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Disclaimer

This presentation and associated materials are provided for
informational and educational purposes only. Views expressed
in this work are the authors’ views. They are not necessarily
shared by the Federal Financial Supervisory Authority.

In particular, our research is by no means linked to any present
and future wording regarding global regulation of CCR
including EMIR and CRR.

This is work in progress. In particular, definitions, abbreviations
and symbolic language in this work can be subject of change
(ambiguity of terms in the literature).

2 / 56



Disclaimer

This presentation and associated materials are provided for
informational and educational purposes only. Views expressed
in this work are the authors’ views. They are not necessarily
shared by the Federal Financial Supervisory Authority.

In particular, our research is by no means linked to any present
and future wording regarding global regulation of CCR
including EMIR and CRR.

This is work in progress. In particular, definitions, abbreviations
and symbolic language in this work can be subject of change
(ambiguity of terms in the literature).

2 / 56



Disclaimer

This presentation and associated materials are provided for
informational and educational purposes only. Views expressed
in this work are the authors’ views. They are not necessarily
shared by the Federal Financial Supervisory Authority.

In particular, our research is by no means linked to any present
and future wording regarding global regulation of CCR
including EMIR and CRR.

This is work in progress. In particular, definitions, abbreviations
and symbolic language in this work can be subject of change
(ambiguity of terms in the literature).

2 / 56



A very few references I
[1] C. Albanese, D. Brigo and F. Oertel.
Restructuring counterparty credit risk.
Bundesbank Discussion Paper, Series 2 - submitted.

[2] S. Assefa, T. Bielecki, S. Crépey and M. Jeanblanc.
CVA computation for counterparty risk assessment in credit
portfolios.
Credit Risk Frontiers. Editors T. Bielecki, D. Brigo and F.
Patras, John Wiley & Sons (2011).

[3] T. F. Bollier and E. H. Sorensen.
Pricing swap default risk.
Financial Analysts Journal Vol. 50, No. 3, pp. 23-33 (1994).

[4] D. Brigo and A. Capponi.
Bilateral counterparty risk valuation with stochastic
dynamical models and application to credit default swaps.
Working Paper, Fitch Solutions and CalTech (2009).

3 / 56



A very few references II

[5] J. Gregory.
Counterparty Credit Risk.
John Wiley & Sons Ltd (2010).

[6] J. Hull and A. White.
CVA and Wrong Way Risk.
Working Paper, Joseph L. Rotman School of Management,
University of Toronto (2011).

[7] M. Pykhtin.
A Guide to Modelling Counterparty Credit Risk.
GARP Risk Review, 37, 16-22 (2007).

[8] H. Schmidt.
Basel III und CVA aus regulatorischer Sicht.
Kontrahentenrisiko. S. Ludwig, M. R. W. Martin und C. S.
Wehn (Hrsg.), Schäfer-Pöschel (2012).

4 / 56



Contents

1 An axiomatic approach to the pricing of CCR

2 Close-out according to ISDA

3 First-to-Default Credit Valuation Adjustment (FTDCVA)

4 UCVA and Basel III

5 Margin Lending

5 / 56



1 An axiomatic approach to the pricing of CCR

2 Close-out according to ISDA

3 First-to-Default Credit Valuation Adjustment (FTDCVA)

4 UCVA and Basel III

5 Margin Lending

6 / 56



Framework
Consider the following two trading parties: party 0 and party 2.
Let T > 0 be the final maturity of this trade.

• In this talk will adapt a “network view”.
• Let k ∈ {0, 2} be given and let X = (X(t))0≤t≤T denote a

stochastic process describing a (possibly vulnerable) cash
flow between party 0 and party 2 (or a random sequence of
prices). If, at time t, Xt is seen from the point of view of
party k, we denote its value equivalently as Xt(k) or
Xt(k; 2− k) or Xk(t) - depending on its eligibility.

• Moreover, we will make use of the important notation
Yt(k | 2− k) to describe a cash flow Y from the point of view
of party k at time t contingent on the default of party 2− k.

