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Abstract

We present a model in which a bond issuer
subject to possible default is assigned a “con-
tinuous”rating R, 0[0,1] that, Sfollows a
Jump-diffusion process.

Default occurs when the rating reaches 0,
which is an absorbing state. An issuer that
never defaults has rating 1 (unreachable).
The value of a bond is the sum of “default-
zero-coupon”bonds (DZC), priced as follows:

D (t) &, R) =€xp (_l (t; x) - w(t: xZ, R)

The default-free yield y(t, x, 1) =1(t, x) /x fol-
lows a traditional interest rate model (e.g.
HJM, BGM, “string’; etc.). The “spread field”
W, @, R) is a positive random function of
two variables R and x, decreasing with
respect to R and such that Y(t,0,R)=0.The
value Y(t, z, 0) is given by the bond recovery
value upon default. The dynamics of Yis
represented as the solution of a finite dimen-
sional SDE. Given Wysuch that ORY <0 a.s.,
we compute what should be the drift of the
rating process R, under the risk-neutral
probability, assuming its volatility and pos-
sible jumps are also given.

For several bonds, ratings are driven by corre-
lated Brownian motions and jumps are pro-
duced by a combination of economic events.

Credit derivatives are priced by Monte-Carlo
stmulation. Hedge ratios are computed with
respect to underlying bonds and CDS's.
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ecently, Enron, one of the largest

energy brokers in the world, and

the leader in energy derivatives,

filed for Chapter 11 protection. It

could not sustained by itself
derivative-linked liabilities on oil and elec-
tricity contracts. The cancellation of a buy-out
agreement by another energy company, Dyn-
egy, caused the company’s failure. This event
would have been one among other bankrupt-
cies, hadn’t it happened about one year after
a famous cascade of electricity company fail-
ures in California during the Fall 2000. It
would be difficult to find a direct link between
these two events, although it is quite obvious
that the California defaults had a negative
impact on Enron’s general financial shape.
What can be taken for granted is that both
stories happened in a rather turbulent envi-
ronment for energy markets. This articleis an
attempt to present a mathematical frame-
work for credit events modelling that is both
tractable, in terms of statistics, calibration,
credit derivative pricing and hedging, and
flexible enough to reproduce the real features
of credit events in financial markets, such as
the non-causal, though truly existing, link
described above.

The issuer of a bond subject to possible
default — corporate or else — is assigned a
“continuous” rating R, []0,1] that follows a
diffusion process, possibly with jumps.
Default occurs when the rating reaches 0,
which is an absorbing state. Non-defaultable
bonds have rating 1, which is unreachable
when starting from other ratings. At any time
t, the bond is valued as the sum of its sched-
uled payments, which are proportional to
“defaultable discount factors” with rating R gt.
The defaultable discount factor with time to
maturity # and rating R is denoted and
decomposed as follows:

D (t) &, R) = eXp (_l (t’ x) - w(t; &, R))

The non-default yield y(¢, , 1) = [ (¢, x) /x fol-
lows a traditional interest rate model (e.g.
HJM, BGM, etc.). The spread field y(t, x, R)
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Most other credit models (Merton, Jarrow-
Turnbull, Duffie-Singleton, Hull-White, etc.)
can be seen either as particular cases or as
limit cases of this model, which has been spe-
cially designed to ease calibration.

Long-term statistics on yield spreads in each
rating and seniority category provide the
diffusion factors of Y. The rating process is,
in a first step, statistically estimated, thanks
to agency rating migration statistics from
rating agencies (each agency rating is asso-
ciated with a range for the continuous
rating). Then its drift is replaced by the risk-
neutral value, while the historical volatility
and the jumps are left untouched.
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is a positive random function of the two vari-
ables @ and R, which is decreasing with
respectto R.The usual yield spread over Trea-
suries is ' (t, 2, u) which implies (st 0, R) =
O (unless an actual discount is still observed
immediately before payment). The recovery
value upon default is D (¢, , 0) = €*D(t, a, 1)
where X = (¢, z, 0). A formal zero recovery
rate would correspond to a function that is
singular in R = O so that X = +. Different
bondsissued by the same issuer must have the
same rating, but could lead to different spread
fields  as their recovery rate depends on the
bond’s senioritylevel. Let ¢ = -dry, so that y«t,
a,R)= fR 1 &(t, 2, u)du. The derived spread field
or “spread per unit of rating” is a positive ran-
dom function, represented as the solution of
afinite dimensional SDE, asis the case for (¢,
&) in an HJM-like model, but with one extra
variable.

