
CONVERTIBLE BONDS IN A JUMP-DIFFUSION

MODEL OF CREDIT RISK

Tomasz R. Bielecki∗

Department of Applied Mathematics
Illinois Institute of Technology

Chicago, IL 60616, USA
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1 Introduction

In [7], working in an abstract set-up, we characterized arbitrage prices of generic convertible securities
(CS), such as convertible bonds (CB), and we provided a rigorous decomposition of a CB into a
bond component and a game option component, in order to give a definite meaning to commonly
used terms, such as: “CB spread” and “CB implied volatility”. Moreover, in [9], we showed that
in the hazard process set-up, the theoretical problem of pricing and hedging CS can essentially be
reduced to a problem of doubly reflected Backward Stochastic Differential Equations (R2BSDE, see
[9]). Finally, in [8], we established the connection between this R2BSDE problem (assumed to have
a solution) and related variational inequalities with double obstacle in a generic Markovian intensity
model.

Here, considering a primary market made of a savings account, the stock of the reference entity
(firm) underlying a CB, and a further CDS on the firm to ‘complete the market’, we construct a
Markovian jump-diffusion set-up that specifies our generic Markovian model, namely a model with
time and stock-dependent default intensity and volatility. In this model, using also results from
[18], we show that the R2BSDE associated to a CB has a solution (Theorem 4.1), so that the CB
is hedgeable (Theorem 3.2, obtained by application of the general results of [9, 8]). Moreover, we
characterize the price of the CB in terms of viscosity solutions of associated variational inequalities,
and we give conditions ensuring convergence of deterministic approximation schemes (Theorems 4.3
to 4.6).

Despite its obviously simplistic character and its limitations, the above jump-diffusion model
appears as an industry standard for convertible bonds, which is enough to motivate the present study.
Beyond the interest of this model as such (see [10] for an alternative model), our motivation is also to
demonstrate that the general approach that we adopted in the previous papers [7, 9, 8] is consistent,
in the sense that in the industry standard model for convertible bonds, all the working assumptions
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that we made so far, and in particular the existence of a solution to the related R2BSDEs, can be
satisfied. In particular, because of the so-called notice period covenant, a CB typically continues to
live some time beyond its call time (see [7]). In the previous papers, we essentially worked under
the simplifying assumption that the value U cb

t of a the CB upon a call at time t is a well defined
process satisfying some “natural” conditions, and that was considered as an exogenous input to a
CB problem. In the specific framework of this paper, we are actually able to prove that this is indeed
the case, and we also give ways to compute U cb

t (Theorems 5.1 and 5.2).
As in [7, 9, 8], we use the notion of vector stochastic integral for predictable integrands as

developed in Cherny–Shiryaev [16]. In particular, given a standard stochastic basis, any predictable
locally bounded integrand is integrable in this sense with respect to any semimartingale. Note that
by default we denote by

∫ t

0
integrals over (0, t], otherwise me mention the domain of integration as

a subscript of
∫
.

2 The Standard Market Model for Convertible Bonds

In this section, we provide a Markovian specification of the generic Markovian default intensity
set-up in [8], so that we can derive analytical characterizations of the price of a CS as solution
to some variational inequalities with double obstacle in later sections. More precisely, we consider
a jump-diffusion model with time and stock-dependent local default intensity and local volatility,
referred to in the sequel as the Standard Market Model for convertible bonds (SMM for short, see
also [2, 1, 21, 22, 30, 15]).

2.1 Canonical Construction

Let us fix a finite horizon date T > 0. Given a filtered probability space (Ω,F,Q) satisfying the
usual conditions, where F is the filtration of a standard Brownian motion W under Q, we define
what will later be interpreted as the pre-default stock price S̃ of the firm underlying a CS, by setting,
for t ∈ R+,

dS̃t = S̃t

(
(r(t)− q(t) + ηγ(t, S̃t))dt+ σ(t, S̃t)dWt

)
, S̃0 ∈ R . (1)

Assumption 2.1 We assume that:
(i) the riskless short interest rate r(t), the equity dividend yield q(t) and the local default intensity
γ(t, S) ≥ 0, are bounded Borel functions, and η is a non-negative constant,
(ii) the local volatility σ(t, S) is a positively bounded Borel function, and
(iii) the functions γ(t, S)S and σ(t, S)S are Lipschitz in S.

Then SDE (1) admits a unique strong solution S̃, which does not vanish on [0,∞).

Remarks 2.1 (i) In this work we find it convenient to define (1) for any initial condition S̃0 ∈ R,
even though only the positive values will have a financial interpretation. This will be useful for the
variational inequalities approach (see Remark A.1).
(ii) A possible choice for γ is a negative power function of S̃ capped when S̃ is close to 0. A possible
refinement is to positively floor γ. The lower bound on γ then represents pure credit risk, as opposed
to equity-related credit risk.

Introducing a unit exponential random variable ε independent of W on the probability space
(Ω,G,Q), where F∞ ⊂ G, one defines the random default time τd by the so-called canonical con-
struction [12]:

τd = inf
{
t ∈ R+ :

∫ t

0

γ(u, S̃u) du ≥ ε
}

(2)

and one defines the underlying stock price process S by:

dSt = St−((r(t)− q(t))dt+ σ(t, St)dWt − ηdMd
t ), S0 ∈ R. (3)
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Here η is the fractional loss on the stock upon default, assumed to be a constant 0 ≤ η ≤ 1, and
dMd

t = dHt − (1−Ht)γ(t, S̃t)dt, with Ht := 1τd≤t.
Let H be the filtration generated by the processH, and G be given as F∨H. Thanks to the previous

construction, γ(t, S̃t) is the F-intensity of τd, and Md a G-martingale, called the compensated jump
martingale. Moreover, as τd was obtained by the canonical construction, the optional projection
G of 1 − H on F is given by Gt = exp−

R t
0 γ(u,eSu)du, a continuous and non-increasing process, and

Hypothesis H is satisfied (see for example [12]). Therefore, the F-Brownian motion W is also a
G-Brownian motion. Since the process Md is a also G-martingale, we conclude that the process S,
once adjusted for interest rates and dividend yields, is a G-martingale.

2.2 Specification of the Model

We assume that the primary market model is defined on some probability space (Ω,G,P), where G
is as before and P ∼ Q is the statistical probability measure. The primary market is composed of
the savings account and of two primary risky assets, such that by assumption:
• the discount factor process, that is, the inverse of the savings account, is given by βt = exp(−

∫ t

0
ru du),

t ∈ R+;
• the first primary risky asset is S above, which models the value of the stock of a reference entity
(firm) with default time represented by τd;
• the second primary risky asset is a CDS contract written on the reference entity.

Thus, the Q-dynamics of the price P of the CDS has to be as follows [11]:

dPt = rtPtdt+ 1t≤τd

((
s− νtγ(t, S̃t)

)
dt+ α−1

t dm̂t − Pt− dM
d
t

)
, (4)

where:
• s is the contracted CDS spread,
• νt is the protection payment process,
• αt = e−

R t
0 (ru+γ(u,eSu))du,

• m̂ is an F-local martingale.
Furthermore, it is possible to show that under suitable regularity assumptions, we have:

dm̂t = S̃t∂Sm(t, S̃t)σ(t, S̃t)dWt , (5)

where m is a continuously differentiable in time and twice continuously differentiable in space func-
tion. In the sequel we assume (5), and we also assume that the protection payment process νt is
given by a bounded Borel function of time. For t ∈ [0, T ], define

υt = e
R t
0 qudu , Ŝt = υtSt , P̂t = Pt + β−1

t

∫
[0,t∧τd]

βu(νu dHu − s du) ,

and

Υt =
(
υt

1

)
, X̂t =

(
Ŝt

P̂t

)
.

Proposition 2.1 We have:

d
(
βtX̂t

)
= βtΥt Ξt d

(
Wt

Md
t

)
, t ∈ [0, T ] (6)

where the G-predictable dispersion matrix process Ξ is given by

Ξt =

[
σ(t, S̃t)Ŝt− −ηŜt−

1{t≤τd}α
−1
t σ(t, S̃t)S̃t∂Sm(t, S̃t) νt − P̂t−

]
, t ∈ [0, T ] . (7)

So, under the following condition:
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αt(νt − P̂t−) + ηS̃t∂Sm(t, S̃t) 6= 0 , t ∈ [0, τd] , (8)

the matrix Ξt is invertible, t ∈ [0, τd]. Then, for any equivalent local martingale measure Q̃ on the
primary market, we have that deQ

dQ = 1 on [0, τd].

