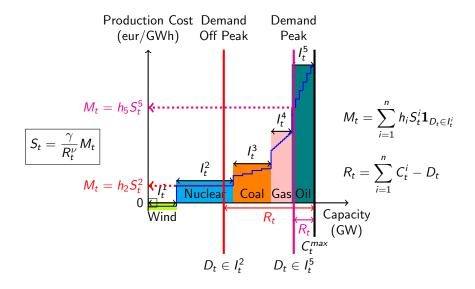
$$\widehat{P}_t = \sum_{i=1}^n h_i S_t^i \mathbf{1}_{\left\{\sum_{k=1}^{i-1} C_t^k \le D_t \le \sum_{k=1}^{i} C_t^k\right\}}$$











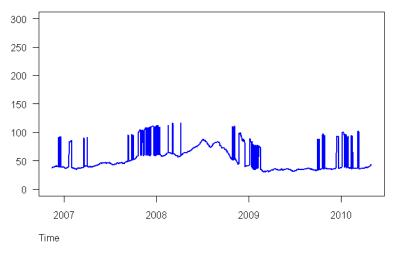
Model estimation without scarcity effect

Data

- French power market from Nov. 13th, 2006 to April 30th 2010
- hourly demand provided by RTE website
- Focus on 19th hour of each day
- Either marginal oil or coal
- Model with n = 2:
- S^1 and S^2 is daily coal and oil price taking into account spot exchange rate, nominal heat rate, CO2 price and emission rate
- Reduction to residual demand to coal and oil plants
- Average 19th hour price 74 €/MWh, coal including heat rate and CO2 price 47 €/MWh, oil price including CO2 price and heat rate 102 €/MWh

Illustration

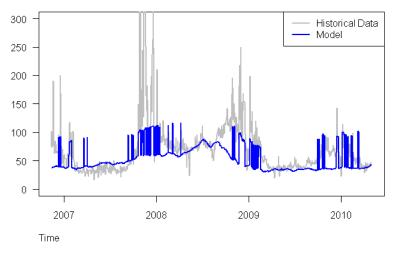
Spot price (in €/MWh)



2

SRN Model [10] - illustration

Spot price (in €/MWh)



Illustration

Spot price (in €/MWh)

2000 -Historical Data Model 1500 -1000 -500 AN AMERA UCON MA 0 2007 2008 2009 2010 Time

æ

Taking into account scarcity

• Marginal fuel cost $\widehat{P}_t := \sum_{i=1}^n h_i S_t^i \mathbf{1}_{\left\{\sum_{k=1}^{i-1} C_t^k \le D_t \le \sum_{k=1}^i C_t^k\right\}}$

• Available capacity
$$\overline{C}_t := \sum_{k=1}^n C_t^k$$

- Price spikes occur when the electric system is under stress, i.e. $\overline{C}_t D_t$ is small
- Corresponds to peak-load fixed cost problem recovery ...

$$y_t := rac{P_t}{\widehat{P}_t}$$
 as a (nonlinear) function of $x_t := \overline{C}_t - D_t$

Estimated relation

$$y_t = rac{\gamma}{x_t^
u}$$

 $\gamma = 6.2 + / -0.06$, $u = 1.0 \pm 0.01$ at 95% confidence level.

Improved SRN model

$$P_t = g\left(\sum_{k=1}^n C_t^k - D_t\right) \times \left(\sum_{i=1}^n h_i S_t^i \mathbf{1}_{\left\{\sum_{k=1}^{i-1} C_t^k \le D_t \le \sum_{k=1}^i C_t^k\right\}}\right)$$

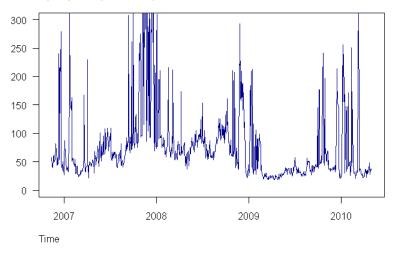
with scarcity function

$$g(x) := \min\left(\frac{\gamma}{x^{\nu}}, M\right) \mathbf{1}_{\{x > 0\}} + M \mathbf{1}_{\{x \le 0\}}$$