The “continuous” rating of a bond issuer has
a rather intuitive meaning: it can be seen as
an interpolation of ratings provided by agen-
cies. More precisely, one can specify the model
in such a way that a given agency rating cor-
responds to some sub-interval [a;, a; ;] O
[0, 1]. Rating migrations correspond to cross-
ing one or several (in case of a jump)
threshold(s) a;. Thresholds can be customar-
ily chosen. A market-observed spread jump,
due to some negative information on the
issuer, is, in our model, linked to some rating
jump. This means that the continuous rating
is in fact market implied and may anticipate
the actual rating provided by agencies. We
shall however ignore this possibility when cal-
ibrating the diffusion and jump parameters of
the rating process.

From the Arbitrage Pricing Theory (A.P.T.),
we know that there exists a probability,
equivalent to the original “historical” proba-
bility, that is risk-neutral for non-default-
able bonds. Under this probability, credit-
risk-free contingent claim prices are equal
to the expectation of the discounted claim
pay-offs. In the defaultable context, ¢ being
given and positive a.s., we show that there
exists an equivalent probability that is risk-
neutral for both defaultable and non-
defaultable bonds, under which credit-risk-
dependent contingent claim prices are again
equal to the expectation of the discounted
credit-event-dependent pay-off, with the
recovery value in case of the counterparty
default. For this purpose, we compute a
“risk-neutral drift” of the rating process



Ry(t), assuming its volatility and possible
jumps are given.

Note that the introduction of the rating as
a market variable in the model goes
beyond the usual A.P.T. framework, in
which market variables should be associat-
ed with the price of a tradable security.
More precisely, the insufficient number of
issues from a given issuer on a given sen-
iority level and the impossibility of taking
short positions on corporate bonds render
the market highly incomplete. In mathe-
matical words, for the model to be Markov,
we need to introduce non-tradable market
variables. As a consequence, various rating
and spread process specifications can lead
to exactly the same price and default
processes>. Then, the same original proba-
bility distribution may lead to different
risk-neutral probabilities and, consequent-
ly, different credit derivative prices. In this
context, the usual “default intensity”
approach is an extreme case, with deriva-
tive prices that are, therefore, at the
extreme of what is consistent with underly-
ing prices and default probabilities. It is
well known that, in A.P.T., the set of
acceptable prices for a given derivative is
the set of expectations of its discounted
future pay-off under the various risk-neu-
tral measures. The different rating and
spread process specifications will tend to
span the interval of acceptable arbitrage
prices, whereas the default intensity
approach will in most cases, depending on
how one’s own default is taken into
account, provide one of the interval
extremities.

Ratings of several issuers are driven by cor-
related Brownian motions. In the case of
pure diffusion processes, joint defaults have
zero probability (although a default occur-
rence increases the intensity of other
defaults correlated to the defaulting party).
In a jump-diffusion model, jumps are pro-
duced by economic events, with a size that
depends on the event and on the issuer.
Similarly to Duffie-Singleton approach [7,
19971, when an economic event occurs, it
may induce the default of each single issuer
with a certain probability that depends on
its current rating and on the jump size dis-
tribution. In this case, a jump-driven default

3 For instance, through changing the rating R
by any 1-1 transformation of the interval [0, 1].

implies a negative (or at least non-positive)
impact on other ratings and, consequently,
an increase in the default probability.

The pricing of credit derivatives, such as
non-standard credit default swaps (CDS),
first n to default in a basket, etc., is per-
formed by Monte-Carlo simulation under
the credit risk-neutral measure. Hedge
ratios are computed with respect to the
underlying bonds and standard CDS’s,
which can be used to obtain negative sensi-
tivities. The prices that we obtain are not
necessarily “arbitrage prices”, but the risk
premia, or rather “reward for risk taking”
They are, for every given issuer, consistent
with the market price of its bond issues, in
the sense that, if default is ignores, then the
“theta” (time derivative) of the claim is equal
to the instantaneous default-free rate of
return of the hedging portfolio, theoretical-
ly composed of long or short positions on
underlying bonds.

Most famous credit models (Merton [9,
1974, Jarrow-Turnbull [13, 19957, Duffie-
Singleton [7, 1997]) can be seen either as
particular cases or as limit cases of this
model, which is an attempt to encompass in
a unique framework the various rating-
based models, such as Huge-Lando [11],
Hull-White [12] and Crouhy-Im-Nudelman
[5]. Possible extensions of this model
include string models for the default-free
interest rate part, as well as an infinite
dimensional random field for the function ¢
with possible distribution components (i.e.
the integral jkl ¢(t, 2, u)du may be discontin-
uous with respect to R). The rating volatility
could also be made stochastic, or subject to
regime changes.

