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We consider the following non conservative and nonlinear PDE
∂tu = 1

2

d∑
i,j=1

∂2
ij
(
(ΦΦt )i,j(t , x ,u)u

)
− div (g(t , x ,u)u) + Λ(t , x ,u)u

u(0,dx) = ζ0(dx) .

Aim 1 : Find a forward probabilistic representation of the

PDE
Aim 2 : Propose a numerical approximation of the solution
which is both

1 less sensitive to the dimension as a Monte Carlo scheme ;
2 able to concentrate the computing efforts in the region of

interest as a forward representation.
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Major contributions since the sixties

• Conservative PDE :
∫
Rd ut (x)dx = 1 for all t ∈ [0,T ]

∂tut =
1
2
∂2

xx (Φ(x ,ut )ut )− ∂x (b(x ,ut )ut ) , (Λ = 0) where{
Φ(x ,ut ) :=

∫
Rd K Φ(x , y)ut (dy) ,

g(x ,ut ) :=
∫
Rd K g(x , y)ut (dy) ,

Integral dependence on u and not point dependence on u.

• McKean introduced the notion of nonlinear SDE (NLSDE){
Yt = Y0 +

∫ t
0 Φ(Ys,us)dWs +

∫ t
0 g(Ys,us)ds

ut is the density of the law of Yt ,
(1.1)

• Propose an interacting particle system (IPS) whose the limit

is a sol. of PDE : propagation of chaos estimates.
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• Méléard et al. have studied, under smooth assumptions,

exist./uniqu. of{
Yt = Y0 +

∫ t
0 Φ(u(s,Ys))dWs +

∫ t
0 g(u(s,Ys))ds

ut is the density of the law of Yt
(1.2)

=⇒ point dependence on u, i.e. K Φ(·, y) = K g(·, y) = δy .

• They also proved that the regularized version{
Y ε

t = Y0 +
∫ t

0 Φ((Kε ∗ uε)(s,Y ε
s ))dWs +

∫ t
0 g((Kε ∗ uε)(s,Y ε

s ))ds

uεt is the density of the law of Y ε
t

strongly converges to (1.2) when Kε −−−→
ε→0

δ.
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• Benachour et al. have proved exist./uniq. of{
Yt = Y0 +

∫ t
0 Φ(u(s,Ys))dWs

ut is the density of the law of Yt ,
(1.3)

with Φ : x ∈ R 7→ x
k−1

2 , k ≥ 1.

Russo et al. have extended (1.3) for Φ only bounded and

measurable.

• This representation is associated to the Porous Media

Equation

∂tu =
1
2
∂2

xx (uΦ2(u)) .
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• Framework : Nonconservative nonlinear PDE of the form
∂tu = 1

2

d∑
i,j=1

∂2
ij
(
(ΦΦt )i,j(t , x ,u)u

)
− div (g(t , x ,u)u) + Λ(t , x ,u)u

u(0,dx) = ζ0(dx) ,

where

ζ0 is a probability measure on Rd ;

Φ : [0,T ]× Rd × R→ Rd×d , g : [0,T ]× Rd × R→ Rd ,

Λ : [0,T ]× Rd × R→ R are bounded and measurable

functions ;

u(0,dx) = ζ0(dx) means u(t , x)dx −−→
t→0

ζ0(dx) weakly

Nonconservative⇐⇒
∫

Rd u(t , x)dx = fct(t)⇐⇒ Λ 6= 0.
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• Our idea : consider the following representation
Yt = Y0 +

∫ t
0 Φ(s,Ys,u(s,Ys))dWs +

∫ t
0 g(s,Ys,u(s,Ys))ds

u(t , ·) := dνt
dx such that for any ϕ ∈ Cb(Rd ,R)

νt (ϕ) := E
[
ϕ(Yt ) exp

{∫ t
0 Λ
(
s,Ys,u(s,Ys)

)
ds
}]

,

Observations :∫
Rd u(t , x)dx = E

[
exp

{∫ t
0 Λ
(
s,Ys,u(s,Ys)

)
ds
}]

.

The measure νt needs the law of all the process Y

(∈ P(C([0,T ],Rd )) and not only marginals laws.

point dependence on u in Φ and g => technical difficulty.
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• Bypass the difficulty : consider a regularized version of

NLSDE, Yt = Y0 +
∫ t

0 Φ(s,Ys,u(s,Ys))dWs +
∫ t

0 g(s,Ys,u(s,Ys))ds

u(t , y) = E
[
K (y − Yt ) exp

{∫ t
0 Λ
(
s,Ys,u(s,Ys)

)
ds
}]

.