Proof. Direct computation gives (7). Note that in the financial interpretation, Ŝ represents the
current value at time t of a buy-and-hold strategy in one share of S at time 0, assuming that all
the dividend payments on S are immediately reinvested in the equity S. As for P̂ , it denotes, in
accordance with our general convention for the notation .̂ in [9, 8], the current value at time t of
a buy-and-hold strategy in one CDS contract at time 0, assuming that all the CDS payments are
immediately reinvested in the savings account. This explains the factor υ in front of St above, and
the vector Υ in (6).

Invertibility of Ξt on [0, τd] is obvious under (8). By the Girsanov theorem, (8) also ensures
that deQ

dQ = 1 on [0, τd], for any equivalent local martingale measure Q̃ on the primary market. 2

In the sequel we assume (8). Moreover, we assume throughout this work that the following
integrability assumption is satisfied (simple sufficient conditions will be given later, cf. Assumption
4.1 and Remark 4.1):

EQ

(
sup

t∈[0,T ]

S2
t

∣∣∣G0

)
<∞ a.s. (9)

3 Convertible Securities in the Standard Market Model

We now specify to the SMM the notions of convertible securities and convertible bonds that were
introduced in a general semi-martingalian set-up in [7].

3.1 Definition

Let 0 (respectively T ) stand for the inception date (respectively the maturity date) of a convertible
security (CS) with underlying S. For any t ∈ [0, T ], we write F t

T (resp. Gt
T ) to denote the set of

all F-stopping times (resp. G-stopping times) with values in [t, T ]. Given the lifting time of a call
protection of a CS, τ̄ ∈ F0

T , let also F̄ t
T stand for {τ ∈ F t

T : τ ≥ τ̄}, Ḡt
T stand for {τ ∈ Gt

T ; τ ∧ τd ≥
τ̄ ∧ τd}, and let finally τ denote τp ∧ τc, for any (τp, τc) ∈ Gt

T × Ḡt
T .

Definition 3.1 A convertible security with underlying S is a game option (see [29, 28, 7, 9, 8]) with
the ex-dividend cumulative discounted cash flows π(t; τp, τc) given by the formula, for any t ∈ [0, T ]
and (τp, τc) ∈ Gt

T × Ḡt
T ,

βtπ(t; τp, τc) =
∫ τ

t

βu dDu + 1{τd>τ}βτ

(
1{τ=τp<T}Lτp + 1{τ=τc<τp}Uτc + 1{τ=T}ξ

)
,

where:
• the dividend process D = (Dt)t∈[0,T ] equals

Dt =
∫

[0,t]

(1−Hu) dCu +
∫

[0,t]

Ru dHu

for some coupon process C = (Ct)t∈[0,T ], which is a G-adapted càdlàg process with finite variation,
and some real-valued, G-predictable recovery process R = (Rt)t∈[0,T ];
• the put payment L is given as a G-adapted, real-valued, càdlàg process on [0, T ],
• the call payment U is a G-adapted, real-valued, càdlàg process on [0, T ], such that

Lt ≤ Ut for t ∈ [τd ∧ τ̄ , τd ∧ T ), (10)
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• the payment at maturity ξ is a GT -measurable real random variable, such that LT ≤ ξ ≤ UT .
In addition, the processes R,L and the random variable ξ are assumed to satisfy the following
inequalities, for some positive real numbers a, b, c:

−c ≤ Rt ≤ a ∨ bSt, t ∈ [0, T ],
−c ≤ Lt ≤ a ∨ bSt, t ∈ [0, T ], (11)
−c ≤ ξ ≤ a ∨ bST .

Theorem 3.1 If the Q-Dynkin game related to a CS admits a value Π, specifically,

esssupτp∈Gt
T
essinfτc∈Ḡt

T
EQ
(
π(t; τp, τc)

∣∣Gt

)
= Πt (12)

= essinfτc∈Ḡt
T
esssupτp∈Gt

T
EQ
(
π(t; τp, τc)

∣∣Gt

)
, t ∈ [0, T ],

and that Π is a G-semimartingale, then Π is the unique arbitrage (ex-dividend) price of the CS.

Proof. Except for the uniqueness statement, this follows by aplication of the general results in [7].
Moreover, under (9), the general results of [7] also imply that any arbitrage price of a CS is given
by the value of the related Dynkin Game under an equivalent local martingale measure Q̃ on the
primary market. Now, for any such Q̃, we have that deQ

dQ = 1 on [0, τd], by Proposition 2.1 (recall
that we assume (8)). Therefore, as the cash flows π(t; τp, τc) of a convertible security in the SMM
are given by a function of τ ∧ τd,W|[0,τ∧τd] and Md

|[0,τ∧τd], this implies that

EeQ
(
π(t; τp, τc)

∣∣Gt

)
= EQ

(dQ̃
dQ |τ∧τd

π(t; τp, τc)
∣∣Gt

)
= EQ

(
π(t; τp, τc)

∣∣Gt

)
, (13)

for any t ∈ [0, T ], τp ∈ Gt
T , τc ∈ Ḡt

T . Therefore, if both the Q- and the Q̃-related Dynkin Game do
have values, these have to coincide. 2

Definition 3.2 A non-callable CS is a convertible security with τ̄ = T , or, equivalently, Ū = ∞.
An Elementary Security (ES) is a non-callable CS with bounded variation dividend process D over
[0, T ], bounded payment at maturity ξ, and such that∫

[0,t]

βu dDu + 1{τd>t}βtLt ≤
∫

[0,T ]

βu dDu + 1{τd>T}βT ξ for t ∈ [0, T ) , (14)

and with bounded variation dividend process D over [0, T ], and bounded payment at maturity ξ.

Equivalently to (14) (given Theorem 3.1), the cash flows π̄(t) of a non-callable CS (resp. φ(t) of an
ES) can be redefined by, for t ∈ [0, T ]:

βtπ̄(t)(τp) =
∫ τp

t

βu dDu + 1{τd>τp}βτp

(
1{τp<T}Lτp

+ 1{τp=T}ξ
)

for τp ∈ Gt
T ,

resp.

βtφ(t) =
∫ T

t

βu dDu + 1{τd>T}βT ξ.

Moreover, in the present Markovian set-up, we postulate from now on that:
• the coupon process Ct = C(t) :=

∫
[0,t]

cudu+
∑

0≤Ti≤t c
i, for a bounded Borel continuous coupon

rate c and deterministic discrete coupon dates and amounts, with T0 = 0 and TK−1 < T ≤ TK ;
• the recovery process Rt is of the form R(t, St−), for a Borel function R;
• ξ = ξ(ST ), Lt = L(t, St), Ut = U(t, St), for a Borel function ξ and Borel functions L,U such that
for any t, S, we have L(t, S) ≤ U(t, S) and L(T, S) ≤ ξ ≤ U(T, S).
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Definition 3.3 We define the accrued interest at time t by

At =
t− Tit−1

Tit − Tit−1
cit ,

where it is the integer satisfying Tit−1 ≤ t < Tit
, and we denote by ρt = cit

Tit−Tit−1
. We set γt =

γ(t, S̃t), µ(t, S) = r + γ(t, S), µt = µ(t, S̃t). Finally, let G stand for c+ ρ− µA. To a CS with data
(functions) C,R, ξ, L, U , and lifting time of call protection τ̄ ∈ F0

T , we associate Borel functions
f = f(t, S,Θ) (Θ real), g = g(S), ` = `(t, S) and h = h(t, S), by

g = ξ −AT , ` = L−A , h = U −A ,

and f(t, S,Θ) = γ(t, S)R(t, S) +G(t, S)− µ(t, S)Θ. In the case of a non-callable CS, the process U
is irrelevant, and we redefine in this case h(t, S) = +∞. In the special case of an ES, we redefine L̂
as L̄ such that

αL̄ = −(c+ 1) , (15)

where −c is a lower bound for αT ξ̂. Finally, we define the processes and random variables associated
to a CS or an ES as

ft(Θ) = f(t, S̃t,Θ) , g = g(S̃T ) , `t = `(t, S̃t) , ht = h(t, S̃t) .

Note in particular that for t ∈ [0, T ], we have, with the convention that (A−)0 = 0:

αtAt =
∫

[0,t]

d(αA)u =
∫ t

0

αu

(
ρu − µuAu

)
du−

∑
0≤Ti≤t

αTic
i . (16)

3.2 Doubly Reflected BSDEs Approach

We define:

H2(0, T ) – the set of real-valued, F-predictable processes Θ such that EQ
∫ T

t=0
Θ2

tdt <∞,

S2(0, T ) – the set of real-valued, F-adapted, continuous processes Θ such that EQ supt∈[0,T ] Θ2
t <∞,

A2(0, T ) ⊆ S2(0, T ) – the set of non decreasing processes Θ ∈ S2(0, T ) such that Θ0 = 0.

