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Abstract

While convertible bond models recently have come to rest on solid theoretica foundation,
issues in modd calibration and numericd implementation ill remain. This paper
highlights and quantifies a number of such issues, demondtrating, among other things, that
naive cdibration approaches can lead to highly significant pricing biases. We suggest a
number of techniques to resolve such biases. In particular, we demonstrate how
applications of the Fokker-Planck PDE allows for efficient joint calibration to debt and
option markets, and aso discuss voldtility smile effects and the derivation of forward PDES
to embed such information into model cdlibration. Throughout, we rely on modern finite
difference techniques, rather than the binomial or trinomia trees that so far have dominated
much of the literature.
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1. Introduction.

While it has long been redized that a framework for pricing convertible bonds
should idedly incorporate dements of both equity and debt modeling, practicd efforts in
this direction have long been somewhat lacking. In particular, there seems to have been
consderable confuson and disagreement about how to appropriately and consstently
aoply a default-adjusted discount operator to cashflows generated by convertible bonds.
Ealy papers with an ad hoc gpproach to discounting include McConel and Schwarz
(1986), Cheung and Nelken (1994), and Ho and Pfeffer (1996). Many of these modes do
not explicitty modd bankruptcy, and as compensation uniformly apply a somewhat
arbitrary risky spread to the risk-free discount rate. More recent papers recognize that
equity and debt components of convertible bonds are subject to different default risk and
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attempt more nuanced schemes. An often-quoted example is Tavioritis and Fernandes
(TF) (1998) (later extended by Yigitbasioglu (2001) to multiple factors), which
effectivdy splits the convertible bond into cash and equity components, with only the
former being subject to credit risk. A related approach was promoted by Goldman Sachs
(1994) and involves careful weighting of risky and risk-free discounting in a binomid
latice. The TF splitting scheme is andlyzed in detall in Ayache et al (2002) who conclude
that it is inherently unsatisfactory due to its unredisic assumption of stock prices being
unaffected by bankruptcy.

With the advances of credit derivatives theory, in particular the reduced-form
approach of Jarrow and Turnbull (1995), the foundation for convertible bond models has
recently improved dgnificantly. A key development has been the incluson of stock price
dynamics that explicitly incorporate default events, as wdl as the explicit modeing of
stock and bond recoveries in default. Most commonly, default is modeled as a Poisson
event that drives stock prices into some low vaue and coupon bond prices (and
convertible bonds) into a certain, fixed pecentage of ther notiond vaues.
Representative, and quite sSmilar, papers include Davis and Lischka (1999) and
Takahashi et al (2001). See Grimwood and Hodges (2002) and Olsen (2002) for
comparisons of the gpproach in these papers againg other modds in the literature. In
recent work, Ayache et al (2002) lay out a solid bass for the numerica computation of
convertible bond prices, discussng in detal how modern finite-difference methods can
replace the computationdly sub-optima binomid and trinomid trees that pervade most
of the literature.

With theory and computing techniques now on a rdaivey solid basis, it remans
to be determined how to best parameterize modes for convertible bonds. While a number
of gspecific parameterizations have emerged in the literature, eg. Muromachi (1999),
Bloch and Mirdles (2002), and Arvanitis and Gregory (2001), these are typicaly based
on empirical observations and do generdly not result in a modd that will price any
particular instrument close to market. In fact, as we shdl see, when gpplied to such
ample ingruments as stock options and coupon bonds, naively parameterized convertible
bond models can yidd surprisingly large price biases. In a trading setting where we might
be interested in reative vaue plays, or perhgps want to hedge dl or pieces of the
convertible bond with options and draight debt (or credit derivetives), this Studaion is
obvioudy not ideal.

In this paper, we will discuss the parameterization and cdibration of convertible
bond models to quoted prices of draight debt and equity options. That is, in the time-
honored tradition of financid engineering we will atempt to “imply” parameters from
market quotes on actively traded securities. The treatment of this topic will proceed as
follows in Section 2, we outline our process assumptions and discuss a number of
technical issues. Section 3 discusses numerica implementation and analyzes a number of
modd effects in vanilla options and draight debt. Section 4 discusses forward and



backward eguetions for trandtion dengties, and outlines an dgorithm for joint calibration
to debt and stock options markets. A number of numericd examples are provided to
illugtrate typical cdibration results. For reference and future tests, Section 5 ligts prices
for a few dandard convertible bonds, while Section 6 discuss certain interesting
extensons and avenues for future research. In paticular, we briefly illusrae how, in
theory, debt markets can be tied together with equity option volatlity skews using
forward PDEs. Findly, Section 7 concludes the paper.

2. Moddl.

2.1 Basics

Congder the pricing of a convertible bond issued by a company with publidy
traded equity S. For most of this paper, we assume that S is the sngle underlying date
varidble of our modd. (Extensons to stochastic interest rates are Sraightforward, abeit
labor-intensive, and will be discussed in more detall in Section 6). To incorporate the
possihility of defaults on the underlying company, we make the standard assumption that
default of the underlying company is governed by the first jump of a Cox process’ N (t)
with a sochadtic intendty entirely captured by a functional dependence on the stock price
level. Specificdly, we let the time t intendty of N(t) be denoted | (t,S), where
| :R>® R, is some wdl-behaved deterministic function. Before the default time
t =inf{t: N() =1 we assume that S is a diffuson process driven by a sngle Brownian
motion W (t) , independent of N(t), and le& the indantaneous diffuson volatility of S be
s (t,S) for some smooth, bounded function s : R2 ® R, . With the risk-free interest rate
r and the ingantaneous dividend yield g both assumed determinidtic, the risk-neutra
stock process can be stated as

dS) /S(t-) =(r(t)- at)+I (t,S¢-)))dt+s (t,Se-))dw(t) - dN(D), (1)

where t- is defined as the limit of t- e for e 0. A few comments to this SDE is in
order. First, notice the drift term | (t,S¢-)) which compensates for the expected
downward drift of the Cox process term: E, (- dN(t)) =-1 (t,S(t-))dt, where E,(3 is
the time t risk-neutral expectation operator. The drift compensation is required for the
process to satisfy the arbitrage redriction that S(t)exp(—@[r(u)— q(u)]du) be a
martingde in the risk-neutra probability measure. Second, notice that we assume that the
stock price drops to zero upon default: when N jumps from O to 1, dS(t) =- S(t- ) and
the stock is driven into O, where it stays. The assumption that equity holders recover
essentidly nothing on default is reasonable, and condgtent with much exiding literature;
see for ingance Davis and Lischka (2001). However, note that if we instead wanted to
assume, as in Ayache et al (2002), that some fraction R, of the pre-default vaue of the
stock is recovered in default, we smply multiply the tems dN(t) and | (t,S¢-))dt in



(1) by (1- R)". For smplicity, however, we throughout use the approximation R, » 0.
As an asde, we notice that the assumption of a bounded s (t,S) ensures that the stock
price cannot diffuse to O but only reach this value by a default jump.

Condder now the pricing of a contingent dam V with maurity T. Writing
V =V(t,S), the dam vaue is governed by the following backward PDE", subject to a
boundary payout condition at T:

1w

w0 a1 6.9)s v

S+1s(t 9’ 22\/ (r)+1 €9)V-1 (LIYR E.9).
)

Here, R, (t,S) is the recovery vaue of V in case of default a time t; the recovery vaue
can be dlowed to depend on both time and the pre-default vdue of the stock price. For
securities, such as convertible bonds, paying intermediate coupon cashtflows, additiona
boundary conditions are obvioudy needed at each cash-flow date, see Section 5. Further
intermediate boundary conditions are needed to capture early exercise options and
put/cal features, dl of which are present in a typicd convertible bond. The formulation
of such boundary conditions is standard, see for ingtance Tavella and Randal (2000) for
details (see dso Section 5).

