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Abstract

Pricing and risk management of synthetic CDOs and risk management of credit portfolios
are closely related problems as both require modeling of the same distribution of portfolio
loss. The valuation of a single tranche CDO is equivalent in complexity to the calculation
of credit default VaR for a portfolio of single name entities, while the valuation of CDO2

(CDO-squared) is a task closely related to the calculation of credit default VaR for a portfolio
of single tranche CDOs. We examine the analytical techniques developed for credit portfolio
problems with a view to CDO applications and find that the saddlepoint method works better
than the alternatives, leading to a new, fast technique for CDO2 pricing and hedging.

1 Introduction

The total loss due to defaults L(T ) which will be accumulated as a result of holding a portfolio
of risky assets until the time horizon T is a major unknown. The classic approach to dealing
with the default risk calls for its measurement, budgeting, and attribution. The advent of credit
derivatives opened an entirely new set of possibilities revolving around hedging and synthetic
risk re-engineering. The search for winning financial strategies in both alleys depends upon
the ability to find an adequate description of L(T ) in terms of a probability distribution.
Depending on the particular portfolio, risk measure, or derivative instrument, the task may
be as simple as estimating statistics for the distribution of portfolio loss L(T ) at a single time
horizon or significantly more complex, involving joint distribution of loss in several correlated
portfolios {Lp(Ti)} at different time horizons {Ti}.

The typical problem of portfolio risk management is the evaluation of the value-at-risk and
expected shortfall along with a meaningful decomposition into asset contribution. The typi-
cal risk re-engineering problem is the valuation of synthetic CDO and CDO2 (CDO-squared)
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instruments along with hedge ratios to single name credit spreads. There are notable dis-
tinctions in the interpretation of the probability distributions used in VaR-type problems as
opposed to CDO-type problems. VaR and other portfolio risk measures should be computed
in the so-called real world measure while CDOs and other credit derivatives should be valued
in the risk neutral measure; see e.g. Bluhm et al. (2003). A simplified but useful way to
state the distinction between the two measures is in terms of the preferred source of default
probabilities data. For the real world measure the adequate source would be historical default
frequencies. For the risk neutral measure the preferred source is tradable single name credit
sensitive instruments, such as credit default swaps and bonds. Default probabilities implied by
tradable instruments appear to be systematically higher than those computed from historical
data. The deeper reasons for this discrepancy is a subject of intense ongoing research; see,
e.g., recent works by Hull et al. (2005) and Berndt et al. (2005).

A necessary ingredient in every model of portfolio loss is the model of default correlation.
There is a belief that here too a distinction can be drawn between real world and risk neutral
correlations, however it is very difficult to quantify this belief, especially because the industry
has yet to settle on a satisfactory correlation model. Furthermore the very presence of cor-
relations in a model essentially blurs the line between real world and risk neutral valuations
(a point strongly emphasized by Rebonato (2004)), which is waiting to be properly resolved
in a future, better theory. Lacking such a theory we will adhere to the mainstream copula
models of correlations and focus on the practical side of the computation of risk measures and
expected payoffs. In doing so we will be exploring mathematical equivalence of VaR-type and
CDO-type problems without specifying whether the measure is real world or risk neutral and
assuming that the default probabilities and correlations are always chosen in accordance with
the specific application of the results.

The mathematical equivalence is obvious from the fact that the stop-loss option E[(L −
K)+], which is the key building block of synthetic CDO valuation, is also the key term in
the expression for the expected shortfall, E[L|L ≥ K] = K + E[(L − K)+]/P [L ≥ K]. The
denominator in this expression for the shortfall is the tail probability P [L ≥ K], which is
the inverse function to the value-at-risk and is equal to the negative of the derivative of the
stop-loss option with respect to strike

P [L ≥ K] = −∂E[(L−K)+]
∂K

. (1)

Introducing the cumulant generating function K(ξ) = lnE[exp(ξL)] (further referred to as
CGF) and evaluating the stop-loss option and the tail probability as an inverse Laplace trans-
form, we get expressions that differ only by the power of ξ in the denominator,

E[(L−K)+] =
1

2πi

∫ c+i∞

c−i∞

exp(K(ξ)− ξK)
ξ2

dξ, (2)

P [L ≥ K] =
1

2πi

∫ c+i∞

c−i∞

exp(K(ξ)− ξK)
ξ

dξ (3)

(here c > 0 is any positive number and the contour of integration is parallel to the imaginary
axis). This suggests that any analytical method capable of computing the stop-loss should
be adaptable to the tail probability and vice versa, even though in most cases it would be
impractical to compute one from the other by means of numerical integration or differentiation.

In this paper, we review the methods that have been used for VaR-type problems and
CDO-type problems and explore unused opportunities, mostly in the direction of adaptation
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of the methods previously used predominantly for VaR-type problems to CDOs. Our specific
attention is on the normal proxy approach and the saddlepoint method, the latter being
treated as an advanced refinement of the former. The results for a single tranche CDO are
both analytically appealing and computationally efficient. For CDO2 the result can be written
down in a closed form but calls for further simplifications to ease numerical evaluation. We
discuss the conditional decoupling of multivariate normal proxy as a means of speeding up the
calculation.

The rest of the paper is organized as follows. We start the thread of analytics in Sect. 2 by
a discussion of copula functions based correlation models, then take a pause in Sect. 3 to state
precise definition of risk measures and CDO cashflows. This section also includes a simple
reasoning as to why a single implied correlation number is bound to exhibit a pathological
behavior for mezzanine CDO tranches in almost any reasonable correlation model and how
base correlations manage to escape the argument and offer at least a partial solution. The
analytical thread is resumed in Sect. 4 where we tackle the simpler case of single tranche
CDOs and risk measures for portfolios without CDOs. The quadratic decomposition of the
CGF around 0 gives rise to the normal proxy model. The saddlepoint is introduced as a
better point around which to expand the CGF. Building on the results pioneered by Martin,
Thompson, and Browne in the series of publications (2001a,b,c), we derive the corrections to
the saddlepoint approximation for the tail probability, expected shortfall, and stop-loss, and
give explicit expressions for the decomposition of expected shortfall in the leading saddlepoint
approximation. This is followed by a discussion of Gordy’s granularity adjustment (2003)
to show how it fits in the framework of CGF expansions. The numerical comparison of the
granularity adjustment, normal proxy integration, and saddlepoint method shows that the
saddlepoint emerges as a clear winner. The section is concluded by a brief digression into
Monte Carlo simulation with importance sampling, which offers an intuitive understanding of
the reason for saddlepoint effectiveness. Sect. 5 is devoted to applications of the same ideas to
CDO2. A dramatic reduction in the dimensionality of integration is possible however further
simplifications are needed to get rid of the simulation completely. We pursue one possible
approach based on the factor decorrelation of portfolio loss and give numerical results before
concluding in Sect. 6.

2 Models of correlated defaults

Let N be the number of the assets in the underlying portfolio, each of which is in good standing
as of the valuation date t = 0 but has a non-zero probability of default by the horizon date
t = T . The standard approach to joint default modeling consists of two steps. In the first step
independent single name default models are defined. In the second step a joint distribution of
defaults is formed to extend the marginal distributions of defaults fixed in step one. The single
name credit default model for asset a consists of its survival probability curve sa(t) and a model
for loss-given-default. The relevant output that summarizes the loss-given-default model for
the purpose of credit portfolio modeling is the weight wa of each asset in the decomposition of
the portfolio loss in terms of asset default indicators Ua(T ),

L(T ) =
∑

a

waUa(T ). (4)

3



In the case of several portfolios, a separate weight wa,p needs to be introduced for loss exposure
of the asset a in each portfolio p,

Lp(T ) =
∑

a

wa,pUa(T ). (5)

The valuation of synthetic CDO tranches that involve senior slices of the portfolio is also
affected by expected values of tranche amortization due to recovery. This requires a second
set of weights, w′a, to express the random recovery as

R(T ) =
∑

a

w′aUa(T ) (6)

(and similarly in the case of several portfolios). In the popular fractional recovery model of
loss-given-default, the parameter is the recovery rate ra, which relates the loss and recovery
rates to the asset notional Aa as wa = (1−ra)Aa, w′a = raAa but generally the loss and recovery
weights need not be constrained in this way. Because the problem of recovery distribution is
an exact duplicate of the problem of loss distribution we do not need to develop any specific
techniques for recovery and will focus on loss.

The current industry standard of introducing the correlations is the Gaussian copula model,
Li (2000). An operational definition of this model can be given by describing how to simulate
the joint distribution of default status of the N assets. We introduce an N×N matrix of copula
model correlations, ρab. On each simulation path a random vector (Z1, . . . , ZN ) is drawn from
the multivariate normal N -dimensional distribution with mean 0 and covariance matrix ρab so
that the density of this vector is given by

p(Z1, . . . , ZN ) =
1√

(2π)N det ρ
exp(−1

2
ZT ρ−1Z). (7)

For any time horizon the generated random numbers are compared with the threshold barriers,
ba(T ) = N−1(1 − sa(T )). If Za ≤ ba we declare that the asset a has defaulted by the time
T , otherwise that it has remained alive. Here N (x) = (1/2π)

∫ x
0 exp(−0.5t2)dt is the N(0, 1)

cumulative distribution function, andN−1 is the inverse function toN . The explicit expression
for the default indicator variable in this model is Ua(T ) = θ(ba(T ) − Za), where θ(x) is the
step function, equal to 1 for x ≥ 0 and 0 otherwise.