Given a CS with data C,R, ξ, L, U, τ̄ and associated processes and random variables (ft, g, `t, ht),
where `t and ht are supposed to be time-continuous processes, we introduce the following doubly
reflected Backward Stochastic Differential Equation (E) with data (ft, g, `t, ht, τ̄) (R2BSDE for short,
see [8, 9]), such that for t ∈ [0, T ]:

−dΘt = ft(Θt) dt+ dkt − ztdWt, ΘT = g
`t ≤ Θt ≤ h̄t

(Θt − `t) dk+
t = (h̄t −Θt) dk−t = 0 ,

 (E)

where h̄t := 1{t<τ̄}∞+ 1{t≥τ̄}ht. By a solution to (E), we mean a triple of processes

(Θ, z,k) ∈ S2(0,T)×H2(0,T)× (A2(0,T))2

that satisfies all conditions in (E) for any 0 ≤ t ≤ T , with k = k+ − k− where (k+, k−) = k, using
the convention that 0×±∞ = 0. So, in particular, Θ and k have to be continuous processes.

Note that in the case where τ̄ = T, we have k− = 0, so that (E) reduces to a simply reflected
BSDE with data (f, g, `) and no process k− involved in the solution. In the special case of an
elementary security (ES), In the special case of an ES with L̂ redefined as L̄ in (15), it is easy to
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see that k = 0 in any solution (Θ, z,k to (E), so that (E) reduces to an elementary bsde with data
(f, g) and no process k involved in the solution. In the latter case, (E) will be renoted (E ′).

By application of the general results in [8], we have the following hedging result, in which the
bivariate process ζ represents a G-predictable trading strategy (number of units held) in the primary
risky assets S and P . For the involved notions of issuer hedge, resp. holder hedge of a CS (with no
cost, here), we refer the reader to [8].

Theorem 3.2 (See [8]) Let (Θ̂, z,k) be a solution to (E), assumed to exist, and let Θt denote
1{t<τd}Θ̃t, with Θ̃ := Θ̂ + A. Then Θ is the unique arbitrage price process of the CS, and for any
t ∈ [0, T ]:
(i) An issuer hedge with initial wealth Θt for the CS is furnished by

τ∗c = inf
{
u ∈ [τ̄ ∨ t, T ] ; Θ̂u = hu

}
∧ T ∈ F̄ t

T ,

and

ζ∗u := 1u≤τd

[
zu , Ru − Θ̆u−

]
Ξ−1

u , t ≤ u ≤ T (17)

where Θ̆t = Θ̃t and dΘ̆u − µuΘ̆udu = dΘ̃u − µuΘ̃udu + dku , t ≤ u ≤ T. Moreover, Θt is the least
initial wealth of an issuer hedge for the CS, and the corresponding wealth process is bounded from
below.
(ii) A holder hedge with initial wealth −Θt for the CS is furnished by

τ∗p = inf
{
u ∈ [t, T ] ; Θ̂u = `u

}
∧ T ∈ F t

T ,

and ζ = −ζ∗ above.

Proof. By application of the general results of [9], Θ satisfies all the assumptions for Π in Theorem
3.1, therefore it is the unique arbitrage price process of the CS. Moreover, given Proposition 2.1,
(i) and (ii) result by application of the general results of [9]. Note that in [9] (see also the proof of
Proposition 2.1), X̂ denotes the vector of the values of a buy-and-hold strategy in one unit of every
risky asset at time 0 assuming that all the dividend payments are immediately reinvested in the
savings account, whereas here, Ŝ represents the current value at time t of a buy-and-hold strategy in
one share of S at time 0 assuming that all the dividend payments on S are immediately reinvested
in the equity S. This explains that ζ∗ is indeed given by (17), which is the same form as in [9],
though the forms of X̂ differ in the present paper and in [9]: the forms of X̂ have to be different
because the meaning of X̂ is different, but (17) is the correct expression for ζ∗ in both cases, as it
can be seen by a simple change of variables. 2

So in the SMM, any CS has a bilateral hedging price, which is also the unique arbitrage price,
provided the related BSDE has a solution.

3.3 Variational Inequalities Approach

Let L denote the linear operator

L ≡ ∂t + (r − q + ηγ)S∂S +
σ2S2

2
∂2

S2

and let be given a CS with data C,R, ξ, L, U, τ̄ such that the associated functions (f, g, `, h) are
continuous and real-valued (or h = +∞, in the case where τ̄ = T, and also ` = L̄, in the special case
of an ES), except maybe for possible left jumps in time of f at the discrete coupon dates Ti of the
CS (if there are any discrete coupons involved). We refer to the special case where f is continuous
(which typically corresponds to purely continuously paid coupons), as the continuous coupon case.

A function Θ on D is said to have polynomial growth, if it is bounded by C(1 + Sp) for suitable
real C and integers p (that may depend on Θ). We refer the reader to the Appendix for the definition
of viscosity solutions [17] of double obstacle variational inequalities.



T.R. Bielecki, S. Crépey, M. Jeanblanc and M. Rutkowski 9

Definition 3.4 Given S̄ ≤ ∞, let D := [0, T ]×Adh(−∞, S̄), and let

◦
Dp= [0, T )× (−∞, S̄) and ∂pD := D\

◦
Dp

stand for the parabolic interior and the parabolic boundary of D, respectively. We denote by (P) the
following variational inequality with double obstacle on D:

max (min (−LΘ(t, S)− f(t, S,Θ(t, S)),Θ(t, S)− `(t, S)) ,Θ(t, S)− h(t, S)) = 0 .

Given a continuous boundary condition b, where b is a continuous function on ∂pD such that b = g
at T :
(i) By a S-subsolution Θ of (P) on D for the boundary condition b, we mean a viscosity subsolution
with polynomial growth on D, and such that Θ ≤ b pointwise on ∂pD.
(ii) By a S-supersolution Θ of (P) on D for the boundary condition b, we mean a viscosity superso-
lution with polynomial growth on D, and such that Θ ≥ b pointwise on ∂pD.
(iii) By a S-solution u, we mean a function that is both a S-subsolution and a S-supersolution—hence
Θ = b on ∂pD.

Theorem 3.3 Assume furthermore that:
(i) f is Lipschitz in S, locally uniformly in t,Θ,
(ii) f and g have polynomial growth on D,
(iii) ` is an increasing pointwise limit of C1,2-functions `n < h such that the related partial derivatives
of `n have polynomial growth on D,
(iv) h is bounded from below.

Then the R2BSDE (E) has a solution (Θ, z,k), and:
1. Cauchy problem. in case where τ̄ = 0, the related state-process Θ̂0

t can be written as Θ̂0(t, S̃t),
where the function Θ̂0 is a S-solution of the Cauchy problem (P) on D := [0, T ]× R with terminal
condition g at T. Moreover, in the continuous coupon case, Θ̂0 is the unique S-solution of the
problem, as well as its maximal S-subsolution, as well as its minimal S-supersolution;
2. Cauchy–Dirichlet problem. in case where τ̄ = inf{t > 0 ; S̃t ≥ S̄} ∧ T, for some S̄ ∈ R?

+,
denote Θ̄t = Θ̂0

t∧τ̄ , the state-process in point 1 stopped at τ̄ . Then Θ̄t can be written as Θ̄(t, S̃t), where
the function Θ̄ is a S-solution of the Cauchy-Dirichlet problem (P) on D̄ := [0, T ] × (−∞, S̄] with
terminal condition g at T and Dirichlet condition Θ̂0(·, S̄) at level S̄. Moreover, in the continuous
coupon case, Θ̄ is the unique S-solution of this problem, as well as its maximal S-subsolution, as
well as its minimal S-supersolution.

Proof. Note that under our assumptions f is also Lipschitz in Θ, uniformly in t, S. So the theorem
results by application of the general results in [18]. 2

We refer the reader to the Appendix for the definition of stable, monotonous and consistent
approximation schemes of viscosity solutions of non linear PDEs (Barles et al [6]).

Corollary 3.1 Under the assumptions and in the notation of Theorem 3.3, in the continuous coupon
case:
1. Cauchy problem. Let (Θh)h>0 denote a stable, monotonous and consistent approximation
scheme for the function Θ̂0. Then Θh → Θ̂0 locally uniformly on D as h→ 0+, provided Θh → Θ̂0

at T .
2. Cauchy–Dirichlet problem. Let (Θh)h>0 denote a stable, monotonous and consistent approx-
imation scheme for the function Θ̄. Then Θh → Θ̄ locally uniformly on D̄ as h → 0+, provided
Θh → Θ̄(= Θ̂0) at T and at S̄.