Derivation of the backward PDE (2) is draightforward and follows from the
jump-extended I1to lemma for the dochadtic differentid dV (t), followed by an
application of the standard arbitrage restriction that E (dV/(t)) =r (t)V(t)dt . Its solution
generdly requires the gpplication of numericad methods, dthough it frequently is possble
— by the FeynmanKac Theorem — to date the solution probabiligicaly, as an
expectation. Condder for instance the important specid case of a risky zero-coupon bond
B(t,T) which pays out $1 a time T if no default takes place before time T, O otherwise.
In other words, the PDE boundary condition is B(T,T)=1 and the recovery rate in
default is 0. From the Feynman-Kac Theorem, the time O solution of this PDE issmply

r(u)du 0 r(uy+ (u, (0] O
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B(O,T) = E 3

where we have defined (determinidic) default-free zero-cupon bond prices as
P(t,T):exp(- d r(u)du), and where 1, denotes the indicator function for the event A.
As shown in Appendix A, the prices of coupon bonds and credit default swaps can be
dated in terms of risky zero-coupon bonds, and vice-versa, making risky zero-coupon
bonds an obvious and convenient target for mode cdibration to non-convertible debt
markets.

2.2. Intensity process and specification.



An gpplication of Ito's lemma results in the following pre-default (t <t)
dynamics of theintendty process |  (suppressing dependency on S):

I i
dl (t) = P dt+ﬂSS(t)(r(t) q(t) +1 (t))dt

il
1s?

(4)

+1——S(t)’s (t,S)*dt + S(t)%s (t,S)dW(t), t <t.

In paticular, we see that the locd (lognormd) intendty voldility becomes
s, (1,9 =s(t,9S I /1S. In generd we would expect the loca intendity volatility to
be negative (that is, perfectly negatively correlaed to the stock) as any reasonable modd
would have I /ISE£0 to reflect of the fact that companies with high stock prices are
less likely to default than are those with low gtock vauations. Specific parameterizations
suggested in the literature include:

I (t,S)=a+b/SP,
| (t,S)=c-dInS,
| (t,S) =e+ f exp(- gS),

where a,b,...,g and p are congants. The first specification can be found in Takaheshi et
al (2001) and Davis and Lischka (1999), among others. The second parameterization is
discussed in Bloch and Miralles (2002), and the third in Arvanitis and Gregory (2001).

While most of the methods developed in this paper are nonparametric and
independent of the particular specification of | (t,S), for many of our numerica
experiments we will use the fird of these specifications with a=0. Seting a=0 is
naturd as it implies reasonable asymptotic behavior: limg,, | =0 and lim | =¥.
Moreover, for this specification the dynamicsof | are particularly straightforward:

di @ /1 ()= p& (r(®- a®)+! (1) +3(p+Ds (t.SO)*Het- ps (¢, AW, t<t.(5)

In other words, the volatility of | is just the equity volatility scded with a factor of —p:
S, (t,S) =-ps (t,S). The interpretation of p representing the ratio of equity and spread
volatility makes for particularly convenient esimation of this parameter. In a sudy on
Japanese companies, Muromachi (1999) estimates for p are in the range 1.2 to 2.0 which
appears reasonable and consgtent with the fact that short-term credit spreads are typicaly
more volatile than stock prices. We notice that the dynamics (5) imply a certain amount
of auto-corrdation, with the drift of | involving reverson a speed p aound a leve of
q(t)- r(t) +3(p+Ds (t,S(t))Z. Appendix C takes a closer look a the long-term
properties of (5) and demondrates that sometimes a dationary didribution exigs. In



particular, for constant process parameters r, ¢, and s, the Appendix shows tha
limey E(1 () =MAX (0,45 2- r+q).

2.3 Hedging.

A brief word on hedging in the model above. With two sources of uncertainty W
and N), hedging of contingent claims will involve taking postions in cash and two traded
stock-dependent derivatives. For instance, we could take a postion in a corporate bond
and the gsock itsdf. To develop the specific hedge for this example, let V be the vaue of
the derivative to be hedged, and let H denote the price of the bond used in the hedge.
Further et wg and w, be the hedge postions in stock and bond, respectively, and let P
be the portfolio of V and its hedges. With the recovery rate on the bond being a constant
R, , the evolution of this portfolio is

PO =WH(O + s +V () soahp
v '"':Ts(t) W+ “\g) ES(t)s (t,S0)dW ()
- @WsS(t) +w, (H(1) - R, ) +(V(1)- R, () gaN(t)

dP () =..dt + sw,

where for amplicity we have omitted the somewhat cumbersome t- notation. For the
hedge to work, the terms in the square brackets must be 0, leading to the following
explict expresson for the hedge at timett:

ﬂV(t)
RO-VO+ 5 v THO

HoR.- 'nH(t)S(t) B TS

Wy =

In practice, volatility (“vegd’) and interest rate hedges would likely be added to the hedge
portfalio.

3. Numerical Implementation.
3.1. Finite difference scheme.

We now turn to the solution of equation (2) by finite difference methods. To this
end, weintroduce z=InS, set v(t,2) =V (t,S), R ,2) =R, (t,S) and rewrite (2) as

%+Lv—-l t,e)R (t 2), 6)

where L isthe operator
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L=(r@)- a)+1 (t.€)- is (t.€) )E+Es (t,€%) =8 (r)+1 (t.€)).

Disretizing z-space into buckets of sze Dz, we can gpproximate L by the finite
difference operator (dropping t and z dependence for brevity)

L=(r- g+l -3s2)d,+is%d,- (r+!)

where d, and d, ae the usud firs- and second-order finite difference operators,
d,f(2)=3x[f(z+D2)- f(z-D2)], d,f(9=5z[f(z+Dg)-21(9)+ f(z- D7)] . We

then introduce a time grid 0=t, <t <..<t, with Dt °t,, - t and employ a modified
theta discretization of the PDE (6) in the time-domain:

(ot ql)vt, 2 =D+ @- g )L vt 2 +

(7)
ql (ti’ez)Rv(ti' Z) +(1_ q)l (ti+1’ez) R/ (1%+1’ Z) -

In generd, (7) results in a series of tri-diagonal matrix equations and is stable for g 3 1.

For g =4 (the Crank-Nicholson method), the precison of the scheme is a its maximum

(O(DX? + DZ%) ), making this the preferred choice for most smooth payoff functions. With

n time-steps and m z-gteps, the tota computationd effort is O(mn) for dl vduesof q.

3.2. Numerical example: pricing of European call options and risky bonds.

For later use and as an illugtration of the scheme above, consder now the pricing
of acdl option C with time T payout of (S(T)- K)* (recdl the notation x* = max(x,0) ).
In case of default, the stock price drops to 0 and the cal becomes worthless, i.e. its
recovery value is zero” and R.(t,S)=0 for dl t and S When we state our computed call
option prices, we follow the market convention of quoting European option prices in
terms of their Black-Scholes implied volatilities s, (t; T, K), defined as the solution to
the equation

imp

r(u)du

c) = SO U F (d,)- K O F (), ®

L. In(S() /K)+Ir u) - qu)ldu s 2, (T - 1)
- T-t

S imp

where the right-hand sde of (8) is observed in the market. Notice that implied voldtilities
are dways quoted using default-free discounting.



Sating | (t,S) :c><(S/S(O))'p and usng a ocondant diffusion volaility of
s (t,S)=30%, Fgure 1 shows the tem dructure of a-the-money (ATM) implied
voldilities (from (8)) for different vdues of c and p. A note unless otherwise indicated,
we use the term “at-the-money” for options with gtrikes set at the forward vaue (“at-the-
money forward”) rather than at the spot price (“ at-the-money spot”).

