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1 Introduction

In Bielecki et al. [1] a fully Markovian model was presented so to provide a basis for systematic
approach to valuation and hedging of basket credit derivatives. In this paper, we adopt the approach
of [1] and adapt it to efficiently price some selected basket credit derivatives, such as CDOs and
FSTDs. 1. Although we discuss in this paper other credit related products, such as CDO2s and
credit quality triggered corporate step-up bonds, we do not provide any numerical results regarding
their calibration and pricing; these will be included in a follow-up paper, which will be submitted
for publication. Hedging issues will also be addressed in the follow-up paper.

The pricing models are calibrated to credit data provided by the GFI Group, Citigroup. Bond
data is provided by Bloomberg, through the direct feed available at the IIT’s Stuart School of
Business. The calibration and pricing results presented in Section 6 indicate extreme efficiency and
robustness of our approach.

In Section 2 we provide a formal description of the credit products we discuss in the paper,
representing relevant cash flows in terms of formulae that we find well suited for calibration and
valuation applications. In the following section, we summarize the aspects of the modeling approach
presented in [1], which are relevant to practical implementation. A brief description of a simulation
algorithm and of the calibration methodology we use, are given in Section 4 and in Section 5,
respectively. The final section presents calibration and pricing results for selected credit products.

2 Description of relevant credit products

In this section, we describe the cash-flows associated to the main-stream basket credit products,
focusing in particular on the recently developed standardized instruments like the Dow Jones Credit

∗The authors would like to express their sincere gratitude and appreciation to Matt Woodhams from the GFI
Group, and to Youssef Elouerkhaoui from the Citigroup for providing us with data relevant to this paper.

1The pricing and calibration libraries are implemented in C++ interfaced through Excel spreadsheet.
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2 Valuation of Basket Credit Derivatives and Step-Up Bonds

Default Swap indices (iTraxx and CDX), and the relative derivative contracts. In particular we will
discuss Collateralized Debt Obligations (CDO), CDO squared and First to Default Swaps.

2.1 CDS indices

CDS indices are static portfolios of equally weighted credit default swaps (CDSs) with standard
maturities of five to ten years. Typically, the index matures few months before the underlying CDSs.
The debt obligations underlying the CDSs in the pool are selected from among those with highest
CDS trading volume in the respective industry sector. We will typically refer to the underlying
debt obligations as reference entities. CDS indices are typically issued by a pool of licensed financial
institutions, known as the market makers. At the time of issuance, the market makers determine an
annual rate known as (index) spread, to be paid out to investors on a periodic basis. By purchasing
the index, an investor enters into a binding contract, whose main provisions are summarized below:

(i) The inception time of the contract is time2 t = 0; the maturity time of the contract is T . At
inception, the pool is referenced by N credit names and its notional value3 is N .

(ii) By purchasing the index, the investor sells protection to the market makers. Thus, the investor
assumes the role of a protection seller and the market makers assume the role of protection
buyers. In practice, the investors agrees to absorb all losses due to defaults in the reference
portfolio, occurring between the time of inception and maturity. In case of default of a reference
entity, the protection seller pays to the market makers the protection payment in the amount of
(1− δ), where δ ∈ [0, 1] is the agreed recovery rate (typically 40%). The notional on which the
market maker pays the spread, henceforth referred to as residual protection, is then reduced
by such amount. For instance, after the first default, the residual protection is updated as
follows (recall that, at inception, the notional is N):

N → N − (1− δ).

(iii) In exchange, the protection seller receives from the market maker a periodic fixed premium
on the residual protection4 at the annual rate of η. If, at inception, the market index spread
is different from the issuance spread, the present value of the difference is settled through an
upfront payment.

We denote by τi the random default time of the ith name in the index and by Hi
t the right

continuous process defined as Hi
t = 11{τi≤t}, i = 1, 2, ..., N . Also, let {tj , j = 0, 1, ..., J} with 0 = t0

and tJ ≤ T denote the tenor of the premium leg payments dates. The discounted cumulative cash
flows associated to a CDS index are as follows:

Premium Leg = η
J∑

j=0

βtj

(
N∑

i=1

1−Hi
tj

(1− δ)

)
,

Protection Leg =
L∑

i=1

βτi
(1− δ)Hi

T ,

where βt := exp(−
∫ t

0
rsds) is the discount factor.

2Throughout the paper we shall set to t = 0 the inception dates of various products discussed here. This is done
so to simplify the notation; our discussion generalizes in a straightforward manner to any inception date t ≥ 0.

3We henceforth assume that the face value of each reference entity is one. Thus the total notional of the index is
N .

4Whenever a reference entity defaults, its weight in the index is set to zero. By purchasing one unit of index the
protection seller owes protection only on those names that have not yet defaulted at time of inception.
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2.2 Collateralized Debt Obligations

Collateralized Debt Obligations (CDO) are credit derivatives backed by portfolios of assets. If
the underlying portfolio is made up of bonds, loans or other securitized receivables, such products
are known as cash CDOs. Alternatively, the underlying portfolio may consist of credit derivatives
referencing a pool of debt obligations. In the latter case, CDOs are said to be synthetic. Because
of their recently acquired popularity, we focus our discussion on standardized (synthetic) CDO
contracts backed by CDS indices. We begin with an overview of the product:

(i) The time of inception of the contract is t = 0, the maturity is T . The notional of the CDO
contract is the residual protection (as defined above) of the underlying CDS index at the time
of inception. We shall assume that, at inception, the CDO notional is N .