• Notice that the permutation s : {0, 2} −→ {0, 2}, k 7→ 2− k
is bijective. It satisfies s ◦ s = s. (Or put s(k) := 3− k if s
should permute the numbers 1 and 2 instead.)
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The set of all bilateral CCR scenarios
Let k ∈ {0, 2}. Let τk denote the random default time of party k
and T > 0 be the final maturity of the payoff of the traded
portfolio of derivatives. Consider the following sets:

• N := {τ0 > T and τ2 > T} (i. e., both, party 0 and party 2 do
not default until T);

• A−k := {τk ≤ T and τk < τ2−k} (i. e., party k defaults first and
until T);

• Ak := {τk ≤ T and τk = τ2−k} = A2−k (i. e., party 0 and
party 2 default simultaneously - until T).

Observation

Ω = N ·∪ A−0 ·∪ A−2 ·∪ A0 .

In the following we assume that Q(A0 = ∅) = 1 (where Q
denotes a “risk neutral measure” . . .).
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Definition
Let X ≡ (Xt)t∈[0,T] be an arbitrary stochastic process. X is called
non-vulnerable if X and 11NX almost surely have the same
sample paths, else X is called vulnerable.
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Money Conservation Principle (MCP)

Definition (Money Conservation Principle)
Let x be an arbitrary amount of money (which could be a
negative number), measured in a single fixed currency unit U
(e.g., U : = e). Let k ∈ {0, 2}. TFAE:
• Party k receives x currency units U from party 2− k;
• Party 2− k pays x currency units U to party k;
• Party 2− k receives −x currency units U from party k.

Thus, paying x currency units U is by definition equivalent to
receiving −x currency units U for all real money values x,
implying that any non-vulnerable cash flow X = (Xt)0≤t≤T

between party k and its counterpart 2− k satisfies
Xt(k) = −Xt(2− k) for all 0 ≤ t ≤ T. Hence, an asset for party k
represents a liability for party 2− k.
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Valuation of defaultable claims I

Defaultable claims can be valued by interpreting them as
portfolios of claims between non-defaultable counterparties
including the riskless claim and mutual default protection
contracts. From the point of view of party k latter says:

Fix k ∈ {0, 2}. Party k sells to party 2− k default protection on
party 2− k contingent to an amount specified by a close-out
rule.

Let 0 ≤ t < τ0 ∧ τ2 ∧ T and let
• Mt(k) be the mark-to-market value to party k in case both,

party k and party 2− k are default-free;
• CVAt(k | 2− k) be the value of default protection that party k

sells to party 2− k contingent on the default of party 2− k.
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Valuation of defaultable Claims II

At t party k requires a payment of the “CCR risk premium”
CVAt(k | 2− k) > 0 from party 2− k to be compensated for the
risk of a default of party 2− k.

Conversely, party 2− k requires a
payment of CVAt(2− k | k) > 0 from party k to be compensated
for the risk of a default of party k. Therefore, party 2− k reports
at t the “bilaterally CCR-adjusted” value (defined as “fair value”
in FAS 157):

Vt(2− k) := −CVAt(2− k | k) + Mt(2− k) + CVAt(k | 2− k)

The inclusion of DVA began 2005. In September 2006 the
accounting standard in relation to fair value measurements FAS
157 (The Statements of Financial Accounting Standard, No
157 ) asked banks to record a DVA entry (implying that the DVA
of one party is the CVA of the other).
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Valuation of defaultable Claims III
FAS 157 namely says: “... Because nonperformance risk
includes the reporting entity’s credit risk, the reporting entity
should consider the effect of its credit risk (2-kredit standing) on
the fair value of the liability in all periods in which the liability is
measured at fair value under other accounting
pronouncements...”

The European equivalent of FAS 157 is the fair value provision
of IAS 39 which had been published by the International
Accountancy Standards Board in 2005, showing similar
wording with respect to the valuation of CCR.

So, we define

DVAt(k) := DVAt(k; 2− k) := CVAt(2− k | k) . (1)
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Valuation of defaultable Claims IV

Consequently,

Vt(2− k) = −CVAt(2− k | k) + Mt(2− k) + CVAt(k | 2− k)

= Mt(2− k) + DVAt(2− k; k)−CVAt(2− k | k)

= Mt(2− k)− BVAt(2− k; k) , (2)

where

BVAt(2− k; k) := CVAt(2− k | k)− DVAt(2− k; k)
X
= −BVAt(k; 2−k) .