The full correlation matrix is unwieldy, obscures the source of correlations as coming
from specific common factors, and also makes non-Gaussian extensions less transparent. A
factor representation is often superior, in which the correlation matrix is decomposed as
ρab =

∑
i β

(i)
a βb

(i). The numbers β
(i)
a are called factor loadings. The factorized version of

the fundamental simulation for the copula model takes the form

Za =
∑

i

β(i)
a Xi +

√
1− β2

aYa, (8)

with each component Xi of the global factor and drivers Ya of individual risk factor being
independent N(0, 1)-distributed random variables. The factor formulation of the copula model
suggests a two-stage procedure for the calculation of expectations. At the first stage the average
is taken over the individual risk factors {Ya} conditionally on a realization of the global factor
X. This is facilitated by independence of the individual risk factors. The second stage is the
Gaussian integration over the global factor (which will be denoted EX[...]). Stochastic asset

4



weights and correlations driven by the global factor can be easily accommodated at this step
as shown by Andersen and Sidenius (2005). The computational difficulty of the integration
increases rapidly with the dimensionality, which is why software implementations are often
restricted to the scalar global factor.

It is possible to obtain families of non-Gaussian modifications of the copula model using
non-normal distributions for the factors in (8); see, e.g., Schönbucher (2002) and Burtschell
et al. (2005). A popular case involves Student’s t-distribution for the sake of its fatter tails
(polynomial rather than exponential). However no dramatic improvements in the market
matching ability of the model were discovered. When only one factor is used with equal
elements corresponding to all assets, we get the simplest correlations model with the correlation
matrix where all off-diagonal elements are equal. A simple consideration (see Sect. 3.3 below)
shows that any model with a single correlation number suffers from anomalies in CDO tranche
pricing but this does not prevent practitioners from using single correlation numbers as a
quotational convention.

Specific applications use shortcuts to obtain the desired averages over the loss distribution
directly without computing the entire probability distribution function. We will continue the
discussion in terms of the probability distribution function in this section and will specify the
applications in this next section.

Following the two-stage procedure we introduce conditional default probabilities µa(X)
which are averages of the default indicators Ua conditional on a certain value of the global
factor X,

µa(X) = E[Ua|X] = N
(

ba − βaX√
1− β2

a

)
(9)

The loss L conditional on the global factor X is a sum of independent Bernoulli random
variables with two-state probability distributions Pa(L|X),

Pa(L|X) =
{

1− µa(X) for L = 0,
µa(X) for L = wa.

(10)

The probability distribution of any sum of independent random variables is the convolu-
tion of the individual distribution functions. (For any two functions f1(x) and f2(x) their
convolution, denoted f1 ∗ f2, is the function (f1 ∗ f2)(x) =

∫
f1(y)f2(x − y)dy. The convolu-

tion of more than two functions, f1 ∗ f2 ∗ . . . fN can be reduced to pairwise convolutions as
f1 ∗ (f2 ∗ (f3 ∗ . . . ∗ (fN−1 ∗ fN ) . . .)) or in any other order.)

There are two ways to compute the convolution. The direct way is to use the definition
and take the integrals one after another. This approach is especially convenient when all loss
weights wa are equal, or at least commensurate. In this case the distribution of loss is discrete
with the support which is a grid with not too many nodes. Then the nested convolution
can be implemented as a highly efficient recursive scheme, as described by Andersen et al.
(2003), Hull and White (2004), and Brasch (2004). This approach becomes less efficient when
the loss weights are incommensurate and the grid of possible values of loss is dense. It is
particularly unsuitable for the calculation of the sensitivities to loss weights (necessary for
VaR decomposition) because a small change in one of the weights gives rise to a radical change
in the support of the distribution of loss.

Fortunately there is a complementary approach to computing the convolution which works
better right where the direct approach fails. This approach takes advantage of either Fourier
or Laplace transforms to replace the convolution by the product of Fourier or Laplace images
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and then return to the original space by means of the inverse transform. (Remarkably, even
though this approach is analytically more involved it was introduced for synthetic CDO val-
uation first, and only later was it noticed that the direct convolution can be superior.) This
approach also serves as the basis for various semianalytical approximations, including the cen-
tral limit theorems and the saddlepoint. Here we use a version of the Laplace transform with
a non-standard choice of sign in the exponent, which is however consistent with the standard
definition of the conditional CGF, K(ξ|X) = lnE[exp(ξL)|X], where ξ is a variable in the
complex plane. The conditional CGF based on the distributions (10) computes easily,

K(ξ|X) =
∑

a

ln(1− µa(X) + µa(X) exp(ξwa)). (11)

The conditional probability density of the loss is restored from the conditional CGF by the
inverse Laplace transform

P (L|X) =
1

2πi

∫ c+i∞

c−i∞
exp(K(ξ|X)− ξL)dξ, (12)

where c is any positive real number.
The two-stage procedure of computing the distribution conditional on the global factor

X and integrating over X after that extends to the case of the joint distribution of loss from
several portfolios. Both the convolution approach and the Fourier/Laplace transform approach
formally carry over to the multi-portfolio case as well. Unfortunately, the computational
difficulty of the convolution approach grows dramatically because, instead of a linear grid
of possible values of loss, the recursive scheme would have to operate on an M -dimensional
lattice where M is the number of portfolios. This makes the numerical convolution practically
unusable for more than two portfolios. The difficulties of the Laplace transform also increase
substantially but the approach still holds promise. The conditional CGF in this case is a
function of M complex variables, K(ξ1, . . . , ξM |X) = lnE[exp(

∑
p ξpLp)|X], given explicitly

by

K(ξ1, . . . , ξM |X) =
∑

a

ln

(
1− µa(X) + µa(X) exp

(∑
p

ξpwa,p

))
. (13)

The joint probability density of loss of M portfolios is given by the multidimensional inverse
Laplace transform

P (L1, . . . , LM |X) =
∫ c+i∞

c−i∞

∏
dξp

(2πi)M
exp(K(ξ1, . . . , ξM |X)−

∑
p

ξpLp), (14)

where c = (c1, . . . , cp) is any vector with real positive elements.

3 Instruments and portfolio risk measures

In this section, we pause the development of analytical methods to take stock of the applications
and provide a description of the instruments and portfolio risk measures to which the models
of correlated defaults are applied.
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3.1 Risk measures for credit portfolio

Value-at-risk at a given confidence level α is the quantile of the loss distribution,

VaRα(L) = inf{` ≥ 0|P [L ≤ `] ≥ α}. (15)

For a continuous distribution this would mean that the VaR is the threshold value of the loss
such that only the fraction 1 − α of the outcomes lead to loss equal to or larger than the
threshold. For a discrete distribution the fraction of the outcomes above or at the level of
VaR defined by Eq. (15) may occur to be smaller than 1 − α but this effect of distribution
granularity is essentially irrelevant for large portfolios.

Expected shortfall at a given confidence level α is the expected value of the loss in excess
of VaRα(L),

ESα(L) = E[L|L ≥ VaRα(L)] (16)

(Note that the normalization denominator 1−α is already included in the definition of condi-
tional expectation.)

To assess the contributions of individual assets to VaR and ES, it is necessary to be able to
compute sensitivities to asset weights, ∂VaRα(L)/∂wa and ∂ESα(L)/∂wa. Note that VaR and
ES are homogeneous of degree 1 with respect to portfolio loss weights wa, that is VaRα(L; v ·
w1, . . . , v · wN ) = v ·VaRα(L;w1, . . . , wN ) and similarly for ES. It follows that

VaRα(L) =
∑

a

wa
∂VaRα(L)

∂wa
(17)

with a similar decomposition of ES into marginal contributions from the individual underlying
names.

3.2 Single tranche CDO

A single tranche CDO is a synthetic basket credit instrument which involves two parties and
references a portfolio of credit names. One party is the buyer of the protection, the other is
the seller of the protection. Synthetic means that the cashflows are determined only by the
information about the default status of obligations issued by the underlying credit names so
that neither of the parties has to actually possess any of those obligations. A single tranche
CDO contract defines two bounds, k < K, called attachment points and usually quoted as
percentage points of the total original reference notional A of the underlying portfolio. The
lowest tranche, 0−3% or similar, is customarily called equity tranche. The highest tranche, or
30%−100%, is called senior (or supersenior) tranche. The other tranches are called mezzanine
tranches. The difference of the bounds K − k is the original notional of the tranche, which
is the cap of the liability held by the seller of the protection. Additionally, the single tranche
CDO contract defines a schedule of accrual and payment dates, a fixed annualized periodic
rate S, and sometimes also an upfront payment to be made by the buyer of the protection.

