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Abstract

At Eurocrypt’96, J.Patarin proposed a signature and authentication scheme based on
the Isomorphism of Polynomials with one Secret (IP1S) problem [P96]. Motivated by
the cryptanalysis of these schemes, we propose in this paper a new efficient algorithm,
outperforming all the previously known algorithms for solving the linear variant of the
IP1S problem, also named Polynomial Linear Equivalence (PLE) problem in [LP].

1 Introduction

The Polynomial Linear Equivalence (PLE) problem [LP] can be outlined as follows: given mul-
tivariate polynomials a1 (z1,...,%n), ..., 0u(Z1,...,2Zn) and by (1, .., Zn),---, by(Z1, ..., Tp)
over a finite field F;, find - if any - an invertible matrix S with components in F,, such that
bi(z1,...,zn) = ai((z1,...,2,)S), for all 4,1 <1i < u.

From a theoretical point of view, it has been shown in [CGP], that the PLE problem is not
likely to be NP-hard. But as evidence of its hardness, it has also been proved in [CGP], that
it is at least as difficult as the well known Graph Isomorphism problem.

Despite its cryptographic interest, it is only very recently that an attack against the PLE
problem, better than the exhaustive search, has been designed. Indeed Geiselmann, Meier
and Steinwandt in [GMS], were the first to propose an algorithm for solving this problem.
Soon after, Levy-dit-Vehel and Perret proposed an improvement of this algorithm which uses
Grobner Bases [LP).

Motivated by the cryptanalysis of signature and authentication scheme whose security relies
on the difficulty of the PLE problem [P96], we propose in this paper a new efficient algorithm
for solving it, based on differential properties. The main advantage of this approach is to
translate the PLE problem into a simple linear algebra problem.

2 Preliminaries

2.1 Notations

We introduce in this part the notations that we will use throughout this paper. We denote
by F, the finite field with ¢ = p" elements (p prime, r > 1), by Z the vector (z1,...,zy), by

F,[Z] = Fy[z1,. .., 2] the polynomial ring in the n indeterminates z1, ..., z, over F, and f(Z)
stands for f(z1,...,%s). Let g(Z) and hi(&), ..., hn(Z) be polynomials. Then by g(k(Z)), we
shall mean the functional composition g(hy(%),...,h,(Z)) of g and the h;s.



A monomial is a product of a field element by a product of the variables x1,...,z,. We shall
define the total degree of a monomial cz!" - - - zh", with ¢ € F, and (u1,...,un) € N?, by the
sum Y 7 | p;. The leading monomial of f is the biggest monomial among the monomials of f
(with respect to some admissible ordering on the monomials) and the degree of this polynomial
is the total degree of its leading monomial. A polynomial f € IF,[Z] is homogeneous of degree
d if every monomials appearing in f has total degree d. An important fact is that every
polynomial can be written uniquely as a sum of homogeneous polynomials. Namely, given
f € B[] then f = ", f9, with f(9 the sum of all the monomials of f of total degree d.
Notice that each f(® is homogeneous and we call f(¥ the dth homogeneous components of f.
We shall denote by M,, ,(IF,) the set of n x u matrices whose components lie in F,, as usual,

GL,(F,) denote the invertible matrices of M, ,,(F;) and AGL,(F,;) denote the cartesian
product G L, (Fy) x Fy. For M € My, ,(F;), we shall denote by Kerr,(M) = {7 € Fy : 1M =
0_1;} the left kernel of M and by Kergr(M) = {7 € Ty : Mzl = O:LT} the right kernel of M,
0y (resp. 0,) being the null vector of Iy (resp. 7).
Let f =Y, a;5° € Fy[z]. The formal derivative of f is the polynomial % = Y iaizt! €
F,[z]. More generally, when f € F,[z1,...,zy], the partial derivatives of f, denoted g—;;, 1<
i < n, are defined by considering f as a polynomial in z; with coefficients in F, [z; ..., z;—1, Zit1,
., Tp]. It is not hard to verify that the 8/0z;’s commute with each other. Finally the partial

derivatives of order 2 of f, denoted %, 1,7,1 < 14,7 < n, are defined by %afwj = % (667];)'
The property of the partial derivatives that we intensively use in this paper is the chain rule

condition, i.e. :

ag(@) @=> a—?(ﬁ(f))az? (%), for all 4,1 < i < n.

2.2 The PLE and PAE problems

Let @ = (ai,...,ay) and b= (b1,...,by) be two u-tuples of polynomials over F,[Z]. We shall
say that these polynomials are linear-equivalent, denoted @ = L[_): if there exists S € G L, (F;)
such that b;(Z) = a;(Z£9), for all i,1 <7 < u. We shall call such a matrix a linear equivalence
matriz between @ and b. In the sequel, for convenience, we shall denote the equations bi(Z) =
a;(£S), for all i,1 < i < u by b(Z) = @(#S). The Polynomial Linear Equivalence (PLE)
problem is then the one of finding - if any - a linear equivalence matrix between @ and b.

A natural extension is to consider bijective affine mappings over the F,-vector space Fy .