Integral dependence on L(Y·) ∈ P(Cd ).

u depends on itself =⇒ main difference with the cases

already covered in the literature.

Formally, Λ = 0 and K = δ : cases already developed by

Méléard and al. (i.e. conservative case).
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Main results of existence and uniqueness
1 "Lipschitz" case : If

ζ0 admits a 2nd order moment,
Φ, g, Λ are bounded, uniformly Lipschitz w.r.t. t ,

there is a unique strong solution (Y ,u).
2 "Semi-weak" case : If

ζ0 admits a 2nd order moment,
Φ, g are bounded and uniformly Lipschitz w.r.t. t ,
Λ is only continuous,

there is a (non-unique) strong solution (Y ,u).
3 "Weak" case : If

Φ, g, Λ are bounded and continuous

there is a weak solution (Y ,u).
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Remark
Existence and uniqueness of u is obtained for all

m ∈ P(Cd ).

Only the hypothesis on Λ are used for u(= bounded and

uniformly Lipschitz w.r.t. t) and not those of Φ, g.

Uniqueness is lost if Λ is only continuous ! ! !
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Stability properties for um(t , y) := u(m, t , y) under various

norms :

•∀ (m,m′) ∈ P(Cd )× P(Cd ),∀ (t , y , y ′) ∈ [0,T ]× Rd × Rd :

|um(t , y)− um′(t , y ′)|2 ≤ CK ,Λ(T )
[
|y − y ′|2 + |W̃t (m,m′)|2

]
,

where the map

(m,m′) ∈ P(Cd )× P(Cd ) 7→ |W̃T (m,m′)|2

is the 2-Wasserstein distance on the space of Borel probability

measures on Cd , s.th. for all t ∈ [0,T ],

|W̃t (m,m′)|2 := inf
µ∈Π̃(m,m′)

∫
Cd×Cd

(
sup

0≤s≤t
|Xs(ω)−Xs(ω′)|2∧1

)
dµ(ω, ω′) .
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•The function

(m, t , x) 7→ um(t , x)

is continuous on P(Cd )× [0,T ]× Rd where P(Cd ) is endowed

with the topology of weak convergence.

• Suppose here that K ∈W 1,2(Rd ).

For any t ∈ [0,T ], (m,m′) ∈ P2(Cd )× P2(Cd ),

‖um(t , ·)− um′(t , ·)‖22 ≤ C̃K ,Λ(T )|Wt (m,m′)|2 ,

where ‖ · ‖2 is the standard L2(Rd ) or L2(Rd ,Rd )-norms.
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• Suppose (additionally) that F(K ) ∈ L1(Rd ). Then

∃ C̄K ,Λ(t) > 0 for all (m, t) ∈ P(Cd )× [0,T ],

E[‖uSN (ξ)(t , ·)− um(t , ·)‖2∞] ≤ C̄K ,Λ(T ) sup
ϕ∈Cb(Cd )
‖ϕ‖∞≤1

E[|〈SN(ξ)−m, ϕ〉|2] ,

where

SN(ξ) :=
1
N

N∑
i=1

δξi

for (ξi ,1 ≤ i ≤ N) given continous processes.
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• Existence in Semi-weak case and Weak case : Yt = Y0 +
∫ t

0 Φ(s,Ys,u(s,Ys))dWs +
∫ t

0 g(s,Ys,u(s,Ys))ds

u(t , y) = E
[
K (y − Yt ) exp

{∫ t
0 Λ
(
s,Ys,u(s,Ys)

)
ds
}]

,

admits a solution in semi-weak and weak case.

The proof consists in

1 regularizing the coefficients Φ, g, Λ with a mollifier (ϕn)n∈N.

2 using the Lipschitz / Semi-weak case result for mollified

coefficients =⇒ existence of (Y n,un)n∈N.
3 convergence of (un)n and identification of the limit.