(ii) The credit risk (the potential loss due to credit events) borne by the reference pool is layered
into different risk levels. The range in between two adjacent risk levels is called a tranche. The
lower bound of a tranche is usually referred to as attachment point and the upper bound as
detachment point. The credit risk is sold in these tranches to protection sellers. For instance,
in a typical CDO contract on iTraxx, the credit risk is split into equity, mezzanine, and senior
tranches, corresponding to 0 − 3%, 3 − 6%, 6 − 9%, 9 − 12%, and 12 − 22% of the losses,
respectively. At inception, the notional value of each tranche is the CDO notional weighted
by the respective tranche width.

(iii) The tranche buyer sells partial protection to the pool owner, by agreeing to absorb the pool’s
losses comprised in between the tranche attachment and detachment point. This is better
understood by an example: Assume that, at inception, the protection seller purchases one
currency unit worth of the 6 − 9% tranche. One year later, as a consequence of a series of
default events, the cumulative loss breaks through the tranche attachment point, reaching
8%. The protection seller fulfills his/her obligation by paying out two thirds (= 8%−6%

9%−6% ) of
a currency unit to the market maker . The tranche notional is then reduced to one third of
its pre-default event value. We refer to the remaining tranche notional as residual tranche
protection.

(iv) In exchange, up until maturity, the CDO issuer (protection buyer) makes periodic spread
payments to the tranche buyer on the residual tranche protection. Returning to our example,
after the loss reaches 8%, premium payments are made on 1

3 (= 9%−8%
9%−6% ) of the tranche notional,

until the next credit event occurs or the contract matures.

We denote by Ll and Ul the lower and upper attachment points of the lth tranche and by κl its
market spread. It is also convenient to introduce the fractional loss process,

Γt =
1
N

N∑
i=1

Hi
t(1− δ). (1)

Finally define by Cl = Ul − Ll the portion of credit risk assigned to the lth tranche.

Purchasing one unit of the lth tranche generates the following discounted cash flows:

Premium Leg = κl

J∑
j=0

βtj
N
(
Cl −min

(
Cl,max(Γtj

− Ll, 0)
))

,

Protection Leg =
N∑

i=1

βτiH
i
T (1− δ)11{Ll≤Γτi

≤Ul}.

We remark here, that the equity tranche of the CDO on iTraxx or CDX is quoted as an upfront
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rate, say κ0, on the total tranche notional, in addition to 500 basis points (5% rate) paid annually
on the residual tranche protection. The premium leg payment, in this case, is as follows:

κ0C0N +
J∑

j=0

βtj (.05)N
(
C0 −min

(
C0,max(Γtj − L0, 0)

))
.

2.3 CDO squared

Squared CDOs (also denoted as CDO2 or CDO2) have gained considerable popularity in the last
twelve to eighteen months. A prototypical synthetic CDO-2 is backed by a portfolio (”outer” CDO)
consisting of other synthetic CDO tranches (”inner” CDOs). The outer CDO may be referenced by
up to 1000 names, although, in general the number of underlying obligors ranges between 250 and
400. Due to the limited number of liquid CDS in the market, there might be a considerable amount
of overlapping among the inner CDOs. This means that a number of the underlying credit names
might reference one or more of the inner CDO contracts. As a consequence, a default event might
simultaneously affect more than one of the inner CDO tranches, and this leads to the necessity of
keeping track of the identity of the defaulted entities. In what follows, we provide a brief description
of this very exotic product:

(i) The time of inception of the contract is t = 0, the maturity is T . Clearly, the outer CDO
matures at or before the maturity dates5 of the inner CDOs. The notional of the outer CDO
is the sum of the notionals of the inner CDO tranches (as defined in the previous section).

(ii) The notional of the outer CDO is, again, layered into credit levels, or tranches. We shall call
the tranches of the outer and inner CDOs outer and inner tranches, respectively. Each outer
tranche is responsible for a portion of the losses suffered by the outer CDO notional, which
arise as a consequence of the losses incurred by the inner tranches.

(iii) The buyer of a tranche in the outer CDO sells partial protection, by agreeing to absorb the
losses comprised in between the outer tranche attachment and detachment points. This is
better understood by a simple example: Consider a CDO squared backed by the mezzanine
tranches of three CDO contracts. The protection seller purchases the equity outer tranche
(having, for example, attachment points 0 − 5%). Assume that credit name XYZ references
all of the inner CDOs. Assume, in addition, that at the default time of XYZ, say τXY Z , the
cumulative loss in two out of three inner CDOs breaks through the attachment point of the
respective mezzanine tranche. Then, assuming a recovery rate of δ, at τXY Z the protection
seller pays 2(1 − δ) and the residual protection of the outer equity tranche is reduced by the
same amount.

(iv) In exchange, the protection seller makes periodic spread payments on the residual notional of
the outer tranche.

We shall need the following notation. Let the outer CDO be backed by m = 1, . . . ,M inner CDO
tranches, with respective attachment points Ll(m), Ul(m) (note that the attachment points of the
inner tranches need not be the same). Let Nm denote the size of the reference pool for the mth inner
CDO. The cumulative (fractional) loss in the mth pool is defined as (cf. (1)):

Γm
t =

1
Nm

Nm∑
i=1

Hi
t(1− δ).