The cashflows are driven by the slice of the loss of the reference portfolio within the bounds
[k,K]. The total loss sustained by the tranche since its inception until time T is

LCDO(T ) = (L(T )− k)+ − (L(T )−K)+ (18)

(by definition (x)+ = x if x > 0 and (x)+ = 0 otherwise). As soon as a positive jump ∆LCDO

in the quantity LCDO is reported, the seller of the protection must pay the value ∆LCDO
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to the buyer of the protection. This is the only source of payments made by the seller of
the protection. The payments made by the buyer of the protection are determined by the
outstanding notional of the tranche ACDO(T ) as a function of time T . The initial notional of
the tranche is ACDO(0) = K − k. As time goes by the notional of the tranche can get reduced
“from below” because of losses but also possibly “from above” because of obligatory tranche
amortization from recovery proceeds. The tranche gets touched by the amortization if the
recovered proceeds exceed A − K and can be early amortized up to its total original width
K − k. The cumulative amortization amount applied to the tranche is

RCDO(T ) = (R(T )− (A−K))+ − (R(T )− (A− k))+. (19)

Thus we can express the outstanding notional of the tranche as ACDO(T ) = ACDO(0) −
LCDO(T ) − RCDO(T ). (We are safe subtracting the reductions due to loss and recovery in-
dependently because the part of the tranche reduced due to loss can never be subject to
amortization.)

The outstanding notional of the tranche is monitored every day of each accrual period,
and the fee is accrued on the outstanding notional of the tranche with the rate equal to the
tranche spread S. The total accrued fee is paid on the payment date of the accrual period
by the buyer of the protection to the seller of the protection. Thus if a default happened and
reduced the notional of the tranche in the middle of an accrual period, the fee accrued since
the beginning of the period while the asset was alive is included in the payment made by the
protection buyer.

Let the accrual periods be [0, T1], [T1, T2],. . . [Tk−1, Tk]. The analytical core for the pricing
is the evaluation of the expectations

Eloss(T, k, K) = E[(L(T )− k)+ − (L(T )−K)+], (20)
Erec(T,A−K, A− k) = E[(R(T )− (A−K))+ − (R(T )− (A− k))+]. (21)

Introducing the risk-free discount curve D(t), the leg of the payments made by the protection
seller (protection leg) is evaluated as

Pprot =
∑

i

(
Eloss(Ti, k,K)− Eloss(Ti−1, k, K)

)
D(Ti). (22)

(We ignored here the exact timings of defaults, which is a commonly accepted approximation.)
The leg of the payments made by the protection buyer (fee leg) is evaluated as

Pfee =
∑

i

S · τ(Ti−1, Ti)(αACDO(Ti−1) + βACDO(Ti))D(Ti). (23)

Here τ(Ti−1, Ti) is the daycount fraction from Ti−1 to Ti, and α, β = 1 − α are weights
introduced to take into account the contribution of the accrued interest without introducing
much extra complexity. When we set α = β = 0.5 we mimic the effect of the accrued interest
by effectively assuming that the defaults on the average happen in the middle of the accrual
period. By setting α = 0, β = 1 the accrued interest is excluded. The outstanding notional of
the tranche is computed as ACDO(Ti) = (K − k) − Eloss(Ti, k, K) − Erec(Ti, A −K,A − k),
which completes the specification for the calculation of the fee leg. The present value of the
tranche is the difference of the legs, Pprot − Pfee for protection buyer, and Pfee − Pprot for
protection seller. Par spread of the single tranche CDO is the value of S that makes its present
value equal to zero.
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3.3 Deficiency of models with single correlation number and
base correlations

Single tranche CDOs are actively tradable instruments, normally quoted simultaneously in
terms of par spreads and implied correlations of the Gaussian copula model consistent with
the par spreads. One of early disappointments with the Gaussian copula model was a coun-
terintuitive behavior of implied correlations for mezzanine tranches. While for equity and
senior tranches the solution for the implied correlation is normally unique, there usually is a
mezzanine tranche for which the solution bifurcates into two branches with anomalously low
and anomalously high correlation. Without going into further details of this widely publicized
phenomenon here, we just give a simple argument why such a pathological behavior of the
implied correlation should be expected of any reasonable model which only employs a single
correlation number.

Indeed, it is easy to convince oneself that the par spread of an equity tranche should
decrease with the increasing correlation while the par spread of a senior tranche should increase.
Consider now any continuous deformation of the equity tranche into a senior tranche. For
example, the tranche from 0 to 3% can be deformed into the tranche from 30% to 100% using
the family of tranches [u ·30%, 3%+u ·97%] where u varies from 0 to 1. The dependence Su(ρ)
of the par spread on the model correlation is a function of ρ which is decreasing for u = 0 and
increasing for u = 1. Inevitably at some intermediate value u = u0 the values Su0(ρ = 0) and
Su0(ρ = 100%) must cross. A highly degenerate situation is possible when Su0(ρ) is completely
independent of the correlation. However, this degeneracy is breakable by choosing a slightly
different deformation of the tranches. In the generic case, the dependence Su0(ρ) will have one
or several bumps or dips, giving rise to bifurcations of the solution for implied correlations for
almost any achievable value of spread. Thus any model that strives to solve inadequacies of
the standard Gaussian copula must go beyond the single correlation number for every tranche.

Regardless of other arguments in favor and against, the base correlations introduced by
McGinty et al. (2004) is a remedy against this specific problem because two rather than
one correlation numbers are used to price a tranche. The expectations (20–21) are differ-
ences of independent stop-loss expectations corresponding to lower and upper bounds. It
is possible to introduce a dependence of model parameters on the value of the bound and
compute each stop-loss using the corresponding parameters. The base correlations approach
consists in introducing a bound-dependent correlation ρ = ρ(k) and computing Eloss(T, 0, k)
and Erec(T, 0, A − k) using ρ(k), while computing Eloss(T, 0,K) and Erec(T, 0, A − K) us-
ing ρ(K), then obtaining Eloss(T, k, K) as the difference Eloss(T, 0, k) − Eloss(T, 0, K), and
similarly for Erec(T,A − K, A − k). So far the calibration to market quotes has resulted in
the base correlations that are free from the bifurcation phenomenon (although there are no
theoretical grounds to claim that the base correlations will always remain well behaved under
changing market conditions).

3.4 CDO2

CDO2 is a single tranche CDO based on a portfolio of CDO tranches. Let M be the number
of underlying single tranche CDOs, and kp, Kp, and Ap the attachment points and the total
size of the underlying portfolio for the tranche p. Typically, M is from 2 to 12, each portfolio
is based on 100 or 125 names, the total number of underlying names is 200–500, and there
is significant overlap of underlying portfolios. The total amount at risk for the portfolio of
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tranches is A =
∑

p(Kp− kp). The CDO2 tranche has itself a pair of attachment points k and
K. The original notional ACDO2(t = 0) of the tranche is equal to K − k, and the total loss
sustained by the time T is

LCDO2(T ) = (L(T )− k)+ − (L(T )−K)+ (24)

where
L(T ) =

∑
p

(
(Lp(T )− kp)+ − (Lp(T )−Kp)+

)
(25)

is the total loss suffered by all the tranches and computed by restricting the loss Lp(T ) of
each portfolio to the bounds of the corresponding tranche. The quantity LCDO2(T ) plays the
same role in the definition of the cashflows of CDO2 as the quantity LCDO(T ) does in the
definition of the cashflows of a single tranche CDO. Often CDO2s are based on junior tranches
and have vanishing probability of getting amortized, however for completeness we should also
take recovery into account. Total amortization applied to the CDO2 tranche is

RCDO2(T ) = (R(T )− (A−K))+ − (R(T )− (A− k))+, (26)

where
R(T ) =

∑
p

(
(Rp(T )− (Ap −Kp))+ − (Rp(T )− (Ap − kp))+

)
(27)

with Rp(T ) being total recovery in the underlying portfolio with index p. The rest of the
definition of CDO2 cashflows is the same as that for the single tranche CDO. The analytical
core of the pricing is again the calculation of the expectations of bounded loss and recovery.

4 Analytical expansions I: single tranche CDO and

single name portfolio

We resume the path of analysis of the models of correlated defaults with specific applications
to single tranche CDOs and risk measures of single name portfolios. CDO2 and portfolios with
CDO tranches will be considered in the next section.

The general idea behind most analytical techniques is to expand or otherwise approximate
the conditional CGF (11) by a more tractable expression. This is the same idea used in a
typical derivation of central limit theorems in probability theory. Expanding the conditional
CGF up to the second order around ξ = 0 we get the Gaussian normal approximation for the
distribution of loss, matching the first two conditional moments of the exact distribution. The
explicit expressions for the moments read

Λ(X) =
∑

a

waµa(X), (28)

M2(X) =
∑

a

w2
aµa(X)(1− µa(X)). (29)

The advantage of going through the expression for the CGF rather than just citing the central
limit theorem and postulating the proxy normal distribution as done by Shelton (2004) is that
it is possible in principle to evaluate corrections by retaining higher terms in the expansion
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of the CGF. A particularly convenient way of doing so consists in keeping only the quadratic
terms in the exponent and expanding the exponential of cubic and further terms,

exp(K(ξ|X)) = eξΛ(X)+ 1
2
ξ2M2(X)

(
1 + ξ3a3(X) + ξ4a4(X) + . . .