This model has been specially designed to
ease calibration. Long-term statistics on
yield spreads in each rating category and
seniority level provide the volatility and fac-
tor structure of the random function ¢. The
rating process is, in a first step, statistically
estimated, thanks to rating migration statis-
tics from rating agencies (see above: each
agency rating is associated with a range of
possible continuous ratings). Then its drift
is replaced by the risk-neutral value, while
the historical volatility is kept. Jumps are
only introduced to model catastrophic
events involving several bonds. The rating
process being an abstract version of
Merton’s firm value, we suggest, along with
other authors (e.g. [5]), to use issuers” stock
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correlation for that of their rating processes,
although this hypothesis should be tested.

DYNAMICS
Non-defaultable Bond Pricing

We assume that the dynamics of default-
free interest rates are given via a HIM or
BGM model (see Heath-Jarrow-Morton
[10, 1990] and Brace-Gatarek-Musiela [3,
19971). More precisely, the default free zero-
coupon bond D(, , I) with face value 1 and
time to maturity @ is given by:

D(t, x, )= exp (-1 (t, x))

The function (¢, x), which stands for the
opposite logarithm of the discount factor, is
a convenient term structure representation
for stochastic modeling. The parameter 1
makes precise that we are dealing with non-
defaultable bonds (the meaning of this
parameter is explained below). One has:

It 2) = [ £t 9)ds = y(t,

where f(t, s) is the forward rate at date s as
of ¢t and y(¢, x) is the zero-coupon yield. We
assume that the interest rate dynamics,
under a measure [ , is given by:

dyl(t, @) = p(t, &, 1 )dt + 5 0t 2,1 )dZ;,

where Z = (Z,,..., Z,,) is an m-dimensional
Brownian motion. The drift pu and the
volatility factors v; not only depend on the
time and maturity, but also on the whole
yield curve Z, =[(¢,.). Let 7(¢) = f(¢, t) be the
short term rate. It is well known that, if 0O
is a risk-neutral probability, in order to
avoid arbitrages, we need that discount fac-
tors be martingales, which leads to:

Mt @ L) =f (4 t+) - r(8) + Ly 03,
where V=0 @t al) -

Credit Modelling

Each bond issuer is assessed a rating which
can take continuous values R [0 [0, 1] and is
modelled as a random process. The rating R
=1 corresponds to issuers that never default,
therefore it cannot be reached unless it is the
initial value. Default occurs at the first time ¢
where R, = 0, which is an absorbing state.

A bond issued by a company depends on the
default-free yield curve and on its yield
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spread over default-free bonds, which is a
function of the company rating and of the
recovery rate in case of default. The log-
ratio between the actual market price and
the “would be” default-free value, which
may be different for each bond and, in par-
ticular, depends on the bond seniority, is
itself modelled as a random function /¢, «,
R), which we call the spread field.

Rating Diffusion Process

The rating process R,, t > 0, is, in a first step,
modelled as a diffusion process:

dR, = hdt + o(t, R)dB, (2.1)
where B is a Brownian motion, as long as
R,>0.Thenif T = min{t >0, R, = 0}, we set
R, = 0 for every t>1. The drift A, and the
volatility (¢, R,) must be chosen so that
R,<100 ¢t R, < 1a.s., in particular — but
this is not sufficient — they must vanish for
R = 1. We shall assume, in this article, that
the volatility o (¢, R) is a deterministic, con-
tinuous function of ¢ and R, however, the
drift can be any integrable process.

We shall see in sect. 2.4 how to add a jump
term to the rating process. A stochastic
volatility is a possible extension of the model
(see comment in sect. 4.1).

Spread Field Process

Let D(¢, 2, R) be the price of a defaultable
zero-coupon bond (DZC in short) with rat-
ing R. One can set:

D(t, &, R) = exp (-l(t, ) - Y(t, x, R)) (2.2)

where the spread field ¢ is defined by:
D@, a, 1)
t, 2, R) =log —22~
Witz R) = log D(t, x, R)
This is a random function of # and R which,
for fixed (¢, x), should decrease when R
increases and vanish for R = 1.

Remark 1

The usual yield spread is s(t, @, R) =
Y (t, @, R)/x, which suggests that the func-
tion ¢ must satisfy ¢(t, 0, r) = 0.
However, in certain market conditions, this
assumption can be relaxed, for instance
when, at the eve of a payment, a default risk
still remains and the market significantly



underprices the bond with respect to its face
value. This justifies why we prefer to work
with ¢ rather than s.

Remark 2

When a given company has several bond
issues, the default on one security usually
implies a right, for holders of other issues,
to ask for immediate reimbursement.
Therefore, the default time is the same for
all the bonds issued by the same company.
However, the yield spreads over Treasuries
of the various issues are different, due to
different seniority levels and, hence, differ-
ent recovery rates in case of default. The
rating based model is particularly well suit-
ed for this situation, where a given compa-
ny has only one rating process R, but, for
every single bond issue — or, at least, every
seniority level — a different spread filed,
calibrated so as to match the market price
of each bond.