Proof. The argument is standard and the same in both cases. Let us give it for (i). By Lemma
A.2, the upper and lower limits Θ ≤ Θ of Θh as h→ 0+ are respectively viscosity subsolutions and
supersolutions of (P) on

◦
Dp. If Θ̂h → Θ̂0 at T, they are in fact S-subsolutions and S-supersolutions

of (P) on D. So they coincide, by the semi-continuous comparison principle in Theorem 3.3. This
implies the local uniform convergence on D, by Lemma A.1(iii). 2
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4 Application to Reduced Convertible Bonds

4.1 Convertible Bonds and Reduced Convertible Bonds

To describe the covenants of a typical convertible bond (CB), we need to introduce the following
additional notation (see [7] for a thorough description and discussion of the associated convertible
bonds covenants):

N̄ : the par (nominal) value,

η: the fractional loss on the underlying equity upon default (0 ≤ η ≤ 1),

R̄t: the recovery process on the CB upon default of the issuer at time t, given by R̄t = R̄(t, St−),
for a bounded Borel function R̄.

κ : the conversion factor,

Rcb
t = Rcb(t, St−) = (1− η)κSt− ∨ R̄t : the effective recovery process,

ξcb = N̄ ∨ κST +AT : the effective payoff at maturity,

P̄ ≤ C̄ : the put and call nominal payments, respectively, such that P̄ ≤ N̄ ≤ C̄,

δ ≥ 0 : the length of the call notice period (see the detailed description below),

tδ = (t+ δ) ∧ T : the end date of the call notice period started at t.

Real-life convertible bonds typically include a positive call notice period δ so that if the issuer
calls the bond at time τc, then the holder may either redeem the bond for C̄ or convert the bond into
κ shares of stock, at any time u at its convenience in [τc, τ δ

c ], where τ δ
c = (τc + δ) ∧ T . Accounting

for accrued interest, the effective call/conversion payment to the holder at time u is C̄ ∨ κSu +Au.
This clause makes CB with positive call notice period difficult to price directly. To handle this,

we developed in [7] a recursive approach to value a CB with positive call notice period. In the first
step, we value the CB upon call as a Reduced Convertible Bond (RB, see Definition 4.1 below). In
the second step, we use this price as the payoff at call time of a CB with no call notice period.

Definition 4.1 (see [7]) A reduced convertible bond is a convertible security with recovery process
Rcb and terminal payoffs Lcb, U cb, ξcb such that

Rcb
τd

= (1− η)κSτd− ∨ R̄τd
, Lcb

t = P̄ ∨ κSt +At, ξcb = N̄ ∨ κST +AT ,

and
U cb

t = 1{t<τd}Ũ
cb(t, St) + 1{t≥τd}(C̄ ∨ κSt +At), t ∈ [0, T ] (18)

for a function Ũ cb(t, S) jointly continuous in time and space, except for negative left jumps of −ci at
the Tis, and such that Ũ cb(t, St) ≥ C̄ ∨ κSt +At on the event {t < τd} (so U cb

t ≥ C̄ ∨ κSt +At , t ∈
[0, T ]).

So the discounted dividend process of an RB is given by, for t ∈ [0, T ] :∫
[0,t]

βu dD
cb
u :=

∫
[0,t∧τd]

βucudu+
∑

0≤Ti≤t, Ti<τd

βTi
ci + 1{0≤τd≤t}βτd

Rcb
τd
. (19)

Clearly, a CB with no notice period (δ = 0) is an RB, with

Ũ cb(t, S) := C̄ ∨ κS +A(t).

More generally, the financial interpretation of the process U cb in an RB is that U cb
t represents the

value of the RB upon a call at time t. In section 5, we shall actually prove that under mild regularity
assumptions in the SMM, any CB (whether δ is positive or not) can be interpreted and priced as an
RB.
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4.2 Decomposition of a Reduced Convertible Bond

We consider an RB with dividend process Dcb given by (19), and an ES with the same coupon
process as the RB, and with Rb and ξb as follows:

Rb
t = R̄t, ξb = N̄ +AT (20)

so that
Rcb

t −Rb
t = (κSt − R̄t)+ ≥ 0, ξcb − ξb = (κST − N̄)+ ≥ 0.

So this ES corresponds to the defaultable bond with discounted cash flows given by the expression

βtφt =
∫ T

t

βu dD
cb
u + 1{τd>T} βT ξ

b

=
∫ T∧τd

t

βucudu+
∑

t<Ti≤T,Ti<τd

βTi
ci + 1{t<τd≤T} βτd

Rb
τd

+ 1{τd>T} βT ξ
b

and associated functions
f = γRb +G− µΘ , g = N̄ .

This bond can be seen as the pure bond component of the RB (that is, the RB stripped of its
optional clauses). Therefore, we shall call it the bond embedded into the RB, or simply the embedded
bond.

In the sequel, in addition to the assumptions made so far, we work under the following regularity
assumption.

Assumption 4.1 The functions r(t), q(t), Sγ(t, S), Sσ(t, S), γ(t, S)R̄(t, S) and c are continuously
differentiable in time, and three times continuously differentiable in space, with bounded spatial
partial derivatives of order one to three.

Remarks 4.1 (i) Note that under these assumptions, Sσ, Sγ, and γR̄ are Lipschitz in space. Also,
under these assumptions, condition (9) is satified (see e.g. [38]).
(ii) These assumptions cover typical financial applications. In particular, they are satisfied when
R̄ is constant and for well-chosen parameterizations of σ and γ, which can be enforced at the time
of the calibration of the model.

Lemma 4.1 In the case of an RB, the elementary BSDE (E ′) associated to the embedded Bond
admits a solution (Φ̂, z) Thus, denoting Φ̃ = Φ̂ + A, the embedded bond admits a unique arbitrage
price

Φt = 1t<τd
Φ̃t, t ∈ [0, T ],

by Theorem 3.2 (specified to the particular case of an ES). Moreover we have Φ̂t = Φ̂(t, S̃t), where
the function Φ̂(t, S) is jointly continuous in time and space and twice continuously differentiable in
space, and the process Φ̂(t, S̃t) is an Itô process with strict martingale component, such that:

dΦ̂t = ût dt+ v̂t dWt (21)

:= (µtΦ̂t − (γtR
b
t +Gt)) dt+ σ(t, S̃t)S̃t∂SΦ̂t dWt

with v̂ ∈ H2(0, T ).

Proof. Given that the related integrability conditions are satisfied in the SMM, then by direct
application of the Brownian predictable representation theorem, the elementary BSDE (E ′) with
data (γRb +G− µΘ, N̄) admits a solution (Φ̂, z). In particular, by (E ′) :

Φ̂t = EQ

(∫ T

t

(γuR
b
u +Gu − µuΦ̂u)du+

(
ξb −AT

) ∣∣∣Ft

)
, t ∈ [0, T ] ,
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or equivalently (see [8])

αtΦ̂t = EQ

(∫ T

t

αu(γuR
b
u +Gu)du+ αT

(
ξb −AT

) ∣∣∣Ft

)
, t ∈ [0, T ] ,

and thus, using (16):

αtΦ̃t = EQ

(∫ T

t

αu

(
γuR

b
udu+ cu

)
du+

∑
t<Ti≤T

αTi
ci + αT ξ

b
∣∣∣Ft

)
, t ∈ [0, T ] .

So, on each time interval [Ti−1, Ti ∧ T ), and also at T in the case where i = K, we have Φ̃t =
Φ̂0

t +
∑N

j=i Φ̂j
t , where we set

αtΦ̂0
t = EQ

(∫ T

t

αu(γuR
b
u + cu)du+ αT

(
N̄ +AT

) ∣∣∣Ft

)
, (22)

αtΦ̂i
t = EQ

(
αTi

ci
∣∣Ft

)
. (23)

In particular, for any Θ = Φ̂0 or Φ̂i, Θ is bounded and non negative. Let us denote generically T
or T i by T , as appropriate according to the problem at hand. Given our regularity assumptions,
we have Θt = Θ̂(t, S̃t), where Θ̂ is a C1,2([0, T ) × R)∩C0([0, T ] × R)-function [36, 24]. Therefore
Φ̂t = Φ̃t − At is given by Φ̂(t, S̃t), for a function Φ̂(t, S) which is jointly continuous in time and
space, and twice continuously differentiable in space. Moreover, given (22), (23) and the above C1,2

regularity results, we have on (Ti−1, Ti ∧ T ):

dΦ̂0
t =

(
µtΦ̂0

t − (γtR
b
t + ct)

)
dt+ σ(t, S̃t)S̃t∂SΦ̂0(t, S̃t)dWt

dΦ̂i
t = µtΦ̂i

tdt+ σ(t, S̃t)S̃t∂SΦ̂i(t, S̃t)dWt, i = 1, 2, . . . ,K,
dA(t) = ρtdt

Hence, by addition:

dΦ̂(t, S̃t) =
(
µtΦ̃t − (γtR

b
t + ct + ρ)

)
dt+ σ(t, S̃t)S̃t∂SΦ̃(t, S̃t) dWt = ût dt+ v̂t dWt .