)
, (30)

so that the calculation of the inverse Laplace transform (12) only involves Gaussian integration.
This is the Edgeworth expansion. The calculation of higher terms in the Edgeworth expansion
is simple but is of limited practical value because the series is asymptotic and does not converge
to the exact answer.

It turns out that ξ = 0 is not the optimal point to expand the CGF. A significantly
better approximation is achieved if the expansion to the quadratic terms is made around the
stationary point of the exponential, the saddlepoint.

4.1 Portfolio risk measures

The idea of the saddlepoint method (pioneered by Daneils (1954) in applications to statistics
and by Martin et al. (2001b) for credit risk measures) is to identify the leading contribution
to the integral (12) as coming from the vicinity of the real stationary point of the exponent,
that is from the root ξ = ξ0 of the equation K′(ξ|X)− L = 0, with

K′(ξ|X) =
∑

a

waµa exp(ξwa)
1− µa + µa exp(ξwa)

. (31)

(The dependence of µa and also of the saddlepoint ξ0 on the central factor X in this and
subsequent equations is understood.) The leading order for the conditional probability of loss
is

Ps0(L|X) =
eK(ξ0|X)−ξ0L

√
2πK′′(ξ0|X)

, (32)

where

K′′(ξ|X) =
∑

a

w2
aµa(1− µa) exp(ξwa)

(1− µa + µa exp(ξwa))2
. (33)

Corrections to the leading saddlepoint approximation are generated by the higher order
terms in the expansion of the exponential of the CGF around the saddlepoint,

exp(K(ξ|X)− ξL) = eK(ξ0|X)−ξ0L+ 1
2
K′′(ξ0|X)(ξ−ξ0)2

(
1 + 1

6K′′′(ξ0|X)(ξ − ξ0)3 + . . .
)
. (34)

It can be shown that the contribution of the term (ξ−ξ0)sK(s) scales as N1−s/2 with increasing
number N of underlying names (we always assume that the weights wa are of comparable
magnitude so that no one asset or small subgroup of assets dominates the credit exposure).
The correction to the probability density P (L|X) of the order N−1/2 from the term with
(ξ− ξ0)3 vanishes. The first non-vanishing correction Ps1(L|X) is of the order N−1 and comes
from two higher order terms in the expansion (34), namely (1/24)KIV(ξ0|X)(ξ − ξ0)4 and
(1/72)(K′′′(ξ0|X))2(ξ − ξ0)6. The well-known result of Daniels (1954) for the correction reads

Ps1(L|X) =
eK(ξ0|X)−ξ0L

√
2πK′′(ξ0|X)

(
1
8
KIV(ξ0|X)

(K′′(ξ0|X))2
− 5

24
(K′′′(ξ0|X))2

K′′(ξ0|X))3

)
. (35)

The calculation of the asymptotic series of higher order corrections coming from the ex-
pansion (34) will not result in infinite accuracy improvement. In particular it does not allow
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recovery of the discrete nature of the distribution of loss. (The exact discrete distribution
can be recovered if the contributions of other saddlepoints off the real axis in the complex
plane are accounted for). Practically it is not necessary to go beyond the leading saddlepoint
approximation and the first correction to achieve sufficient accuracy.

With application to credit portfolio VaR and expected shortfall we should apply the saddle-
point method directly to the quantities of interest without computing the probability density
of loss. For the probability of loss exceeding the threshold K we get

P [L ≥ K|X] =
1

2πi

∫ ∞

K
dL

∫ c+i∞

c−i∞
exp(K(ξ|X)− ξL)dξ. (36)

Integrating over L first we obtain the expression

P [L ≥ K|X] =
1

2πi

∫ c+i∞

c−i∞

exp(K(ξ|X)− ξK)
ξ

dξ, (37)

which is ready for the application of the saddlepoint method. Similarly for the shortfall integral

E[L|L ≥ K;X] = (P [L ≥ K])−1 1
2πi

∫ ∞

K
dL

∫ c+i∞

c−i∞
exp(K(ξ|X)− ξL)Ldξ (38)

we get the expression

E[L|L ≥ K;X] = (P [L ≥ K])−1

(
1

2πi

∫ c+i∞

c−i∞

exp(K(ξ|X)− ξK)
ξ2

dξ + KP [L ≥ K|X]
)

. (39)

For the particular value of strike K equal to expected loss, Λ(X), the saddlepoint is ξ0 = 0,
and K(ξ0|X) = 0, K′′(ξ0|X) = M2(X). For K < Λ(X) the saddlepoint is negative, ξ0 < 0, and
for K > Λ(X) it is positive, ξ0 > 0. In the case of a negative saddlepoint, care has to be taken
in deforming the contour of integration across the pole at origin. The contribution from the
residue in the pole should be computed exactly before expanding near the saddlepoint.

After taking the average over the central factor X, the leading saddlepoint contribution to
the tail probability is

P [L ≥ K] = EX

[
θ(−ξ0) + eK(ξ0|X)−ξ0KJ1(K′′(ξ0|X), ξ0)

]
. (40)

The leading saddlepoint contribution to the expected shortfall is

E[L|L ≥ K] =
EX

[
θ(−ξ0)(

∑
a waµa −K) + eK(ξ0|X)−ξ0KJ2(K′′(ξ0|X), ξ0)

]

P (L ≥ K)
+ K, (41)

where we introduced the notation Js(m, ξ0) for the integral

Js(m, ξ0) =
1

2πi

∫ ξ0+i∞

ξ0−i∞
exp

(
1
2m(ξ − ξ0)2

)
dξ/ξs. (42)

The values of this integral with s = 0, 1, 2 are as follows

J0(m, ξ0) = 1/
√

2πm, (43)
J1(m, ξ0) = sign(ξ0) exp(1

2mξ2
0)N (−√m|ξ0|), (44)

J2(m, ξ0) =
√

m/2π −m|ξ0| exp(1
2mξ2

0)N (−√m|ξ0|). (45)
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Note a useful relationship J2(m, ξ0) = m(J0(m, ξ0)−ξ0J1(m, ξ0)). In all subsequent expressions
these integrals are used with the parameters m = K′′(ξ0|X) and ξ0, which will sometimes be
omitted.

The lowest correction to the tail probability and expected shortfall comes from the cubic
term in Eq. (34).

∆P [L ≥ K] = EX

[
1
6
K′′′(ξ0|X)eK(ξ0|X)−ξ0K

((
ξ2
0 −

1
K′′(ξ0|X)

)
J0 − ξ3

0J1

)]
. (46)

The calculation of the VaR requires computing the strike K to match the given probability
in the tail, 1− α. This can be done using a one-dimensional iterative solver. (Note that this
should be done using the unconditional probability averaged over the global factor X. Even
though it is possible to define VaR conditional on the central factor, the unconditional VaR
cannot be restored from it by integration.)

The calculation of VaR decomposition into marginal contributions from individual assets
can be done without multiple repetitions of solving the equation P [L ≥ K] = 1 − α, as was
shown by Gourieroux et al. (2000) and Martin et al. (2001c). We do it using the following
identity for partial derivatives

∂VaRα(L)
∂wa

= −
∂P [L≥K]

∂wa
|K=VaRα(L)

∂P [L≥K]
∂K |K=VaRα(L)

. (47)

The quantity in the denominator is the probability density of loss taken at the VaR level, and
the quantity in the numerator is the sensitivity of the tail probability to the asset’s weight.
This can be written as

∂VaRα(L)
∂wa

=
EX

[∫ µa exp(ξwa)
1−µa+µa exp(ξwa) exp(K(ξ|X)− ξK)dξ

]

EX

[∫
exp(K(ξ|X)− ξK)dξ

]
∣∣∣∣∣
K=VaRα(L)

. (48)

The integrals over ξ can be taken in the leading saddlepoint approximation. The saddlepoint
ξ0 is determined by the equation K′(ξ0|X) = VaRα(L). We obtain in this way the following
decomposition

VaRα(L) =
∑

a

EX

[
Ps0(K|X) waµa exp(ξ0wa)

1−µa+µa exp(ξ0wa)

]

EX[Ps0(K|X)]

∣∣∣∣∣
K=VaRα(L)

. (49)

Note that despite the approximation the equality (49) holds exactly because of the defining
equation of the saddlepoint, K′(ξ0|X) = VaRα(L) (see Eq. (31)). Thus we obtain the decom-
position of VaR with minimal computational cost.

