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Introduction

Contents

@ Stochastic representation of semi-linear PDEs:
Counterparty risk (and American options).
@ Review of Numerical Methods:

o Brute-force “Monte-Carlo of Monte-Carlo" method (with
nested simulations).

o BSDEs.

o Gradient representation.

@ Branching diffusions.

@ Marked branching diffusions.
@ Numerical results.

@ Multi-type marked branching diffusions: Extensions to fully
non-linear PDEs [joint work with X. Tan, N. Touzi].



Semi-linear PDEs

Semi-linear PDEs: CVA examples

@ Two types of PDEs:
Ou+ Lu+ru+rnut =0, u(T,x)=1(x) : PDEI
ou+ Lu+ru+rM+ MY +rut =0 : PDE2
M+ LM + M =0, M(T,x) = (x)

@ Toy example:



Non-linear Monte-Carlo algorithms

A brut-force algorithm

@ Feynman-Kac’s formula:
-
u(t.x) = Bf[u(xr)] - [ BBf (5. Xo)los
@ Approximation (5 is small)':
u(t, x) ~ BF[w(Xp)] - 3 SEFI(EF (X)) At
i=1

@ Leads to “Monte-Carlo of Monte-Carlo" approach (with
nested simulations). Complexity: O(N?).

@ Can we design an algorithm with complexity O(N)?

'exact for PDE2.



Non-linear Monte-Carlo algorithms

1-BSDE [Pardoux-Peng]

e 1-BSDE:

dXi = b(t, Xe)dt+ o(t, Xi).dW;
dY; = BY,"dt+ Zio(t, X;).dW,
Yr = ¥(Xr)
where (Y, Z) adapted processes.
@ Unique solution: (Y; = u(t, X;), Zt = o(t, Xp)oxu(t, Xt)).
@ Discretization scheme (Y;_, is forced to be F;_,-adapted):

1—(1-0)BAtL
Vi, = Elgq[yff] <1Eﬁ7_1[Yr,-]>0 I+11E“’f [Yt,]<0>

1+ 0BAL

@ Needs the computation of qu [Y:] by regression methods.

Quite difficult and time-consuming, specially for multi-asset
portfolios.



Non-linear Monte-Carlo algorithms

Gradient representation [Talay-al], [Jourdain]

@ Let u be the solution of
Oru + %&‘(t, X)02u + f(u) = 0 u(T, x) = 1b(x)
@ By differentiating w.r.t. x :
O + <(08Xa) Ox + %02(1‘, x)a§> A+ (uU)A=0
@ Interpreted as a Fokker-Planck PDE:

u(t, x) = — / J/(8)daEF[1(X3 — §)el u(T+t-s.X)as)
R+
dX3 = o(T +t—8,X3)dBs + (0020) (T + t — 5, XZ)ds



Non-linear Monte-Carlo algorithms

Branching Diffusions [MCKean]

@ Branching diffusions first introduced by McKean for KPP
type PDE:

oru(t,x)+ Lu+ B (Zpkuk - u) =0inRY xR,
k=1

u(T, x) = ¢(x) in RY
@ Restrictive algebraic non-linearity:

f(U)EZPkUk, Zpk=1 , 0<pe <1
k=0 k=0

@ Feynman-Kac’s formula:

u(t,x) = Eqles10(XD)]+ > okBal (7, Xo) 1, 7]
k=0



Non-linear Monte-Carlo algorithms

Probability interpretation

@ Let a single particle starts at the origin, performs an Ité
diffusion motion on RY, after a mean 3 exponential time
dies and produces k descendants with probability py.
Then, the descendants perform independent It6 diffusion
motions on RY from their birth locations, die and produce
descendants after a mean §(-) exponential times, etc. This
process is called a d-dimensional branching diffusion with
a branching rate 5 > 0.

@ Stochastic representation [strong Markov property]:

Nr
u(t,x) = E] [ v(25)]

i=1



New method: Marked branching diffusions

Marked branching diffusions [PHL]

@ Algebraic semi-linear PDE:
otu+ Lu+d(u)=0

with ®(u) = S(F(u) — u) and F(u) = Zﬂ”zo axuk.
@ From Feynman-Kac’s formula:

u(t, x) = E1~70(X7)] + Ee[F(ur)17<7]

@ Recursively solved in terms of multiple exp. random times
Ti-

u(t, x) = E¢[17,>79(X7)]
+Et[F (ET[1TO>T¢(XT)] JrIET[F(U‘Q)‘I7'2<T]) 1T<T]



New method: Marked branching diffusions

Marked branching diffusions (2)

@ Stochastic representation:

o)~ B[ ] (ak)wk]
=1 ko \Pk

PDE 2

—
pad
N



New method: Marked branching diffusions

Marked branching Brownian motion (2)

@ Algebraic PDE type 2:
dru(t, x) + Lu(t, x) + B(F (Ee[p(X7)]) — u(t, x)) =0
@ Feynman-Kac’s formula:

u(t, x) = Ee[1ro 70 (X7)] + Ee[F (B [ (XT)]) 17<7]

@ As compared to the previous section, we have the term
F (E;[¥(X7)]) 1-<7. This term can be computed using the
previous algorithm by imposing that the particle can default
only once. This corresponds to the first three diagrams in

Fig. (1).