The spread field properties allow us to write
it under the form:

Wt o R) = ) ¢ (62, wdu

where ¢ is a non-negative random field,
called the derived spread filed. Following the
above remark, ¢ must satisfy ¢ (¢, 0, u) = 0,
with the same comment about payment eve
possible discounts.

If the firm defaults at time , the value of the
bond is a percentage of the default-free
bond:

D(t, z, 0) = D(t, 2, 1) e X )

Hence, the spread field value for R = O is
linked to the recovery rate by the equation:

L)U(t’ Z, 0) :_/0.1¢(t, &€, u)du =
X(t, ) = log s .

A formally zero recovery rate would corre-
spond, in this model, to the fact that ¢(¢, x, u)
has a singularity for u = 0 such that

_/O.]¢ (t’ x, u)du = 400,

The dynamics of the derived spread field
for fixed (x, u) is given by a multi-factor
diffusion:

dt¢ (t) x, u) = y(t’ Z, U, Qt) dt +
Zlfl (ty x) u) Qt)dmt

where W = (W, ..., W) is an n-dimensional
Brownian motion. In this formulation, the
drift y and the volatility factors &, may
depend on the whole derived sprea(i filed
¢, = ¢ (¢, .,.). We may assume, without loss
of generality?, that the correlations between
the different Brownian motions are:

dW, BU=wdt dW, zZU=pdt
dEI/Vi,Zj@=O ifi#zj

Let us make the assumption that the first
order partial derivatives 0,y and 9y, as well
as, for every ¢, 0,&, and 0xr¢; exist and are
a.s. bounded and continuous with an at
most uniform linear growth with respect to
¢. If we assume the same property with the
initial derived spread field ¢ ,(x, u) = ¢ (0, «,
u), then 0,¢ and 0z¢ remain a.s. bounded
and continuous for all times.

Lemma 2.1

For fixed T, the dynamics of the composed
spread process W, = y((t, T-t, R,) is given by
the following formula, in which @ = T-¢:

d%zéﬁ#@%uﬂw¢@%Rﬂmf

(f 2,0t 2, wydu)at - aR, 913 -
t
300 2, R)ARY

In this formula, dCR, ¢Dt stands for the
bracket of R, with the process ¢(t, , u) for
fixed (2, u), evaluated at u = R,, whereas
dER;is the usual bracket of the process R,.

Proof

The proof of this lemma is given is the
Appendix.

Let us now denote:

r,=r{aR) :_é:y(t, x,u, g, )du

=i Rt)ZL:@(t’ 2, u, @ )du
0,=0@tR) &,=&t xR, P

b, = d(t, 2 R)

0; = 0pd(t e R) 0= J 0,0(ta i

4 One can apply a unitary linear transformation to
multi-dimensional Brownian motions Wand B.
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From the above proposition, we deduce:
d¥, = (I‘ -0, - Utglwifi,t - %atqut')dt +

5=,,d

i=1

W,,- 0,¢,dB,
Risk-neutral Probability

This calculation, together with Ito lemma
applied to formula (2.2), lead to the follow-
ing proposition.
Proposition 2.2
For fixed T, the defaultable discount factor
dynamics is given by:
D - g, + LdUG+ dU, W+ [—Ft + 0,4,

+ @,y + atgl"zi,twi - ¢tglvizi,tpi

+ 1(0po; +5 22+ 0207

- 2¢tati = twi>]dt + martingale

i=1

Let us recall that, for O to be a risk-neutral

probability for non-defaultable bonds, one
must have, for fixed T:

- dl,+ >dUY = 7, + martingale

Equating the drift of dD, /D, to r,, we get the
“risk-neutral drift” / of tile rating process, as
stated here.

Proposition 2.3

Assume that 0 is a risk-neutral probability
for the non-defaultable discount factors
D(t, x, 1). Assume that ¢ (¢, 2, u) > 0 almost
surely and that the process %, defined by:

¢, b, =T,-0,4,- atgé'i,twi - ¢t§1vi,tpizi,t
3020 + 322+ 007
- 2¢t0t§15i,th’>

is such that:

6, ht) dt)] < 400

(2.4)

07> 0, O [exp(2= [
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Then the probability (7 defined by:

d@ _ ngz'hz fT(h ht)z
a0 ‘ex(o 5, dB-5 Jo — 42 )

is a risk-neutral probability for defaultable
zero-coupon bonds.