The calculation of expected shortfall starts with the calculation of VaR for the requested
confidence level. This value of VaR is then plugged for K in Eq. (41). The probability in the
denominator is exactly 1 − α. The final expression in the leading saddlepoint approximation
is

ESα(L) =
EX

[
θ(−ξ0)(

∑
a waµa −K) + eK(ξ0|X)−ξ0KJ2(K′′(ξ0|X), ξ0)

]

1− α
+ K

∣∣∣∣∣
K=VaRα(L)

. (50)

The first correction to this expression comes from the correction to the stop-loss, written down
in the next section.
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To obtain the shortfall decomposition, we start with the exact expression

∂ESα(L)
∂wa

=
EX

[
1

2πi

∫ c+i∞
c−i∞

exp(K(ξ|X)−ξK)
ξ

µa exp(ξwa)
1−µa+µa exp(ξwa)dξ

]
K=VaRα(L)

1− α
. (51)

To get a decomposition that is consistent with the leading saddlepoint approximation, it is
necessary to keep the linear term in the expansion of the fraction µa exp(ξwa)/(1 − µa +
µa exp(ξwa)) around the saddlepoint ξ0,

µa exp(ξwa)
1− µa + µa exp(ξwa)

=
µa exp(ξ0wa)

1− µa + µa exp(ξ0wa)
+

waµa(1− µa) exp(ξ0wa)
(1− µa + µa exp(ξ0wa))2

(ξ− ξ0)+ . . . (52)

Before applying the expansion we need to deform the contour of integration so that it passes
through the saddlepoint, which produces a contribution from the residue at origin if the sad-
dlepoint is negative. The first term in the expansion (52) generates the decomposition of the
addendum equal to VaR in the expression (50) for expected shortfall. The integral over ξ
cancels against 1 − α in the denominator (in order for this cancellation to work in the case
ξ0 < 0, we have to pass the contour back through the origin, picking up another residue
term). The second term in (52) generates the term with J2, where the integral over ξ taken in
the leading saddlepoint approximation to ensure consistency of the decomposition. The final
decomposition reads

ESα(L) =
∑

a

EX


 waµa exp(ξ0wa)

1− µa + µa exp(ξ0wa)
+ θ(−ξ0)

waµa − waµa exp(ξ0wa)
1−µa+µa exp(ξ0wa)

1− α




+
∑

a

EX

[
eK(ξ0|X)−ξ0KJ2(K′′(ξ0|X), ξ0)

w2
aµa(1−µa) exp(ξwa)

(1−µa+µa exp(ξwa))2K′′(ξ0|X)

]
K=VaRα(L)

1− α
. (53)

The Eqs. (31) and (33) neatly conspire to ensure the equality.

4.2 Single tranche CDO

For single tranche CDO pricing we should apply the saddlepoint method directly to the stop-
loss integral conditional on the global factor

E[(L−K)+|X] =
1

2πi

∫ ∞

K
dL

∫ c+i∞

c−i∞
exp(K(ξ|X)− ξL)(L−K)dξ. (54)

Integrating over L first we obtain the expression

E[(L−K)+|X] =
1

2πi

∫ c+i∞

c−i∞

exp(K(ξ|X)− ξK)
ξ2

dξ. (55)

Approximating the exponential of K(ξ) − ξK around the saddle point we retain terms up to
the quadratic in the exponent and expand the rest

exp(K(ξ)− ξK) = exp
(
K(ξ0)− ξ0K +

1
2
K′′(ξ0)(ξ − ξ0)2

)(
1 +

1
6
K′′′(ξ0)(ξ − ξ0)3 + . . .

)
.

(56)
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Evaluation of the integrals yields the leading saddlepoint contribution to the conditional stop-
loss (with the usual care taken of the residue term)

E[(L−K)+] = EX

[
θ(−ξ0)(

∑
a

waµa −K) + eK(ξ0|X)−ξ0KJ2(K′′(ξ0|X), ξ0)

]
(57)

and the first correction

∆E[(L−K)+] = EX

[
1
6ξ0K′′′(ξ0|X)eK(ξ0|X)−ξ0K

(−2J0 + 3ξ0J1 − ξ2
0J2

)]
. (58)

4.3 Granularity adjustment

We note here that Gordy’s granularity adjustment, considered in Gordy (2003), Wilde (2001),
Martin and Wilde (2002), and Emmer and Tasche (2005) in the context of portfolio risk
measures can also be regarded as a variant of the CGF expansion technique. To derive the
granularity adjustment we again expand the CGF but this time leave only the linear term in
the exponent

exp(K(ξ|X)) = eξΛ(X)(1 + 1
2ξ2M2(X) + . . .). (59)

The contour integral of the term with M2(X) (and also of all higher terms) is singular, but
the singularity is removed by the residual integration over the central factor X. Specifically,
we get for the tail probability

P [L ≥ K] = EX[θ(Λ(X)−K) + 1
2M2(X)δ′(Λ(X)−K) + . . .] (60)

and for the stop-loss option

E[(L−K)+] = EX[(Λ(X)−K)+ + 1
2M2(X)δ(Λ(X)−K) + . . .]. (61)

Dirac’s delta-function, δ(x), is defined as an integration kernel by the property
∫ ∞

−∞
dx δ(x) f(x) = f(0)

for any function f(x). Higher derivatives also have a meaning as integration kernels and respect
the rule of integration by parts,

∫ ∞

−∞
dx δ(n)(x) f(x) = (−1)n f (n)(x)|x=0.

For a multi-dimensional central factor X the singular integrals reduce to the surface Λ(X) = K
and can be taken numerically. For a one-dimensional central factor X with the probability
density p(x) (which can be any continuous probability density, not necessarily normal) the
singular integrals are fully determined by the root x0 where average loss equals strike, Λ(x0) =
K, and can be written down explicitly,

P [L ≥ K] ≈
∫

dx p(x)θ(Λ(x)−K)− 1
2|Λ′(x0)|

d

dx

M2(x)p(x)
Λ′(x0)

∣∣∣
x=x0

, (62)

E[(L−K)+] ≈
∫

dx p(x)(Λ(x)−K)+ +
M2(x0)p(x0)

2|Λ′(x0)| . (63)
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In the case of several roots, a summation over all the roots is needed. If there is no root, the
granularity adjustment is absent. Eq. (62) is the granularity adjustment to the tail probability,
different in form but equivalent to the standard expression for the granularity adjustment to
VaR given by Gordy (2003) and Wilde (2001). Eq. (63) is its counterpart for the stop-loss
option. Evaluation of higher corrections due to higher moments in the CGF expansion is
straightforward and can be implemented easily. However, as with the Edgeworth expansion,
the calculation of higher corrections has limited practical value because the lack of analyticity
precludes the asymptotic series expansion from convergence to the exact value. (The discrep-
ancy between the saddlepoint approach and granularity adjustment noted in Martin and Wilde
(2002) is another manifestation of this non-analyticity.) As we will see shortly the granularity
correction usually improves the result, however the method remains considerably less accurate
than the conditional normal approximation for portfolio loss and much less accurate than the
saddlepoint.

4.4 Numerical results

In this section we compare numerical results obtained for the stop-loss using the various ana-
lytical approximation. We consider as an example a portfolio of 125 assets with loss weights
drawn from a uniform distribution between 0.5 and 0.7. In the first set of runs the average
credit spread on the horizon of the calculation is 100.31 bp, corresponding to the average
default probability 1.65%. The value of the total expected loss is E[L] = 1.2267 and the
maximum possible loss is Lmax = 74.1341. We fix a set of upper bounds K in terms of certain
percentages of Lmax. The reported quantity is (E[L]−E[(L−K)+])/E[L] which is the expec-
tation of loss bounded from 0 to the upper strike and normalized to the expected loss. The
calculations are done assuming the standard Gaussian copula model with a one-dimensional
central factor for several values of the correlation.

The baseline for comparison is the result from a slow convolution calculation with adap-
tively chosen grid (a simple recursion scheme is not sufficient because of incommensurability
of loss weights).

Adaptive grid convolution, 〈pd〉 = 1.65%
ρ \ K 0.01 0.02 0.03 0.05 0.1 0.15 0.3
0% 0.498249 0.804019 0.941830 0.997456 1.000000 1.000000 1.000000
10% 0.417109 0.669786 0.815121 0.940278 0.995735 0.999658 1.000000
20% 0.353641 0.567724 0.703215 0.849748 0.965540 0.990675 0.999749
30% 0.299737 0.482701 0.605586 0.755074 0.910081 0.962535 0.996520
40% 0.252314 0.408583 0.518303 0.662446 0.838825 0.915200 0.985135
50% 0.209781 0.342266 0.438783 0.573092 0.757836 0.852012 0.961210

The large portfolio model is the first term in Eq. (63) without the granularity adjustment.
It is quite a crude approximation as can be seen from the following results.
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Large portfolio, 〈pd〉 = 1.65%
ρ \ K 0.01 0.02 0.03 0.05 0.1 0.15 0.3
0% 0.604318 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
10% 0.507550 0.764342 0.885192 0.969137 0.998415 0.999896 1.000000
20% 0.421121 0.631890 0.753850 0.881343 0.974069 0.993394 0.999833
30% 0.352210 0.530896 0.643900 0.781356 0.921492 0.967945 0.997163
40% 0.292355 0.443801 0.548219 0.685004 0.849707 0.922671 0.986479
50% 0.239592 0.371070 0.465097 0.591096 0.769500 0.858077 0.963876

Large portfolio error, 〈pd〉 = 1.65%
ρ \ K 0.01 0.02 0.03 0.05 0.1 0.15 0.3
0% 0.106069 0.195981 0.058170 0.002544 0.000000 0.000000 -0.000000
10% 0.090442 0.094556 0.070071 0.028858 0.002680 0.000238 -0.000000
20% 0.067481 0.064166 0.050635 0.031595 0.008529 0.002718 0.000084
30% 0.052473 0.048195 0.038315 0.026283 0.011411 0.005410 0.000643
40% 0.040041 0.035218 0.029916 0.022558 0.010881 0.007471 0.001345
50% 0.029811 0.028804 0.026313 0.018004 0.011664 0.006064 0.002666

The next pair of tables shows that the granularity adjustment gives only a modest improve-
ment in the majority of cases. Note that the granularity adjustment is not applicable without
correlation, ρ = 0, because there is no dependence on the central factor X and no solution to
the equation Λ(x0) = K.