æ

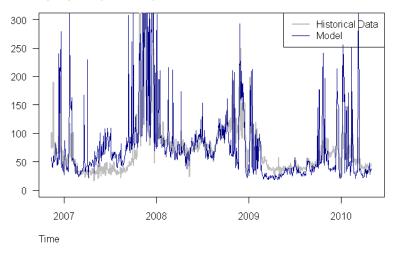
Back-testing

Spot price (in €/MWh)



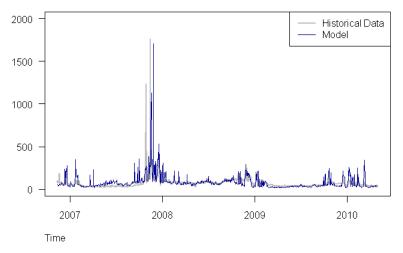
Back-testing

Spot price (in €/MWh)



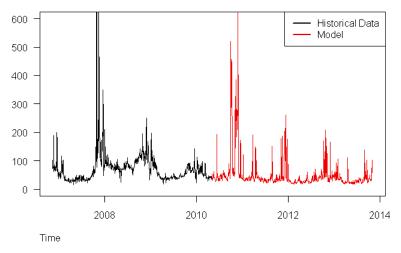
Backtesting

Spot price (in €/MWh)



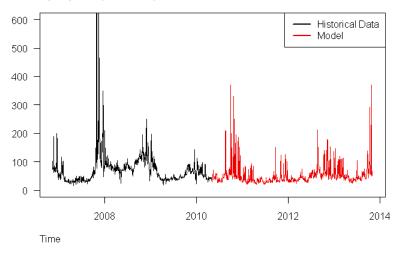
æ

Spot price (in €/MWh)



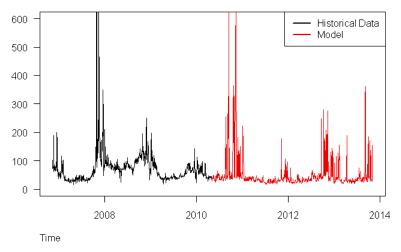
æ

Spot price (in €/MWh)



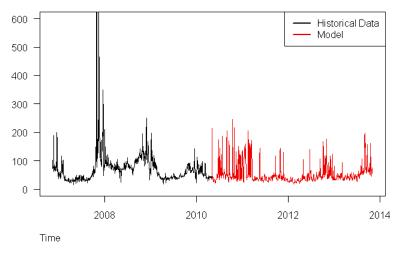
æ

Spot price (in €/MWh)



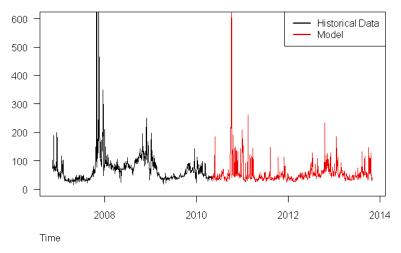
æ

Spot price (in €/MWh)



æ

Spot price (in €/MWh)



æ

Forward prices

Pricing

- incomplete market
- need for a hedging criterion
- Super-replication, utility indifference or mean-variance
- our choice: Local Risk Minimization

Local Risk Minimization (Pham (00), Schweizer (01))

- valuation: expected discounted payoff under $\widehat{\mathbb{Q}}$
- allows to decompose contingent claim between hedgeable part (fuels) and non-hedgeable part (demand, capacities)
- allows explicit formulas

Futures

Futures prices $F_t^e(T) = \mathbb{E}_t^{\widehat{\mathbb{Q}}}\left[e^{-r(T-t)}P_T\right]$

$$F_{t}^{e}(T) = \sum_{i=1}^{n} h_{i}G_{i}^{T}(t, C_{t}, D_{t})F_{t}^{i}(T)$$

with:

$$G_i^T(t,C_t,D_t) = \mathbb{E}_t \left[g \left(\sum_{k=1}^n C_T^k - D_T \right) \mathbf{1}_{\left\{ \sum_{k=1}^{i-1} C_T^k \le D_T \le \sum_{k=1}^i C_T^k \right\}} \right]$$

æ

Futures prices

$$F_t^e(T) = \sum_{i=1}^n G_i^T(t, C_t, D_t) \cdot h_i F_t^i(T)$$

- Electricity futures can be considered as a basket of fuel futures. Consistent with observation of cointegration relation between fuel prices and electricity prices.
- The weights of the basket depend on the anticipated fuel marginalities...
- The weights are not the expected fuel marginalities. They also depend on the anticipated tension of the equilibrium.
- $\bullet\,$ The quoted electricity futures price does not depend on the current spot price. $\Box\,$

Fitting observed futures prices

- Does this model provide a good fit for the observed forward price at at given date? for its dynamic?
- Is it possible to have a perfect fit?