Moreover, since Φ̂ and û are bounded in (21), we conclude that v̂ ∈ H2(0, T ). 2

We now define the embedded Game Exchange Option (GEO) as the RB with dividend process
Dcb − Db, payment at maturity ξcb − ξb, put payment Lcb

t − Φt, call payment U cb
t − Φt and call

protection lifting time τ̄ . So the embedded GEO is the zero-coupon CS with cash flows

βtψ(t; τp, τc) = 1{t<τd≤τ} βτd
(Rcb

τd
−Rb

τd
) (24)

+ 1{τd>τ} βτ

(
1{τ=τp<T}

(
Lcb

τp
− Φτp

)
+ 1{τ=τc<τp}

(
U cb

τc
− Φτc

)
+ 1{τ=T}(ξcb − ξb)

)
.

Proposition 4.1 Given an RB, the associated functions f(t, S,Θ), g = g(S), ` = `(t, S) and h =
h(t, S), are:
• γRcb +G− µΘ, N̄ ∨ κS, P̄ ∨ κS, Ũ cb −A, for the RB;
• γ(Rcb −Rb)− µΘ, (κS − N̄)+, P̄ ∨ κS − Φ̂, Ũ cb −A− Φ̂, for the embedded GEO. 2

Remarks 4.2 (i) In the case of the RB, the function ` happens to be a function of S alone,
`(t, S) = `(S).
(ii) In the case of the Game Exchange Option, there are no coupons involved, so that we are always
in the continuous coupon case (special case C = Cc).
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4.3 Solution of the doubly reflected BSDEs

Theorem 4.1 Under Assumption 4.1, the functions f, g, `, h associated to an RB or to the embedded
GEO (cf. Proposition 4.1), satisfy all the general assumptions in Theorem 3.3.

Proof. Let us show the result for the RB. Then, in view of Proposition 4.1, the result for the GEO
will follow from Lemma 4.1. The only non trivial issue is to verify assumption (iii) in Theorem
3.3. Note that `(S̃t) = P̄ ∨ κS̃t is essentially equal to the payoff of a call option on κS̃. Therefore,
a natural idea to approximate the function ` as it is required in this assumption, is to use known
results on the Black–Scholes pricing function of a call option, where the corresponding fictitious
volatility Σn (not to be confused with the volatility σ of the stock S̃ in our SMM) will merely be
used as an approximation parameter. So, introducing Σn ↘ 0+ as n→∞, let us define

Cn(κS) = κSN (dn
+)− P̄N (dn

−) (25)
`n(S) = P̄ + Cn(κS)− Cn(P̄ )− εn (26)

where N is the standard Gaussian cumulative distribution function, dn
± := 1

Σn ln(κS
P̄

) ± 1
2Σn, and

εn → 0+ at infinity. Thus Cn(κS) is equal to the price of a one year call option struck at P̄ , on a
Black–Scholes stock κS with volatility Σn and dividend and interest rates equal to 0. Note that we
have, uniformly in S :

0 ≤ `n(S)− `(S) = Cn(κS)− (κS − P̄ )+ − Cn(P̄ )− εn ,

which tends to 0 as n → ∞. So the functions `n satisfy all the requirements in assumption (iii) of
Theorem 3.3.

Besides, we have by the Itô–Tanaka formula, for t ∈ [0, T ]:

`t = P̄∨κS̃t = P̄∨κS0 +
∫ t

0

1κeSu≥P̄ ((r(u)−q(u)+ηγ(u, S̃u))κS̃udu+
∫ t

0

1κeSu≥P̄σ(u, S̃u)κS̃udWu+ΛT

(27)
where Λt is the local time spent by the process κS at level P̄ between 0 and t. Since

P̄ ∨ κS̃T ∈ L2(T ),
∫ T

t=0

S̃tdt ∈ L2(T )

and (9) is verified, so the process `t is a semimartingale with strict martingale component. In
addition, the finite variation component of `t admits the following decomposition:

dV +
t = 1κeSt≥P̄ ((r(t) + ηγ(t, S̃t))κS̃tdt + dΛt

dV −t = 1κeSt≥P̄ q(t)κS̃tdt

with V ± ∈ A2(0, T ). We have thus proven that the process `t is a continuous semimartingale with
strict martingale component and finite variation components in A2(0, T ), such that

`n(S̃t) < `t ≤ ht , 0 ≤ t ≤ T ,

so that the RB satisfies the general assumptions in Theorem 3.3.
2

Theorem 4.2 Given an RB under Assumption 4.1, denote by Π̂ and Ψ̂, the state-processes of the
solutions to the related R2BSDEs, by Theorems 3.3 and 4.1.
(i) Ψt defined as 1t<τd

Ψ̂t is the unique arbitrage price of the embedded GEO, and (Ψt, ζ
∗, τ∗c ) (resp.

(Ψt,−ζ∗, τ∗p )) as defined in Theorem 3.2 is an issuer (resp. holder) hedge with initial value Ψt at
time t for the embedded GEO;
(ii) Πt defined as 1t<τd

Π̃t, with Π̃ := Π̂+A, is the unique arbitrage price of the RB, and (Πt, ζ
∗, τ∗c )

(resp. (Πt,−ζ∗, τ∗p )) as defined in Theorem 3.2 is an issuer (resp. holder) hedge with initial value
Πt at time t for the RB.
(iii) Φ̂ and Φ being defined as in Lemma 4.1, we have Π = Φ + Ψ, Π̂ = Φ̂ + Ψ̂.
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Note in particular that the same strategies provide bilateral hedges for the RB and for the
embedded GEO.
Proof of Theorem 4.2 (i) and (ii) follow by application of Theorems 3.3 and 4.1. (iii) then follows
from the general results in [7, 8]. 2

We can now give analytical characterizations of the so-called pre-default clean prices Θ̂ (pre-
default prices Θ̃ less accrued interest, see [8]) as viscosity solutions to the associated variational
inequalities (see also [1, 2, 21, 22]). To get the corresponding pre-default prices, it suffices to add to
the clean price process Θ̂ the related accrued interest process. Note that in the case of the Game
Exchange Option, there are no discrete coupons involved, therefore the Pre-Default Clean Price and
the Pre-Default Price coincide.

4.4 Variational Inequalities for the No-Protection Clean Prices

We first assume that τ̄ = 0 (no call protection). By application of Theorems 4.1 and 3.3.1, we have
the following result.

Theorem 4.3 (No-Protection Clean Prices) In the case where τ̄ = 0 (no call protection), we
define the following analytical problems (P) on D = [0, T ]× R:
1. Defaultable Bond

−LΦ̂ + µΦ̂− (γRb +G) = 0, t < T (28)

Φ̂(T, S) = N̄

2. GEO

max
�
min

�
−LbΨ + µbΨ− γ(Rcb −Rb), bΨ− �

P̄ ∨ κS − bΦ�� , bΨ− �eUcb −A− bΦ�� = 0, t < T

bΨ(T, S) = (κS − N̄)+ (29)

3. RB

max
�
min

�
−LbΠ + µbΠ− (γRcb + G), bΠ− P̄ ∨ κS

�
, bΠ− (eUcb −A)

�
= 0, t < T

bΠ(T, S) = N̄ ∨ κS (30)

Then for any of the problems (P) above, the corresponding No Protection (Pre-default) Clean
Price Θ̂0

t can be written as Θ̂0(t, S̃t), where the function Θ̂0 is a S-solution of (P) on D. Moreover,
in the continuous coupon cases (hence always, in the case of the GEO), we have uniqueness of the S-
solution, and any stable, monotonous and consistent approximation scheme for Θ̂0 converges locally
uniformly to Θ̂0 on D as h→ 0+, provided it converges to Θ̂0 at T . 2

Corollary 4.1 A pair of No Protection Pre-default optimal stopping times (τ∗p , τ
∗
c ) (see Theorem

3.2), both in the case of the Game Exchange Option embedded in the RB, and of the RB itself, is
given by

τ∗p = inf{u ∈ [t, T ] ; S̃u ∈ Exp} ∧ T, τ∗c = inf{u ∈ [t, T ] ; S̃u ∈ Exc} ∧ T

where

Exp := {(t, S) ∈ [0, T ] ; Π̂(t, S) = P̄ ∨ κS}, Exc := {(t, S) ∈ [0, T ] ; Π̂(t, S) = Ũ cb(t, S)−At}

are the No Protection Pre-default Put or Conversion Zone and the No Protection Pre-default Call
Zone.
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Proof. This follows immediately of Theorems 4.3 and 4.2. 2

So assuming that there is no call protection, and that the CB is still alive:
(i) an optimal call time for the issuer of the CB is given by the first hitting time of Exc (if any before
T ∧ τd) by S;
(ii) an optimal put/conversion time for the holder of the CB consists in putting or converting,
whichever is best, at the first hitting time of Exp (if any before T ∧ τd) by S.