Large portfolio with granularity adjustment, 〈pd〉 = 1.65%
ρ \ K 0.01 0.02 0.03 0.05 0.1 0.15 0.3
0% 0.604318 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
10% 0.443194 0.702935 0.844178 0.954317 0.997338 0.999807 1.000000
20% 0.376507 0.592572 0.723167 0.863614 0.969336 0.991995 0.999787
30% 0.319337 0.502536 0.620512 0.765482 0.914906 0.964955 0.996820
40% 0.267561 0.422544 0.530148 0.671659 0.842762 0.918746 0.985636
50% 0.220866 0.355012 0.451160 0.580232 0.762986 0.853861 0.962543

Large portfolio with granularity adjustment error, 〈pd〉 = 1.65%
ρ \ K 0.01 0.02 0.03 0.05 0.1 0.15 0.3
0% 0.106069 0.195981 0.058170 0.002544 0.000000 0.000000 -0.000000
10% 0.026085 0.033149 0.029056 0.014039 0.001603 0.000149 -0.000000
20% 0.022867 0.024849 0.019952 0.013866 0.003797 0.001319 0.000037
30% 0.019600 0.019835 0.014927 0.010409 0.004825 0.002420 0.000301
40% 0.015247 0.013961 0.011845 0.009213 0.003937 0.003546 0.000502
50% 0.011085 0.012747 0.012377 0.007140 0.005150 0.001848 0.001333

However it cannot compete with the normal proxy approach, in which the stop-loss is given
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by the expression from Shelton (2004)

E[(L−K)+] = EX

[
(Λ(X)−K)N

(
Λ(X)−K√

M2(X)

)

+

√
M2(X)

2π
exp

(
−(Λ(X)−K)2

2M2(X)

)]
. (64)

Normal proxy, 〈pd〉 = 1.65%
ρ \ K 0.01 0.02 0.03 0.05 0.1 0.15 0.3
0% 0.482537 0.816231 0.959354 0.999658 1.000000 1.000000 1.000000
10% 0.413002 0.675863 0.820795 0.943272 0.996052 0.999662 1.000000
20% 0.352786 0.571816 0.706292 0.851585 0.966057 0.990824 0.999745
30% 0.299991 0.485671 0.607544 0.756253 0.910546 0.962727 0.996546
40% 0.252934 0.410792 0.519632 0.663231 0.839190 0.915378 0.985170
50% 0.210464 0.343911 0.439706 0.573622 0.758109 0.852158 0.961246

Normal proxy error, 〈pd〉 = 1.65%
ρ \ K 0.01 0.02 0.03 0.05 0.1 0.15 0.3
0% -0.015712 0.012212 0.017524 0.002202 0.000000 0.000000 -0.000000
10% -0.004106 0.006077 0.005674 0.002994 0.000317 0.000004 -0.000000
20% -0.000855 0.004092 0.003077 0.001838 0.000518 0.000148 -0.000004
30% 0.000254 0.002970 0.001958 0.001180 0.000465 0.000192 0.000027
40% 0.000620 0.002209 0.001329 0.000785 0.000365 0.000178 0.000035
50% 0.000683 0.001646 0.000922 0.000529 0.000272 0.000146 0.000036

The leading saddlepoint approximation (57) clearly works better than the normal proxy.

Saddlepoint, leading order, 〈pd〉 = 1.65%
ρ \ K 0.01 0.02 0.03 0.05 0.1 0.15 0.3
0% 0.511338 0.797625 0.936926 0.997185 1.000000 1.000000 1.000000
10% 0.418538 0.670274 0.813768 0.939394 0.995661 0.999626 1.000000
20% 0.353190 0.568288 0.702624 0.849237 0.965466 0.990664 0.999741
30% 0.298816 0.483119 0.605263 0.754709 0.909998 0.962515 0.996531
40% 0.251406 0.409013 0.518178 0.662152 0.838784 0.915170 0.985142
50% 0.208992 0.342539 0.438671 0.572845 0.757743 0.851984 0.961208

Saddlepoint, leading order error, 〈pd〉 = 1.65%
ρ \ K 0.01 0.02 0.03 0.05 0.1 0.15 0.3
0% 0.013089 -0.006393 -0.004904 -0.000271 -0.000000 0.000000 -0.000000
10% 0.001429 0.000488 -0.001353 -0.000884 -0.000074 -0.000032 -0.000000
20% -0.000451 0.000564 -0.000591 -0.000511 -0.000073 -0.000011 -0.000008
30% -0.000920 0.000418 -0.000322 -0.000365 -0.000083 -0.000020 0.000011
40% -0.000908 0.000430 -0.000125 -0.000294 -0.000041 -0.000030 0.000007
50% -0.000789 0.000273 -0.000112 -0.000247 -0.000094 -0.000029 -0.000002
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Finally, the first correction (58) to the saddlepoint approximation can further improve the
results. (As shown by Taras et al. (2005), the saddlepoint approximation with corrections
works good for the tail probability as well.)

Saddlepoint with first correction, 〈pd〉 = 1.65%
ρ \ K 0.01 0.02 0.03 0.05 0.1 0.15 0.3
0% 0.500348 0.807992 0.942917 0.997396 1.000000 1.000000 1.000000
10% 0.417634 0.672211 0.815709 0.940271 0.995730 0.999631 1.000000
20% 0.353757 0.569447 0.703633 0.849773 0.965581 0.990695 0.999742
30% 0.299686 0.483993 0.605896 0.755099 0.910127 0.962562 0.996534
40% 0.252206 0.409579 0.518538 0.662464 0.838864 0.915222 0.985148
50% 0.209673 0.343027 0.438957 0.573106 0.757866 0.852028 0.961220

Saddlepoint with first correction error, 〈pd〉 = 1.65%
ρ \ K 0.01 0.02 0.03 0.05 0.1 0.15 0.3
0% 0.002099 0.003974 0.001088 -0.000060 -0.000000 0.000000 -0.000000
10% 0.000525 0.002425 0.000588 -0.000007 -0.000005 -0.000027 -0.000000
20% 0.000116 0.001723 0.000418 0.000026 0.000042 0.000019 -0.000007
30% -0.000051 0.001292 0.000311 0.000026 0.000046 0.000028 0.000014
40% -0.000108 0.000996 0.000235 0.000018 0.000039 0.000022 0.000014
50% -0.000107 0.000762 0.000173 0.000013 0.000030 0.000016 0.000010

The repetition of the same runs with higher average default probability, 4.05%, which
corresponds to average credit spread 250.79 bp and expected loss E[L] = 3.0081, leads to the
same ranking of the methods. Below are the baseline for the quantity (E[L]−E[(L−K)+])/E[L]
and the results for the deviation from the baseline.

Adaptive grid convolution, 〈pd〉 = 4.05%
ρ \ K 0.01 0.02 0.03 0.05 0.1 0.15 0.3
0% 0.243699 0.474085 0.672744 0.913892 0.999697 1.000000 1.000000
10% 0.225383 0.416175 0.569004 0.772490 0.957416 0.992311 0.999977
20% 0.203500 0.365358 0.493076 0.671730 0.882221 0.955519 0.997413
30% 0.181252 0.320065 0.429583 0.588393 0.802738 0.899871 0.985599
40% 0.159461 0.278835 0.373583 0.515080 0.724094 0.834693 0.961248
50% 0.138391 0.240716 0.322689 0.448314 0.647009 0.764064 0.924305

Large portfolio error, 〈pd〉 = 4.05%
ρ \ K 0.01 0.02 0.03 0.05 0.1 0.15 0.3
0% 0.002745 0.018803 0.066589 0.086108 0.000303 0.000000 0.000000
10% 0.017073 0.037674 0.046951 0.044331 0.015590 0.003603 0.000009
20% 0.021078 0.031181 0.034354 0.029817 0.016289 0.007818 0.000700
30% 0.020344 0.024795 0.025694 0.022656 0.014055 0.008294 0.001720
40% 0.017830 0.019859 0.018969 0.018921 0.011388 0.010113 0.002515
50% 0.015183 0.016351 0.015951 0.012765 0.009210 0.006892 0.002594
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Large portfolio with granularity adjustment error, 〈pd〉 = 4.05%
ρ \ K 0.01 0.02 0.03 0.05 0.1 0.15 0.3
0% 0.002745 0.018803 0.066589 0.086108 0.000303 0.000000 0.000000
10% 0.009030 0.014445 0.016027 0.016111 0.007292 0.001869 -0.000000
20% 0.008116 0.011895 0.013510 0.011174 0.006673 0.003423 0.000344
30% 0.007536 0.009464 0.010202 0.008850 0.005423 0.003153 0.000693
40% 0.006514 0.007677 0.007045 0.008286 0.004037 0.005100 0.000933
50% 0.005671 0.006723 0.006694 0.004488 0.003110 0.002366 0.000701

