Stochastic models for electricity markets Lecture 01 - Introduction to power systems Frontiers in Stochastic Modelling for Finance Winter School - Università degli Studi di Padova

> René Aïd EDF R&D Finance for Energy Market Research Centre





### The electricity in the economy

According to the International Energy Agency in her World Energy Outlook 2015 edition

- world electricity demand should grow on average by 2.3% per year between 2013 to 2040, from 20,150 TWh to 34,500 TWh.
- Most of the growth will come from non-OECD countries.
- The increase of electricity demand in China between 2000 and 2040 is almost equivalent to the total demand of all OECD countries in 2000.





### An increasing share of renewables in world energy mix

Figure 8.5 ▷ Global power generation capacity retirements and additions in the New Policies Scenario, 2015-2040



\* Other includes geothermal, concentrating solar power and marine.

A huge amount of capital investment required

# Figure 8.8 ▷ Global cumulative investment in the power sector by type in the New Policies Scenario, 2015-2040



< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

### Units

- Tension: Volt (V), measure electricity concentration. Compare to pressure in water flow.
- Intensity: Ampere (A), measures the debit of electricity.
- Power: Watt (W), measure the quantity of electricity transmitted instantaneously.Usualy, power or capacity is measured in kW (1000 W), MW (1000 kW), GW (1000 MW).
- Energy: Watt  $\times \Delta t$ : measure the quantity of energy produced or consumed during the interval of time  $\Delta t$ . Usualy, energy is measured in kWh (1000 Wh), MWh (1000 kWh), GWh (1000 MWh) and TWh (1000 GWh).

イロン イヨン イヨン イヨン

# Production - Transmission - Distribution - Consumption



# Electricity consumption

#### Features

- follows every aspects economic activity (UK tea time, Lady Di funerals, mi-temps final cup,...)
- Exhibits several seasonality patterns: daily, weekly, annualy.
- Sensitive to climate conditions

### Electricity consumption annual seasonality



### Electricity consumption weekly and daily seasonality



P. à conditions normales —

æ

### Electricity consumption sensitivy to temperature



### Electricity consumption

#### Factor influencing electricity consumption on short-term

- $\bullet$  Temperature. France: temperature gradient to cold temperature  $\approx 1~{\rm GW}$  per degree below a certain threshold.
- Nebulosity. Measured in octa (1/8 of the sky).
- Calendar. Ruptures (august, Christmas), special days.

#### Factor influencing electricity consumption on long-term

- Usages. Electronic devices. Cell phones consume more in France than refrigerators.
- Industrial activity.
- Economic growth.

## Main electricity features

#### A local commodity

- Electricity is non-storable.
- Electricity transmission satisfies specific laws.

# Storability

#### Comments

- Difficult to store large volume of electricity
- Generally, subscribed capacity consumption exceeds installed capacity.
- Example in France:  $\approx 250~\text{GW}$  of subscribed consumption capacity vs 128 GW installed capacity.
- Many technologies to store power (batteries, air compression).
- Present best way to store large volume of power: hydro-reservoir.
- Limited by pumping rate  $\approx$  0.74.

### Consequences

### On short-term (next hours)

- A too long excess of demand compared to production may first resolves in a decrease of frequency,
- ... and if not properly corrected, may lead to dramatic blackouts.
  - July 30th, 2012: India, 670 millions people.
  - August 13th, 2003: Ontario and North America, 50 millions people.
  - November 4th, 2006: UCTE, 15 millions people.
- $\Rightarrow$  Minute by minute real-time assessment of the equilibrium between consumption and production.
- The Transmission System Operator (TSO) is responsible for the electric system security and reliability.
- He manages the uncertainties on demand and production by a serie of operating reserves.

イロン イヨン イヨン イヨン



#### Value of Loss of Load or energy-unserved

 Give an estimate of the cost of a national black-out in France and deduce and estimate of the value of the energy un-served in €/MWh.

### Question

#### Value of Loss of Load or energy-unserved

- Give an estimate of the cost of a national black-out in France and deduce and estimate of the value of the energy un-served in €/MWh.
- Annual electricity gross consumption  $\approx$  450 TWh.