Rasing ¢ causes an increase in the variance rate of the Cox process N(t) which is
proportiond to | (specifically, E([dN(t)]?) = E(dN(1)) =1 (t,S)dt). As implied Black-
Scholes volatility is an aggregate of diffuson and jump volaility, an incresse in ¢ causes
an increase in implied a-the-money voldility, as evidenced in Figure 1, pand A. The
volatility increese is typicdly an increesing function of maturity for short- to medium-
dated options, yet can be very substantid even for 3-months options. Figure 1, pand B
shows tha implied a-the-money voldilities fdl when the power p is incressed. This
effect is a consequence of the fact that when p is increased, defaults at high stock prices
become increesngly unlikely. As jumps associated with defaults from high stock price
levels correspond to a large effective variance, implied voldility will decrease when p is
increased, ceteris paribus.

In Figure 2 bdow, we fix the maturity and now consder the effect of default on
implied volatilities a different option drikes (the so-cdled volatility skew). Adding
default jumps to a diffuson process will necessrily fatten the lower tal of the
digribution, raising prices of low-gruck options reative to the pure diffuson seting; this
effect is evident in Figure 2. Not surprisingly, the steepness of the jump-induced part”’ of
the voldility skew increases in ¢. Comparison of pands A and B in Figure 2 dso
demondrate that the effect of default on the volaility skew decreases with option
maturity, atypica characteridtic of jump-induced skews.

Findly, to get a fed for the impact on the skew of the stock-dependency of the jump
intengty, Fgure 3 graphs the 1-year volatility skew for various vaues of the power p.
While increesng the vaue of p here Seepens the smile somewhat, the effect is
comparatively mild.



Figure3 here

Having examined cal options, we now turn to the pricing of risky bonds. Rather
than report directly bond prices B(0,T), we instead prefer to use the concept of a risky
termspread §(T), defined as

o ST _ ES%’Q' WSO B0, T)/ PO, T). )
é

(%]

We note that S(T) is by definition associated with an assumption of zero recovery. For
bonds with a recovery rate of R the quantity §(T)(1- R) is roughly equd to the bond
credit spread (see Duffie and Singleton, 1999). Figure 4 below grgph the risky term
gpread asafunction of T, for various scenarios for p and c.

Broadly spesking, dl figures show that risky spreeds initidly increase in maturity, but
ultimately gdart fdling. The former effect is caused by the fact that the locd drift of
| (t,S) is here typicdly podtive for amdl t. Indeed, from the term multiplying dt in (5)
we see that for smal t the dift of | (t,S)=c(S/ 0)) " becomes approximately
c(% p(p+Ds ?- p(r- q+c)); this quantity is podtive for dl cases in Figure 4 (athough
barely so for the case ¢=10% in Pand A). Over longer time horizons, mean reverson
(see discussion a the end of Section 2.2) will dow down the growth of the expectation of
| (t,S) and eventudly pull it towads a long-term dationay levd of
MAX (O,%s Zor+ q) which here amounts to 2.5%. Convexity effects dso contribute to
risky soreads ultimatdy fdling, asfollows from Jensen’sinequdity

e ST 5 e_QE(l (1 S P s(T) <T_16E (l (u,S(u)))dU,

i.e. the risky spreads will be lower than the average intendity, with the discrepancy
between the two increasing in T. Increasing volaility will increase the hump in the spreed
curve, and lowering it will eventudly remove the hump altogether; see Figure 5 for an
example.

Figure5here



4. Calibration to risky bonds and at-the-money options.

In Section 24, we condgdered, among other things, the pricing of risky zero-
coupon bonds and at-the-money cdl options in the modd (1). Among the conclusons we
can draw from our numericd study is that both implied option voldilities and risky credit
spreads depend in a complicated way on maturity and the joint parameterization of
I (t,S) and s (t,S). Indeed, even a draghtforward parameterization using constant
volaility and the time-homogenous intensity | (t,S) =c(S/S(0))" can give rise to highly
non-flat, non-monotonic term dtructures of implied volatility and credit soreads. In
practice, it is extremely unlikely tha these term structures will even remotdy resemble
those observed in the market. We dress that the oftentseen practice of smply importing
into the modd (1) a voaility function s (t,S) mantaned on a “usud”, default-free
equity option sysem is highly ingppropriate as the resulting modd is likdy to severdy
overdate both at-the-money voldilities and the stegpness of the voldtility skew.

In this section, we will digpense with naive time-homogenous modd
parameterizations and discuss schemes to explicitly bring the convertible bond modd
into cdibration with risky zero-coupon bonds and at-the-money cdl options. We will do
0 by introducing time-dependent functions into both | (t,S) and s (t,S). Section 6 will
discuss generdizations of the procedure that dlow for fitting to an entire srike-meaturity
surface of option prices.

4.1. Fokker-Planck equation.

For numerica efficiency, we wish to base our cdibration technique on a forward
induction technique. For this, we introduce the concept of a (log) dtate price densty
p(t z,s,y) asthetime t price of delivery of a Dirac amount d (InS(s)- y) a time s>t,
given tha InS(t)=z. The demdty solves the usua backward Kolmogorov equation
(compare with (6))

ﬂ z 1 z\2 ﬂ 1 221-[2 — z
ﬂ_[t3+(r(t)- ) +1 (t,e)- 1s (t,€) )ﬂ—2+gs (t,€) ﬂTf—(r(t)+I t.€))p (10

where s and z are conddered fixed. The boundary condition is p(s,z,s,y) =d(y- 2).
Notice that we assume that p recovers nothing in default, and consequently associate with
p a defect trangtion dengty that excludes the sngularity a8 S=0. The formd adjoint to
(20) isthe Fokker-Planck (or forward Kolmogorov) equation

e T
s Ty

((r®)- a9 +1 (s.e)- 3s (s.€)?) p)+%ﬂ“—y22(s (s,€")7p) =(r(s)+! (s€))p

10



where now t and z ae conddered fixed. The boundary condition is here
p(t,zt,y)=d(y- 2). Asuming that s and | are twice and once differentigble in S
respectively, we can rewrite this equetion as

Ip, H(s,y)ﬂ—p+%s (s,ey)zﬁf=6(s y)p; (11)
s Ty Ty
H(s y) =r(s)- a(s) +1 (s,€”)- 1s (s,€)* - 2’s (s,€)s (s, ¢);

G(s y) =r(s)+I (s,e’)+e’l '(s€)- ey(s (s,ey)[2s ‘(s,e¥) +e’s "(s,ey)J+eys '(sey)z)
where | '° 9l /S ands '° s /1S, s"° T°s /1S°.

4.2. Calibration scheme.

Now specidize to the case where | (t,S) =I (S;a(t)) and s (t,S)=s (Sh(t)),
for time-dependent scadar functions a and b to be sat. Assuming that r and q are known,
we wish to set the two unknown functions a and b such that we smultaneoudy metch a
al maturities &) risky zero coupon bond prices B(0,T); and b) European at-the-money
equity option prices. For the latter, introduce the notation

C(T,K) = e'é’(“)"“E(S(r)- K)';

that is, C(T, K) is the time O price of a T-maturity cdl struck a K. In terms of the Sate
price dengties p, we can write

C(T,K) = ), P(T,Y)(& - K)dy; BOT)=¢), p(T.y)dy, (12)

where we use the abbreviated notation p(T,y) = p(0,InS(0),T,y).