Similarly (due to the MCP and permutation):

Vt(k)
(2)
= Mt(k)− BVAt(k; 2− k)

(!)
= −Vt(2− k) (3)

for all 0 ≤ t < τ0 ∧ τ2 ∧ T. Hence, both parties agree.⇒ More
risky parties pay less risky parties in order to trade with them.
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Valuation of defaultable Claims V

Actually we have seen more: namely the following fact which
completely ignores the construction/definition of DVA:

Observation
Assume that the MCP holds, and suppose that both parties
include a possible future default of their respective counterpart.
Then

Vt(k) := Mt(k)−
(
CVAt(k | 2− k)− CVAt(2− k | k)

)
= −Vt(2− k)

for all k ∈ {0, 2} and 0 ≤ t < τ0 ∧ τ2 ∧ T, implying that the MCP
can be transferred to the vulnerable cash flow V.
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Implications of the traditional CVA/DVA
mechanics I

Let us assume that party k is default-free (such as e. g. the
French National Bank (hopefully...)). Then
CVAt(2− k | k) = DVAt(k; 2− k) = 0 for all 0 ≤ t < τ2−k ∧ T. If
however, party 2− k converges to its own default,
CVAt(k | 2− k) ↑ . . . if t −→ τ2−k. Consequently,

Vt(k) = Mt(k)−CVAt(k | 2− k) ↓ . . . if t −→ τ2−k ,

implying that the default-free party k would be strongly exposed
to an increase of CVAt(k | 2− k) - transferred from the risky
party 2− k to the solvent party k.

And what does the risky party report?

Vt(2− k) = −Vt(k) = Mt(2− k)+DVAt(2− k; k) ↑ . . . if t −→ τ2−k !
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Implications of the traditional CVA/DVA
mechanics II

Saying it in other words again:

Whenever an entity’s credit worsens, it receives a subsidy from
its counterparties in the form of a DVA positive mark to market
which can be monetised by the entity’s bond holders only at
their own default. Whenever an entity’s credit improves instead,
it is effectively taxed as its DVA depreciates.

Wealth is thus transferred from the equity holders of successful
companies to the bond holders of failing ones, the transfer
being mediated by banks acting as financial intermediaries and
implementing the traditional CVA/DVA mechanics.
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The role of partial information

Fix 0 ≤ t < u ≤ T. Let Ft denote the information of a specific
investor at t, representing all observable market quantities but
the default events or any factors that might be linked to credit
ratings of the both parties, and let Gt represent the investor’s
enlarged information at time t, consisting of knowledge of the
behaviour of market prices up to time t as well as (possible)
default times until t. With respect to the information Ft defaults
until t would arrive suddenly, as opposed to the case of the
enlarged information Gt.

In the following we assume that both filtrations coincide: F = G,
and that both, τ0 and τ2 are G-stopping times (cf. [2]).
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Representation of the MtM M - FTAP I

Fix k ∈ {0, 2} and let 0 ≤ t < T. Consider the random variable

Π
(t,T]
k := D(0, t)−1

∫ T

t
D(0, u)dΦk(u) ,

where Φk (viewed from party k) denotes a non-vulnerable
cumulative dividend process of the portfolio over the time
horizon [0,T] and D(0, ·) a continuous F-adapted discount
factor process (which both are assumed to be of finite
variation).

Π
(t,T]
k represents the sum of all future cash flows of

the portfolio between t and T not accounting for CCR (seen
from the point of view of party k) discounted to t. Notice that
Φk = −Φ2−k (due to the MCP). Assume throughout that our
financial market model does not allow arbitrage and that each
CCR clean contingent claim between party k and party 2− k in
the portfolio (or netting set) is attainable therein.
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Representation of the MtM M - FTAP II

Seen from party k’s point of view the CCR clean mark-to-market
process Mk = (Mk(t))0≤t<T ≡ (Mt(k))0≤t<T is then given by

Mk(t) = EQ
[
Π

(t,T]
k

∣∣∣Ft

]
= EQ

[∫ T

t
D(t, u)dΦk(u)

∣∣∣Ft

]
= −M2−k(t) ,

where Q is a “risk-neutral measure” (due to the risk-neutral
valuation formula). In the following we fix Q and omit its extra
description in the notation of (conditional) expectation
operators.