4.5 Variational Inequalities for the Post-protection Prices

For any τ̄ ∈ F0
T , the associated Pre-default Price coincides on [τ̄ , T ] with the Pre-default Price

corresponding to a lifting time of call protection that would be given by τ̄0 := 0. This follows from
the general results in [9], using also the fact that the BSDEs related to the problems with lifting
times of call protection τ̄ and τ̄0 both have solutions, by the previous results.

Thus No Protection Prices (pre-default prices for lifting time of call protection := τ̄0 = 0) can
be also be interpreted as Post-protection (Pre-default) Prices for arbitrary τ̄ ∈ G0

T . Therefore the
results of Section 4.4 also apply to Post-Protection Clean Prices. So,

Theorem 4.4 (Post-protection Clean Prices) Let τ̄ be arbitrarily fixed in F0
T . Then for any

of the pricing problems considered in Theorem 4.3, the corresponding Pre-default Clean Price Θ̂t

coincides on [τ̄ , T ] with Θ̂0(t, S̃t), where Θ̂0 is the related function in Theorem 4.3. 2

Corollary 4.2 The pair of No-Protection Pre-default optimal stopping times (τ∗p , τ
∗
c ), and the as-

sociated No-Protection Pre-default Call and Put Zones Exc and Exp (see Corollary 4.1), can also
be interpreted as a pair of Post-protection optimal stopping times and Post-protection Call and Put
Zones, respectively.

So assuming that call protection have already been lifted (namely, for t ≥ τ̄), and that the CB
is still alive:
(i) an optimal call time for the issuer of the CB is given by the first hitting time of Exc (if any before
T ∧ τd) by S;
(ii) an optimal put/conversion time for the holder of the CB consists in putting or converting,
whichever is best, at the first hitting time of Exp (if any before T ∧ τd) by S.

4.6 Variational Inequalities for the Protection Prices

We finally consider Protection Clean Prices Θ̄, namely, by definition, Pre-Default Clean Prices
stopped at τ̄ . As usual, to get the corresponding Protection (Pre-default) Prices, it suffices to add
the related accrued interest process (if there are any discrete coupons involved). Let Φ̂, Ψ̂, Π̂ denote
the Post Protection Clean Prices Functions (or No Protection Clean Prices Functions) defined in
Theorems 4.3–4.4.

4.6.1 Hard Call Protections

In the case of hard call protection τ̄ = T̄ for some T̄ ≤ T, the protectionclean prices functions Θ̄ are
solutions of analytical problems as in Theorem 4.3 (special case with one obstacle, h = +∞) with
T̄ instead of T , and terminal conditions equal to the corresponding Post Protection Clean Prices
Functions Θ̂ (or No Protection Clean Prices Functions Θ̂0, cf Theorem 4.4) at T̄ . So,

Theorem 4.5 (Hard Protection Clean Prices) In the case where τ̄ = T̄ for some T̄ ≤ T, we
define the following analytical problems (P) on D := D̄ = [0, T̄ ]× R,

1. GEO

min
(
−LΨ̄ + µΨ̄− γ(Rcb −Rb), Ψ̂−

(
P̄ ∨ κS − Φ̂

))
= 0, t < T

Ψ̄(T̄ , S) = Ψ̂(T̄ , S) (31)



16 Convertible Securities in a Jump-Diffusion Model of Credit Risk

2. CB

min
(
−LΠ̄ + µΠ̄− (γRcb +G), Π̄− P̄ ∨ κS

)
= 0, t < T

Π̄(T̄ , S) = Π̂(T̄ , S) (32)

Then for either problem, the corresponding Hard Protection Clean Price Θ̄ can be written as Θ̄(t, S̃t),
where the function Θ̄ is a S-solution of (P) on D̄. Moreover, in the continuous coupon cases (hence
always, in the case of the GEO), we have uniqueness of the S-solution, and any stable, monotonous
and consistent approximation scheme for Θ̄ converges locally uniformly to Θ̄ on D as h → 0+,
provided it converges to Θ̄(=Θ̂) at T̄ .

Proof of Theorem 4.5 We know by Theorem 4.3 that the terminal conditions Θ̂(T̄ , ·) of all problems
(P) considered in Theorem 4.5 are continuous with polynomial growth in S. Therefore Theorem 4.5
can be proven in the same way as Theorem 4.3, by application of Theorem 3.3.1. 2

Corollary 4.3 A Hard Protection Pre-default optimal stopping time τ∗p for the Game Exchange
Option problem, and for the RB problem as well, is given by

τ∗p = inf
{
u ∈ [t, T̄ ] ; S̃u ∈ Exh} ∧ T

where

Exh :=
{

(t, S) ∈ [0, T̄ ] ; Π̄(u, S̃t) = P̄ ∨ κS̃t

}
∧ T

is the Hard Protection Pre-default Put or Conversion Zone.

So assuming that the CB is still alive at some time t < T̄ , an optimal strategy for the holder of
the CB consists in putting or converting, whichever is best, at the first hitting time of Exh (if any
before T ∧ τd ∧ T̄ ) by S.

4.6.2 Soft Call Protections

Let us now treat the case of (standard) soft call protections. By application of Theorems 4.1 and
3.3.2, we have the following result.

Theorem 4.6 (Soft Protection Clean Prices) Assuming that τ̄ = inf{t > 0 ; S̃t ≥ S̄} ∧ T for
some S̄ ∈ R?

+, we define the following analytical problems (P) on D̄ := [0, T ]× (−∞, S̄] : 4.4.
1. GEO

min
(
−LΨ̄ + µΨ̄− γ(Rcb −Rb), Ψ̄−

(
P̄ ∨ κS − Φ̂

))
= 0 ; t < T , S < S̄

Ψ̄(t, S̄) = Ψ̂(t, S̄) , t ≤ T (33)
Ψ̄(T, S) = (κS − N̄)+ , S ≤ S̄

2. CB

min
(
−LΠ̄ + µΠ̄− (γRcb +G), Π̄− P̄ ∨ κS

)
= 0, t < T

Π̄(t, S̄) = Π̂(t, S̄), t ≤ T

Π̄(T, S) = N̄ ∨ κS , S ≤ S̄ (34)

Then for either problem, the corresponding Soft Protection Clean Price Θ̄ can be written as
Θ̄(t, S̃t), where the function Θ̄ is a S-solution of (P) on D̄. Moreover, in the continuous coupon
cases (hence always, in the case of the GEO), we have uniqueness of the S-solution, and any stable,
monotonous and consistent approximation scheme for Θ̄ converges locally uniformly to Θ̄ on D̄ as
h→ 0+, provided it converges to Θ̄(=Θ̂) at T and at S̄. 2
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Corollary 4.4 A Soft Protection Pre-default optimal stopping time τ∗p for the Game Q-Exchange
Option problem, and for the CB problem as well, is given by

τ∗p = inf
{
u ∈ [t, T ] ; S̄u ∈ Exs

}
∧ T = inf

{
u ∈ [t, τ̄ ] ; S̃u ∈ Exs

}
∧ T

where

Exs = {(t, S) ∈ [0, T ] ; Π̄(t, S) = P̄ ∨ κS
}

is the Soft Protection Pre-default Put or Conversion Zone.

So assuming that the stock has not reached the level S̄ yet, and that the CB is still alive, an
optimal strategy for the holder of the CB consists in putting or converting, whichever is best, at the
first hitting time of Exs (if any before T ∧ τd ∧ τ̄) by S̃.

5 Convertible Bonds with positive Call Notice Period

We now consider the case of a Convertible Bond with positive Call Notice Period.

5.1 Reduced Convertible Bond interpretation

Note that between the call time t and the end of the notice period tδ, a CB actually becomes a PB,
that is, a CB with no call clause (formally, we set τ̄ = T ), called the t-PB, with effective put payment
equal to the effective call payment Cu of the original CB, and effective payment at maturity Ctδ .
(see [7]).

Proposition 5.1 In the case of the t-PB (t ∈ [0, T ]), the associated functions f(t, S,Θ), g = g(S)
and ` = `(t, S) are (h = +∞):
• γRb +G− µΘ, C̄,−∞, for the embedded Bond (the t-Bond, in the sequel);
• γ(Rcb − Rb) − µΘ, C̄ ∨ κS − Φ̂t(tδ, S), C̄ ∨ κS − Φ̂t, where Φ̂t is the No Protection Clean Price
Function of the t-Bond (obtained by application of Theorem 4.3), for the embedded GEO (the t-GEO,
in the sequel);
• γRcb +G, C̄ ∨ κS, C̄ ∨ κS, for the t-PB itself.