Normal proxy error, 〈pd〉 = 4.05%
ρ \ K 0.01 0.02 0.03 0.05 0.1 0.15 0.3
0% -0.004433 -0.006973 -0.006228 0.005193 0.000263 0.000000 0.000000
10% -0.003870 -0.001656 -0.000506 0.001211 0.000892 0.000227 -0.000016
20% -0.002359 -0.000114 0.000199 0.000676 0.000572 0.000271 0.000023
30% -0.001300 0.000391 0.000336 0.000448 0.000380 0.000220 0.000046
40% -0.000642 0.000545 0.000339 0.000316 0.000261 0.000164 0.000048
50% -0.000249 0.000556 0.000301 0.000228 0.000182 0.000119 0.000042

Saddlepoint, leading order error, 〈pd〉 = 4.05%
ρ \ K 0.01 0.02 0.03 0.05 0.1 0.15 0.3
0% 0.000607 0.002707 0.004500 -0.004138 -0.000014 -0.000000 0.000000
10% 0.001478 0.001634 0.000367 -0.000403 -0.000186 -0.000050 -0.000018
20% 0.000796 0.000886 0.000080 -0.000202 -0.000095 -0.000020 0.000004
30% 0.000291 0.000585 0.000049 -0.000095 -0.000018 -0.000004 0.000015
40% 0.000045 0.000406 0.000006 -0.000123 -0.000039 -0.000013 0.000005
50% -0.000065 0.000273 -0.000059 -0.000097 -0.000050 0.000029 -0.000001

Saddlepoint with first correction error, 〈pd〉 = 4.05%
ρ \ K 0.01 0.02 0.03 0.05 0.1 0.15 0.3
0% 0.000211 0.000811 0.000297 0.000069 0.000000 0.000000 0.000000
10% 0.000335 0.000924 0.000247 0.000039 0.000040 -0.000000 -0.000018
20% 0.000210 0.000792 0.000199 0.000032 0.000056 0.000030 0.000007
30% 0.000116 0.000661 0.000158 0.000021 0.000048 0.000030 0.000018
40% 0.000060 0.000548 0.000129 0.000012 0.000037 0.000022 0.000016
50% 0.000029 0.000449 0.000102 0.000012 0.000028 0.000016 0.000010

4.5 Saddlepoint method as normal proxy

We derived both the normal proxy method and the saddlepoint method starting from the
same conditional CGF but expanding it around different points. Regardless of the expansion
point, any quadratic CGF corresponds to a Gaussian normal distribution. For the normal
proxy method the mean value Λ(X) and the variance M2(X) are given by Eqs. (28-29). It
is possible to give a description of the leading saddlepoint approximation in the same terms
by applying the inverse Laplace transform to the expanded CGF (34). The moments of the
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resulting shifted Gaussian distribution depend on the location of the saddlepoint ξ0,

Λ̃(X) = K − ξ0K′′(ξ0|X), (65)
M̃2(X) = K′′(ξ0|X). (66)

The normal distribution of loss with the moments (65-66) gives better results because it is
tuned to the specific problem, such as the calculation of stop-loss or tail probability with a
given threshold K. The standard normal proxy moments (28) and (29) are restored only for
K equal to expected conditional loss Λ(X), in which case ξ0 = 0.

Results from the shifted normal proxy with moments (65) and (66) are slightly different
from the standard saddlepoint results because the normalization of the total probability to 1
is enforced. The standard saddlepoint approximations break the normalization as the value
of the expanded CGF at ξ = 0 deviates from 0. This deviation can be eliminated by a
replacement of the factor exp(K(ξ0|X)−ξ0K)) by exp(−1

2K′′(ξ0|X)) in the leading saddlepoint
approximation results (32), (40), (41), (50), (53), (57). The expressions for the corrections
to the leading saddlepoint approximation require a different normalization factor. In our
numerical experiments the restoration of the normalization did not lead to any systematic
improvement.

In the case of the single portfolio, the representation of the saddlepoint approximation in
terms of a shifted normal distribution does not really open any new possibilities because the
saddlepoint integrals were computable exactly. The situation is different for multi-portfolio
applications considered in the next section. We may not always be able to compute the
saddlepoint integral, or even find the exact saddlepoint, but we may be able to improve the
accuracy of the multivariate normal approximation by choosing it judiciously.

4.6 Saddlepoint and Monte Carlo importance sampling

We conclude the section by a brief discussion of the relationship between the saddlepoint
analytics and the importance sampling techniques for direct Monte Carlo evaluation of credit
risk measures discussed by Glasserman (2004). In the context of importance sampling with a
single twisting parameter, the saddlepoint equation arises as an equation for the value of the
measure twisting parameter ξ0 that is optimal for the purpose of sampling the total loss in the
vicinity of a given value K,

∑
a

waµa exp(ξ0wa)
1− µa + µa exp(ξ0wa)

= K. (67)

The quantities

µ̃a(X) =
µa exp(ξ0wa)

1− µa + µa exp(ξ0wa)
(68)

are the twisted conditional default probabilities to be used in the optimized Monte Carlo
simulation of the individual risk factors Ya. The correct conditional average is restored by
means of the factor exp(K(ξ0|X)− ξ0

∑
waUa). In this way the effectiveness of the somewhat

abstract procedure of contour deformation gets an intuitive explanation in terms of measure
adjustment to move the peak of the loss distribution to the region that needs to be sampled
more accurately. In light of this link, the Edgeworth expansion of the CGF around ξ = 0 (which
includes the normal proxy as the leading approximation) can be compared to a straightforward
Monte Carlo simulation without importance sampling. Searching for a saddlepoint clearly
appears better way to go in any analytical framework.
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5 Analytical expansions II: CDO2 and portfolio of

single tranche CDOs

5.1 Laplace transform for CDO-Squared

As with the case of a single CDO, we proceed directly to the evaluation of the stop-loss integral

E[(L −K)+|X] =
∫ ∞

0

∫ c+i∞

c−i∞

∏
dLp

∏
dξp

(2πi)M
(L −K)+ exp

(
K(ξ1, . . . , ξM |X)−

∑
p

ξpLp

)
,

(69)
where CDO2 portfolio loss L is given by Eq. (25), and the multi-portfolio CGF K(ξ1, . . . , ξM |X)
is given by Eq. (13). The integrals over the loss variables Lp can be decoupled at a price of
the introduction of an additional inverse Laplace transform

(L −K)+ =
1

2πi

∫ c0+i∞

c0−i∞

exp(y(L −K))
y2

dy. (70)

After this substitution the integration over the loss variables reduces to the product of one-
dimensional integrals

∫ ∞

0
dLp exp[y((Lp − kp)+ − (Lp −Kp)+)− ξpL

(p)], (71)

which are easily evaluated. As a result we obtain

E[(L −K)+|X] =
∫ c0+i∞

c0−i∞

∫ c+i∞

c−i∞

dy
∏

dξp

(2πi)M+1

exp(−yK)
y2

exp(K(ξ1, . . . , ξM |X))

∏
p

(
1
ξp

+
y [exp(y(Kp − kp)− ξpKp)− exp(−ξpkp)]

(y − ξp)ξp

)
. (72)

An immense reduction in the dimensionality of the integration has been achieved from the
initial N , the number of names, to M +1, the number of base CDO tranches plus one auxiliary
variable introduced to decouple the losses. However it is not straightforward to take practical
advantage of this reduction because the remaining integrals are over complex plane contours.
The dimensionality is still too large for analytical integration, and the oscillatory nature of the
integrand makes it impossible to implement Monte Carlo techniques directly.

The possibility of simplifying the integral (72) using a multidimensional generalization of
the saddlepoint method remains open. In our numerical experiments we were able to locate
the saddlepoint in the space of variables y and ξp but failed to obtain a robust computational
algorithm. We turn to a more practical approach in the next subsection.

5.2 Semianalytical solution for the normal proxy method

The normal proxy method of Shelton (2004) consists in computing of the conditional average

E
[
(L(L1, L2, · · · , LM )−K)+ |X]

(73)

where
L(L1, L2, · · · , LM ) =

∑
p

(
(Lp − kp)+ − (Lp −Kp)+

)
, (74)
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assuming that the joint distribution of portfolio losses Lp conditional on X is multivariate
normal with the average

Λp(X) =
∑

a

µa(X) wa,p (75)

and covariance matrix

Cp p′(X) =
∑

a

µa(X) (1− µa(X))wa,pwa,p′ . (76)

As with the single tranche case, the normal proxy method is recovered from the expansion of
the CGF up to quadratic terms jointly in all variables {ξp} around 0. The appearance of the
multivariate normal distribution is not related to the Gaussian choice for the copula but is a
consequence of the central limit theorem. We further omit explicit dependence on the central
factor X and focus on the calculation of the conditional average with the understanding that
the entire procedure is repeated with all values of X necessary to get the unconditional average.