Another important piece of notation: For any stochastic process
X we put X̃t := D(0, t)Xt and obtain the discounted process X̃
with numéraire D(0, ·).
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The main bilateral CCR building blocks

Π
(t,u]
k = −Π

(t,u]
2−k Random CCR clean cumulative cash

flows from the claim in (t, u], discounted
to time t - seen from k’s point of view

Mk(t) = EQ[Π
(t,T]
k |Ft] Random NPV (or MtM) of Π

(t,u]
k

= −M2−k(t) given as conditional expectation
w.r.t. a risk neutral measure
Q, given the information Ft (cf. [2])

0 ≤ Rk < 1 k’s (rdm.) recovery rate; i. e., the
portion of the payoff from the MtM
paid by party k to party 2− k in
case of k’s default

0 < LGDk := 1− Rk ≤ 1 k’s (random) Loss Given Default
D(t, u) := D(0, u)/D(0, t) random discount factor at time t for

time u > t
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1 An axiomatic approach to the pricing of CCR

2 Close-out according to ISDA

3 First-to-Default Credit Valuation Adjustment (FTDCVA)

4 UCVA and Basel III

5 Margin Lending
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CCR free close-out I

So, how is BVAt(k; 2− k) = CVAt(k | 2− k)− DVAt(k; 2− k)
actually determined? More precisely: what role do play ISDA’s
close-out rules here?

Throughout this presentation, the letter ω describes a random
“event” and Ω the set of all possible random “events”. We
consider functions of type 11A, where 11A(ω) := 1 if ω ∈ A and
11A(ω) := 0 if ω /∈ A. The whole analysis of CCR is based on the
functions x+ := max{x, 0} and x− := x+ − x = (−x)+ =
max{−x, 0}.

Fix k ∈ {0, 2}, and assume that party 2− k defaults first; i. e.,
A−2−k 6= ∅. Suppose that the close-out is settled at τ2−k (no
margin period of risk) and that no collateral is exchanged
between party k and party 2− k until τ2−k ∧ T.
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CCR free close-out II

Let ω ∈ A−2−k. A CCR free close-out (in a given netting set) is
reflected in the following table:

Mk(τ2−k)(ω) > 0 Mk(τ2−k)(ω) ≤ 0
Party k receives R2−k(ω) ·Mk(τ2−k)(ω) 0
from party 2− k
Party k pays to 0 −Mk(τ2−k)(ω)
party 2− k

Hence, for all k ∈ {0, 2} it follows that:

11A−
2−k

Vk(τ2−k) = 11A−
2−k

(
R2−k(Mk(τ2−k))

+ − (−Mk(τ2−k))
+
)

= 11A−
2−k

Mk(τ2−k)− 11A−
2−k

LGD2−k(Mk(τ2−k))
+ .

However, what about the inclusion of DVA?
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ISDA’s replacement close-out rule

Let ω ∈ A−2−k and put M∗k (t) := Mk(t) + DVAt(k; 2− k). According
to “ISDA’s replacement close-out rule” from 2009 (in a given
netting set) we derive the following table:

M∗k (τ2−k)(ω) > 0 M∗k (τ2−k)(ω) ≤ 0
Party k receives R2−k(ω) ·M∗k (τ2−k)(ω) 0
from party 2− k
Party k pays to 0 −M∗k (τ2−k)(ω)
party 2− k

Hence, for all k ∈ {0, 2} it follows that:

11A−
2−k

Vk(τ2−k) = 11A−
2−k

(
R2−k(M∗k (τ2−k))

+ − (−M∗k (τ2−k))
+
)

= 11A−
2−k

M∗k (τ2−k)− 11A−
2−k

LGD2−k(M∗k (τ2−k))
+ .
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An axiomatic approach to CVA I
Assume that CCR free close-out is applied to both parties 0
and 2. Put ∆k := Vk −Mk. Then

11A−
2−k

∆k(τ2−k) = −11A−
2−k

LGD2−k(Mk(τ2−k))
+ . (4)

Let us further assume that

− BVAτ2−k(k; 2− k) = ∆τ2−k(k) ≡ ∆k(τ2−k) on A−2−k (5)

and that B̃VA•(k; 2− k) is a càdlàg UI-F-martingale.

Let 0 ≤ t < τ0 ∧ τ2 ∧ T. Since τ2−k is F-measurable, equation (3)
and an application of the Optional Sampling Theorem implies

11A−
2−k

∆̃t(k)
(3)
= −11A−

2−k
B̃VAt(k; 2− k)

(5)
= Et

[
11A−

2−k
∆̃τ2−k(k)

]
(4)
= −Et

[
11A−

2−k
LGD2−k(M̃k(τ2−k))

+
]
. (6)
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An axiomatic approach to CVA II
Observe that

∆̃t(k)
(3)
= −B̃VAt(k; 2− k) = B̃VAt(2− k; k)

(3)
= −∆̃t(2− k) .