4 identify the limit of (Y n) (stability of SDEs / martingale

formulation).
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• Link with PIDE : Ito’s formula implies that (Y ,u) solution of

(regularized) NLSDE is related to the partial integro-differential

equation (PIDE)
∂tv = 1

2

d∑
i,j=1

∂2
ij
(
(ΦΦt )i,j(t , x ,K ∗ v)v

)
− div (g(t , x ,K ∗ v)v)

+Λ(t , x ,K ∗ v)v

v0 = ζ0 ,

by the relation

ut (·) = (K ∗ v t )(·) =

∫
Rd

K (· − y)v t (dy) .
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• Interacting Particle System (IPS)

For fixed i.i.d. r.v. (Y i
0)i=1,··· ,N and (W i)i=1,··· ,N a family of

independent Brownian motions, the IPS ξ := (ξi,N)i=1,··· ,N is

defined by
ξi,N

t = Y i
0 +

∫ t
0 Φs(ξi,N

s ,uSN (ξ)
s (ξi,N

s ))dW i
s +

∫ t
0 gs(ξi,N

s ,uSN (ξ)
s (ξi

s))ds

uSN (ξ)
t (x) = 1

N
∑N

j=1 K (x − ξj,N
t ) exp

( ∫ t
0 Λ(r , ξj,N

r ,uSN (ξ)
r (ξj,N

r ))dr
)
,

with SN(ξ) :=
1
N

N∑
j=1

δξj,N , empirical measure associated to ξ.

For such systems, propagation of chaos ≡ "asymptotic

independence" of the components (ξi)i=1,··· ,N when the size N

(=number of components) goes to +∞.
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Main ideas :

Transform a d-dimensional (regularized) NLSDE into a

d × N-dimensional classical SDEs.

The function uSN (ξ) can be seen as the "mixing/interaction

term". It can be written

uSN (ξ)
t (x) = F (t , x , ξ1

t , · · · , ξN
t , (ξ1

·∧t ), · · · , (ξN
·∧t )︸ ︷︷ ︸

past of the trajectories

) .

Dimension of the state space (=(Rd )N ) depends on N 6=
ω 7→ SN(ξ(ω)) ∈ P(Cd ) with dim(P(Cd )) =∞.
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If ξ := (ξi)i=1,··· ,N are i.i.d. Rd -valued r.v. according to

µ ∈ P(Rd ),

〈
SN(ξ), ϕ

〉
=

1
N

N∑
i=1

ϕ(ξi)
p.s.−−−−−→

N→+∞

〈
µ, ϕ

〉
,

by the Strong law of large numbers.
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Existence/uniqueness of such IPS

• Non-anticipative property : ∀(s, x) ∈ [0,T ]× Rd ,

uSN (ξ)
s (x) = uSN ((ξr , 0≤r≤s))

s (x).

=⇒ all integrands of IPS are adapted and so, Itô’s integral is

well-defined.

• Lipschitz property of integrands :

Lipschitz property of m 7→ um implies that

(s, ξ̄) ∈ [0,T ]× (Cd )N 7→ Φ(s, ξ̄i,N
s ,uSN (ξ̄)

s (ξ̄i,N
s ))

and

(s, ξ̄) ∈ [0,T ]× (Cd )N 7→ g(s, ξ̄i,N
s ,uSN (ξ̄)

s (ξ̄i,N
s ))

are Lipschitz.
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Consequently, classical results for path-dependent SDEs give

existence/uniqueness.
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Coupling technique :

Let (Y i)i=1,··· ,N be solutions of Y i
t = Y i

0 +
∫ t

0 Φ(s,Y i
s,umi (s,Y i

s))dW i
s +

∫ t
0 g(s,Y i

s,umi
(s,Y i

s))ds

umi
(t , x) = E

[
K (x − Y i

t ) exp
( ∫ t

0 Λ(r ,Y i
r ,umi

(s,Y i
s)
)]

,

where (W i)i=1,··· ,N is the same family of independent Brownian

motions driving the IPS (ξi,N)i=1,··· ,N . Then,

(Y 1, · · · ,Y N) are i.i.d. and their common law will be

denoted by m0.
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Theorem

Under some assumptions, the following inequalities hold :

E[‖uSN (ξ)
t − um0

t ‖
2
∞] ≤ C

N

E[ sup
0≤s≤t

|ξi,N
s − Y i

s|2] ≤ C
N

E[‖uSN (ξ)
t − um0

t ‖
2
2] ≤ C

N
,

for all i ∈ {1, · · · ,N} and where C does not depend on N.
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Time discretization version of the IPS

To simplify notations, we set g ≡ 0.