### Question

#### Value of Loss of Load or energy-unserved

- Give an estimate of the cost of a national black-out in France and deduce and estimate of the value of the energy un-served in €/MWh.
- Annual electricity gross consumption  $\approx$  450 TWh.
- Annual GDP 2,200 billions €.

### Question

#### Value of Loss of Load or energy-unserved

- Give an estimate of the cost of a national black-out in France and deduce and estimate of the value of the energy un-served in €/MWh.
- Annual electricity gross consumption  $\approx$  450 TWh.
- Annual GDP 2,200 billions €.
- Value of 1 MWh  $\approx \frac{2.2\cdot 10^{12}}{450\cdot 10^6}\approx$  4,900 €/MWh

### Reserves

#### Operating reserves

- An operating reserve is a generation that can be mobilised with a short-term notification.
- Operating reserves vary by response time. Three kinds of reserve:
  - $\bullet$  primary reserve: response time  $\leq$  20s. Automatic devices.  $\approx$  500 MW in France.
  - secondary reserve: response time  $\leq$  3mn. Automatic.  $\approx$  600 MW in France.
  - $\bullet$  tertiary reserve: response time  $\leq$  15mn. Manuel.  $\approx$  1,500 MW in France.
- The volume of each reserve may vary depending on the nature of the uncertainties on a particular electric system.
- They tend to grow in  $\sqrt{T}$ , where T is the time to mobilisation.



#### On mid-term basis

- Reliability assessment analysis: is there enough capacity to fullfill demand in the next months within a certain default probability?
- Means: changing planned outtage schedule, buy on the market, demand-side management policy
- Extreme way: load shedding.

#### On long-term basis

- Build new capacity to allow enough excess capacity.
- Demand-side management policy.
- Sound tarification.

### Transmission

#### Comments

- The transmission of electricity satisfies Kirchhoff's laws.
- The intensity at each node should be zero and the tension in each loop should be also zero.

#### Consequences

- In a meshed electricity network, power will go from one point to another using all available paths.
- $\Rightarrow$  Electricity flow interference.

## Interference between commercial flows and physical flows

#### Situation

A power producer G1 has client in node C whose consumption is 180 MW, while a power producer G2 has also a client in node C whose consumption is 90 MW. Each producer holds enough generation capacity and no production cost advantage.



Figure: Network physical capacity limits.

### Interference between commercial flows and physical flows



Figure: Desired commercial flows.



Figure: Physical flows. Congestion

### Transmission consequences on trading

#### Consequences

- $\bullet \Rightarrow$  Cross-border trading opportunities.
- Transfert capacities available for trading between countries need some generation hypothesis.
- In Europe, the available net transfert capacity (NTC) are managed and published by the ENTSO (European Network System Operator)
- Publicly available in her transparency platform (www.entso.net).
- New method for interconnexion allocation: flow-based.

# A large panel of technologies to produce electricity

#### Main generation technologies

- Gas: Combined Cycle, gas turbine
- Coal: Conventional, Advanced, Gasification
- Nuclear: Light Water, Pressurised Water, Boiling Water, Gen3+ (EPR)
- Hydroelectricity: run of the river, or gravitational
- Diesel
- Wind: onshore or offshore
- Photovoltaic: distributed or centralized, solar to electricity or heat concentration
- Biomass
- Marine (getting energy from the tides or the waves)

### Cost structure

International Energy Agency, Projected Costs of Generating Electricity – 2005 Edition.