Consequently (since equation (7) holds for all k ∈ {0, 2}), we
obtain

∆̃t(k) = 11A−
k

∆̃t(k) + 11A−
2−k

∆̃t(k) + 11N∆̃t(k)

= −11A−
k

∆̃t(2− k) + 11A−
2−k

∆̃t(k) + 11N∆̃t(k)

= Et
[
11A−

k
LGDk(M̃2−k(τk))

+
]
− Et

[
11A−

2−k
LGD2−k(M̃k(τ2−k))

+
]

+ 11N∆̃t(k) .

Next, let us assume that ∆̃t(k) = 0 on N (a very “reasonable”
assumption since neither party k nor party 2− k will default
before T). Really?
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An axiomatic approach to CVA III

Assumption (B-Zero)

11NB̃VAt(k; 2− k) = 0

for all k ∈ {0, 2} and for all 0 < t < τ0 ∧ τ2 ∧ T.

( i. e.,
11N(ω)B̃VAt(k; 2− k)(ω) = 0

for all (ω, t) ∈ Ω× [0,T] satisfying t < τ0(ω) ∧ τ2(ω) ).
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Vulnerable cash flows I

Now, keeping the latter assumption in mind, let us revisit
Brigo-Capponi’s construction of the following vulnerable cash
flow (which actually is an “existence result” - cf. [4]):

Π̂
(t,T]
k := 11N ·Π(t,T]

k + 11A−
2−k
·Π(2−k)

k + 11A−
k
·Π(k)

k , (7)

where the 2× 2 random matrix (Π
(l)
k )l,k∈{0,2} is given by

Π
(l)
k := Π

(t,τl]
k + (−1)

k+l
2 D(0, t)−1

(
LGDl · (M̃l(τl))

− + M̃l(τl)
)

for all l ∈ {k, 2− k}.
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Vulnerable cash flows II

Studying carefully the proof of Brigo and Capponi one can see
that in fact

EQ
[
Π̂

(t,T]
k |Ft

] (!)
= Mt(k)

− D(0, t)−1EQ

[
11A−

2−k
LGD2−k(M̃k(τ2−k))

+
∣∣Ft

]
+ D(0, t)−1EQ

[
11A−

k
LGDk(M̃2−k(τk))

+
∣∣Ft

]
.

Hence, if we put Xt(k) := EQ
[
Π̂

(t,T]
k |Ft

]
both, Brigo-Capponi’s

vulnerable cash flow representation above and our assumption
lead to

X̃t(k)− M̃t(k)
(!)
= (1− 11N)∆̃t(k) = ∆̃t(k) .

Consequently, EQ
[
Π̂

(t,T]
k |Ft

]
= Xt(k)

(!)
= Vt(k).
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FTDCVA, FTDDVA and FTDBVA I

Put

FTDCVAt(k | 2− k) := Et

[
11A−

2−k
LGD2−kD(t, τ2−k)(Mk(τ2−k))

+
]
,

FTDDVAt(k; 2− k) := FTDCVAt(2− k | k),

FTDBVAk(t; T) := FTDCVAt(k | 2− k)− FTDDVAt(k; 2− k) .
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FTDCVA, FTDDVA and FTDBVA II

Definition
Let k = 0 or k = 2 and 0 ≤ t < τ0 ∧ τ2 ∧ T (Q− a.s.).
(i) The positive Ft-measurable random variable

FTDCVAt(k | 2− k) is called First-to-Default Credit
Valuation Adjustment at t.

(ii) The positive Ft-measurable random variable
FTDDVAt(k; 2− k) := FTDCVAt(2− k | k) is called
First-to-Default Debit Valuation Adjustment at t.

(iii) The real Ft-measurable random variable
FTDBVAt(k; 2−k) := FTDCVAt(k | 2−k)−FTDDVAt(k; 2−k)
is called First-to-Default Bilateral Valuation Adjustment at t.
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Brigo and Capponi revisited

Theorem (Brigo-Capponi (2008))
Assume No-Arbitrage and that each CCR clean contingent
claim between party 0 and party 2 of a given portfolio is
attainable. Let 0 ≤ t < τ0 ∧ τ2 ∧ T (Q− a.s.). Assume that the
MCP holds. Let Mt(k) denote the mark-to-market value of the
portfolio to party k in case both, 0 and 2 are default-free. If both
parties apply the CCR free close-out rule it follows that