The idea is now to solve (11) forward, a each step finding a(T) and b(T) such
that (12) is saisfied for a chosen value of the drike K. Numericdly, this requires a
discretization of (11), for ingance by finite difference methods. Following the steps that
lead to (7), we introduce a time line 0=T,<T,<,..,T, and discretize y-space into
buckets of sze Dy . Onthetimeinterva [T, T,,] wewrite

(DT aD) p(T., ) = (DT + @- @)D p(T,, ) (13)

where we have introduced the finite difference operator Do - Hd, +3s 2dyy - G.With y
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C(T.K)»Dy @  p(T.Y,+iDy)E*"™- K);B(O,T)»Dyd p(T.y,+ jDy) (14)

Yo+ JDy>InK; j#0

where K, is the cdibration drike for time T., assumed here to be set equd to the forward
value of the stock.

With (14) we are ready to State our iterative scheme for finding the functions a and b
onthetimeline {T.}:

0. Seti=0and p(0,y)=1_,54, /Dy. Makeaguessfor a(0) and b(0) .

1. Assuming that a and b are piecewise flat, solve (13) one time-step forward to find
(T o + jDy) forall j.

2. Compute the right-hand sides of the expressions for C and Bin (14).

3. If the right-hand sdes (14) equa the market-observable left-hand sides, store
a(T) and b(T.) and make guesses for a(T.,;) and b(T,,) (for instance, we can st
a(T,,)=a(T) ad b(T,,)=b(T)). Otherwise update a(T;) and b(T;) and go back
to step 2.

4, Seti=i+landgotostepl

The joint root-search for a(T.) and b(T,) in Steps 2 and 3 can be done using any standard
non-linear equation solver. As the expresson for B(0,T,,) is typicdly more sengtive to
a(T) thanto b(T,), and vice versa for C(T.,;,K,,;), one can typicdly smplify the two-
dimensond root-search problem to an inexpendve iteration over two Smple one-
dimensiond root-searches, asin

a) Freeze a(T) andfind b(T,) by root-search such that C(T.,,,K.,,) isfit to market.
b) Freeze b(T.) andfind a(T.) by root-search such that B(O,T,,,) isfit to market.
C) Repesat until both C(T.,;,K,,,) and B(0,T,,,) arejointly fit to market.

For each of the one-dimensona searches, we can apply a smple root-finder such as
Newton-Raphson, secant search, or smilar. On average, we find that we only need to
repeat @) and b) two or three times, making the dgorithm fast.

A number of comments about the proposed cdibration routine are in order. Firdt,
we notice that while we implicitly assumed that cdibration srikes on the cal options
were s&t & the ATM point, nothing prevents us from picking other leves, as long as we
redrict oursalves to a single cdibration srike per time-step (see Section 6 for extensions).
Second, we can work with a finer discretization in the finite difference grid than in the
fiting of C and B prices. That is, 2eps 2 and 3 need not be performed on dl points in the
finite difference time grid, but only on a subsst. Third, while not of great precticd
importance we can, if dedred, eadly relax the assumption of piecewise flat parameters
through the introduction of more sophidticated interpolation schemes. Fourth, we point

12



out that the discontinuous boundary condition of (13) in Step 1) can lead to undesirable
ostillations of the solution if the discretization parameter g is too low. Such oscillations
can, however, easly be diminated by usng q =1 (fully implicit scheme) for the firs few
time-gteps, a which point we can switch to the better-converging Crank-Nicholson
scheme where q =4. For detals on this so-caled Rannacher stepping technique, see
Pooley et al (2001). Findly, we notice that it is often beneficid to make a continuity
adjusgment of the first term in the sum for C(T, K) in (14) to match the proper area under
the call payout ramp function; see eg. Tavdla and Randdl (2000), p. ?? for detals on
this Alternaively, we can adjust the grid geometry such that the option srikes al fal
precisaly hafway between grid pointsin y-space.

4.3. Numerical example.

Assume now that we have estimated from sraight debt and/or credit derivatives
that the risky spread term dructure is flat a 500 bass points. Further, from equity option
markets we observe that implied a-the-money voldilities are flaa a 40% for Al
maturities. Assuming that both credit spreads and equity prices have determinigtic
volatilities we set s (t,S) =b(t) and | (t,S) = a(t)(S(0)/S)" where we can estimate p as
the ratio of credit soread voldilities to equity volailities. Estimation of the deterministic
functions a(t) and b(t) can be done using the agorithm from Section 4.2; the results are
shown in Figure 6 below.

The function a(t) cadibraies to a U-shgped function of time that compensates for the
humped credit spread term Structures associated with congstant a(t), see Figure 4. The
larger the vaue of p, the more pronounced the Ushape of a(t) becomes, consigtent with
previous results. In the same ven, the volaility function b(t) becomes downward-
doping to compensate for the voldtility effect of the default jump. As we would expect,
the andler the vdue of p, the more pronounced this effect becomes. We notice hat for
p =0 the downward dope of b is so severe that it becomes impossble to cdibrate the
modd for maturities beyond 12 years, a reflection of the fact that the intrindc stock
volatility induced soldy by the default process exceeds the target implied volatility used
in our example. We note that such cdibratiion problems are farly uncommon in practice
as they involve the somewha unlikdy combination of low long-term implied soread
volatilities and high credit spreads.

5. Pricing of convertible bonds.
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For reference, this section focuses on the pricing of a few gpecific convertible
bond contracts. We demondrate the effect of cdibration, and date the boundary
conditions needed in the finite difference solver discussed in Section 3.

5.1. Boundary conditions for convertible bonds.

Fundamentally, convertible bonds ae coupontbearing indruments with an
embedded option to exercise into a certain number of shares of the underlying company.
Let V(t) be the time t price of a T-maturity convertible bond paying an annudized

.....

introduce the following jump-type boundary conditions for V:
V(t-)=VEt+)+kt -t ), i=12..,K-1,V(T)=1+k (T -t ,) (15)

where we have assumed a (normdized) notiond of $1 and ignored the finer details of
bond accrua conventions. On dates t where the bond can be exercised into shares, we
impose the free boundary condition

V(D) ® L(OSY (16)

where L is the posshbly time-dependent converson raio (normdized to apply to a
notional of $1). Ayache et al (2002) shows how to agppropriately formulate (16) as a
linear complimentary problem. In a finite difference grid, the gpplication of the boundary
condition (16) can be done a number of ways, the smplest of which is to treat it as a
jump condition

V(t-) = MAX (V (t+), L() S(t)).

See Forsyth and Vetzd (2002) for a more sophisticated (and better-converging)
dternative to this gpproach.

Many convertible bonds dso contain a periodic option for the issuer to buy back
(or “cdl”) the bond a some time-dependent leve H , typicdly close to par. In case the
issuer cdls the bond, the investor has the option to convert the bond to shares, rather than
recaive the cal amount H. Thet is

V() EMAX(H B)1 €)S () (17)
on dates t for which the bond can be caled. Typicdly, the issuers right to cal the bond

early becomes active only after a certain period of time (the non-call protection period)
has lapsed since the origind issue date’!. We point out that the free boundary condition
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(17) assumes rationa exercise on the issuer’s behdf, an assumption that appears to often
be violated in practice (see e.g. the discussion in Ho and Pfeffer, 1996).

A third festure of many convertible bonds is an embedded right of the buyer to
sl (or “put”) the bond back to the issuer for some possbly time-dependent amount h.
This option provides the buyer with protection againgt interest rate increases, as well as
agang deerioration in the financid hedth of the underlying company. The put option on
a convertible bonds normdly involves only a limited number (two or three, say) exercise
opportunities during the life of the bond. On a date t in the put schedule the free
boundary condition is

V(t) 3 h(t). (18)

For our purposes, the conditions (15)-(18) are sufficient to describe a convertible
bond. In practice, it is not uncommon for convertible bonds have additional features,
some of which may be drongly peath-dependent. See Olsen (2002) and Grimwood and
Hodges (2002) for terminology and discussons of more advanced features in convertible
bonds.