Proof
Girsanov theorem shows that, under condi-
tion (2.4, [T is a probability measure equiv-

alent to 0. The above calculation shows
that discounted prices of defaultable zero-
cm@on bonds are martingales with respect
to

Rating Jump-diffusion Process

In this section, we add a jump term to the
rating process. More precisely, we model the
rating process R, as the following jump-dif-
fusion process:

dR, = h,dt + o(t, R, )dB, + 6(t, R, )dM,(2.5)

where B is a Brownian motion and M is the
compensated martingale associated to a
Poisson process N with deterministic inten-
sity A(t), that is:

dM, = dN,- A(t)dt
The drift term A and the functions ¢ and 6
must be chosen such that if 0 < R < 1 then,

for any ¢ > 0, one has 0 < R, < 1. Taking care
of jumps in the dynamics of W,, we obtain:

dw, = [rt -0, - Ut;wifz',t - %

+ AW, |dt

0’9,

where 6, = 6(t, R, ). Then, replacing sto-
chastic differential terms by their value:

= [rt -0, - Utglwi $iv- %@24’2

+ /\(t)AWt] dt + i =AW, - 0,¢,dB,

dw,

+(AW, - ¢, 6)dM,
where
1 [ Be-
AW, =W, -, _=- Ej;t-"'et (t, z, w)du

Finally, the risk neutral drift ﬁt satisfies:



¢, h, =T, + A1) - exp(-AW, ) - 3,4,
- Utglfi,twi - ¢ti§1vi,tzi,tpi
-L(o2e; + 322+ 9707

-20,0,3 Ei,twi)
=1

LINK WITH OTHER MODELS
Structural Models

Structural models, such as that described in
Merton’s famous 1974 article [9, 1974], can
be seen as particular cases of our model. The
rating is the firm value, scaled in a non-lin-
ear way in order to remain in the interval
[0, 1). Bonds value, which depends on the
investor’s risk aversion, is a deterministic
function of the yield curve, the probability of
default and the maturity. Therefore, so are
the spread field ¢ and its rating derivative ¢.

Default-intensity-based Models

The relation between rating-based and
default-intensity-based models is less
straightforward. The seminal articles of this
family of models are Jarrow-Turnbull [13,
1995] and Lando [16, 1998]. Only the pos-
sible default of bond issues is observed, their
rating is ignored. The time T at which a
bond issuer defaults is modelled as a
Poisson process. In Jarrow-Turnbull model,
the yield spread of zero-coupon bonds over
the equivalent non-defaultable bonds is a
deterministic function of time and maturity,
and so is the hazard rate, i.e. the intensity of
the Poisson process. In Lando model, the
hazard rate is stochastic and, consequently,
so are yield spreads. These models could be
seen as a limit case of a rating-based model.
The apparently obvious formulation, where
the rating R takes only two possible values,
R and 0, and jumps from R to 0 according to
a Poisson process is incorrect, because the
“risk-neutralization” of the original proba-
bility 0 is different>. A better, but still
incorrect, parallel is to assume that ¢ is for
instance a constant and that R, is set so as to
match the bond value.

The correct approach is, conversely, to start
from a risk-neutral Jarrow-Turnbull (or

5 If the rating is ignored as a market variable,
credit models are incomplete and several risk-
neutral probability measures may exist.

Lando) model, then, thanks to a theorem
due to Skorokhod, represent, at a given ori-
gin of time ¢, the default time 7 as the first
hitting time of a process R, to some time
dependent barrier R, = H(#). The change of
variable that moves this barrier to the axis
R = 0 is usually singular, in the sense that R,
has an infinite negative drift at ¢ = £, in order
to reach a default probability of the order of
t-t, for t close to ¢, (one has H(t,) and H(¢)
= -aVt - t, for small ¢ = ¢,). This is the rea-
son why we speak here of a “limit case”. Then
the derived spread field ¢ is any smooth
function of (x, R) such that bond prices
match in both models. Now, a change of
intensity of T — which is thus not anymore
risk-neutral — can be translated into a
change of barrier H(t) to some barrier H'(¢).
If we keep the same function ¢ the new, non
risk-neutral, rating process R, = R, + H(t) -
H'(t) has the same volatility, but a different
drift. Our “risk-neutralization” procedure
will lead us to the original Jarrow-Turnbull
(or Lando) model.

In fact the two models are still different
because, in the rating-based model, the
change of rating process necessarily implies
a change in the spread process ¥,. This fea-
ture is inherent to the global idea of a rating,
because, when defaulting in a non-jumping
manner, a bond has a price that continuous-
ly tends to the recovery value. Pure Poisson
models, such as Jarrow-Turnbull and
Lando, would correspond to a derived
spread field ¢ that is a distribution concen-
trated on the axis {R = 0} and O elsewhere.
This difference has a small impact on the
price of CDS’s with respect of that of bonds
and will be fully justified later on, when
speaking of default correlation. Another
reason for preferring the rating-based
approach is that, in general, credit deriva-
tive prices and hedge ratios depend more
gently on model parameters.