Theorem 5.1 (Variational Inequalities for the embedded PBs) Given t ∈ [0, T ], we define
the following problems (P) on Dt := [t, tδ]× R :
1. t-Bond

−LΦ̂t + µΦ̂t −
(
γRb +G

)
= 0, u < tδ (35)

Φ̂t(tδ, S) = C̄

2. t-GEO

min
(
−LΨ̂t + µΨ̂t − γ(Rcb −Rb), Ψ̂t −

(
C̄ ∨ κS − Φ̂t

))
= 0, u < tδ

Ψ̂t(tδ, S) = C̄ ∨ κS − Φ̂t(tδ, S) (36)

3. t-PB

min
(
−LΠ̂t + µΠ̂t − (γRcb +G), Π̂t − C̄ ∨ κS

)
= 0, u < tδ

Π̂t(tδ, S) = C̄ ∨ κS. (37)

Then for any of the problems (P) above, the corresponding Pre-default Clean t-Price Θ̂t can be
written as Θ̂t(t, S̃t), where the function Θ̂t is a S-solution of (P) on Dt. Moreover, in the continuous
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coupon cases (hence always, in the case of the GEO), we have uniqueness of the S-solution, and any
stable, monotonous and consistent approximation scheme for Θ̂t converges locally uniformly to Θ̂t

on D as h→ 0+, provided it converges to Θ̂t at tδ.
In addition, the function Π̂t(t, S) is jointly continuous in time and space (in any case, whether

we are in the continuous coupon case or not), hence the function Π̃t(t, S) = Π̂t(t, S̃t) +A(t) is also
continuous with respect to (t, S), except for left jumps of −ci at the Ti.

Proof. Except for the last part, this follows by application of Theorems 4.1 and 3.3 to the t-PB, in
view of Proposition 5.1. Thus it only remains to show that the function Π̂t(t, S) is jointly continuous
in time and space. Let (tn, Sn) → (t, S) as n→∞. We decompose

Π̂tn(tn, Sn) = Π̂t(tn, Sn) + (Π̂tn(tn, Sn)− Π̂t(tn, Sn)) .

By Theorem 5.1 (first part already proven at this point), Π̂t(tn, Sn) → Π̂t(t, S) as n→∞. Moreover,
denoting Ĉt = C̄ ∨ S̃t, we have:

αuΠ̂t
u = esssupτp∈Fu

tδ
EQ

(∫ τp

u

αvFvdv + ατp
Ĉτp

∣∣∣Fu

)
So, assuming tn sufficiently close to the left of t

αtnΠ̂tn(tn, Sn) = esssupτp∈Ftn

tδ
n

EQ

(∫ τp

tn

αvFvdv + ατpĈτp

∣∣∣Ftn

)
≤ esssupτp∈Ftn

tδ
EQ

(∫ τp

tn

αvFvdv + ατp
Ĉτp

∣∣∣Ftn

)
= αtn

Π̂t(tn, Sn)

Conversely, for any τp ∈ F tn

tδ , we have τp′ := τp ∧ tδn ∈ F
tn

tδ
n
, 0 ≤ τp − τp

′ ≤ t− tn and

|
∫ τp

tn

αvFvdv + ατpĈτp −
∫ τp

′

tn

αvFvdv − ατp
′Ĉτp

′ |

≤
∫ τp

τp
′
αvFvdv + |ατp

Ĉτp
− ατp

′Ĉτp
′ |

Therefore

|EQ

(∫ τp

tn

αvFvdv + ατp
Ĉτp

∣∣∣Ftn

)
− EQ

(∫ τp
′

tn

αvFvdv + ατp
′Ĉτp

′

∣∣∣Ftn

)
|

≤ EQ

(∫ τp

τp
′
αvFvdv

∣∣∣Ftn

)
+ EQ

(
|ατpĈτp − ατp

′Ĉτp
′ |
∣∣∣Ftn

)
≤
√
t− tn‖F‖H2(0,T ) + EQ

(
|ατp

Ĉτp
− ατp

′Ĉτp
′ |
∣∣∣Ftn

)
.

We conclude that Π̂tn(tn, Sn) − Π̂t(tn, Sn) → 0 as tn → t−. But this is also true as tn → t+ (same
proof), hence Π̂tn(tn, Sn) − Π̂t(tn, Sn) → 0 as tn → t. Finally Π̂tn(tn, Sn) → Π̂t(t, S) as tn → t, as
desired. 2

Theorem 5.2 Assuming No Arbitrage (so that in particular the embedded t-PBs price processes Πt

are arbitrage-free, 0 ≤ t ≤ T ), then a CB with positive notice period δ > 0 can be interpreted as an
RB, with Ũ cb(t, S) = Π̃t(t, S), so that

U cb
t = Ū cb

t := 1{τd>t}Π̃t
t + 1{τd≤t}(C̄ ∨ κSt +At) . (38)

Proof. First, the t-PB related reflected BSDE has a solution, by Theorems 4.1 and 3.3.1 applied to
the t-PB. Thus the t-PB has a unique arbitrage price process Πt

u = 1{u<τd}Π̃
t
u with Π̃t

u = Π̂t
u +Au,
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by Theorem 3.2.3. So the arbitrage price of the CB upon call time t (assuming the CB still alive at
time t) is well defined, as Πt

t, which is also equal to Π̃t(t, S̃t), by Theorem 5.1.
Moreover, by Theorem 5.1 (last part), the function Π̃t(t, S) is jointly continuous in time and

space, except for negative left jumps of −ci at the Tis, and Πt(t, St) = Πt
t ≥ C̄ ∨ κSt + At on the

event {τd > t}, by the general results in [7]. So Ū cb satisfies all the requirements in (18). 2

Therefore all the results of section 4 are applicable to a CB, interpreted as an RB under the
assumptions 4.1(i).

5.2 Numerical Solution of the related Variational Inequalities

Under Assumption 4.1 and assuming that τ̄ = 0 (no call protection), then, once we have specified all
the parameters for one of the problems (28), (29) or (30), including, in the case of (29) or (30), the
function Ũ cb, one can solve the problem numerically [2, 31], and we know that under mild conditions,
standard finite differences or elements numerical schemes will converge towards the S-solution of the
problem as the discretization step goes to 0. This is at least the case in the continuous coupon cases,
e.g. for the embedded GEO. Solving the embedded Bond-related PDEs is of course standard, we
shall not comment on this issue here. Finally, in the case of the CB itself, and if there are discrete
coupons involved, it is still possible to use the results related to the GEO, via the relation Π = Π+Ψ.

To have a fully endogenous specification of the problem, one can then take Ũ cb(t, S) := Π̃t(t, S)
in (29) or (30), by Theorem 5.2, and again, at least in the continuous coupon cases, standard finite
differences or elements numerical schemes will typically converge towards the S-solutions of the t-
problems (37) as the discretization step goes to 0, by Theorem 5.1. Here is a practical algorithm
for solving (30) with Ũ cb(t, S) := Π̃t(t, S), using for example a fully implicit finite difference scheme
(see for instance [35]) to discretize L :

1. Localize problems (37) for the embedded t-PBs and problem (30) for the CB. In the case of
the PBs, we know in advance that the price is equal to κS for κS larger than C̄. So a natural
choice, obviously in the special case of the PBs, but also for the CB, is to localize the problems
on the spatial domain (−∞, C̄/κ];

2. Discretize the domain D = [0, T ] × (−∞, C̄/κ], using, say, one time step per day market day
between 0 and T ;

3. Discretize problems (37) for the embedded PBs on Dt = D ∩ [t, tδ], for t in the time grid (one
problem per value of t in the time grid);

4. Solve for Π̂t the discretized problems (37) corresponding to the embedded PBs for t in the
time grid (one problem per value of t in the time grid);

5. Discretize problem (30) for the CB on D and solve the discretized problem, using the numerical
approximation of Π̃t(t, S) := Π̂t(t, S) +A(t) as an input for Ũ cb(t, S).

Since the problem for the t-PB only has to be solved on the subdomain Dt of D, the overall
computational cost for solving a CB problem (30) with positive call notice period is roughly the
same as that required for solving one CB problem without call notice period, plus n PB problems
that would be defined on the whole grid, where n is the number of days in the notice period —
typically one month, that is n = 20 market days.

Finally if a call protection is in force then we proceed along essentially the same lines following
the indications in Section 3.3.