In addition, we define the cumulative fractional loss in the outer CDO as:

Γsq
t =

∑M
m=1

∑Nm

i=1 Hi
t(1− δ)11{Ll(m)≤Γm

τi
≤Ul(m)}∑M

m=1 Nm

.

5The inner CDOs may mature at different dates.
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Purchasing one unit of the pth outer tranche (with attachment points [Lp Up]) generates the following
discounted cash flows:

Premium Leg = υp
J∑

j=0

βtj

(
M∑

m=1

Nm

)(
Cp −min

(
Cp,max(Γsq

tj
− Lp, 0)

))
,

Protection Leg =
M∑

m=1

Nm∑
i=1

βτi
Hi

T (1− δ)11{Ll(m)≤Γm
τi
≤Ul(m)}11{Lp≤Γsq

τi
≤Up},

where, as in the previous section Cp = Up−Lp denotes the outer tranche width and υp is the spread
on the outer pth tranche 6.

2.4 Nth-to-default Swaps

Nth-to-default swaps (NTDS) are basket credit instruments backed by portfolios of single name
CDSs. Since the growth in popularity of CDS indices and their associated derivatives, NTDS have
become rather illiquid. Currently, such products are typically customized bank to client contracts,
and hence relatively bespoke to the client’s credit portfolio. For this reason, we focus our attention
on First to Default Swap contracts issued on the iTraxx index, which are the only ones with a certain
degree of liquidity7. Standardized FTDS are now issued on each of the iTraxx sector sub-indices.
Each FTDS is backed by an equally weighted portfolio of five single name CDSs in the relative
sub-index, chosen according to some liquidity criteria. The main provisions contained in a FTDS
contract are the following:

(i) The time of inception of the contract is t = 0, the maturity is T .

(ii) By investing in a FTDS, the protection seller agrees to absorb the loss produced by the first
default in the reference portfolio

(iii) In exchange, the protection seller is paid a periodic premium, known as FTDS spread, computed
on the residual protection. We denote the FTDS spread by ϕ.

Recall that {tj , j = 0, 1, ..., J} with 0 = t0 and tJ ≤ T denotes the tenor of the premium leg
payments dates. Also, denote by τ (1) the (random) time of the first default in the pool. The
discounted cumulative cash flows associated to a FTDS on an iTraxx sub-index containing N names
are as follows (again we assume that each name in the basket has notional equal to one):

Premium Leg =
J∑

j=0

ϕβtj 11{τ(1)≥tj},

Protection Leg = βτ1(1− δ)11{τ(1)≤T}.

2.5 Ratings triggered corporate Step-Up bonds.

These bonds were issued by some European telecom companies in the recent 5-6 years. As of now,
to our knowledge, these products are not traded in baskets , however they are of interest because
they offer protection against credit events other than defaults. In particular, step-up bonds are
corporate coupon issues for which the coupon payment depends on the issuer’s credit quality: in

6We make the remark that, if there is overlapping among the inner CDOs, the same credit name might be indexed
by different i subscripts. If for instance, credit name XYZ is the 10th obligor in the first inner CDO and the 20th

obligor in the second inner CDO, XYZ is indexed by i = 10 and i = N1 + 20.
7Thanks to Matt Woodhams from GFI Group for his valuable comments in this regard.
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principle, the coupon payment increases when the credit quality of the issuer declines. In practice,
for such bonds, credit quality is reflected in credit ratings assigned to the issuer by at least one credit
ratings agency (Moody’s-KMV or Standard&Poor’s). The provisions linking the cash flows of the
step-up bonds to the credit rating of the issuer have different step amounts and different rating event
triggers. In some cases, a step-up of the coupon requires a downgrade to the trigger level by both
rating agencies. In other cases, there are step-up triggers for actions of each rating agency. Here,
a downgrade by one agency will trigger an increase in the coupon regardless of the rating from the
other agency. Provisions also vary with respect to step-down features which, as the name suggests,
trigger a lowering of the coupon if the company regains its original rating after a downgrade. In
general, there is no step-down below the initial coupon for ratings exceeding the initial rating. Next,
we give a brief summary of the most common provisions characterizing the payoff of a step-up bond
(typically, a step-up bond is subject to a selection of the provisions listed below):

(i) Step-up: The coupon increases if the rating decreases and hits the rating-trigger.

(ii) Step-down: The coupon decreases if the rating increases over the rating-trigger after the trigger
level was previously hit.

(iii) One-off: The coupon increases only once, even if the rating falls further below the rating-
trigger; for bonds that are not one-off, each further decrease in the rating, causes a further
increase in the coupon.

(iv) And/or: Determines whether the coupon is adjusted if both Moody’s and S&P ratings hit the
trigger, or whether the adjustment occurs if either Moody’s or S&P ratings hit the trigger
level.

(v) Accrual: the coupon increases may be enforced either starting from the next coupon payment
or immediately following a rating action.

Let Xt stand for some indicator of credit quality at time t (note that in this case, the process X may
denote two distinct rating processes). Assume that ti, i = 1, 2, . . . , n are coupon payment dates. In
this paper we assume the convention that coupon paid at date tn depends only on the rating at date
tn−1, that is: cn = c(Xtn−1) be the coupon payments. In other words, we assume that no accrual
convention is in force.

Assuming that the bond’s notional amount is 1, the cumulative discounted cash flow of the
step-up bond is (as usual we assume that the current time is 0):

(1−HT )βT +
∫

(0,T ]

(1−Hu)βu dCu + βτZτHT , (2)

where Ct =
∑

ti≤t ci, τ is the bond’s default time, Ht = 11τ≤t, and where Zt is a (predictable)
recovery process.