5.2. Recovery rate assumption.

Congagent with market practice in bond and credit derivatives markets, we will
here assume that the recovery vaue is a fixed fraction O£f £1 of the bond notiona. The
congantf depends on the seniority of the bond and is typicaly somewhere around 40
50%. We point out that many papers on convertible bonds make the dternative
assumption that convertible bonds and coupon bonds recover a fixed percentage of their
pre-default vaue (not the notiond), see eg. Takahashi et al (2001), Bloch and Miralles
(2001), and Ayache et al (2002). This recovery-of-vaue approach was first proposed by
Duffie and Singleton (1999), but while it often dlows for cetan technicd
amplifications, it does not seem to be consstent with typical bankruptcy proceedings.

5.3. Numerical example.

We now turn to the pricing of some particular convertible bond. To stress our
agorithms, we condder two cases: @) a farly long-dated contract with a significant non-
cdl protection period and high equity voldility (case A); and b) a medium-term contract
with a reatively short noncal protection period and medium equity volaility (case B).
Table 1 below ligs the specifics:
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Table 1. Market and contract data for convertible bond pricing example.

Case A Case B
Bond Maturity T 10 years 5years
Bond Coupon k 3% 1.5%
Bond Payments Every 0.5 years Every 0.5 years
Notiona Amount 100 100
Recovery Vaue f 40% of notiona 40% of notiona
Credit spread’’ s 300 basis points 200 basis points
Converson Retio L 1 1
Equity Price S0) 50 50
Equity Impl. Volatility 40% 25%
Equity Dividend Rate q 2% 2%
Interest rate r 4% 4%
Cdl PriceH 100 100
Cdl Dates Anytime after t =5 years Anytime after t =3 years
Put Price h 100 100
Put Date(s) Years6 and 8 Year 4

We assume tha dl observable yidd, spread, and implied voldility term structures are
flat. From the formulas in Appendix A, we compute that the pure fixed income part of the
convertible bond (the so-cdled bond floor) trades a $79.5 at time O for case A, and at
$83.9 for case B. The conversion premia are thus $29.5 and $33.9, respectively. On the
model side, we assume as in Section 4.3 that s (t,S) =Db(t) and | (t,S) = a(t)(S(0)/S)",
with the deterministic parameters a and b cdibrated as outlined in Section 4.

For test cases A and B, Figure 7 below shows how the vaue of the convertible
bond, as wdll as the bond floor, depend on the current stock price and on the parameter p
in the function | (t,S). For p >0 the modd implies that both the bond floor and the
convertible bond approach the recovery value of $40 when the stock price goes to zero;
this effect is sometimes referred to as the “collgpsing bond floor”. As a consequence, the
convertible bond can locdly be a concave function of sock (“negative gamma’), a
dtuation that is not uncommon in practice for convertible bonds issued by companies in
financia distress.

Let us now briefly turn to a comparison of the results above for the properly calibrated
modd agangt sSmilar results for a navely cdibrated mode, tha is, a modd where the
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volaility function s is assumed congtant, and where | (t,S) =c(S(0)/S)" for some
congant c. Here, weset s =40% and s =25% for cases A and B, respectively, and set
c=s, where s is the quoted spread® (300 and 200 basis points, respectively). From our
earlier tests, we would expect both the effective voldility and credit spread of the “naive’
modd to be too high. As these effects has opposing impact on the prices of convertible
bond (the firgt effect increases its price, the second lowers it) we could perhaps hope that
the naive modd on average would on average not do too poorly. To investigate this,
Table 2 compares today’s price of the convertible bond and the bond floor for various
vaues of p; Figure 8 graphs the errors (as a percentage of the difference between the
convertible bond and the bond floor) of the convertible bond price as a function of the
stock price.

Table 2: Pricesof convertible bonds and bond floors

Convertible Bond Bond FHoor

Test Cdlibrated  Naive Price  Percentage | Cdibrated Naive Percentage
Case| p Price Price Diff. Diff.? Price Price Diff.?
2 94.1 90.5 -3.5 -24.4% 79.5 727 -8.5%
A 1 93.8 93.8 0.0 -0.2% 79.5 76.0 -4.4%
0.5 93.8 95.4 17 11.7% 79.5 78.1 -1.8%
0 93.7 96.6 2.9 20.5% 79.5 79.5 0.0%
2 87.8 87.7 -0.1 -2.3% 83.9 83.1 -1.0%
B 1 87.7 88.3 0.6 14.6% 83.9 83.7 -0.2%
0.5 87.7 88.5 0.8 20.1% 83.9 83.9 0.0%
0 87.7 88.6 0.9 23.4% 83.9 83.9 0.0%

Price difference as a percentage of price spread between convertible bond and bond floor
Pprice difference asa percentage of bond floor value

Notes: The table shows today’s (S(0)=50) prices for convertible bonds and bond floorsin test
cases A and B. “ Cdibrated price” refers to prices computed by the model fully calibrated to
cal options and debt prices, “Naive price’ refers to prices computed by the smplified
parameter estimation approach outlined above.

It is clear from the table and the figure that the convertible bond price errors introduced
by a naive cdibration scheme can be highly sgnificant, easily reaching 20-50% and more
of the price spread between the bond floor and the convertible bond. The absolute price
differences reach as much as $3.9 and grow rapidly in maturity. For contracts with truly
long maturities (20 —30 years), we find that the absolute errors can easily reach $5-$10 on
a$100 bond.
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6. Extensions.

6.1. Stochastic interest rates.

The modd framework outlined so far assumes that risk-free interest rates are
determinidic. As interest rate voldiliies ae generdly much lower than equity
voldilities, this assumption is generdly defensble for the purpose of pricing plain-vanilla
convertible bonds. Indeed, as stated in Grimwood and Hodges (2002), “..the stochastic
modding of the spot interest rate gppears the least important mode feature’ in ther
investigations. See dso Olsen (2002) and Brennan and Schwarz (1980) for similar
comments. Incluson of dochagtic interest rates into the modd is, however, not
conceptudly difficult, as we shdl now demondrate. Fird, assume tha the interest rate
dynamics satisy the one-factor short-rate SDE

dr(t) =m (t,r(t))dt +s , (t,r (t))dZ(t)

whee m,s :R°® R ae smooth well-behaved functions, and where Z(t) is a
Brownian motion under the risk-neutral probablity messure. We assume that m has been
cdibrated such that the modd fits zero-coupon bond prices; that is,

- At (u o}
POT)=Ece @2
e @

Further, we assume that Z(t) is corrdated to the Brownian motion of the equity price,
dz(t)xdW(t)=r (t)dt, for some determinisic corrdaion function r (extensons to
state-dependent  correlation are trivial). The backward equation for a contingent dam
V =V(t,z,r), z=InS then becomes

ﬂ+(r - qt)+l (t,€7)- 3s (t,eZ)Z)ﬂ+ MmN 41 (t,e2)2@+
t Iz I (19)

1 Zﬂzv z ﬂzv — V4 z
is (t,r) W+r(t)sr(t,r)s (t,e)ﬁ_(rﬂ (t.€))V- I (t.e)R, (tzr)

where the recovery value default R, can depend on both equity and interest rates. The
numericd solution of this equation in a finite difference grid is mos essly accomplished
by an dternaing direction implicit (ADI) method; see eg. Craig and Schneyd (1988) for
a scheme that can handle mixed second-order derivatives. The computational order of
such a scheme is O(n,ngm) , where m is the number of time steps, and n, and ng are the
numbers of interest rate and equity steps, respectively. In practice n. often needs to be
around 50, making the two-factor modd above sgnificantly dower to evauae than the
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one-factor modd discussed previoudy (which as discussed edlier has compuational order
O(nsm)).