New method: Marked branching diffusions

Convergence

Proposition 1

Let us assume that ¢ € L (RY). Set q(s) := XM, |ak||%]|%5 " s¥.

o Case g(1) > 1: We have u € L ([0, T] x RY) if there exists X € R such that

/X ds — BT
1 g(s)—s B

In the particular case of one branching type k, the sufficient condition for convergence reads as

lalllvllss” (1 - e7PTED) <1

@ case q(1) < 1:u e L®([0, T] x R forall T.




New method: Marked branching diffusions

Optimal probabilities

By assuming that 1) € L*(RY), the expectation in (1) can then
be bounded by

. M lal\ < N(w) 5 |a| K—1
20, )] < Eoxl]] Hllss T = ll¥llec? | T, —In —— —In|||| g
k=0 Pk

Pk

e _lacllvlls
_ Il
> i—o lailll¥llt



New method: Marked branching diffusions

Let us assume that F(v) and F(v) are two polynomials satisfying (Comp), the sufficient condition in Prop. 1 for a
maturity 7 and

E(x) < x* < F(x)
We denote v and V the corresponding solutions of (PDE(F, F)) and v the solution of (PDE(v™)). Then

v<v<v




New method: Marked branching diffusions

Numerical Experiments

@ We have implemented our algorithm for the two PDE types
otu+ Lu+ B(F(u)y—u)=0, u(T,x) =14~1 : PDE1
and
o+ Lu+ B(F(Et[1x,51]) —u) =0, u(T,x) =14-1 : PDE2

@ L is the It6 generator of a geometric Brownian motion with
a volatility ogs = 0.2 and the Poisson intensity is 5 = 0.05.



New method: Marked branching diffusions

Numerical Experiment 1

N | Fair(PDE2) | Stdev(PDE2) | Fair(PDE1) | Stdev(PDE1)
12| 20.78 0.78 21.31 0.79
14| 2225 0.39 21.37 0.39
16| 21.97 0.19 21.76 0.20
18| 21.90 0.10 2151 0.10
20 | 21.86 0.05 21.48 0.05
22 | 2181 0.02 21.50 0.02

Table: MC price quoted in percent as a function of the number of MC
paths 2V. PDE pricer(PDE1) = 21.82. PDE pricer(PDE2) = 21.50.
Non-linearity F(u) = (v — u?).



New method: Marked branching diffusions

Numerical Experiment 2

N | Fair(PDE2) | Stdev(PDE2) | Fair(PDE1) | Stdev(PDE1)
12 2114 0.78 20.00 0.78
14| 2156 0.38 19.90 0.39
16 | 21.62 0.19 20.25 0.20
18| 21.31 0.10 20.39 0.10
20 | 21.38 0.05 20.36 0.05
22 | 21.36 0.02 20.40 0.02

Table: MC price quoted in percent as a function of the number of MC
paths 2V. PDE pricer(PDE1) = 21.37. PDE pricer(PDE2) = 20.39.
Non-linearity F(u) = § (u® — u? — u*).



New method: Marked branching diffusions

Numerical Experiment 3

@ The semi-linear PDE in R?
U+ Lu+u?=0

blows up in finite-time if and only if d < 2 for any bounded
positive payoff [Sugitani].

Maturity(Year) BBM alg.(Stdev) PDE
0.5 71.66(0.09) 71.50
1 157.35(0.49) 157.17

1.1 oo(oc0) oo

Table: MC price quoted in percent as a function of the maturity for
the non-linearity F(u) = u? + u. Y(x) = 1x=1.



Polynomial approximation
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Figure: u™ versus its polynomial approximation.



Algorithm: Final recipe

@ Simulate the assets and the Poisson default time?.

© At each default time, produce k descendants with
probability px. For PDE type 2, the particles are not
allowed to die anymore.

© Evaluate for each particle alive the payoff

H?ﬁ H(Pk> i

where wy denotes the number of branching type k.

2The intensity 3 can stochastic (Cox process).



Two PDE types

@ We have implemented our algorithm for the two PDE types

1
Opu + EXQJgsa)Z(U_ put =0, u(T,x) =21,y —1 : PDE1
and
’
oru + §x20]2356)2(u — BE¢[2.1451 —1]7 =0 : PDE2

with Poisson intensities 5 = 1% and 5 = 3%. ogs = 20%.



Numerical example 1

Maturity(Year) PDE with poly. BBM alg. PDE
2 11.62 11.63(0.00) 11.62
4 16.54 16.53(0.00) 16.55
6 20.28 20.27(0.00) 20.30
8 23.39 23.38(0.00) 23.41
10 26.11 26.09(0.00) 26.14

Table: MC price quoted in percent as a function of the maturity for

PDE 1 with 8 = 1%.