3 Markovian Market Model

In this section, we give a brief description of the Markovian market model that we implement for
evaluating and hedging basket credit instruments. This framework is a special case of the more
general model introduced in Bielecki et al.[1], which allows to incorporate information relative to
the dynamic evolution of credit ratings and credit migration processes in the pricing of basket
instruments. We begin with some notation.

Let the underlying probability space be denoted by (Ω,G, G,P), where P is a risk neutral measure
inferred from the market (we shall discuss this in further detail when addressing the issue of model
calibration), G = H ∨ F is a filtration containing all information available to market agents. The
filtration H carries information about the evolution of credit events, such as changes in credit ratings
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or defaults of respective credit names. The filtration F is a reference filtration containing information
pertaining to the evolution of relevant macroeconomic variables.

We consider N obligors (or credit names) and we assume that the current credit quality of
each reference entity can be classified into K := {1, 2, . . . ,K} rating categories. By convention, the
category K corresponds to default. Let X l, l = 1, 2, . . . , N be processes on (Ω,G,P) taking values
in the finite state space K. The processes X l represent the evolution of credit ratings of the lth

reference entity. We define the default time τl of the lth reference entity by setting

τl = inf{ t > 0 : X l
t = K} (3)

We assume that the default state K is absorbing, so that for each name the default event can only
occur once.

We denote by X = (X1, X2, . . . , XN ) the joint credit rating process of the portfolio of N credit
names. The state space of X is X := KN and the elements of X will be denoted by x. We postulate
that the filtration H is the natural filtration of the process X and that the filtration F is generated
by a Rn valued factor process, Y , representing the evolution of relevant economic variables, like
short rate or equity price processes.

We assume that the process M = (X, Y ) is jointly Markov under P, so that we have, for every
0 ≤ t ≤ s, x ∈ X , and any set Y from the state space of Y ,

P(Xs = x, Ys ∈ Y |Ht ∨ FY
t ) = P(Xs = x, Ys ∈ Y |Xt, Yt). (4)

The process M is constructed as a Markov chain modulated by a Lévy process. We shall refer to
X (Y , respectively) as the Markov chain component of M (the Lévy component of M , respectively).
We provide the following structure to the generator of the process M .

Af(x, y) = (1/2)
n∑

i,j=1

aij(y)∂i∂jf(x, y) +
n∑

i=1

bi(y)∂if(x, y)

+
∫
Rn

(
f(x, y + g(y, y′))− f(x, y)

)
ν(dy′) (5)

+
L∑

l=1

∑
xl′∈K

λl(x, x′l; y)f(x′l, y),

where we write x′l = (x1, x2, . . . , xl−1, x′l, xl+1, . . . , xL). Given Xt = x and Yt = y, the intensity
matrix of the Markov chain component is given by Λt = [λ(x, x′; y)]x′∈X . The Lévy component
satisfies the SDE:

dYt = b(Yt) dt + σ(Yt) dWt +
∫
Rn

g(Yt−, y′) N(dy′, dt),

where, for a fixed y ∈ Rn, N(dy′, dt) is a counting process with Lévy measure ν(dy′) and σ(y)
satisfies σ(y)σ(y)T = a(y).

Note that the model specified by (5) does not allow for simultaneous jumps of the components
X l and X l′ for l 6= l′. In other words, the ratings of different credit names may not change
simultaneously. Nevertheless, this is not a serious lack of generality, as the ratings of both credit
names may still change in an arbitrarily small time interval. The advantage is that, for the purpose
of simulation of paths of process X, rather than dealing with X × X intensity matrix [λ(x, x′; y)],
we shall deal with N intensity matrices [λl(x, x′l; y)], each of dimension K×K (for any fixed y). We
stress that, within the present set-up, the current credit rating of the credit name l directly impacts
the intensity of transition of the rating of the credit name l′, and vice versa. This property, known
as frailty, may contribute to default contagion.
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3.1 Valuation of Basket Credit Derivatives in the Markovian Framework

We now discuss the pricing of the basket instruments introduced in section two of the paper. In par-
ticular, computing the fair spreads of such products involves evaluating the conditional expectation,
under the risk neutral measure P, of some quantities related to the cash flows associated to each
instrument. In the case of CDS indices, CDOs, CDO2s and FTDS, the fair spread is such that, at
inception, the value of the contract is exactly zero, i.e the risk neutral expectations of the fixed leg
and protection leg payments are identical. The following expressions can be easily derived from the
discounted cumulative cash flows given in Section 2. They represent initial (at time t = 0) values of
spreads and prices, given the state of the market at inception, (X0, Y0) = (x, y):

• the fair spread of a single name CDS is:

ηl =
Ex,y

P

(
βτl

H l
T

)
(1− δ)

Ex,y
P

(∑J
j=0 βtj

(1−H l
tj

)
)

• the fair spread of a CDS index is:

η =
Ex,y

P

∑L
i=1 βτi

(1− δ)Hi
T

Ex,y
P

∑J
j=0 βtj

(∑N
i=1 1−Hi

tj
(1− δ)

)
• the fair spread of the CDO equity tranche is:

κ0 =
1

C0N
Ex,y

P

( N∑
i=1

βτiH
i
T (1− δ)11{Ll≤Γτi

≤Ul}

−
J∑

j=0

βtj
(.05)N

(
C0 −min

(
C0,max(Γtj

− L0, 0)
)) )