An alternative to numerical solution for the VIs would be to use simulation methods adapted
from simulated methods for American options [34, 33, 39], that allow one to handle early exercise by
simulation. Note that these methods are not very much used in the industry at this stage. Beyond
the fact that they are computationally more intensive than standard Monte carlo simulations for
European options, another reason is that they do not give a confidence interval. When the space
dimension of a model is three or less, determnistic numerical schemes are recommended. They give
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the CB price and Greeks at the same time and for a whole range of values of the spot, and they
can easily deal with all the early exercice features. Otherwise or if one wants to take into account
non standard soft call protection clauses and be able to deal with any kinds of path-dependency,
simulation methods may be considered.

Still another alternative would be to use numerical methods for BSDEs [13, 14], resorting to
a notion of weak solutions in weighted Sobolev spaces for the variational inequalities rewritten in
divergence form [5, 3]. Given the solution (Θ, z,k) of a R2BSDE with respect to F := FW in a
Markovian set-up, the interest of the Sobolev solutions approach is to provide PDE representations
not only for the state-process Θ (the price of the CS) as Θt := Θ(t, St), but also for z (the ‘delta’ of the
CS) and k. So, typically, in our notation: zt = σ(t, St)St∂SΘ(t, St). From the computational point
of view this also gives numerical schemes to approximate Θ (and maybe also z). Note however that
the associated convergences are to be understood in probability only. This direction of investigation
is left for future research.

Another numerical issue is the calibration of the model, which consists in letting undetermined
some specific parameters of the model, such as the local volatility σ and the local intensity γ in our
Markovian model for Q above, and trying to fix these parameters in order to mark model Q to the
market. Various input instruments can be used in this calibration process, such as vanilla options
on the underlying equity and/or CDS traded on bonds of the issuer [1].

A Viscosity solutions of double obstacle variational inequal-
ities

For the convenience of the reader, we recall in this Appendix the definition of viscosity solutions [17]
in the case of variational inequalities, as well as the notions of stable, monotonous and consistent
approximation schemes [6].

Definition A.1 Given S̄ ≤ ∞, let D := [0, T ]×Adh(−∞, S̄), and let

◦
Dp= [0, T )× (−∞, S̄) and ∂pD := D\

◦
Dp

stand for the parabolic interior and the parabolic boundary of D, respectively. We denote by (P) the
following variational inequality with double obstacle on D:

max (min (−LΘ(t, S)− f(t, S,Θ(t, S)),Θ(t, S)− `(t, S)) ,Θ(t, S)− h(t, S)) = 0 .

(i) A locally bounded upper semicontinuous function Θ on D is called a viscosity subsolution of (P)

on
◦
Dp if and only if for any (t, S) ∈

◦
Dp and any ϕ ∈ C1,2(D) such that Θ− ϕ reaches its maximum

on D at (t, S), then

max (min (−Lϕ(t, S)− f(t, S,Θ(t, S)),Θ(t, S)− `(t, S)) ,Θ(t, S)− h(t, S)) ≤ 0 (39)

Equivalently, Θ is a viscosity subsolution of (P) on
◦
Dp if and only if Θ ≤ u, and Θ(t, S) > `(t, S)

implies
−Lϕ(t, S)− f(t, S,Θ(t, S)) ≤ 0 , (40)

for any (t, S) ∈
◦
Dp and ϕ ∈ C1,2(D) such that Θ− ϕ reaches its maximum on D at (t, S).

(ii) A locally bounded lower semicontinuous function Θ on D is called a viscosity supersolution of

(P) on
◦
Dp if and only if for any (t, S) ∈

◦
Dp and ϕ ∈ C1,2(D) such that Θ − ϕ reaches its minimum

on D at (t, S), then

max (min (−Lϕ(t, S)− f(t, S,Θ(t, S)),Θ(t, S)− `(t, S)) ,Θ(t, S)− h(t, S)) ≥ 0 (41)

Equivalently, Θ is a viscosity supersolution of (P) on
◦
Dp if and only if Θ ≥ l, and Θ(t, S) < h(t, S)

implies
−Lϕ(t, S) − f(t, S,Θ(t, S)) ≥ 0 , (42)
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for any (t, S) ∈
◦
Dp and ϕ ∈ C1,2(D) such that Θ− ϕ reaches its minimum on D at (t, S).

(iii) Θ is called a viscosity solution of (P) on
◦
Dp if and only if it is both a viscosity subsolution and

a viscosity supersolution of (P) on
◦
Dp —in which case, Θ is a continuous function.

Remarks A.1 (i) Given the potential discontinuities in f , we should a priori use the general defi-
nition of viscosity solutions for discontinuous operators. However, due to the very simple nature of
the discontinuities involved, the standard definition is sufficient for our purposes.
(ii) A classic solution of (P) (if any) is necessarily a viscosity solution of (P).
(iii) A viscosity subsolution (resp. supersolution) Θ of (P) does not need to verify Θ ≥ ` (resp.
Θ ≤ h). A viscosity solution (in particular, a classic solution, if any) Θ of (P) necessarily satisfies
` ≤ Θ ≤ h.
(iv) So problems (P) are posed over spatial domains going to −∞, though only the positive part
of the domain has a financial interpretation (cf. Remark 2.1(i)). If we decided to pose problems
(P) over bounded spatial domains, then we would also have to impose some appropriate non-trivial
boundary condition at the lower space boundary, in order to get a well-posed problem.
(iv) By a classic trick for viscosity solutions of parabolic problems (“two-sided sided implies one-
sided”, see for instance [32]), and due to the very simple nature of the discontinuities involved in
our operators, a continuous function which is a viscosity solution of our problem on the right of Ti,
is also a viscosity solution at Ti.

Let us now define approximation meshes and suitable notions of limits on these meshes.

Lemma A.1 Let (Dh)h>0 denote a family of subsets of D, such that for any (t, S) ∈ D, there exists
sequences hn, t

hn , Shn verifying

hn → 0+ and Dhn 3 (thn , Shn) → (t, S) as n→∞.

Let (Θh)h>0 be a family of uniformly locally bounded real functions defined on the sets (Dh)h>0.
(i) For any (t, S) ∈ D, the set of limits of the following kind:

lim
n→+∞

Θhn(thn , Shn) ∈ R (43)

with hn → 0+ and Dhn 3 (thn , Shn) → (t, S) as n→∞, is non empty and compact in R. It admits
as such a smallest and a greatest element: Θ(t, S) ≤ Θ(t, S) in R.
(ii) The function Θ, respectively Θ, defined in this way, is locally bounded and lower semi-continuous
on D, respectively locally bounded and upper semi-continuous on D. We shall call it the lower limit,
respectively upper limit, of Θh at (t, S) as h→ 0+. We shall say that Θh converges to l at (t, S) ∈ D
as h→ 0+, and we shall denote :

lim
h→0+

Dh3(th,Sh)→(t,S)

Θh(th, Sh) = l ,

if and only if Θ(t, S) = Θ(t, S) = l, or, equivalently:

lim
n→+∞

Θhn(thn , Shn) = l

for any hn → 0+ et Dhn 3 (thn , Shn) → (t, S).
(iii) If Θh converges pointwise everywhere to a continuous function Θ on D, then this convergence
is locally uniform:

max
Dh∩C

|Θh −Θ| → 0

as h→ 0+, for any compact subset C of D. 2
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Definition A.2 Let us be given a family (δhL)h>0 of operators such that δhL := δhL(t, S,Θ(t, S),Θ),
acting on locally bounded functions Θ on Dh. We shall say that (δhL)h>0 is monotonous, if and only
if

δhL(t, S,Θ(t, S),Θ) ≤ δhL(t, S,Θ′(t, S),Θ′) for any Θ(t, S) = Θ′(t, S) and Θ ≥ Θ′ on Dh,

and consistent with L, if and only if for any regular function ϕ

h−1δhL(t, S, ϕ(t, S) + ξh ϕ + ξh) → Lϕ(t, S) as h → 0+ , Dh 3 (th, Sh) → (t, S) ∈
◦
Dp and R 3 ξh → 0 .

Remarks A.2 In the continuous coupon case, standard finite differences or finite elements numer-
ical schemes furnish monotonous and consistent approximation schemes for L.

Lemma A.2 Let (Θh)h>0 be uniformly polynomially bounded (Θh bounded by C(1 + Sp) for some
C and p independent of h) and satisfy

δhL(t, S,Θh(t, S),Θh) + hf(t, S,Θh(t, S)) = 0

on Dh for any h > 0, where (δhL)h>0 is monotonous and consistent with L. Then the upper and
lower limits Θ and Θ of Θh as h→ 0+, are respectively viscosity subsolutions and supersolutions of
(P) on

◦
Dp.

Proof. This follows by application of [6] (see also [18]). 2
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[8] Bielecki, T.R., Crépey, S., Jeanblanc, M. and Rutkowski, M.: Defaultable options
in a Markovian pre-default intensity model of credit risk. Work in preparation, 2006.
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