Maturity(Year) PDE with poly. BBM alg.(Stdev) PDE
2 11.62 11.64(0.00) 11.63
4 16.56 16.55(0.02) 16.57
6 20.32 20.30(0.00) 20.34
8 23.45 23.45(0.00) 23.48
10 26.20 26.18(0.00) 26.24

Table: MC price quoted in percent as a function of the maturity for

PDE 2 with 5 = 1%.




Numerical example 2

Maturity(Year) PDE with poly. BBM alg. PDE
2 12.34 12.35(0.00) 12.35
4 17.72 17.71(0.00) 17.75
6 21.77 21.76(0.00) 21.82
8 25.07 25.06(0.00) 25.14
10 27.89 27.88(0.00) 27.98

Table: MC price quoted in percent as a function of the maturity for

PDE 1 with 5 = 3%.

Maturity(Year) PDE with poly. BBM alg.(Stdev) PDE
2 12.38 12.39(0.00) 12.39
4 17.88 17.86(0.00) 17.91
6 22.08 22.07(0.01) 22.14
8 25.58 25.57(0.01) 25.66
10 28.62 28.60(0.01) 28.74

Table: MC price quoted in percent as a function of the maturity for

PDE 2 with § = 3%.




Multi-type

Multi-type Marked branching diffusions

Joint work with X. Tan and N. Touzi.
@ Semi-linear PDE system with polynomial non-linearities:

Opui(t, x) + Lu; + Bi(Fiup, - - -, uy) — ui) =0, u(T,x) =vj(x), Vi=0---,N
where
oo N i
Fi(uy,...,uy) = M,,Hu;;pu
j=0 p=1
@ Formula:
N N

~ e[ [T T oeh T T M = x. M = 3

/=0 i=1 /=0 k=1



Multi-type

Fully non-linear PDE - toy example

Burgers:

D2u + g(axu)2 =0, u(T,x) = ¢(x) e C*(R)

o2

ot + 5

Solution: u(t, x) = %2 In Enx[e%w(xﬂ]
Bootstrapping method (set up = u and u; = d%u):

o 5 B 2
Ol + ?BXUO T = 0, up(T,x) = p(x)

2
o
Oty + ?33111 + Burup =0, uy(T,x) = dx1p(x)
02 > 2 2
Oup + ?Bxuz + B (u2 + Uy U3) =0, up(T,x) = 0y¢(x)

1
Oruk + EB)E(UK =0, ug(T,x) = 8511;()()

— Semi-linear PDE system with polynomial non-linearities!



Multi-type

Numerical example

3 species:

N Fair Stdev
12 2.01 0.09
14 2.40 0.28
16 2.14 0.09
18 2.19 0.03
20 2.20 0.02

Table: MC price quoted in percent as a function of the number of MC
paths 2V. T = 1 year. Exact price (—"72 In(1-2T7)) =2.20.

Non-linearity 8 =1, ¢ = 0.2, 1(x) = x2/3. Blow-up for T > 1.5 as
expected.



Multi-type

Fully non-linear PDE - toy example

@ One-dimensional UVM:

otu + %g28§u+ 15 (52 — gz) (8)2(u)+ =0, u(T,x)=1vY(x)

@ Set u= e T-Yv with g = } (52 — o2):

otV + %gzafv-%— % (EZ —gz) ((afvf - v) =0, v(T,x)=1(x)
@ We approximate '™ by a polynomial P(T')3:

o+ Je2obv+ 1 (o~ o2) (P (oBV) ~v) =0

3This is not really an approximation. In practise, rather than taking
o =3a0(I) + a(1 — 6(I')), we can use some smoother functions of I', for
example requiring more comfortable break-even levels as the gamma notional
increases.



Multi-type

Bootstrap+ truncation

1
Orvk + 5223)2('/!( =0, w(T,x)=v"(x)

In practise, & (2 — 0?) < 1 (i.e. small perturbation).



Multi-type

Numerical example

5 species:

N Fair Stdev
12 20.18 0.51
14 20.13 0.26
16 19.94 0.13
18 19.94 0.06
20 19.96 0.03

Table: MC price quoted in percent as a function of the number of MC
paths 2V. T = 10 year. Exact price = 20. “Non-linearity" P(M) =T,
o =0.2,¢(x) = x2/2.

N Fair Stdev
12 12.21 0.25
14 12.14 0.13
16 11.99 0.06
18 11.92 0.03
20 11.95 0.02

Table: MC price quoted in percent as a function of the number of MC
paths 2V. T = 10 year. Exact price = 11.96. Non-linearity
P(r) =r?/2,0 =0.2,¢(x) = x2/2.



Multi-type

Conclusions

@ Forward MC scheme for fully non-linear parabolic PDEs.
©@ Applicable in higher dimensions (no grid space).
© No regressions and finite elements required.

© Algorithm fully parallelizable (independent particles - no
interaction).



Multi-type

Some references

@ PHL: Counterparty Risk Valuation: A Marked Branching
Diffusion Approach, ssrn(2012), submitted.

@ PHL, Tan, X., Touzi, N. : A numerical algorithm for a class
of BSDEs via branching processes, in preparation.
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