Study available in Féron & Daboussi (2015).

Observed futures prices with delivery period θ

$$F_t^e(T, T+ heta) = rac{1}{ heta} \int_T^{T+ heta} F_t^e(u) du$$

and with only discrete values

$$F_t^e(T, T + \theta) = \frac{1}{\theta} \sum_{T'=T}^{T+\theta} F_t^e(T')$$

æ

Fitting futures price data

Observed futures prices with delivery period θ

$$F_t^e(T, T + \theta) = \frac{1}{\theta} \sum_{i=1}^n \underbrace{\left(\sum_{T'=T}^{T+\theta} G_i^{T'}(t, C_t, D_t)\right)}_{\text{stochastic weights}} h_i F_t^i(T, T + \theta)$$

Modelisation of input factors

Demand

$$D_t = f_D(t) + Z_D(t)$$

$$dZ_D(t) = -\alpha_D(t)Z_D(t)dt + \beta_D(t)dW_t^D$$

$$f_D(t) = d_1 + d_2 cos(2\pi \frac{t-d_3}{h}) + d_4$$

Capacities

$$\begin{array}{lcl} C_t^i &=& f_i(t) + Z_i(t) \\ dZ_i(t) &=& -\alpha_i(t)Z_i(t)dt + \beta_i(t)dW_t^i \\ f_D(t) &=& c_1^i + c_2^i cos(2\pi \frac{t-c_3^i}{l_1}) + c_4^i + f_i^{evo}(t) \end{array}$$

æ

Reconstruction of forward prices

$$F_t^{elec}(T, T + \theta) = \sum_{i=1}^n \left(\frac{1}{\theta} \sum_{\tilde{T}=T}^{T+\theta} G_i^{\tilde{T}}(t, C_t, D_t) \right) h_i F_t^i(T, T + \theta)$$

Method

Capacities and demand process estimation Computation of stochastic weights

Getting fuel prices

 \Rightarrow reconstruction of electricity forward prices

Illustration

- French baseload data
- Historical futures prices from EEX
- Period: 2009 2012
- Contrat type: 1-year ahead and 1-month ahead
- Three fuel types: nuclear, coal/gas and oil.

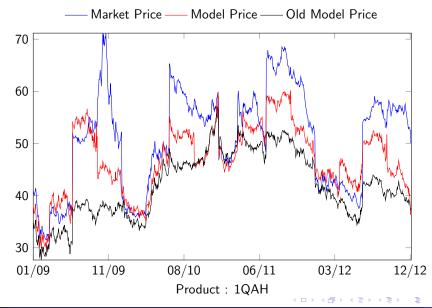
1 YAH baseload reconstruction

Market Price — Model with scarcity — without scarcity 60 55 50 45 40 35 12/1201/09 10/0908/10 05/1103/12

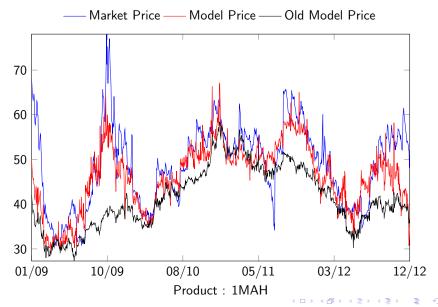
Figure: Reconstruction of the 1YAH during the vears 2009-2012

38 / 51

1 QAH baseload reconstruction



1 MAH baseload reconstruction



Reconstruction results

Conclusions

- $\bullet\,$ With historical data and public capacity availability $\Rightarrow\,$ getting the variations right.
- Without scarcity \Rightarrow important biais.
- With scarcity \Rightarrow less than 5% error since 2011.

Implied capacity

$$F_t^{elec}(T, T + \theta) = \sum_{i=1}^n \left(\frac{1}{\theta} \sum_{\tilde{T}=T}^{T+\theta} G_i^{\tilde{T}}(t, C_t, D_t) \right) h_i F_t^i(T, T + \theta)$$

Principle

Constant error. Monotonic stochastic weights. Modification of the fuel capacity:

$$C_t^n = C_t^n + \varepsilon_t^n$$

to fit the observed forwards with 1% relative error.