| Investment | O&M                                                                                     | TTB                                                                                                                        | Lifetime                                                                                                                                             | Load Factor                                                                                                                                                                                 | Efficiency                                                                                                                                                                        |
|------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 400-800    | 20-40                                                                                   | 1-2                                                                                                                        | 20-30                                                                                                                                                | -                                                                                                                                                                                           | 0.5                                                                                                                                                                               |
| 1000-1500  | 30-60                                                                                   | 4-6                                                                                                                        | 40                                                                                                                                                   | -                                                                                                                                                                                           | 0.3                                                                                                                                                                               |
| 1000-2500  | 45-100                                                                                  | 5-9                                                                                                                        | 40                                                                                                                                                   | 85                                                                                                                                                                                          | 0.3                                                                                                                                                                               |
| 1000-2000  | 15-30                                                                                   | 1                                                                                                                          | 20-40                                                                                                                                                | 15-35                                                                                                                                                                                       | 0.3                                                                                                                                                                               |
| 1500-2500  | 40-60                                                                                   | 1-2                                                                                                                        | 20-40                                                                                                                                                | 35-45                                                                                                                                                                                       | -                                                                                                                                                                                 |
| 2700-10000 | 10-50                                                                                   | 1-3                                                                                                                        | 20-40                                                                                                                                                | 9-25                                                                                                                                                                                        | -                                                                                                                                                                                 |
|            | Investment<br>400-800<br>1000-1500<br>1000-2500<br>1000-2000<br>1500-2500<br>2700-10000 | Investment O&M   400-800 20-40   1000-1500 30-60   1000-2500 45-100   1000-2000 15-30   1500-2500 40-60   2700-10000 10-50 | Investment O&M TTB   400-800 20-40 1-2   1000-1500 30-60 4-6   1000-2500 45-100 5-9   1000-2000 15-30 1   1500-2500 40-60 1-2   2700-10000 10-50 1-3 | Investment O&M TTB Lifetime   400-800 20-40 1-2 20-30   1000-1500 30-60 4-6 40   1000-2500 45-100 5-9 40   1000-2000 15-30 1 20-40   1500-2500 40-60 1-2 20-40   2700-10000 10-50 1-3 20-40 | InvestmentO&MTTBLifetimeLoad Factor400-80020-401-220-30-1000-150030-604-640-1000-250045-1005-940851000-200015-30120-4015-351500-250040-601-220-4035-452700-1000010-501-320-409-25 |

Investment cost in USD05/KWe; O&M, operation and maintenance cost in USD05/KWe/year; Contruction time in years; Load factor in percentage.

### Heat rate

#### heat rate

 Fuel price p<sub>f</sub> in €/unit ; energy content e<sub>f</sub> of the fuel in MWh-heat/unit ; power plant efficiency ρ in MWhe/MWh-heat

heat-rate

• Fuel cost of the power plant =  $p_f \times \frac{1}{e_f \times e_f}$ 

#### From fuel price to fuel cost - example of a coal fired plant

- Coal price is  $P_c = 40$  in USD/tonne
- The energy content of 1 metric tonne of coal is 29.3 GJ.
- The efficiency of my current coal fired plant in my garden is 0.32
- What is the fuel cost of my coal fired plant in  $\in$ /MWh?
- Data: 1GJ = 0.28 MWh-heat ; change USD/EURO 0.915.

#### Heat rate — answer

#### From fuel price to fuel cost - example of a coal fired plant

- $P_c = 40 \times 0.915 \in /tonne = 36.6 \in /tonne$
- 29.3 GJ =  $0.28 \times 29.3$  MWh = 8.2 MWh.
- Fuel cost =  $\frac{36.6}{0.32 \times 8.2} = 36.6 \times 0.38 = 14 \in /MWh$ .

### Technical constraints

Order of magnitude for dynamical constraints of thermal generation plant - source: author

|         | Startup cost | Pmin | MST  | MRT  | RC       | MNS   |
|---------|--------------|------|------|------|----------|-------|
|         | kUSD         | MWe  | hour | hour | MWe/h    |       |
| Gas     | 0            |      | 38   |      | $\infty$ | -     |
| Coal    | 50           | 500  | 4-8  | 8    | 200      | -     |
| Oil     | 50           | 300  | 2-6  | 6-8  | 200      | -     |
| Nuclear | -            | 300  | 24   | 72   | $\infty$ | 30-40 |

Pmin: minimun technical power for a 1000 MW installed capacity plant; MST: minimum stoping time; MRT: minimun running time; RC: ramping capacity; MNS: maximum number of start-up and shut-down per year.

More data con be found in chapter 9 of *Expansion Planning Electricity Generating System*, TRS 241 from NEA, 1984.