• Euler Scheme : for k = 1, · · · ,n
ξ̃i,N

tk+1
= ξ̃i,N

tk + Φ(tk , ξ̃
i,N
tk , ṽ tk (ξ̃i,N

tk ))N (0, δt)

ξ̃i,N
0 = Y i

0

ṽ tk+1(y) = 1
N
∑N

j=1 K (y − ξ̃j,N
tk+1

)e
{∑k

p=0 Λ(tp,ξ̃
j,N
tp
,ṽ tp (ξ̃j,N

tp
))δt

}
,

where 0 ≤ t0 < · · · < tk = k ∗ δt < · · · < tn ≤ T is a regular time

grid.
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Theorem
Under Lipschitz continuity assumption, we have

E[‖ṽt − uSN (ξ)
t ‖2∞] + sup

i=1,···N
E

[
sup
s≤t
|ξ̃i,N

s − ξi,N
s |2

]
≤ CK ,Λ,T δt .

and the Mean Integrated Squared Error (MISE) verifies

E[‖ṽt − uSN (ξ)
t ‖22] ≤ CK ,Λ,T δt .
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Remark
The constant CK ,Λ,T does not depend on N and δt .

By the two preivous Theorems, we have for all t ∈ [0,T ]

E
[
‖ṽt − um0

t ‖2∞
]
≤ C

(
δt +

1
N

)
.
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Initialization for k = 0
1 Generate (ξi

0)i=1,..,N i.i.d.∼ v(0, x)dx ;
2 Set Gi

0 = 1, i = 1, · · · ,N ;
3 Set ṽ0(·) := v(0, ·) ;

Iterations for k = 1, ..., n-1

Independently for each particle (ξ̃j,N
k )j=1,···N ,

ξ̃j,N
k+1 = ξ̃j,N

k + Φ(tk , ξ̃
j,N
k , ṽk (ξ̃j,N

k ))N (0, δt)

Set

Gj
k+1 := Gj

k × exp
(

Λ(tk , ξ̃
j,N
k , ṽk (ξ̃j,N

k ))δt
)

;

Set ṽk (·) =
1
N

N∑
j=1

Gj
k × Kh(· − ξ̃j,N

k−1).
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In all the sequel, we expose an empirical analysis for
which the assumptions of the theorems are not
necessarily satisfied.

Since
E
[
‖ṽt − uSN (ξ)

t ‖2∞
]
≤ C δt

where C := C(‖K‖∞, ‖Λ‖∞,LK ,LΛ, ‖∇K‖2,T ), notice
that we neglect the time discretization in the present
empirical analysis.
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Aim : show how the particle system can be used to estimate u,

solution of the PDE
∂tu = 1

2

d∑
i,j=1

∂2
ij
(
(ΦΦt )i,j(t , x ,u)u

)
− div (g(t , x ,u)u) + Λ(t , x ,u)u

u(0,dx) = ζ0(dx) .

Let us consider the interacting particle system ξi,N,ε, where

K = Kε for ε > 0.

ξi,N,ε
t = Y i

0 +
∫ t

0 Φs(ξi,N,ε
s ,uSN (ξε)

s (ξi,N,ε
s ))dW i

s

+
∫ t

0 gs(ξi,N,ε
s ,uSN (ξε)

s (ξi,N,ε
s ))ds ,
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where

uSN (ξε)
t (x) =

1
N

N∑
j=1

Kε(x − ξj,N,ε
t )e

∫ t
0 Λ(r ,ξj,N,ε

r ,uSN (ξε)
r (ξi,N,ε

r ))dr .

We are going to try to show this empirically. To this end, we

consider the Mean Integrated Squared Error (MISE) that we

decompose as the Variance and the Bias,

MISEt (ε,N) := Vt (ε,N) + B2(ε,N)

= E
[
‖uSN (ξε)

t − E[uSN (ξε)
t ]‖22

]
+ E

[
‖E[uSN (ξε)

t ]− vt‖22
]
.

