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Abstract

We consider reduced-form models for portfolio credit risk with interacting default in-
tensities. In this class of models default intensities are modelled as functions of time and
of the default state of the entire portfolio, so that phenomena such as default contagion or
counterparty risk can be modelled explicitly. In the present paper this class of models is
analyzed by Markov process techniques. We study in detail the pricing and the hedging
of portfolio-related credit derivatives such as basket default swaps and collaterized debt
obligations (CDOs) and discuss the calibration to market data.
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1 Introduction

With rapidly growing markets for portfolio credit derivatives such as collaterized debt obliga-
tions (CDOs) the development of suitable models for pricing these products has become an
issue of high concern. The key element in any such model is the mechanism generating the
dependence between default times. Here three major approaches falling within the broad cat-
egory of reduced-form models can be distinguished: models with dependent default intensities
but conditionally independent default times such as Duffie & Garleanu (2001); factor copula
models such as Li (2001), Laurent & Gregory (2005), Hull & White (2004); models with direct
interaction between default intensities such as Jarrow & Yu (2001), Davis & Lo (2001), Yu
(2007), Bielecki & Vidozzi (2006) or the present paper. A detailed description of these model
classes is given in McNeil, Frey & Embrechts (2005), Chapter 9.

At present factor-copula models are the market standard for pricing portfolio credit deriva-
tives. In a nutshell, in these models one starts from assumptions on the risk-neutral distribution
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function of the default times under consideration. This distribution function can be decom-
posed into marginal distributions and copula (dependence structure) of the default times. The
marginal distributions are determined by calibrating the model to defaultable-term-structure
data, the copula is specified by the modeller. Usually the copula has a factor structure as in
the case of the popular one-factor Gauss copula model, hence the name factor-copula models.
The separation into marginal distribution and dependence structure facilitates the calibration
of the model; this is the main reason for the popularity of this model class. Factor copula
models are usually presented and used in a static fashion, i.e. with a focus on the distribution
function of the default times. This makes it hard to to derive model-based hedging strategies
and to gain intuition for dynamic aspects of the model.

In models with interacting intensities on the other hand one adopts the standard modelling
practice in mathematical finance: start from assumptions on the dynamics of asset prices
and state variables and derive distributional properties. Hence in this class of models default
intensities are taken as model primitives; in particular, the modeller specifies explicitly the
impact of the default of one firm on the default intensities of surviving firms. This approach
allows for a very intuitive parameterization of default contagion and default dependence in
general. Moreover, the dynamic formulation permits the derivation of model-based hedging
strategies. On the downside, the calibration of the model to defaultable-term-structure data
can be more involved, as marginal distributions are typically not available in closed form.

In the present paper we study the pricing and the hedging of credit derivatives in models with
interacting intensities. In Section 2 we give a rigorous construction of the model as finite-state
Markov chain on the set of all default configurations. Particular emphasis is put on the case
where the portfolio consists of several homogenous groups. In Section 3 we study the pricing
of basket default swaps and CDOs. In particular, we show that appropriately parameterized
versions of our model are capable to explain the so-called implied correlation skew of synthetic
CDO tranches in an intuitive way which is directly linked to the dynamics of the model. In
Section 4 we derive dynamic hedging strategies for (basket) credit derivatives and analyze the
impact of default contagion on the form of the hedging strategies.

2 The Model

2.1 General Setup

Notation. We consider a portfolio of m firms, indexed by i ∈ {1, . . . ,m}. The evolution of the
default state of the portfolio is described by a default indicator process Y=