• the fair spread of the lth CDO tranche is:

κl =
Ex,y

P

(∑N
i=1 βτi

Hi
T (1− δ)11{Ll≤Γτi

≤Ul}

)
Ex,y

P

(∑J
j=0 βtj

N
(
Cl −min

(
Cl,max(Γtj

− Ll, 0)
)) )

• the fair spread of the pth tranche of the CDO squared is:

υp =
Ex,y

P

(∑M
m=1

∑Nm

i=1 βτiH
i
T (1− δ)11{Ll(m)≤Γm

τi
≤Ul(m)}11{Lp≤Γsq

τi
≤Up}

)
Ex,y

P

(∑J
j=0 βtj

(∑M
m=1 Nm

)(
Cp −min

(
Cp,max(Γsq

tj
− Lp, 0)

)))
• the fair spread of a First To Default Swap is:

ϕ =
Ex,y

P

(
βτi

(1− δ)11{τ(1)≤T}

)
Ex,y

P

(∑J
j=0 βtj 11{τ(1)≥tj}

)
• fair value of the step-up bond is:

D = Ex,y
P

(
(1−HT )βT +

∫
(0,T ]

(1−Hu)βu dCu + βτZτHT

)
Depending on the dimensionality of the problem, the above conditional expectations will be evaluated
either by means of Monte Carlo simulation, or by means of some other numerical method and, in
the low dimensional cases, even analytically . In the next sections we address the practical issues of
implementing the proposed theoretical framework.
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4 Model Implementation

In this section, we discuss the practical implementation of our model. In particular we provide
further structure to the generator of the Markov chain component of the joint process (X, Y ) and
specify a general functional form for its transition intensities. We then briefly describe a recursive
procedure for simulating the evolution of the process X.

4.1 Specification of Credit Ratings Transition Intensities

Because we need to simulate the joint process (X, Y ), it is important to specify its form in such a
way to avoid unnecessary computational complexity. As noted earlier, the structure of the generator
A that we postulate makes it so that simulation of the evolution of process X reduces to recursive
simulation of the evolution of processes X l, whose state spaces are only of size K each. In order to
facilitate simulations even further, we also postulate that each migration process X l behaves like a
birth-and-death process with absorption at default, and with possible jumps to default from every
intermediate state. Conditional upon (Xt, Yt) = (x, y), the infinitesimal generator governing the
evolution of the credit ratings of the lth name is the sub-stochastic matrix:



1 2 3 · · · K − 1 K
1 λl(1, 1) λl(1, 2) 0 · · · 0 λl(1,K)
2 λl(2, 1) λl(2, 2) λl(2, 3) · · · 0 λl(2,K)
3 0 λl(3, 2) λl(3, 3) · · · 0 λl(3,K)

...
...

...
...

. . .
...

...
K − 1 0 0 0 · · · λl(K − 1,K − 1) λl(K − 1,K)
K 0 0 0 · · · 0 0


,

where λl(xl, x′l) = λl(xl, x′l;Xt = x, Yt = y).
The functional form of the transition intensities should reflect the specific characteristics of the
instruments we need to price and should be chosen to obtain the best possible fit in the calibration
phase.

4.2 Simulation Algorithm

In general, a simulation of the evolution of the process X entails high computational costs, as the
the cardinality of the state space of X is equal to KN . Thus, for example, in case of K = 18 rating
categories, as in Moody’s ratings, and in case of a portfolio of N = 100 credit ratings, the state
space has 18100 elements. However, the specific assumptions on the structure of the generator allow
to simulate the process in a recursive fashion, which has a relatively low computational complexity.
We consider here simulations of sample paths over a generic time interval, [t1, t2], where 0 ≤ t1 < t2,
and assume that the time t1 state of the process (X, Y ) is (x, y). Generating one sample path will,
in general, involve the following steps:

Step 1: in Step 1, a sample path of the process Y is simulated. Recall that the dynamics of the
factor process are described by the SDE

dYt = b(Yt) dt + σ(Yt) dWt +
∫
Rn

g(Yt−, y′) N(dy′, dt)

Yt1 = y

Any standard procedure can be used to simulate a sample path of Y (the reader is referred, for
example, to Kloeden and Platen [2]). We denote by Ŷ the simulated sample path of Y .
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Step 2: generate a sample path of X on the interval [t1, t2].

Step 2.1: simulate the first jump time of the process X in the time interval [t1, t2]. Towards this
end, draw from a unit exponential distribution. We denote by η̂1 the value of the first draw.
The simulated value of the first jump time, τX

1 , is then given by:

τ̂X
1 = inf

{
t ∈ [t1, t2] :

∫ t

t1

λ(x, Ŷu) du ≥ η̂1

}
,

where

λ(x, Ŷt) := −
N∑

i=1

λi(xi, xi; Ŷt)

If τX
1 > t2 return to step 1, otherwise go to Step 2.2.

Step 2.2: simulate which component of the vector process X jumped at time τ̂X
1 by drawing from

the conditional distribution

q(X l|τX
1 ) =

λl(xl, xl; ŶτX
1

)

λ(x, ŶτX
1

)

where

λl(xl, xl; Ŷt) = λl(xl, xl − 1; Ŷt) + λl(xl, xl + 1; Ŷt) + λl(xl,K; Ŷt)

Recall that λl(xl, xl; Ŷt) = 0 if xl = K since K is an absorbing state.