To cdibrate the modd above, we again would turn to an iterative scheme relying
on forward induction in a finite difference scheme. From standard theory for adjoint
operators, the necessary Fokker-Planck equation here becomes

l (m (s.1)p)- %:11—;2(3 (s,€)? p) -

r

ﬂp 1 y 1 Y)2
'ETy((r' A(s)+! (s€)- 1s (s.€')?) p)+

2 2

W(sr(s,r)2 p)

(20)

3 - r(s)w(sr(s,r)s(s,é) p)=(r+l (s€))p

where p(t,s,r,r,z,y) denotes the state price dengty for trangtion from sate (zr,) at
time t to date (r,y) & time s>t (and where t, r,, z are conddered fixed). The
boundary condition is p(t,t,r,r,z,y) =d(r - r,)d(y- z). Using the same steps that lead
to (11), equation (20) above can be rewritten to only contain derivatives of p. The
cdibration dgorithm outlined in Section 4 then holds unchanged: use a finite difference
(ADI) method to solve (20) forward in time, at each step taking care to adjust s and |
such tha the rdaions (14) ae sdidied. With two date vaiables involved, the
computational effort here obvioudy increases Sgnificantly over that of the one-factor
model discussed earlier.

6.2. Calibration to full equity volatility surface.

Reverting to the one-factor model of Sections 2-5, we now wish to explore the
posshility of fitting such a modd to more than one equity option per maturity. As a firs
obsarvation, we notice tha if option prices of sufficiently low drikes are known, it
becomes unnecessary to consider risky bonds, as the prices of these are dready contained
in equity options. Specificaly, congder a T-maiurity, K-drike put option with time O
price of V (T,K). For sufficiently low vaues of K, the put option will precticaly only
pay out if a default takes place and the stock goesto zero; that is,

V,(T,K)» PO, T)KPr(t £T)=P(0,T)K(1- B(O,T)/P(0,T)) =K (P(0,T)-B(O,T))

for low vadues of K. This reationship is, in fact, frequently used to trade equities aganst
draight debt. Taking the limit, we get

MoK i JE(T. K)

BOT)=POT)- m— im =

where the second equdity follows from put-cdl parity. (These equations dso follow from
first principles, see Appendix B).
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As we have seen in Section 3, the posshility of default induces a ggnificant
volatility skew in option prices. To the extent that this skew does not fit the observed
market skew, it is naurd to adjust the voldility function s (t,S) in order to correctly
price options with different Strikes expiring a the same date. To peform this task, we
follow the literature of forward voldility fitting (see eg. Dupire, 1996, and Andersen and
Andreasen, 2000) and work with a forward PDE for cal option prices expressed as
functions of strike and maturity. Appendix B derives this PDE for our mode framework:

1C(T.K) _
T

1C(T.K) ,

- (a(T) - KI'(T,K))C(T,K) - (r(T)- a(T)+1 (T,K))K ®

(21)

’C(T, K)

1K (T, K )2 10, K) o +KQC(TKI (T Kk,

with boundary condition C(0,K)=(S(0)- K)". | " and | " denote the first and second
deivaives of | with respect to K (which we assume exist; otherwise, we can use
equation (B.5) in Appendix B). There are a humber of different ways this forward PDE
can be used in a calibration exercise. Fird, if we assume that a continuum of option prices
is known for dl T and K (which in practice requires gpplication of interpolation
techniques) the PDE can be rearranged to (omitting some function arguments for space
considerations)

'"C +(q- KI (T, K))C +(r- g+ (TK)K IS kgye(r kol (T kydk
2 _ 1K
s (T,K) = 7C
2 ﬂK2

where we assume that | (T,K) is known. For the equation above to work in practice,
great care needs to be taken in ensuring that the option price surface is sufficiently
smooth; see Andersen and Andreasen (2000) for more on this.

Raher than assuming that a full continuum of option prices are observable,
dternetivdly we could attempt to fit only a discrete set of options directly observable in
the market. Such a fit would typicdly involve iterating on s until @ &l observable
option prices are reproduced with adequate accuracy; and b) some smoothness norm is
maximized. See e.g. Lagnado and Osher (1997) for a typica approach. The forward PDE
(21) is crucid for this approach to be precticd, as it dlows for quick pricing of cal
options with different maturities and drikes. In particular, we notice that solving a single
log-K finite difference grid gives us the prices of cal options & numerous drikes and
maturities, with each node (T;,y;) in the finite difference grid representing the time O
price of a cdl option maturing at time T, with strike €” . This is obvioudy much faster
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than pricing the cdl options usng the backward eguetion, which involves one finite
difference grid per option.

As yet, we have assumed that | (t,S) is known and that s (t,S) is fitted to the
gmile. In pricinciple, we could dso fix s (t,S) and atempt to solve for | (t,S) such tha
the option amile is replicated. Usng (21) (or dternatively equation (B.5) in Appendix B)
this leads to a Volterra integra equation for | (t,S). As we have seen earlier in Figure 3,
however, the effect on the voldility smile from changing | (t,S) is rather limited, s0 it is
doubtful that this equation actually has areasonable (or even stable) solution in practice.

Finadly, we point out tha the forward equation (21) is a specid case of a
somewhat broader theory for forward PDEs associated with jump-diffusons with time-
and dtate-dependent intendty. The interested reader can find some additiond results
aong these lines at the end of Appendix B”.

6.3. Other extensions.

In (1), the modd for the pre-default sock dynamics are purdy diffusve, with the
dock being the sngle daevariable Many recent models for stock dynamics are
congderably more complicated than this and may involve discontinuities and additiond
date variables (such as unspanned dochadtic volatility). In principle, such additiond
features could dso form the bass for a modd for convertible bonds, dthough it remains
to be seen under what circumstances such models could be made practicd. This is an
interesting avenue of future research.

Findly, we note tha while imposng a deerminigic functiond dependence
between stock prices and default intendties gppears to capture a number of sdlient
characterigics of convertible bond markets well, some authors (eg. Davis and Lischka,
1999) have pursued modds where the default intengty is driven by a Brownian motion
different from that of the stock. While some of these models imply that credit spreads can
become negetive, this approach has the potentia to more accurately capture the fact that
the reationship between spreads and equity prices is often quite noisy. For regular
convertible bonds, where such effects are likdly to only have secondary effects on prices,
it is doubtful that this approach judtifies the additiond computationa effort of introducing
an extradate variable.

7. Conclusion.

This paper adds to the newly resurgent literature on convertible bonds modeling
by addressing the important question of how to efficiently caibrate reduced-form modds
to observed market information. Our primary agpproach involves application of the
Fokker-Planck equation for smultaneous cdibration to a-the-money options and Straight
debt (or credit derivatives). Through a number of numericd experiments we
demongrated practicaity of the suggested techniques and documented a number of
economicaly sgnificant effects associated with naive, yet apparently widespread, mode
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parameterizations. In Stuations where liquid option data is plentiful, we developed theory
to guide more ambitious cdibraion to the full option voldility smile Applying this
theory in practice — and testing impact on prices -- is a chdlenging and intereting avenue
of future research. Smilarly, more research is needed in gauging the impact of applying
more sophigticated, possibly discontinuous, pre-default stock dynamics than those used in

this paper.
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Appendix A
Coupon bonds and credit default swaps in terms of risky zer o-coupon bonds

Cdibration of convertible bond modds to draight debt markets is most
conveniently done through term structures of risky zero-coupon bonds. While risky zero-
coupon bonds normdly do not trade directly, their use as cdibration instruments entall no
difficulties as they can be implied from credit default swap (CDS) or coupon bond quotes
by bootstrap techniques. For reference, this agppendix briefly derives the necessary
equations for this exercise.