# Unit commitment

#### Example

- For the next hour, the demand is equal to 290 MW.
- No reserve constraint. No production uncertainty. No dynamic constraints.
- Available plants with their cost structure

|            | Investment cost    | O&M cost    | Fuel cost    | Capacity |
|------------|--------------------|-------------|--------------|----------|
| Plant A    | 1000               | 50          | 50           | 100      |
| Plant B    | 1500               | 30          | 20           | 100      |
| Plant C    | 2500               | 100         | 0            | 100      |
| Plant D    | 500                | 5           | 80           | 100      |
| Plant E    | 2500               | 60          | 10           | 100      |
| You have t | o satisfy the dema | nd What nla | nts do vou a | -hoose?  |

# Unit commitment

#### Example

- Investment cost and operating cost have no effect on the scheduling decision.
- Plants are choosen according to their fuel cost.
- Merit order = C, E, B, A, D.
- Generation plan =  $\{C = 100, E = 100, B = 90\}$ .

#### Remark

- Most expensive plant running is B with fuel cost 20  $\in$ /MWh.
- Marginal cost of the system = cost to satisfy one more MWh of demand =  $20 \in /MWh$ .

### Generation technologies merit order



2

### Effect of a constraint of reserve

#### Example

- For the next hour, the demand is equal to 290 MW.
- No production uncertainty. No dynamic constraints. But there is a reserve constraint of 30 MW and plants have a minimum production constraint.
- Available plants with their cost structure

|         | Fuel cost | Capacity | Min Production |
|---------|-----------|----------|----------------|
| Plant A | 50        | 100      | 20             |
| Plant B | 20        | 100      | 20             |
| Plant C | 0         | 100      | 20             |
| Plant D | 80        | 100      | 20             |
| Plant E | 10        | 100      | 20             |
|         |           |          |                |

- You have to satisfy the demand and the reserve constraint. What plants do you choose?
- What is the marginal cost of the system?

### Effect of a constraint of reserve

#### Scheduling

- Minimun production constraint compels to start plant A.
- Least cost choice is to set plant A at minimun level, 20 MW.
- Generation plan = { C = 100, E = 100, B = 70, A = 20 }.

#### Remark

- Most expensive plant running is now A with fuel cost 50  $\in$ /MWh.
- Marginal cost of the system = cost to satisfy one more MWh of demand =  $20 \in /MWh$ .

### Effect of a dynamic constraint

#### Example

- For the next 3 hours, the demand is equal to be  $D_1 = 50$ ,  $D_2 = 19$ ,  $D_3 = 50$ . You have to satisfy the demands.
- No production uncertainty or reserve constraint. But now, there is a fixed start-up cost and a minimum production constraint.
- We have two power plants:

|         | Fuel cost | Capacity | Min Production | Start-up cost |  |
|---------|-----------|----------|----------------|---------------|--|
| Plant B | 10        | 100      | 20             | 1.000         |  |
| Plant C | 20        | 100      | 0              | 0             |  |

# Effect of a dynamic constraint

#### Questions

- What plants do you choose?
- What is the marginal cost of the system at time 2?

### Scheduling

- Demand is not high enough at time two to start plant B.
- Generation plan is now:
  - Time 1:  $\{C = 50\}$ .
  - Time 2: {*C* = 19}.
  - Time 3:  $\{C = 50\}$ .
- Total Generation cost =  $2.380 \in$ .

### Effect of a dynamic constraint

#### Remark

- Increasing demand by 1 MW at time 2 would allow to start plan B.
- New optimal scheduling would be:
  - Time 1:  $\{C = 0, B = 50\}$ .
  - Time 2:  $\{C = 0, B = 19\}$ .
  - Time 3:  $\{C = 0, B = 50\}$ .
- With total generation cost =  $2.200 \in$ .
- Increasing demand leads to a decrease of the cost
- Marginal cost at time 2 is negative.
- You should be ready to pay up to 180 € for a demand increase at time 2.

### The case of water

#### The value of stored water

- Releasing the water stored in dams has no cost.
- Nevertheless, the fact that there is a limited amount of water gives it a value (option value, usage value...)
- It should be used at the best possible moments, i.e. when it produces the maximun of economony of the generation cost.
- Optimal scheduling of water reservoir is performed using dynamic programming.
- Close connection to the optionality value of American options.

### Conclusion

- Economic dispatch relies on a small set of concepts (merit order, marginal cost, opportunity or option value)
- But, it requires optimisation models to compute the generation plan in realistic cases.