Step 2.3: given that the ith name jumped, simulate the direction of the jump by drawing from
the conditional distribution

pi(x′i|xi, τX
1 ) =

λi(xi, x′i; ŶτX
1

)

λi(xi, xi; ŶτX
1

)

where
x′i = {xi − 1;xi + 1;K}

Step 2.4: Repeat Steps 2.1-2.3 on the interval [τ̂X
i , t2], i = 1, 2, ... until τ̂X

i > t2

Step 3: Calculate the simulated value of a relevant functional. For instance, assume that Y repre-
sents the short rate process, and is used as a discount factor, i.e

∫ t

0
Yt = − lnBt. In order to compute

the protection leg of a CDS index, one would evaluate

L∑
i=1

Bτi

Bt
(1− δ)(Hi

T −Hi
t)(ω)

at each run ω, and obtain the Monte Carlo estimate by averaging over all sample paths.

5 Model Calibration

In the previous sections we assumed a risk neutral pricing measure as given. Arbitrage free pricing,
in fact, requires the existence of a risk neutral measure, under which the price processes in the
underlying market are martingales. In our market model, relevant assets are the single name CDSs
contained in the indices, the indices themselves, and the relative derivative products. It is a standing
assumption that financial markets actually are arbitrage free, and a risk neutral measure can thus
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be inferred from the prevailing market prices. Choosing a risk-neutral probability measure such as
to reproduce the prices of traded derivative prices is known as model calibration.

This ”inverse” problem is seldom feasible thus, typically, calibrating reduces to achieving the best
approximation to market prices within a given model class. The quality of such approximation is a
good indicator of the ability of the model to reproduce and explain the workings of the underlying
markets. The main-stream copula models are known not to provide a good fit to market data, giving
rise to the concept of correlation skews and other market inconsistencies, which really reflect the
inability of these models to capture the market risk factors. Calibration provides an important test
for our proposed framework.

5.1 Calibration Procedure

Calibration of the risk neutral parameters of the model, that is, the parameters corresponding to
the risk neutral measure, can be split into two separate problems: calibration of the dynamics of
the factor process8 Y , and calibration of the transition intensities of the process X.

We discuss in some detail the calibration of the dynamics of the Markov chain component X. If
analytical formulae, or quasi-analytical formulae, for theoretical prices of financial assets, which are
of interest to us, are available, then, in principle, the calibration procedure is straightforward. Such
will be the case with regard to step-up bonds, for example.

Otherwise, calibration will be done by simulation. We denote the output of the simulation (which
may include the spread on the single name CDS in the basket, the index spread, the CDO tranche
spreads, etc.) by9

EΘ
(
f
(
Xsim

t , Y sim
t ; t≤T

))
,

where Θ ∈ Θ ⊂ Rn is a vector of coefficients parameterizing the transition intensities of the Markov
chain component X. Calibrating the model is done by means of solving the following minimization
problem:

inf
Θ∈Θ

∣∣∣∣EΘ
(
f
(
Xsim

t , Y sim
t ; t≤T

))
−M

∣∣∣∣
where M ∈ Rn is a vector of market data corresponding to the simulation output and ‖ · ‖ is a norm
in Rn.

Since the map Θ → EΘ
(
f
(
Xsim

t , Y sim
t ; t≤T

))
is not known, and is likely to be non-smooth,

we use the downhill simplex method (also known as the Nelder-Mead algorithm), to perform the
minimization. This algorithm does not require computation of gradients and is particularly effective
for high dimensional, non smooth problems. The need for computational speed becomes evident in
this phase, since each function evaluation requires simulating a large number of sample paths.

6 Applications of the Markovian Set Up to Pricing Basket
Credit Derivatives and Step-up Bonds

In the following, we specialize the general Markovian framework to pricing selected credit derivatives.
First, in Section 6.1 we shall calibrate a Markovian model to market quotes on individual CDSs,
CDS indices, and synthetic CDOs derived from CDS indices. Then, in Sections 6.2.2 and 6.2.3 we
shall apply this framework and the calibration results for pricing FTDSs, customized CDOs, and
CDO2. In Section 6.3 we shall calibrate another version of our model to market quotes on step-up
bonds and price a step-up bond option.

8Calibration of Levy models is discussed in [3].
9Function f represents the simulation output that is relevant to the given application (such as, CDO spread, etc.).

Xsim, Y sim denote simulated paths of processes X and Y .
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6.1 Calibration of a Two State Markov Model for Pricing Credit Deriv-
atives

In this section, we consider a special version of the general Markov model described above and we
calibrate its parameters to market data.

Recall that Xt = (X1
t , X2

t , . . . , XN
t ) denotes the joint credit ratings process of the portfolio of N

credit names. We assume that the current credit quality of each name in the pool can be classified
into two rating categories, i.e. K := {0,K}, where, 0 is a pre-default state10, and as usual, K
denotes the default state. Under the term default, we encompass all credit events that warrant a
protection payment. In this case, these include actual bankruptcy of the obligor, as well as situations
of extreme financial distress (i.e. the obligor files for chapter 11 ).