EQ
[
Π̂

(t,T]
k |Ft

]
= Mt(k)− FTDBVAt(k; 2− k)

for all k ∈ {0, 2}.
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Bilateral CCR risk premium vs FTDBVA

Theorem
Let k ∈ {0, 2}. Assume No-Arbitrage and attainability of each
CCR clean contingent claim between party 0 and party 2 of a
given portfolio. Assume that the MCP holds. Let
0 ≤ t < τ0 ∧ τ2 ∧ T and Vt(k) := Mt(k)− Bt(k; 2− k), where
• Mt(k) denotes the mark-to-market value of the portfolio to

party k in case both, 0 and 2 are default-free,
• Bt(k; 2− k) = −Bt(2− k; k),
• Vτ2−k(k) = Mτ2−k(k)− Bτ2−k(k; 2− k) on A−2−k,

• B̃•(k; 2− k) is a càdlàg and uniformly integrable
F-martingale which satisfies condition (B-Zero).

If both parties 0 and 2 apply the CCR free close-out rule, then
Bt(k; 2− k) = FTDBVAt(k; 2− k) and Vt(k) = EQ

[
Π̂

(t,T]
k |Ft

]
.
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UCVAt(k | 2− k) as a special case of
FTDCVAt(k | 2− k)

Special Case (A single default only Basel III)
Fix k ∈ {0, 2}. Assume that in addition τk = +∞ (i. e., no default
of party k). Then A−2−k = {τ2−k ≤ T} and A−k = ∅. Consequently,
FTDDVAt(k; 2− k) = 0,

EQ
[
Π̂

(t,T]
k |Ft

]
= Mt(k)− FTDCVAt(k | 2− k) ,

and
EQ
[
Π̂

(t,T]
2−k |Ft

]
= Mt(2− k)+FTDDVAt(2− k; k).

Hence, if party k were the investor, and if τk = +∞ the
Unilateral CVA UCVAt(k, 2− k) := FTDCVAt(k | 2− k) would
have to be paid by party 2− k to the default free party k at t to
cover a potential default of party 2− k after t.
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Structure of FTDCVAt(k | 2− k)

Although we write “FTDCVAt(k | 2− k)” it always should be kept
in mind that we actually are working with a very complex object,
namely:

FTDCVAk(t,T,LGD2−k, τk, τ2−k,D(t, τ2−k),Mk(τ2−k)) !
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UCVA and Basel III - Part I

Firstly we list a very restrictive case of a possible calculation of
UCVA, encoded in the much too simple “CVA = PD ∗ LGD ∗EE”
formula which however seems to be used often in financial
institutes.

Proposition (Rough Approximation – Part I)
Let k ∈ {0, 2}. Assume that
(i) party k will not default until T: τk := +∞;
(ii) LGD2−k is constant and non-random;
(iii) (M̃k(τ2−k))

+ and τ2−k are independent under Q (i. e., WWR
or RWR is ignored completely).

Then

UCVA0(k | 2− k) = Q(τ2−k ≤ T) · LGD2−k · EQ
[
(M̃k(τ2−k))

+
]
.
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UCVA and Basel III - Part II
Suppose there exists a further random variable M (a “market
risk factor”) so that Mk(τ2−k) is a function of M as well,
Mk(τ2−k,M) say.

Proposition (Rough Approximation – Part II)
Assume that
(i) Party k will not default until T: τk := +∞;
(ii) LGD2−k is constant and non-random;
(iii) For all t D(0, t) does not depend on M;
(iv) M and τ2−k are independent under Q.
Then

UCVAk(0 |T) = LGD2−k

∫ T

0
D(0, t)EQ[(Mk(t,M))+] dFQ

τ2−k
(t),

where FQ
τ2−k

(t) := Q(τ2−k ≤ t) for all t ∈ R (unconditional df).
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Proof.
Put Φ(t,m) := 11[0,T](t) · ψ(t,m), where (t,m)> ∈ R+ × R and
ψ(t,m) := D(0, t) · (Mk(t,m))+. Let FQ

(τ2−k,M) denote the bivariate
df of the random vector (τ2−k,M)> w.r.t. Q. Then

UCVA0(k | 2− k)
(i),(ii)

= LGD2−kEQ[Φ(τ2−k,M)]

= LGD2−k

∫
R+×R

Φ(t,m)dFQ
(τ2−k,M)(t,m)

(iv),Fubini
= LGD2−k

∫
[0,T]

(∫
R
ψ(t,m)dFQ

M(m)
)

dFQ
τ2−k

(t)

(iii)
= LGD2−k

∫ T

0
D(0, t)EQ[(Mk(t,M))+]dFQ

τ2−k
(t).
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Wrong-Way Risk and Right-Way Risk I

EE(M)
k (t) := EQ[(Mk(t,M))+] is known as party k’s Expected

Exposure at t. In general it can be identified by MC simulation
only.