The real behaviour of bonds about to default
seems to be in between: a price that consis-
tently decreases before default, but still
incurs some true jump when default is actu-
ally observed, which would correspond to a
non-zero ¢ with some Dirac component
along the axis {R = 0}.

Rating-based Models
Crouhy & Al.. [5] model the rating as a

Markov chain with finitely many states, in
order to mimic agency ratings. They direct-
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ly input migration statistics. With several
issuers, ratings are correlated with the same
correlation as issuers stocks. They build a
risk-neutral probability that is inconsistent
with an interpolation of discontinuous rat-
ings by continuous ones.

Nevertheless, it is close enough to ours to
lead to similar derivative prices.

Hull-White model [12] can be viewed as a
particular case our model. They define a rat-
ing process R, which is a pure Brownian
motion, but the “default barrier” is adapted
so as to match the default probability. In
particular, it is not necessarily a straight
line. In order to get a risk-neutral probabil-
ity, they hence modify the location of the
barrier. This model can be identified with
ours by changing the rating with some non-
linear transformation that fits it into [0, 1)
The change to a “risk-neutral” barrier
becomes a change in the in drift of the
process, exactly like in our model.
Notwithstanding the elegance of Hull-
White’s approach, we prefer our framework,
in which the rating has a real practical
meaning and is thereby easier to calibrate.

Avellaneda-Zhu [2] introduce the idea of a
“risk-neutral distance-to-default process” of
a firm. They characterize risk-neutrality by
the fact the default index satisfies a Fokker-
Planck-like parabolic PDE. Although their
study only concerns one issuer, they show
the easiness of calibration and the “square
root” shape of barriers mentioned above.

CORRELATION OF DEFAULTS

This aspect of credit models is probably the
most sensitive and has lead to a thick litera-
ture on the topic. One advantage of the rat-
ing based approach is to make the joint
default “mechanism” for several issuers very
transparent. Moreover, although we
increased the dimensions of the model, the
number of parameters to calibrate remains
tractable and the methodology for perform-
ing statistics is rather straightforward.
Generally speaking, this approach is much
more practical than, say, copula distributions
(see sect. 4.3).

Correlated Diffusion Parts

We consider here a set of ¢ companies with
ratings R;,attimet, 7 =1... g such that:
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dR;, = h;,dt + 0,(t, R; )dB;,

Brownian motions B; and B; are correlated
with correlation p;. Such Brownian
motions can be deduced from a series of ¢
independent ones thanks to a Cholesky

decomposition of the correlation matrix
P4 i<i j<q

Assume that the rating correlation of two
companies is positive. If the first company
defaults, then its rating went to 0. The posi-
tive correlation indicates that the second
company rating is more likely to be low, thus
it has a high probability to default. Suppose
now that we know nothing about ratings
and only observe defaults. Before the first
company defaults, we don’t know about its
bad shape (except the possible high spread,
but this could be hidden by a high recovery
rate). Its rating could be anywhere, as well
as that of the second company. As soon as
the default of the first company is observed,
then we have an implicit information on the
rating probability distribution of the second
one, which significantly increases its default
probability. This is an essential feature of
rating-based models that the default of a
company suddenly increases the default
probability, over a given period of time, of
correlated companies.

This feature is actually observed in reality,
though, under turbulent conditions in a
given industrial sector, surviving companies
tend to strengthen because competition
vanishes. In other words, a default increases
the rating volatility. Again we could reverse
the causality by extending the model to rat-
ings with stochastic volatility. When a
default is observed, then the rating volatili-
ty, which is not an observed variable, is more
likely to be high, inducing, on the one hand,
more defaults but, on the other hand, faster
rating improvements.

It is not easy to perform joint statistics on
defaults, and even on rating migrations,
because these are rather seldom events.
This is the reason why we recommend here,
in the absence of any better assumption and
along with other authors (see Crouhy-Im-
Nudelman [5]), to use for p;; the correla-
tion between the stocks of company ¢ and
company j (provided these are listed
stocks). However, due to the custom scal-
ing, the volatility should still be estimated
statistically.