Fird, consder a regularly spaced schedule t =id,i=1,2,...,n and condder a
security A that pays an annualized coupon of $1 on this schedule (i.e. a net payment of d
is made on each schedule date), up to either the time default or the find maturity t,,
whatever comes fird. Assuming that no accrued interest is due on default times faling
between schedule dates the time O vdue of this security is given as a risky annuity
factor:

A0)=d A BO.t).

i=1

Second, consider a security F that pays $1 precisdy a the time of default, under the
condition that default takes place before the fina schedule maturity t,. Working, gtrictly
for convenience, on a time-grid that coincides with the schedule dates {t}, we can write
the time O vaue of this security asfollows:

FO)=& P03+t ))Pr(t T [t ,t]) =& P02t +t ))[Prt >t,)- Prt >t)]

i=1 i=1

n
[]

=a P(0.3(t +t.))[B(O.t,)/ P(O.t,,)- B(O,t)/P(0,1)]

i=1

where Pr@ denotes risk-neutra expectation, and where B(0,t,) = P(0,t,)° 1. The third
equdity follows directly from (3), as by definition Prit >t)=E(l,,). Notice that we
have assumed that defaults anywhere indde the bucket [t ,,t] can on average be
associated with a payment a time 1 (t +t_,). This is obvioudy an approximation, but a
highly accurate one and sufficient for our purposes. (In genera, we could easly make
thistime-discretization finer, or even take the continuous-time limit).

We now turn to the pricing of a risky coupon bond D paying an annudized
coupon rate of k on the {t} schedule discussed above. Congstent with market practice,
we assume dl coupons are logt in case of a default with only a certain fraction f of
notiona recovered (see dso Section 5.2). For a normdized notiond of $1, the vaue of
the coupon bond can thereby be written as
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D(0) = B(0,T) +k A(Q) +f F (0) (A1)

We recognize the first two terms as representing the value of a bond with zero recovery
on both the back-end notiond (the first term) and the coupons (the second term). The last
term represents the add-back of the vaue associaled with non-zero recovery.

Consder now a CDS where we pay a premium rate g on the {t} schedulein
return for a payment of (1- f) if a default happens before the find maturity t . Agan
assuming a normdized notiond of $1, the time O vdue of this ingrument is
draightforward:

CDS(0) = (1- f )F (0) - g A(0) (A2)

With (A.1) and (A.2), the rdations linking risky zero-coupon bonds to CDS and
coupon bond prices are complete. There are, of course, generdly less CDSs and coupon
bonds trading than the total number of different dates in the various payments schedules,
meaning that we normdly have too few equations to directly back out dl risky zero-
coupon bonds in equations (A.1) and (A.2). As a consegquence, one typicaly applies some
type of bootstrap interpolation technique to reduce the number of independent unknown
variables.
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Appendix B
Derivation of forward equation for European call options

Defire Y (t) =(S(t)- K)~ for some positive strike K. By the Ito-Tancka Theorem for
continuous non-differentiable functions, we get

dY () =L SO (r®) - a®) +1 (£,S(1) ) dt +4d (S(t) - K)S(t)%s (t,S(E))"dt +
Lsgysx S(t)s (t, S(t))dW(t) - Y (t)dN(t)

where we have omitted the tedious usage of t- in the underdanding that dl terms are to
be evduated to the left of any jump time. Integrating over time, taking expectations, and
noting that d (S(t) - K) S(t)%s (t,S(t))" =d (S(t)- K)K?s (t,K)? gives

E(Y(T)) =Y (0)+ QLr(t) - A IE (Lo SO)) dlt + Q) E (Lsgyone SOOI (£.S(D) )t +

(B.2)
LK’ (LK)’E(d (S - K))dt- QE(Y (t.SM)1 (tS®)))et.

To relate this equation to obsarveble quantities, first notice that E(d (S(t)- K)) is the

densty of S(t) in K. As before, we now let C(t, K) denote the time O pice of a cdl

option with gtrike K and maturity t. From Breeden and Litzenberger (1978), we then have

E(d(s00- k) =15 5Py, ®2)

where T°C(t,K)/K? will contain a massin K =0 to reflect the probability of default in
[0,T]:

P(O,t)'1(5+4dﬂ il((t; 9 k=Pr(t <T).

We dso notice that

PO,t)* (B.3)

C(t, K)P(0,) " = E(Lygporc (S) - K)) = E (L S)) +K &KK)

where the lagt equation follows, for ingance, from integration of (B.2). Findly, we notice
thet the third and fifth integrand in (B.1) combine to
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E (s SOOI (8.SM)) - Lo SO (8.SO) - Lsg KI (£,5(0))) =

(B.4)

KE (1soc! (1.S(0)))
Inserting expressions (B.2)-(B.4) into (B.1), noting that C(T,K)=P(0,T)E(Y (T)), and
taking the derivative with respect to T yidds

1C(T.K) _

_ ) ) 1C(T. K)
T q(T)C(T, K)- (r(T)- q(T))K K +

(B.5)

2 2
1K (1,K)? TELK) Cﬂ(KTZ'K) N QLS LELYT, OV

where we have used (B.2) in the lagt term. Assuming that | is twice differentiable, we
can rewrite the equation above by integrating the last term by parts twice:

Oi‘ﬂzc%(k-g’ k)I (T,k)dk:—ﬂcg]l’k)l (T,K)- 1 (T k)C(T,k)+ 3 "(T ,k)C(T,k)dk

Under some regularity on | (T,k) (eg. that it and its k-derivatives are bounded for large
enough K), the two first terms in the equation above gpproach 0 as kK ® ¥ . As such, we
can write

¥ °C(T,K) __JC(T,K) : N
QTI (T,k)dk—-ﬂ—KI (T K)+1 (TK)C(T K)+ | (T k)C(T K)k .

Inserting thisinto (B.5), we get the dternative expression:

ICOK) —_ (qey- KI (T, K))C(T.K)- (r(T)- qT)+1 (T, K)) K ISLTK)
T K &g
1K (T,K)2w+KC;C(T,k)I "(T, k) dk.

It is of interest to note that the forward equation above is just a specid case of
fooward equations for jump-diffuson gstock processes with  dtate-dependent  jump
intengity. For instance, consider the stock process

ds(t) / S(t-) :(r(t)- q(t) + m(t)l (t,S(t-)))dt+s (t,S(t-))dw(t) +(I () - 1) dN(t)

where J(t) is some podtive random vaiable with  detlerminigic  dendty
Pr(3(®)7 dz)/dz=x(t,z), and m(t)° 1- E(J(t)). (We can essily extend further to stock
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and time-dependent dengty X(t, S 2) ). Following the same dteps as above, we arive a
the forward PDE

1C(T.K) _
T

-q(T)C(T,K) - (r(T)- a(T)) K

o T K) , & T°CTK)
$KCs (T.K)' = 5= KQTl (T, k) dk +

1C(T.K) ,
K

v ¥ T2C(T.k)

K . * 1°C(T,k) U
(J(t)) Q. g (k-K/z)x(T,z)I(T,k)dkdz-QﬂTkl(T,k)dkH

(B.7)

where x'(T,2) =2x(T,z)/E(J(T)) is a densty function. Let us consider some specia
cases. Fird, when J(t) =0 we are left with the same expresson as earlier. Second, if
J(t) is some deleminisic funcion h(t), x(t,z)=d(z-h(t)) and the equation
amplifiesto

%Lq(T)CU,K)- (r(M- am) K%Jr

» P°C(T,K) QK/h(t) T°C(T, k)

1K K
s (T,K) e e

(K - kh(T))I (T, k)dk

And third, when | is independent of S (B.7) degenerates into the forward equation
derived in Andersen and Andreasen (2000).
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Appendix C
Congtant-parameter stationary distribution of intensity process| (t,S) =cS™*