We shall say that two sets of polynomials @ and b are affine-equivalent, denoted @ =4 5, if
there exists (S,7) € AGL,(F;) such that b(Z) = @(@S +T). We call such a pair an affine
equivalence pair between a and 5, S being the linear part of this pair and T being its affine
part. The Polynomial Affine Equivalence SPAE) problem is then the one of finding - if any -

an affine equivalence pair between @ and b.

This last problem was first introduced in [P96] under the name Isomorphism of Polynomials
with one secret problem, in reference to the well known graph isomorphism problem. We
believe that this name is not well suited. Remember that two graphs are said to be isomorphic
if and only if they are identical after a permutation of the vertices of one of the graphs. In
such a setting, isomorphism is defined by a permutation and permutations are a special kind



of bijective mappings. The problems which are addressed in [P96] and here are much more
general than the one of finding a permutation between two sets of polynomials. For this
reason, we think that the name PLE and PAE we chose are better suited. Moreover, PLE
and PAE are equivalence relations, as can be seen easily.

3 Property

3.1 Structural Properties

Let us introduce some new notations. We shall denote by ad = (agd), ... ,a&d)) and b =
(bgd),...,bqu)) the dth homogeneous components of the polynomials of @ and b. For all

3,1 <1 < wu, aZ(D") (resp. bgDi)) denotes the monomials of highest total degree D; of the
polynomial a; (resp. b;). Finally, we call @* = (ang), e ,a&D")) and b* = (bng), e ,b&D“)),
the homogeneous components of highest total degree of the polynomials of @ and b. Notice
that if b(Z) = @(ZS), for some § € GL,(Fy), then for each 7,1 <4 < u, a; and b; must have
the same highest total degree D;.

-

Property 1. Let D = mazi<i<y(D;). If there exists S € GLy(F,), such that b(Z) = d(ZS),
then:
59 (z) = @D (Z8), for all d,0 < d < D.

Proof. to complete
From this property, we deduce the two following corollaries.

Corollary 3.1. Let A and B be the n X u matrices such that @V (%) = £A and bV (Z) = ZB.
If b(&) = @(ZS), for some S € GLy(F,), then:

i) B=SA,

ii) Kerp(A) = (Kerr(B))S.

-

Proof. According to property 1, the fact that g(a'c') = d@(Z9), for some S € GL,(F,), implies
that 80 (%) = @) (£S), which can be rewritten as B = LSA, ie. B = SA. From this, we
can now prove that Kery(A) = (Kery(B))S. Indeed, let k, € Kerp(A), we have k,S™'B =
koA = 0y, therefore k,S™' € Kery(B), i.e. ko € (Kerr(B))S.

Now, let k' = kS € (Kerr(B))S, we have 0, = k,B = k'A and we get that KA = 0, ie.
K € Kerp(A). O

Corollary 3.2. For all i,1 < i < u, we denote by Qq, (resp. Q) the unique n X n matriz
such that @2 (Z) = 2Qq, & (resp. b2 () = ZQy,zT). If there exists S € GLy(F,), such that
b(Z) = @(ZS), then for all 4,1 <i < u:

i) Qp; = SQq, 57,

i) Kerp(Qq;) = (Kerr(Qy,))S.

Proof. According to property 1, the fact that b(Z) = @(ZS)U, for some (S,U) € GL,(Fy) X
GL,(Fy), implies that b (2) = @@ (2S). Therefore, for all 4,1 < i < u, we have 7Qp, 7T =
j’SQaiST:F:'T, ie. Qp = SQaiST. to complete

-

Property 2. If b(Z) = @(ZS + T), for some (S,T) € AGL,(F,), then b*(Z) = a*(&3).



- -

Proof. The fact that b(Z) = a(ZS + T), for some (S,T) € AGL,(F,) , implies that b(Z —
TS~ —V = a@(ZS). Therefore, for each i,1 < i < u, the D;th homogeneous component
of (c‘i(a‘c’S))i is equal to (c‘i’"(a‘:’.S'))z We conclude by noticing that the D;th homogeneous
component of (g(ai' - TS_l))Z. is equal to (I_)""(a_:'))Z 0
The next property is an extension of a result given in [?].

3.2 Relations to Group theory

We investigate in this part the relations between the PLE problem and some results in group
theory. Let us first recall that for allu > 1 the linear group G L, (IF;) acts on the Fy [Z]-modulus
F, []*, through the following map:

$u: GLy(Fy) x Fg[Z]* — T,
(G, (7)) = p(ZS)

Therefore for p(Z) € Fy[Z], we shall denote by Gy = {G € GL,(Fy) : pi(Z) = pi(Z£G),Vi,1 <
i < n} the stabilizer of p(Z) (under the action of GL,(F,;)) and by Oy = {p(ZG) : G €
GL,(Fy)} its orbit. We show in this part that the the number linear equivalence matrices
between @ and [_)', denoted N (@, H) hereafter, is strongly related to the cardinality of the
stabilizers Gz and Gj.

Proposition 1. If Gz is trivial and if 5(5:') = d(ZS), for some S € GL,(F,), then S is unique.