Ideally, we would like that

E[uSN (ξε)
t ] ∼ um0,ε

t .
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If the propagation of chaos holds, it means that the particles

ξN,ε are close to an i.i.d. system according to m0, which is the

common law of the processes Y i , 1 ≤ i ≤ N. Then, in the

particular case where Λ(t , x ,u) := Λ(t , x),

E[uSN (ξε)
t ] =

1
N
E
[ N∑

j=1

K (· − ξj,N,ε
t ) exp

(∫ t

0
Λ(r , ξj,N,ε)dr

)]
≈ E

[
Kε(· − Y 1,ε

t ) exp
(∫ t

0
Λ(r ,Y 1,ε)dr

)]
= um0,ε

t

We expect to observe the same behavior for the case

Λ = Λ(t , x ,u) depends on u.
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Finally,

Vt (ε,N) ≈ E
[
‖uSN (ξε)

t − um0,ε
t ‖22

]
and

B2
t (ε,N) ≈ B2

t (ε) := E
[
‖um0,ε

t − vt‖22
]
.

In other words,

Vt (ε,N) corresponds to the convergence of the particles

system (i.e. when N → +∞, for fixed ε > 0) ,

and

B2
t (ε,N) corresponds to the convergence of the regularized

NLSDE (i.e. when ε→ 0) .
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Variance Analysis (1) : Behavior w.r.t. N

Simulations given below for d = 5, T = 1 give us

Vt (ε,N) ∼ 1
Nεd
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Time discretization scheme
Simulations results

Variance Analysis (2) : Behavior w.r.t. ε :

Simulations given below for d = 5, T = 1 give us

Vt (ε,N) ∼ 1
Nεd
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Bias Analysis (2) :

Simualtions give us B2(ε) ∼ ε4
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FIGURE: Bias error as a function of ε, with d = 5, t = T = 1.
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To go one step further ...

Temptative of generalization : solving numerically PDE of the

following form :{
∂tu = Ltu + uΛ(t , x ,u,∇xu))

u(0, ·) = u0 ,
(3.4)

with

Lt =
1
2

d∑
i,j=1

Φij(t , x)∂i,j +
d∑

j=1

gj(t , x)∂j .

We propose the following scheme (forward approach) :

1 Find a probabilistic representation of the PDE

2 Use the associated interacting particle system (IPS)

3 Deduce the (deterministic) solution u of (3.4).
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To go one step further ...

Probabilistic Representation :
Yt = Y0 +

∫ t
0 Φ(s,Ys)dWs +

∫ t
0 g(s,Ys)ds

u(t , ·) is such that ∀ ϕ ∈ Cb(Rd ),〈
u(t , ·), ϕ

〉
= E

[
ϕ(Yt ) exp{

∫ t
0 Λ(s,Ys,u(s,Ys),∇xu(s,Ys))}

]
.

(3.5)

Remark
There is no McKean interaction (i.e. u) in the diffusion

(Φ,g).

All "nonlinearities" are in Λ. In particular, there is a new

dependence w.r.t. ∇u.
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To go one step further ...

Particle system : For ε > 0, N ∈ N?, the associated particle

system given by

ξi,ε,N
t = Y0 +

∫ t

0
Φ(s, ξi,ε,N

s )dW i
s +

∫ t

0
g(s, ξi,ε,N

s )ds,

and

uε,N(t , x) =
1
N

N∑
i=1

Kε(x−ξi,ε,N
t )Vt (ξ

i,ε,N ,uε,N(ξi,ε,N),∇xuε,N(ξi,ε,N)),
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To go one step further ...

where for t ∈ [0,T ], φ ∈ C([0,T ]× Rd ,R),

Vt (φ,uε,N(φ),∇uε,N(φ)) = exp
{∫ t

0
Λ(s, φs,u

ε,N
s (φs),∇uε,Ns (φs))

}
.

Remark

(W i ,1 ≤ i ≤ N) indpdt BM =⇒ (ξi,ε,N ,1 ≤ i ≤ N) i.i.d. particles.

Convergence result :

∀ t ∈ [0,T ], lim
ε→0,N→+∞

uε,N(t , ·) = u(t , ·) in L1(Rd ),

for a well-choosen tradeoff between ε and N.
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To go one step further ...

Numerical example : Burgers Equation in dimension 1{
∂tu = ν∂xxu − 1

2∂x (u2)

u(0, ·) = u0 .
(3.6)

The solution is known explicitely and given by

u(t , x) =
E[∇U0(x + νWt )e

−U0(x+νWt )

ν2 ]

E[e−
U0(x+νWt )

ν2 ]

,

with u0 = ∇U0 (see Cole-Hopf transformation).
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To go one step further ...

Burgers equation (d=1)
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To go one step further ...

Thank you for your attention
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