Correlated Jumps

In order to model the rating jumps of sever-
al companies, we consider % various inde-
pendent Poisson processes dN , ... , dNp .
Then, the rating R; , of company j follows a
jump-diffusion process of the type:

k
dR;,= by dt + 0,(t, R; )dBy,+ 3 Ot R )M,

where de’t = dN] .- Aj(t)dt j=1..k

Along with Duffie-Singleton approach, one
can see the Poisson processes dN, as “eco-
nomic events” that impact each ratlng, but
with a different coefficient 8,; on each com-
pany. In particular, the probaflblhty, when an
event j occurs that a given company i

defaults depends on the coefficient Gij.
Link with Copula Distributions

Copula distributions can, again, be seen as a
particular case of a rating based model.
Indeed, consider, for instance, a pair of
issuers with default times 7, and 7,. A copu-
la model (see for instance Sch”nbucher-
Schubert [18] and ref. cit.) explicitly pro-
vides the joint distribution of these two ran-
dom times. In a rating-based model, we need
to find a pair of processes R, , and R, , such
that 7, and 7, are respectively the first ’hlttlng
time of R, , and R, , at the O level. It is not
obvious, and perhaps not even true, that any
pair of stopping times can be seen at first hit-
ting times of the level O by correlated diffu-
sion processes. However, the richness of the
class of rating-based models allows at least
to reasonably approach any copula model.

The full superiority of the rating approach
appears when modelling more than two
issuers. Indeed, the specification of copula
distributions and, in particular, of the pair-
wise, triplet-wise, etc., joint default proba-
bilities becomes completely intractable as
soon as the number of issuers is above 5 or
6. The simulation of ratings only needs to
specify pairwise issuer correlations.

CREDIT DERIVATIVE PRICING
General Pricing Method

Up to now, we only focused on modelling
the stochastic behaviour of defaultable
bonds that underlie credit derivatives. In
fact, once this is done, derivative pricing
straightforwardly follows from the general

arbitrage theory. Let C be a credit derivative
that delivers a pay—off P X Lo o X, - D)
depending on the price of bonds X; 1ssued
by companies ¢ with rating R;, and spread
fields @ (¢, , w), at a time T that depends on
default times 7, 7 = 1... g. This pay-off shape
is even not the most general one: it could as
well contain payments prior to T depend on
defaults prior to 7, or even on price or
spread moves, official rating changes, etc.
We must include in the global simulation
the rating Ry of the derivative writer and
its default time 7, If the latter defaults
prior to T, then the derivative pay-off is sim-
ply cancelled (or multiplied by a damping
factor f if a non-zero recovery rate is
assumed). The price of C at time ¢ for the
derivative buyer is given by the following
formula, where r is the short term refinanc-
ing rate of the buyer:

Ct)= EH [exp(-jt. Tr(u)du)P(T;Xl,T, e
Xq,D)(Arp>1 + lrwsr)]

If the pay-off contains payments prior to T,
say a value P(TX1 Ts o Xq ) at time T,
provided 1 > T, then we should add the fol-
lowing term:

EH [exp(-_/;Tr(u)du)P(T;XLT,
1r>T:|

! Xq’ T)

Hedge ratios are obtained as the partial
derivative of the price with respect to hedg-
ing instruments.

Due to the large number of variables, we
recommend implementing the model with
Monte-Carlo simulations, for which above
formula is well suited. Following is a list of
examples of credit derivatives that can be
priced with this model.

ONE ISSUER

* Credit swaps: The swap buyer holds a
defaultable bond X delivering coupons at
dates T, , T,, and wishes protection
against default. He will pay, on every
coupon payment date, provided he is paid
himself, a fixed amount to the swap writer.
Conversely, upon default, the writer will
buy the bond at a given price K, e.g. face
value. In this case, P(¢; X,) has two parts.
The positive part is (K - X,), and the neg-
ative part is the sum of payments at dates
T, <t
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» Brady bond options: In these emerging
market government issues, as long as no
default is observed, the first two coupons
and the principal are guaranteed by the
United States, so that the default risk on
these payments can be neglected. If a
coupon payment is missed — i.e. payed by
the US — then only one coupon and the
principal are guaranteed in the sequel, and
only the principal if two payments are
missed (see Avellaneda-Wu [1, 2001]). In
each Monte-Carlo path, we simulate the
issuer rating and the history of payments,
which provides the value of the bond and
the option pay-off. The option value is
obtained as the expectation of the dis-
counted pay-off.

Convertible bonds: They require to intro-
duce in the model the underlying stock
process S, as a log-normal process, possi-
bly with jumps. This process should be
correlated with other market variables of
the model: rating, interest rates and
spread field. Probably, the most important
correlation is the rating, as the stock is
likely to drop drastically in case of default,
whereas the rating should strengthen if
the company value increases (see Davis-
Lischka [6]). Note that Merton structural
model [9, 1974] assumes 100% correla-
tion between these two variables.

Several Issuers

« Basket protection: This is a default insur-
ance on a basket of bonds from several
issuers, usually capped at a certain level, so
that it cannot be decomposed into the sum
of protections on each single component
of the basket. The ratings and defaults of
issuers are jointly simulated and, in each
path, the pay-off is computed, including
capping, and discounted back to the cur-
rent date.

Tranche insurance: This option is similar
to the previous one, but only guarantees
the part of losses that exceeds a certain
amount, or is between two levels. The pric-
ing method is the same.