Note that we have decided to reduce the state space of each ratings process Xi to two states
only. This modeling decision rests upon empirical reasons, and appears to be adequate with regard
to (basket) credit instruments whose cash flows are not explicitly tied to changes in credit quality
of underlying credit names, but rather depend only on occurrence of default. It needs to be stressed
though that credit quality of an obligor, as reflected in the value of the corresponding CDS spread,
provides a useful implicit quantification of credit ratings of the obligor, and as such is in some way
used in our specialized model.11

We postulate that, under the risk neutral measure P, the jump intensities (default intensities, in
this case) of the Markov chain component X are as follows):

λl
t(0,K) = h(ηl, Xt; Θ), (6)

where f is a judiciously chosen function, Θ is a vector of model parameters and ηl denotes the
spread of the CDS referenced by the lth name, at inception. Recall that state K is absorbing, so
that λl

t(K, 0) = 0. The discount factor βt is obtained by interpolation of the term structure of
T-Bonds at inception.

In order to price consistently the underlying CDSs and the CDO tranches, we calibrate the
intensity parameter vector Θ to univariate and multivariate default information, provided by the
average of the single name CDS spreads and by the CDO tranche spreads, respectively.12 The model
fits both single name CDS spreads and CDO tranche spreads. The simulation scheme converges
rather quickly, with the (relative) standard error of the estimate ranging between 1% and 4%, after
100000 simulation runs. As for computational speed, 100000 paths can be generated in few seconds
on a 1.5 mhz computer. In addition, the calibration of the model takes only few minutes of computing
time, provided that the optimization algorithm starts from a sensible initial guess. A comparison of
market and model generated spreads are illustrated in Table 1., Table 2. and Table 3.. As usual,
the equity tranche is quoted as an up-front premium, in addition to the contractual 500 bps p.a..

Tranche Model Spreads Market Spreads

0-3% 23.79 % 24 %
3-6% 83.83 83
6-9% 24.55 27
9-12% 14.58 14
12-22% 8.43 9

Table 1: Fit of two state Markov model to iTraxx market data on 31-August-2005. All values are
quoted in bps

Also the individual CDS spreads can be fitted very accurately to market data, with a two percent
maximum relative error.13 In Table 3., we show the fit of the Markov model to DJ CDX data relative

10Thus, the ”state” 0 represents all the ratings 1, 2, . . . , K − 1.
11In order to deal with instruments whose cash flows explicitly depend on changes in credit ratings, such as credit

quality triggered step-up bonds (cf. Section 6.3), explicit quantification of relevant credit ratings will be needed.
12The market data is relative to CDO on iTraxx as quoted on August 31 2005 and November 5 2005 and on DJ

CDX as quoted on November 10 2005. The data was courteously provided by GFI
13A table, showing the fit of the model to individual CDS prices is available upon request to the authors.
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Tranche Model Spreads Market Spreads

0-3% 24.52 % 24.9 %
3-6% 71.75 71.5
6-9% 22.04 24
9-12% 12.68 11.5
12-22% 6.41 6.65

Table 2: Fit of two state Markov model to iTraxx market data on 05-November-2005.

to November 10 2005.

Tranche Model Spreads Market Spreads

0-3% 42.46 % 43.5 %
3-7% 123.15 123
7-10% 27.07 30
10-15% 14.04 13
15-30% 6.28 6.5

Table 3: Fit of two state Markov model to DJ CDX market data on 10-November-2005.

Once the risk neutral parameters are calibrated, one can price other credit instruments referenced
by some or all of the names in the iTraxx index. In the next section, we use the calibrated model
to price a CDO on iTraxx with customized tranche attachments, a CDO squared and an FTDS.

6.2 Pricing of selected basket credit derivatives via simulation

6.2.1 Pricing of CDOs

Using relevant calibrated data, we priced a CDO on the iTraxx S3 index with customized attachment
points. The pricing results are shown in Table 4.

Tranche Model Spreads

0-3% 24.52 %
3-9% 40.75
9-16% 9.35
16-21% 4.15
21-35% 1.35

Table 4: Pricing of customized CDO tranches on iTraxx index S3, November 5 2005.

6.2.2 Pricing of FTDSs on CDS indices

Using relevant calibration results, we priced an FTDS on a portfolio of credit names referencing the
iTraxx S3 index and listed in Table 5. along with market data and our pricing results14:

The table shows that the version of our model used here prices consistently FTDS when calibrated
to CDO and iTraxx data, and it suggests that the model is able to capture the dynamics of the
credit market in a realistic fashion.

14The market data is relative to diversified FTDS contract as quoted on November 5 2005. The data was courteously
provided by ...
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Sector Entity Bid/Ask Market Spread Model Spreads

Autos VOLKSWAGEN 44 / 46 45.39
Energy SUEZ 26 / 27 25.01

Financials Bayerische Hypo 18 / 20 18.75
Industrials Bayer 24 / 26 25.23

TMT FRANCE TELECOM 42 / 44 43.87
Consumer MARKS AND SPENCER 63 / 65 65.82

FTDS Spread 78%/86% 85%

Table 5: November 5, 2005: Diversified FTDS composition and market quote v. model output. The
FTDS spread is quoted as a percentage of the sum of the underlying CDS spreads.

6.2.3 Pricing of CDO2s

Numerical results for this section will be available in a later version of the paper.

6.3 Pricing of ratings triggered Step-Up bonds

The Markovian framework proposed in Bielecki et al. and adopted in this paper is ideally suited for
pricing ratings triggered step-up bonds. Since we consider a single bond, we may resort to methods
other than simulation for pricing such instruments. In this section we shall develop an analytical
solutions for the price of a step-up bond in a .