Implied capacity

period	value of ε_t^n (in GW)
2009/01/01 to 2010/10/08	-1.1
2010/10/09 to 2011/04/20	0
2011/04/21 to 2011/09/30	-0.3
2011/10/01 to 2011/12/31	-0.6

Result

Less than 1 GW of perturbation on capacity to recover forward prices. Represent less than 1% of the installed capacity.

Implied capacity

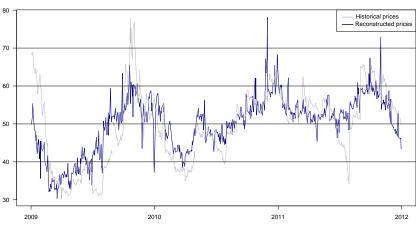
Price in €

Historical prices 65 - Reconstructed prices 60 MA. 55 50 m 45 2009 2010 2011 2012

Time

2

1-MAH reconstructed price



Time

Price in €

・ロト ・回ト ・ヨト ・ヨト

Results on calibration

Conclusion

- Possible to fit the forward curve by a small variation of capacities or demand compared to the overall demand.
- The level of perturbation needed decreases with maturity.

Conclusion

(Very) large set of models developped in the last 10 years for electricity price

- realistic spot and forward behaviour.
- possible calibration on observed forward prices.
- Still many alternatives to explore to get numerically efficient models.

HJM style forward curve model

- Fleten & Lemming, Energy Economics, 2003
- Hinz, von Grafenstein, Vershuere & Wilhelm, Quantitative Finance, 2005
- Koekebakker & Ollmar, Managerial Finance, 2005
- Hinz, & Wilhelm, Int. Journal of Theoretical & Applied Finance, 2006
- Borovkova & Géman, Review of Derivatives Research, 2006
- Benth, Koekebakker & Ollmar, Journal of Derivatives, 2007
- Benth & Koekebakker, Energy Economics, 2008
- Frestad, Int. Journal of Theoretical & Applied Finance, 2009
- Kiesel, Schindlmayr & Börger, Quantitative Finance, 2009
- Benth, Benth & Koekebakker, The Energy Journal, 2010

One-factor spot

- Lucia & Schwartz, Review of Derivatives Research, 2002
- Benth, Ekeland, Hauge & Nielsen, Applied Mathematical Finance, 2003
- Benth & Benth, Int. Jour. of Theoretical & Applied Finance, 2004
- Cartea & Figueroa, Applied Mathematical Finance, 2005
- Deng & Jiang, Decison Support System, 2005
- Géman & Roncoroni, Journal of Business, 2006
- Benth, Kallsen & Meyer-Brandis, Applied Mathematical Finance, 2007

Multi-dimensional models

- Kaarsen & Husby, Energy Power Risk Management, 2003
- Benth, Ekeland, Hauge & Nielsen, Applied Mathematical Finance, 2003
- Kholodnyi, Journal od Engineering Mathematics, 2004
- Burger, Klar, Müller & Schindlmayr, Quantitative Finance, 2004
- Benth, Kallsen, & Meyer-Brandis, Applied Mathematical Finance, 2007
- de Jong & Schneider, Journal of Energy Markets, 2009
- Pirrong & Jermakyan, Journal of Banking & Finance, 2009
- Grine & Diko, Journal of Computational & Applied Mathematics, 2010
- Erlwein, Benth & Mamon, Energy Economics, 2010
- Monfort & Féron, Review of Derivatives Research, 2012

Structural models

- Barlow, Mathematical Finance, 2002
- Kanamura & Ohashi, Energy Economics, 2007
- Cartea & Villaplana, Journal of Banking & Finance, 2008
- Lyle & Helliott, Energy Economics, 2009
- Coulon & Howison, Journal of Energy Markets, 2009
- A., Campi, Nguyen Huu & Touzi, Int. Journal of Theoretical & Applied Finance, 2009
- Carmona, Coulon & Schwarz, Mathematics & Financial Economics, 2012
- A., Campi, & Langrené, Mathematical Finance, 2013
- Carmona & Coulon, survey, working paper, 2013