To understand the asymptotic behavior of | (t,S)=cS ®, p >0, for large t, consder the
case where all stock process parameters (r, g,s ) are congants. From equation (5), we
have that

dl (/1 ¢)=(a- pl (t))dt- psdw(t)

where a®° p(%(p+])s Zor +q). If a<0, no dationary didribution exists as the origin
becomes an attractive point and lim,,, E(I (t)) =0. For sufficiently postive values of a,
however, a dationary dendty y (I ) might exis. From standard theory (eg. Kalin and
Taylor, 1981, p. 220),y <didfies should it exis,

d d? 2 )
- (@ pl )+ (v (s ®p?) =0,

Integrating once (and arguing that the integration constant must be zero) and separating
variablesyidds the result

y(l)=Cl ™' (C.H
where C is an arbitrary constant, m° 2a/(p’ ?)- 1, and a © 4 ps ?. For the density to be
integrable, we obvioudy mugt assume that m3 0. Recognize (C.1) as the dendty of a
Gamma digributed variables, the consant C must equa 1/(G(m)a ”‘) to ensure that y

integrates to 1. More importantly, from the properties of the Gamma digtribution, we see
that

¥
Q!y (1)dl =am=a/p- ips?=1s?-r+q, m3 0.
To summarize,

limg, E(I (1)) =MAX (0,45 - r+q). (C.2)
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Figurel: Term structuresof ATM implied volatilities vs. intensity specification

Pand A, p= 2:
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Notes: the graphs show term structures of implied volatility for options struck at the stock
forward price. The model specification is as follows. r(t) =4%, q(t)=2%, S0)=50,
s (t,S)=30%,and | (t,S) =cXS/50) " with c and p varying as noted in panels A and B. All
numbers in the graphs are based on a Crank-Nicholson finite difference grid with 150 spatial
steps. For T<1, we used daly time-steps; for TT [1,7] weekly time-steps, and for
TT1 (7,30] monthly time-steps.
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Figure 2: 6-month and 5-year implied volatility skewsvs. intensity parameter c

Panel A, T=0.5:
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Notes: the graphs show implied volatility skews for 6month (panel A) and 5year (panel B)
call options. All strikes are reported as percentages of the forward stock price. The model
specification is as follows r(t) =4%, q(t)=2%, S0)=50, s (t,S)=30%, ad
| (t,S) =c»(S/50) %, with ¢ varying as reported in the graphs. Finite difference grid
dimensions were asin Figure 1.
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Figure 3: 5-year implied volatility skew vs. intensity parameter p
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Notes: the graph show implied volatility skews for 6-month call options. All strikes are
reported as percentages of the forward stock price. The model specification is as follows:
r(t) =4%, q(t)=2%, S0)=50, s (t,S)=30%, and | (t,S)=5%S/50) ", with p
varying as specified in the graph. All numbers were generated in a 150" 150 finite difference
orid.
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Figure4: Term structuresof risky spreads vs. intensity specification

Pand A, p= 2:
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Notes: the graphs show term structures of spreads on risky bonds, as defined in equation (9).
The modd specification is as follows: r(t) =4%, q(t) =2%, $0)=50, s (t,S)=30%, and
| (t,S) =cXS/50) " with c and p varying as noted in panels A and B. Finite difference grid

dimensions were as in Figure 1.



Figure5: Term structuresof risky spreadsvs. stock volatility
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Notes: the graphs show term structures of spreads on risky bonds, as defined in equation (9).
The modd specification is as follows r(t) =4%, qt)=2%, S0)=50,
| (t,S)=10%%S/50)%, and s (t,S)=s , with s varying as shown in the graph. Finite
difference grid dimensions were asin Figure 1.
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Figure 6: Result of Calibration to Risky Bondsand ATM options
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Notes: the graphs show the cdibrated functions a, b inthe modd | (t,S) = a(t)4S/50) "
S (t,S) = b(t) . ATM call options (with strikes equal to the stock forward values) quote at 40%
implied volatility for al maturities; the risky credit spread quotes at 5% for al maturities. The
remaining parameters were as follows. r(t) =4%, q(t) =2%, S(0) = 50, with the parameter
p of the | -function varying as noted in the graphs. In the calibration algorithm, the fit was
performed in increments of 1 month, with weekly points in the finite difference grid time line.
The spatia direction of the finite difference grid contained 150 points.
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Figure 7: Prices of Convertible Bondsin Test CasesA and B

Panel A: test case A
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Notes: the graphs show convertible bond prices for the test cases A (in panel A) and B (in panedl
B). See Table 1 for details about the contract and the market parameter. The parameter p of the
| -function varies as noted in the graphs. In the calibration algorithm, the fit was performed in
increments of 1 month, with weekly points in the finite difference grid time line. The spatia
direction of the finite difference grid contained 20 points. The same finite difference grid was

used for pricing and caibration.
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Figure 8: Percentage priceerrorsof “naively” calibrated model (case A)
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Notes: the graph shows the convertible bond price error of the “naively” caibrated mode vs.
the level of the stock price. Errors are represented as a percentage fraction of the excess value of
the convertible bond relative to the bond floor. All market and model data is as in test case A
(magnitude of the percentage error is similar for test case B); see Table 1 for details about the
contract and the market parameter. The parameter p of the | -function varies as noted in the
graphs. In the calibration agorithm, the fit was performed in increments of 1 month, with
weekly points in the finite difference grid time line. The spatia direction of the finite difference
grid contained 250 points. The same finite difference grid was used for pricing and calibration.
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Endnotes

' Briefly, the reduced-form approach directly models default as a point process focusing primarily
on the properties of the default intensity process. An dternative framework, the structural
approach, models default as the first passage time to a barrier of some process, typicadly ether
the company equity or a proxy for its assets. See Merton (1974) for a classical example. While it
is in principle possible to build convertible bond models using the structural approach (see eg.
Brennan and Schwarz, 1980), the reduced-form approach is, by far, the most natural for trading
applications and shall be the sole focus of this paper.

" For a review of Cox processes, see e.g. Lando (1998). Briefly, a Cox process is a Poisson
process with stochastic jump intensity.

"I Further, we need to interpret (1) as holding only up to and including the time of default. After
default the stock ceases to exist and we cannot alow the stock to continue diffusing and jumping.
One option is to modd the post-default stock as a cash certificate on a deposit of R.S(t - ), i.e.
dS(t) =r(t)(t)dt, t >t .

V' For the case where there is fractional recovery of on the stock in default, the term
| (t,S)SHV/TS in equation (2) must be replaced with (1- RS)! (t, S)SHV/ TS, where R is
the recovery fraction.

Y In contragt, for a put option with time T payout (K - S(T))", the recovery value would be
R(t,S) = Kexp(- q r(u)du) .

¥I By letting the function s (t,S) depend explicitly on S, a diffusion can itself generate avolatility
skew or smile. We will return to this issue in Section 6.

¥I' Like the conversion option, the issuer's call option can be exercised Americanstyle (that is,
continuoudly). In case exercise takes place in the middle of a coupon period, the bond owner is
normally entitled to interest accrued up to the date of exercise. This can easily be incorporated
into the boundary condition (17) by modifying the cdl strike appropriately.

Y Recall that this is the spread in zero-recovery (intensity) terms. The credit spread observablein
the market for coupon bonds or credit default swap would then be roughly (1- f ) =60% of the
numbers in the table (180 bp and 120 bp)

™ An dternative is to set ¢ such that bond floor is priced correctly at today’s value of the stock
price. However, for the cases tested in the paper this approach would result in convertible bond
prices that would be significantly too high, as the increased voldtility of the “naive’ model would
not be countered by a decrease in the vaue of the bond floor. To avoid overstating our case, we
do not list the pricing results of this approach (but see the case of p =0 in Figure 8to get afeel
for the magnitude of the errors).

* Some of the results in Appendix B have independently been derived in Carr and Javaheri
(2002).
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