A direct computation of the average (73) over a multivariate normal distribution still
requires a Monte Carlo simulation. The simulation noise can be significantly reduced if we
split from each loss variable Lp a part that is not correlated with other portfolios, similar to
the factor formulation (8) of the copula model. To this end we decompose the portfolio loss as

Lp = Λp + Dp + σpWp. (77)

Here Dp are correlated normal variables that capture systematic portfolio risk. The variables
Wp are independent identically distributed N(0, 1) variables uncorrelated with {Dp}, with
the meaning of idiosyncratic risk factor for each individual portfolio. The amplitudes of the
idiosyncratic terms σp are restricted by the requirement for the covariance matrix E[DpDp′ ]
to have non-negative eigenvalues. This requirement can be satisfied by taking all amplitudes
equal to the smallest eigenvalue of the covariance matrix Cpp′ .

The average of the variable Dp is zero due to the term Λp in the definition (77). The
off-diagonal part of the covariance matrix E[DpDp′ ] is Cp,p′ while the variances are reduced,

E[D2
p] = Cpp − σ2

p. (78)

This reduces the simulation noise in the variables Dp in comparison with the initial loss vari-
ables Lp and makes it possible to perform the integration over Dp using just a few points
(D(i)

1 , D
(i)
2 , . . . D

(i)
M ) in the M -dimensional space, adjusted to match the first and second mo-

ments.
The remaining problem is to compute the decorrelated average over independent Gaussian

N(0, 1) variables Wp

E
[
(L(a1 + σ1W1, · · · , aM + σMWM )−K)+

]
(79)

with shifted centers ap = Λp + D
(i)
p dependent on the integration points {D(i)

p }. Introducing
an auxiliary variable y by the formula (70) the expectation over each Wp is decoupled,

E
[
(L(a1 + σ1W1, . . . , aM + σMWM )−K)+

]

=
1

2πi

∫

C+

dy

y2
exp(−yK)

∏
p

E[ey((ap+σpWp−kp)+−(ap+σpWp−Kp)+)]

=
1

2πi

∫

C+

dy

y2
exp

(∑
p

log(χp(y))− yK

)
, (80)
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with

χp(y) = N (z(1)
p ) + ey (Kp−kp)N (−z(2)

p )

+ ey (ap−kp)+ 1
2
y2 σ2

p

(
N (z(2)

p − yσp)−N (z(1)
p − yσp)

)
, (81)

where constants z
(1)
p and z

(2)
p are z

(1)
p = kp−ap

σp
and z

(2)
p = Kp−ap

σp
. The residual one-dimensional

integral over y can be taken using the saddlepoint technique described in Sect. 4.2 with the
role of K(ξ) played by χ(y) =

∑
p log(χp(y)).

5.3 Numerical results for CDO2

Here we compare numerical results obtained using a direct Monte Carlo simulation of the cop-
ula model (MC), conditional multivariate normal approximation (NP-MC), and the semian-
alytical technique described in the previous section (NP-AN).

The underlying pool consists of 375 names with 5 year CDS spreads scattered around the
average of 89 bp with standard deviation 71 bp. Based on this pool are 8 portfolios of 100
names with average overlap around 25%. Attachment points for the underlying tranches are
5.5% and 6.5%. The first set of results is for the values of the differential stop-loss (L(t)−k)+−
(L(t) −K)+ at two time horizons, t = 1 and t = 4, for the bounds k = 12% and K = 28%,
assuming recovery rate 40% and one of three value of Gaussian copula correlations, 10%, 40%,
or 80%. The stop-loss is normalized to the tranche width and plotted as a function of CPU
time in Figs. (1–6). The runs were done on a single CPU 1.8MHz Pentium M processor. The
error bars for simulation based methods are obtained from the statistics over 36 independent
runs.

24



0.15

0.16

0.17

0.18

0.19

0.2

0.21

0.22

0 0.5 1 1.5

CPU time, sec

b
o

u
n

d
e
d

 l
o

s
s
, 
%

NP-AN

NP-MC

MC

Figure 1: Normalized expected bounded loss for CDO2: 1 year horizon and 10% correlation.
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Figure 2: Normalized expected bounded loss for CDO2: 1 year horizon and 40% correlation.
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Figure 3: Normalized expected bounded loss for CDO2: 1 year horizon and 80% correlation.
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Figure 4: Normalized expected bounded loss for CDO2: 4 year horizon and 10% correlation.
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Figure 5: Normalized expected bounded loss for CDO2: 4 year horizon and 40% correlation.
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Figure 6: Normalized expected bounded loss for CDO2: 4 year horizon and 80% correlation.
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The next set of runs is for the quarterly par spread of a CDO2 with 5 years to maturity and
attachment points k = 17.86%, K = 28.57%, based on the same set of 8 mezzanine tranches.

CDO2 par spread
MC NP-MC NP-AN

paths value time paths value time value time
(bp) (sec) (bp) (sec) (bp) (sec)

10000 406.02 ± 3.36 4.30 1000 407.82 ± 0.60 6.30 403.65 2.60
25000 405.59 ± 3.05 8.00 2500 407.89 ± 0.32 11.20 403.64 3.20
50000 405.72 ± 2.48 14.00 5000 407.89 ± 0.20 20.00 403.63 4.30

Finally we show results for hedge ratios to two arbitrarily chosen names out of the under-
lying pool. Name A has spread 91 bp and enters six portfolios, name B has spread 171 bp and
enters one portfolio.

CDO2 hedge ratio, name A
MC NP-MC NP-AN

paths value time paths value time value time
(%) (sec) (%) (sec) (%) (sec)

10000 5.93 ± 3.87 9.8 1000 5.61 ± 0.12 20.1 5.76 7.4
25000 5.26 ± 2.20 19.3 2500 5.64 ± 0.08 30 5.74 8.3
50000 5.23 ± 1.80 34 5000 5.62 ± 0.05 45 5.74 10.6

CDO2 hedge ratio, name B
MC NP-MC NP-AN

paths value time paths value time value time
(%) (sec) (%) (sec) (%) (sec)

10000 0.14 ± 2.02 9.7 1000 0.80 ± 0.02 20 0.76 7.4
25000 0.52 ± 1.23 19.4 2500 0.81 ± 0.02 30.1 0.73 8.3
50000 0.59 ± 0.80 34.1 5000 0.81 ± 0.01 45.1 0.73 10.6

The results show that the bias introduced by the multivariate normal approximation is not
worsened by further simplification described in the previous subsection. Thus the analytical
approximation produces answers of the same accuracy in a fraction of time required to run a
multivariate simulation.

5.4 Risk measures for portfolios of CDO tranches

Risk management for a portfolio of CDO tranches is based on details of the distribution
of losses for the aggregate quantity L, including the tail probability P [L ≥ K] and expected
shortfall E(L|L ≥ K). Because of a simple relation between expected shortfall, tail probability,
and stop-loss option, we only make a few remarks about the tail probability. The decoupling
formula now takes the form

θ(L −K) =
1

2πi

∫ c0+i∞

c0−i∞

exp(y(L −K))
y

dy. (82)
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The only difference from the stop-loss expression is the power of y in the denominator,

P [L ≥ K|X] =
∫ c0+i∞

c0−i∞

∫ c+i∞

c−i∞

dy
∏

dξp

(2πi)M+1

exp(−yK)
y

exp(K(ξ1, . . . , ξM |X))

∏
p

(
1
ξp

+
y [exp(y(Kp − kp)− ξpKp)− exp(−ξpkp)]

(y − ξp)ξp

)
. (83)

The approximate techniques developed for the stop-loss apply with minor adjustments.

5.5 Failure of granularity adjustment for CDO2

The derivation of the granularity adjustment for the stop-loss in the formula (63) carries over
to the multidimensional case. This approach performed poorly in our numerical experiments.
We only list here the final expression in the case of a one-dimensional central factor. With the
notations introduced in Sect. 5.2,

E[(L −K)+] ≈
∫

dx p(x)(L(x)−K)+

+
1
2

∑
p

[
p(xpL)Cpp(xpL)IL(xpL)

|Λ′p(xpL)| − p(xpH)Cpp(xpH)IL(xpH)
|Λ′p(xpH)|

]

+
1
2

∑
p1,p2

p(x0)Cp1p2(x0)Θkp1 ,Kp1
(Λp1(x0))Θkp2 ,Kp2

(Λp2(x0))
|L′(x0)| (84)

where L(x) = L(Λ1(x), . . . ΛM (x)), xpL is the root of the equation Λp(x) = kp, xpH is the
root of the equation Λp(x) = Kp, x0 is the root of the equation L(x) = K, Θkp,Kp(x) =
θ(x− kp)− θ(x−Kp), and IL(x) = θ(L(x)−K).

6 Conclusions

We considered in a systematic way several analytical techniques for synthetic CDOs and credit
default risk measures. Seemingly different methods of proxy normal integration, saddlepoint
method, and granularity adjustment were recast in a unified form driven by the expansions
of the cumulant generating function. Explicit expressions for the corrections to saddlepoint
approximation for the tail probability, expected shortfall, and stop-loss option were put down
in a form ready for numerical implementation. The decomposition of the VaR and expected
shortfall into asset contribution in the leading saddlepoint approximation was also fully devel-
oped. We also made progress on the stop-loss problem for CDO2, reducing the dimensionality
of the integration and discussing conditional decorrelation of portfolios. The technique of
decorrelation together with the saddlepoint evaluation of an integral over an auxiliary variable
leads to results of the same accuracy as the multivariate normal approximation with significant
runtime acceleration.
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