The situation where Q(τ2−k ≤ t) is positively dependent on
EE(M)

k (t), is referred to as Wrong-Way Risk (WWR). In the case
of WWR, there is a tendency for party 2− k to default when
party k’s exposure to party 2− k is relatively high. The situation
where Q(τ2−k ≤ t) is negatively dependent on EE(M)

k (t) is
referred to as Right-Way Risk (RWR). In the case of RWR,
there is a tendency for party 2− k to default when party k’s
exposure to party 2− k is relatively low (cf. [5], [6]).
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Wrong-Way Risk and Right-Way Risk II

A simple way to include WWR is to use the “alpha” multiplier α
of Basel II to increase EE(M)

k (t) - under the tacid assumption of
independence between EE(M)

k (t) and Q(τ2−k ≤ t). The effect of
α is to increase UCVA. Basel II sets α := 1.4 or allows banks to
use their own models, with α ≥ 1.2. This means that, at
minimum, the UCVA has to be 20% higher than that one given
in the case of the independence assumption. If a bank does not
have its own model for WWR it has to be 40% higher. Estimates
of α reported by banks range from 1.07 to 1.10 (cf. [6]).
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Is the ISDA formula (Para 98) of Basel
III true?

Technical Remark
Regarding the calculation of UCVA0(k | 2− k) in Basel III (para
98), observe that the integral in the above Proposition in fact is
a Lebesgue-Stieltjes integral. Hence, if t 7→ EE(M)

k (t) were not
continuous (in time) and if it oscillated too strongly, that integral
would not necessarily be a Riemann-Stieltjes integral, implying
that we seemingly cannot simply approximate it numerically
through a Riemann-Stieltjes sum of the type

UCVA0(k | 2− k) ≈
n∑

i=1

D(0, t∗i ) · EE(M)
k (t∗i ) · (FQ

τ2−k
(ti)− FQ

τ2−k
(ti−1))

=

n∑
i=1

D(0, t∗i ) · EE(M)
k (t∗i ) ·Q(ti−1 < τ2−k ≤ ti), (8)
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Basel III UCVA slightly modified
where 0 = t0 < . . . < tn = T and 2t∗i := ti−1 + ti. However:

Corollary
Assume that
(i) The assumptions (i), (ii) and (iv) of the previous

Proposition are satisfied;
(ii) For all i = 1, . . . , n, for all t ∈ [ti−1, ti],

Q(τ2−k > t) = exp
(
− λ(i)2−k t

)
, where λ(i)2−k > 0 is a constant;

(iii) For all i = 1, . . . , n, for all t ∈ [ti−1, ti], r(t) ≡ ri is constant;
(iv) LGD2−k is calibrated from a CDS curve with constant CDS

spread s(i)2−k on each [ti−1, ti].

Then s(i)2−k = λ
(i)
2−k · LGD2−k (“Credit Triangle”), and

UCVA0(k | 2−k) =

n∑
i=1

s(i)2−k

∫ ti

ti−1

e−ri tEE(M)
k (t) exp

(
−

s(i)2−kt
LGD2−k

)
dt.
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CVA risk in Basel III (Para 99)
Assuming both, the approximation (8) of Basel III and the
“spread representation”

Q(t∗i−1 < τ2−k ≤ t∗i ) = e
(
s(i−1)

2−k , t
∗
i−1
)
− e
(
s(i)2−k, t

∗
i
)
,

where e(s, t) := exp(−s · t/LGD2−k), a Taylor series
approximation of 2nd order leads to the so called “CVA risk” of
Basel III, i. e., to a delta/gamma approximation for
UCVA0(k | 2− k), viewed as a function f (s2−k) of the
n-dimensional spread vector s2−k ≡ (s(1)2−k, . . . s

(n)
2−k)