Proof. Suppose that there exists two distinct invertible matrices M and M’ such that 5(5:') =
@(ZM) and b(Z) = @(&M’). From this, we deduce that @(ZM) = @(ZM’), which implies that
a(M—'M') = @(%) and thus M~' M’ lies in G5. Since G is trivial, we get that M~'M’
must be equal to the identity matrix I,, € GL,(F,) and therefore M’ = M, contradicting the
assumption. O

Remark 3.1. Since the relation =1, is symmetric, the conclusion of this proposition remains
unchanged if we substitute Gz by Gj.

In fact, we have the more general result:
Proposition 2. If |G5| < k, then N'(@,b) < k.

Proof. Suppose that there exists k£ + 1, 2 by 2 distinct invertible matrices {M;}1<i<k+1
such that for all 4,1 < ¢ < k+ 1, b(&) = @(ZM;). One sees at once that for a fixed i,
a(ZM;) = @(#M;) for all j,1 < j < k + 1. Hence, the matrices {M; ' M;}1<j<k+1 lies in Gj.
Moreover, since the matrices {Mi}lsisk+1 are distinct and invertible then the k£ + 1 matrices
{M; 'M;}1<j<k11 are also distinct. From this it follows that we can find two distinct indices
1 and j, such that M[lM i = I, and therefore M; = M;. Contradicting our hypothesis, since

we have supposed that the matrices were distinct. O
Remark 3.2. This proposition is also true, if we substitute Gz by Gy.

The strong relation between the linear equivalence matrices between @(z) and b(Z) and theirs
stabilizers:

Proposition 3. If @ =, b then Gz = SGES_l, for any linear equivalence matriz between

-

a(Z) and b(Z).



Proof. Since @ =g, b, there exists S € GL,(F,) such that @(Z) = b(£S). It follows that b(Z)
lies on the orbit of @(Z). Therefore, it is well known that the stabilizers of d(Z) and b(Z) are
conjugate and more precisely Gz = SG3S -1

4 Differential Properties

In the one variable case (i.e. n = 1), the PLE problem can be reformulated as follows: given
polynomials a1(z),...,a,(z) and bi(z),...,b,(z) in F,[z], find - if any - s € F,, such that
the equality b;(z) = a;(xs) holds for all 4,1 < ¢ < u. When computing the formal derivatives

of these equalities, we get that s must be‘ibguch that %( ) = s‘fia’( s), foralli,1 < i < u.

Thus, if @(0) # 0, for some 4, then s = d_m,—m). In the first theorem, we show that this idea
d T 0)

can be extended to multivariate polynomials.

Theorem 1. If there exists S € GLy(Fy), such that b(&) = a(zS), then J3(Z) = Jz(2S)S",

Jz(2S) = 6“’( S) E;?:L and J3(%) = gg; (Z) E;S;L being the Jacobian matrices of @

evaluated in S and ofg evaluated in ¥ resp.
Proof. Since b(Z) = @(ZS), the chain rule gives that, J;(Z) = Jz(£S)Jzs(Z) = Jz(#5)St. O

If we return to the one variable case, when 0 is a common zero of the polynomials {2 (z)}1 <<y,
then for solving the PLE problem, one can consider the second order (formal) derivatives. In-

deed, bj(z) = a;(xs), for all 4,1 < ¢ < u, implies that ‘fiib;' (z) = 52 ‘f;‘? (zs), for all i,1 <i < u.

Therefore, if d2“2" 0) # 0, for some i, then s is recovered by computing the roots of the equation
) dx ’ ’ g

P 'f;%i (0) — ‘f:waz" (0) = 0. This idea can be also adapted to the multivariate case.

Theorem 2. If there exists S € GLy(Fy), such that b(Z) = @(&S), then:
Hy, (%) = SH,,(£S)S", for alli,1 <i < u.

H, (£S) = {az o (#S) }hi<jh<n and Hy (%) = {amjamk( T) }1<jk<n being the Hessian matrices
of a; evaluated in S and of b; evaluated in T resp.

Proof According to theorem 1, we know that if b(&) = @(&S), for some S € GL,(F, ), then

Jp(@)ij = Dop—1 Ja(ZS)iksjk, foralli,1 <4 < wandforall j,1 < j < n. Let s1,...,5,
be the coordinate functions of ZS (i.e. if S = {s;;}1<i,j<n, then s;(Z) = 377, ;s for all
i,1 <14 < u). By derivating one more time, we get that for all 4,1 <14 < u:

o _ - 8%a; Bsm
Hy, (%), = 63: Bxl ZSJ’ Z Bxk&vm Bxl (@)
Hy (7)1 = Zsj,k Z Ho (Z8)hmSim = Zsj,k(Hai (25)8Y)yy, for all j,1,1 < 4,1 < n.
=1
Hence, Hy, (Z) = SH,, (£5)S?, for all i,1 < i < u. O

Naturally, one can also consider partial derivatives of order higher than 2. But in practice,
we don’t know how to use the relations given by these high order partial derivatives for our
algorithm.
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