As before, we denote by X the credit ratings process of a step-up bond, and we assume that the
current credit quality of X can be classified into K rating categories15, i.e. K := {1, 2..., K}, where,
as usual, K is the default state. As the only factor Y we take here the short rate process, so that
Yt = rt. Consequently, βt = e−

R t
0 Ys ds.

For the purpose of this paper we additionally assume that processes X and Y are independent
under the pricing probability P (this assumption will be relaxed in a future paper). Finally, to
simplify things even more, we shall take the recovery process Z to be constant, and we shall denote
its value as δ ∈ [0, 1). Again, this assumption will be relaxed in the future.

Let us fix t ∈ [0, T ], and let us denote by i(t) the smallest integer i ∈ {1, 2, . . . , n} such that
t ≤ ti. Obviously, we are only interested in the price of those bonds that are not defaulted. This
means, that we shall only consider the time-t price of a step-up bond on the set {t < τ} = {Xt 6= K}.
Take ξ̄, ξ ∈ {1, 2, ...,K − 1}. Then, on the set {Xti(t)−1 = ξ̄, Xt = ξ, Yt = y}, the time-t price of a
step up bond is (cf. (2))

φ(ξ̄, ξ, y, t) := β−1
t EP

(
βT (1−HT ) +

∫ T

t

(1−Hs)βs dCs + δHT βτ

∣∣∣FX
t ∨ FY

t

)
= β−1

t EP

(
βT (1−HT ) +

n∑
i=i(t)

(1−Hti
)βti

c(Xti−1) + δHT βτ

∣∣∣FX
t ∨ FY

t

)

= β−1
t EP

(
βT (1−HT ) +

n∑
i=i(t)+1

(1−Hti
)βti

c(Xti−1) + δHT βτ

∣∣∣FX
t ∨ FY

t

)
+ β−1

t EP

(
(1−Hti(t))βti(t)c(Xti(t)−1)

∣∣∣FX
t ∨ FY

t

)
= β−1

t EP

(
βT (1−HT ) +

n∑
i=i(t)+1

(1−Hti
)βti

c(Xti−1) + δHT βτ

∣∣∣Xt = ξ, Yt = y
)

+ β−1
t EP

(
(1−Hti(t))βti(t)c(ξ̄)

∣∣∣Xt = ξ, Yt = y
)
. (7)

15Note that the rating process is a vector process when the ”and” provision is in force.
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Using independence between processes X and Y we obtain that

φ(ξ̄, ξ, y, t) = B(t, T )(1− pt,ξ,K(T ))

+
n∑

i=i(t)+1

B(t, ti)

∑
x6=K

pt,ξ,x(ti−1)
(
1− pti−1,x,K(ti)

)
c(x)


+ δ

∫ T

t

B(t, u) d pt,ξ,K(u) + B(t, ti(t)
(
1− pt,x,K(ti(t))

)
c(ξ̄), (8)

where for s ≤ u we let
ps,x,x′(u) = P(Xu = x′|Xs = x),

and where B(u, s) is the time-u price of a discount bond that expires at time s, that is, B(u, s) =
EP(βsβ

−1
u |FY

s ).

As discussed in Sec 2.5, step-up(down) provisions are often triggered by Moody and S&P joint
rating actions. In what follows, we suggest a convenient construction for the transition matrix of
the joint rating process, which we denote by (St,Mt), where St and Mt denote the ratings assigned
by S&P and Moody, respectively. We assume St is Markovian w.r.t its natural filtration and lives
on the state space K = {1, 2, . . . ,K}. Also, we construct Mt as follows:

Mt = f(St, ξt)

where
f(St, ξt) = St11{St=1} + (St + ξt)11{2≤St≤K−2} + St11{St≥K−1}

and ξt is, itself, Markovian w.r.t its natural filtration, and lives on the state space S = {−1, 0, 1, }. In
addition, we assume that ξt is independent from St. It is easy to see that the joint process (Mt, St)
is also Markovian w.r.t the joint filtration (FM

t ∨ FS
t ). In fact,

P(St+s = k,Mt+s = l | FM
t ∨ FS

t ) = P(St+s = k, f(St+s, ξt+s) = l | Fξ
t ∨ FS

t )

= P(St+s = k, ξt+s = f̃(k, l) | Fξ
t ∨ FS

t )

= P(St+s = k | FS
t )P (ξt+s = f̃(k, l) | Fξ

t )

= P(St+s = k |σ(St))P(ξt+s = f̃(k, l) |σ(ξt))

= P(St+s = k, ξt+s = f̃(k, l) |σ(St) ∨ σ(ξt))
= P(St+s = k, Mt+s = l |σ(St) ∨ σ(Mt))

By the above construction, the effective state space of the joint rating process (St,Mt) has cardinality
3K and is such that Mt and St disagree by at most one rating class at any given point in time, and
coincide at the default state K. If the default state K is absorbing for St, then the default state,
(K, K), is also an absorbing state for the joint process. The default time can be conveniently defined
as follows:

τ(M,S) := inf{t ∈ (0, T ] : Mt = K, St = K} = inf{t ∈ (0, T ] : St = K}

In addition, it is easy to verify that the transition matrix of (St,Mt) has the following form:

P(Mt+u = m′, St+u = s′|Mt = m,St = s) :=
P(St+u = s′, St = s)P(ξt+u = f̃(m′, s′), ξt = f̃(m, s))

P(St = s)P(ξt = f̃(m, s))
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