> only:

f (s2−k + h)− f (s2−k)
(‖h‖ small )
≈

n∑
i=1

D(0, t∗i )EE(M)
k (t∗i ) hi

(
t∗i e
(
s(i)2−k, t

∗
i
)
− t∗i−1e

(
s(i−1)

2−k , t
∗
i−1
))

+

1
2 LGD 2−k

n∑
i=1

D(0, t∗i )EE(M)
k (t∗i ) h2

i
(
t∗2i−1e

(
s(i−1)

2−k , t
∗
i−1
)
− t∗2i e

(
s(i)2−k, t

∗
i
))
.
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CVA risk in Basel III: Flaws I

An analysis of “CVA volatility risk” and its capitalisation should
particularly treat the following serious flaws:

(i) CVA risk (and hedges) extend far beyond the risk of credit
spread changes. It includes all risk factors that drive the
underlying counterparty exposures as well as dependent
interactions between counterparty exposures and the
credit spreads of the counterparties (and their underyings).
By solely focusing on credit spreads, the Basel III UCVA
VaR and stressed VaR measures in its advanced approach
for determining a CVA risk charge do not reflect the real
risks that drive the P&L and earnings of institutes.
Moreover, banks typically hedge these non-credit-spread
risk factors. The Basel III capital calculation does not
include these hedges.
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CVA risk in Basel III: Flaws II

(ii) The non-negligible and non-trivial problem of a more
realistic inclusion of WWR should be analysed deeply. In
particular, the “alpha” multiplier 1.2 ≤ α should be revisited,
and any unrealistic independence assumption should be
strongly avoided.

(iii) Credit and market risks in UCVA are not different from the
same risks, embedded in many other trading positions
such as corporate bonds, CDSs, or equity derivatives. CVA
risk can be seen as just another source of market risk.
Consequently, it should be managed within the trading
book. Basel III requires that the CVA risk charge is
calculated on a stand alone basis, separated from the
trading book. This seems to be an artificial segregation. A
suitable approach would be to include UCVA and all of its
hedges into the trading book capital calculation.
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Restructuring of CVA/DVA cash flows

Apart from FTDCVA the following approaches are subject of
current research:
• Portable CVA (not a topic of this talk);
• Tripartite structures with one-sided collateralisation and

margin lending;
• Quadripartite structures with two-sided collateralisation

and margin lending;
• CCP structures with margin lending.
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Margin lending I

Traditionally, the CVA is typically charged by the investing
institute party k either on an upfront basis or it is built into the
structure as a fixed coupon stream.

The principle of “margin lending” instead builds on a “floating
rate CVA”. Its application would imply that the investing institute
party k no longer is endangered by CVA volatility risk (i. e., by
the credit spread volatility risk and the mark-to-market volatility
risk of party k’s risky counterparty). Latter would then be shifted
from party k to the risky counterparty. Default risk instead would
be forwarded in form of a “CVA volatility risk securitisation” to
the investors who finance the margin lenders.
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Margin lending II

For example let us firstly assume a bilateral (“bipartite”)
transaction between a default-free investor party k and a
defaultable counterparty 2− k (such as e. g. a corporate client).
party k may require a CVA payment at time 0 for protection on
the exposure up to 6 months. Then at the end of these 6
months party k will require another CVA payment regarding a
protection for further 6 months, and so on - up to the final
maturity of the trade. We would call such a CVA a “floating rate
CVA”.

Now let us assume that the investing institute party k enters into
derivative transactions with a counterp, and both evade the
mutual counterparty credit risk by entering into “collateral
revolvers” with liquidity providers A and D. To understand this
mechanism let us take a look at the following picture.
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Quadripartite structure with margin
lending
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Margin lending III
To avoid posting collateral, party 2− k enters into a margin
lending transaction. party 2− k pays periodically (say all 6
months) a floating rate CVA to a margin lender A (“premium”
arrow connecting party 2− k to A) which A pays to investors
(“premium” arrow connecting A to “investors of margin lender
A”).

In exchange, for 6 months the investors of A provide A with
daily collateral posting (“collateral” arrow connecting “investors”
to A) and A passes the collateral to a custodian (“collateral”
arrow connecting A to the custodian). This collateral need not
be cash, but it can be in the form of hypothecs.

If party 2− k defaults within the 6 months-period, the collateral
is paid to party k to provide protection (“protection” arrow
connecting the custodian to party k) and the loss is taken by the
investors of A who provided the collateral.
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CCP structure with margin lending
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Thank you for your attention!

Are there any questions, comments or remarks?
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