First n to default: The underlying of this
option is again a basket of bonds. It pro-
vides protection against the first n defaults
observed in the basket, possibly over a
given period of time. The pricing method
is still the same as above. This type of
option is very sensitive to the joint behav-
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iour of defaults and, in particular, to the
impact of a default on the default proba-
bility of other assets. We believe that the
rating-based approach provides prices
that are more in line with market practice
than other models.

MODEL CALIBRATION
Rating Process Calibration

Rating agencies provide annual statistics of
rating migrations and defaults. In a first
step, we see the rating process as a Markov
chain with finitely many states, the lowest
one being default, which is absorbing. As
defaults and migrations are rather rare
events that, moreover, highly depend on the
economical context, in the absence of specif-
ic information, it is preferable to assume
that the Markov chain transition matrix is
stationary. In the case of newly issued bonds
and/or low rating (e.g. CCC) which have a
smaller probability of keeping the same rat-
ing, one may relax the stationary hypothesis.
In order to avoid biases, these statistics
should be performed on bonds that kept
their rating. Reasons for losing a rating
could be the issuer buy-out by some other
company, the bond call-back (for callable
bonds), the bond conversion (for convertible
bonds), or even when the issue is fully
bought by one bond holder or by the issuer
itself.

Then, one must “Interpolate” the Markov
chain by a jump diffusion of the form (2.1)
with constant thresholds a,. Parameters A,
0, 6 and A (preferably stationary) are esti-
mated by maximum likelihood. It is recom-
mended to manually identify jumps and
estimate their frequency and size. Then, 6
and A being given, estimate & and o other-
wise the maximum likelihood method may
provide unstable results. In a last step, the
“risk-neutral” drift 4, is computed in order
to price credit derivative.

Spread Field Calibration

For this purpose, bonds are sorted by coun-
try, industrial sector, agency rating and sen-
iority. For each class of Country / Industrial
sector / Rating / Seniority, the average
spread curve over government bonds is
computed every day. In a second step, we
identify agency ratings with arange R 0 [a,,
a;,,], e.g. a, = i/p where p is the number of
ratings and compute, every day, the spread



field @(t, 2, R) and its rating derivative @(¢,
2, R). Finally, for each class of Country /
Industrial sector, we perform a PCA (or
Karhunen-Loeve analysis) of the function
O0¢(t,x,R)=¢(t+ 1,2, R) - ¢(t, z, R) in order
to get the diffusion factors &;. See Duffie-
Singleton [8, 1997] for a study of yield
spreads behaviour with respect to the rating.
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APPENDIX
Proof of lemma 2.1

Let dt be a finite time interval, which will
tend to 0. Calculations made here are valid
up to a term of the order |dt|%2:

qut = dlpt+dt' ¥,

= 1¢(t+dt, T-t-dt, w)du - 4 fp(t, T-t,u)du
t

t+dt

= [ p(erdt, Tt-dt, Wi
tdt
1
+ J b Cedt, Tot-dt, w) - (8, T, w)du
t

Let us define:

R
I =), ¢(t+dt, T-t-dt, w)du
t+dt

I,= £:¢(t+dt, T-t-dt, u) - ¢(t, T-t, u))du

If we set dR, = R,, 7, - R,, we have:

t+dt
I = - 5 (¢(t+dt, T-t-dt, R)) +
¢ (t+dt, T-t-dt, R,, 3, ))dR, + © (|dt|¥/?)
= -¢(t+dt, T-t-dt, R)dR, - 0, (t+dt,
T-t-dt, R)dRU + o (|dt|%?)
= -¢(t+dt, Tt, R )dR, -
3 Ot T, R)ART + o (|dt|?)
=-¢(t, Tt, R)dR, - d'$, RT]-
3 0gy(t T, RYARY + o (|dt|32)

Then:
1
1, = Jf (p(erdt, Tt-dt, w) - $(t, Tt-dt, w))edu
t
+ ot Toedt, w) - 98, Tt w)du
t
= [ a9, Tt-dt, wydu
t
[ o000 Tt wdu de + o (1)
t

where d¢(t, x, u) = ¢(t+dt, 2, w) - (¢, 2, u).
Because is an Ito process, we have:

1 1
_[;tdgb(t, Tet-dt, u)du = _étdq)(t, Tt w)du
+ [ 40,90t Tt wdu de + o (1de}72)
t
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= J 6t Tt wdu+ o ()
t
where do ¢ (t, x, u) = 0,¢(t+dt, 2, u) -
0,9(t, , u). Therefore:
1
I, =/ do(t, T-t,w)d
9 _4;; o( w)du
-f 0,00t Tt wdu de + o (del2)
t

We get the lemma by putting back together
the two terms of dW¥, . 0
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