(
Yt,1, . . . , Yt,m)t≥0,

defined on some probability space (Ω,F , P ). We set Yt,i = 1 if firm i has defaulted by time t
and Yt,i = 0 else, so that Yt ∈ SY := {0, 1}m. The corresponding default times are denoted
by τi := inf{t ≥ 0: Yt,i = 1}. Since we consider only models without simultaneous defaults,
we can define the ordered default times T0 < T1 < . . . < Tm recursively by T0 = 0 and
Tn = min{τi : 1 ≤ i ≤ m, τi > Tn−1}, 1 ≤ n ≤ m. By ξn ∈ {1, . . . ,m} we denote the identity
of the firm defaulting at time Tn, i.e. ξn = i if Tn = τi. The internal filtration of the process Y
(the default history) is denoted by (Ht), i.e. Ht = σ(Ys : s ≤ t). We use the following notation
for flipping the ith coordinate of a default state: given y ∈ SY we define yi ∈ SY by

yi
i := 1− yi and yi

j := yj , j ∈ {1, . . . ,m} \ {i} . (1)
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Dynamics of Y. We assume that the default intensity of a non-defaulted firm i at time t is
given by a function λi(t,Yt) of time and of the current default state Yt.1 Hence the default
intensity of a firm may change if there is a change in the default state of other firms in the
portfolio; in this way default contagion and counterparty risk can be modelled explicitly. We
model the default indicator process by a time-inhomogeneous Markov chain with state space
SY. The next assumption summarizes the mathematical properties of Y.

Assumption 2.1 (Markov family). Consider bounded and measurable functions λi : [0,∞)×
SY→ R+, 1 ≤ i ≤ m. There is a family P(t,y), (t,y) ∈ [0,∞)× S, of probability measures on
(Ω,F , (Ht)) such that P(t,y)(Yt = y) = 1 and such that (Ys)s≥t is a finite-state Markov chain
with state space SY and transition rates λ(s,y1,y2) given by

λ(s,y1,y2) =

{
(1− y1,i)λi(s,y1), if y2 = yi

1 for some i ∈ {1 . . . ,m},
0 else.

(2)

Unless explicitly stated otherwise, P = P(0,0), i.e. we consider the chain Y starting at time 0
in the state 0 ∈ SY. Relation (2) has the following interpretation: In t the chain can jump
only to the set of neighbors of the current state Yt that differ from Yt by exactly one default;
in particular there are no joint defaults. The probability that firm i defaults in the small time
interval [t, t + h) thus corresponds to the probability that the chain jumps to the neighboring
state (Yt)i in this time period. Since such a transition occurs with rate λi(t,Yt), it should be
intuitively obvious that under Assumption 2.1 λi(t,Yt) is the default intensity of firm i at time
t; a formal argument is given below. The generator of Y at time t equals

G[t]f (y) =
m∑

i=1

(1− yi)λi(t,y)
(
f(yi)− f(y)

)
, y ∈ SY. (3)

It is well-known that for any f : SY → R the process f(Yt) −
∫ t
0 G[s]f (Ys)ds, t ≥ 0, is a

martingale. Let in particular fi(y) := yi and observe that G[t]fi (y) = (1 − yi)λi(t,y). It
follows that Yt,i −

∫ t∧τi

0 λi(s,Ys)ds is a martingale, establishing formally that λi(t,Yt) is the
default intensity of firm i. The transition probabilities of the chain Y are given by

p(t, s,y1,y2) := P(t,y1)(Ys = y2) = P (Ys = y2 | Yt = y1), 0 ≤ t ≤ s <∞. (4)

The numerical treatment of the model can be based on Monte Carlo simulation or on the
Kolmogorov forward and backward equation for the transition probabilities; see Appendix A
for further information.

Note that the model outlined in Assumption 2.1 is similar to interacting particle systems
studied in statistical mechanics. In particular the flip rate (default intensity) of a particle
(firm) depends on the current configuration (default-state) Yt of the system. The link between
portfolio credit risk and interacting particle systems is explored further in (Frey 2003) (Giesecke
& Weber 2006) or (Horst 2006), among others.

1It is possible to extend the model to stochastic default intensities of the form λi(Ψt,Yt) where Ψ represents

some economic factor process; see Frey & Backhaus (2004) for details.
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Conditional expectations and densities. In the next proposition we derive analytical
expressions for the density of the default time τi0 of a given firm and compute certain related
conditional expectations. These will come in handy in the pricing of (basket) default swaps
later in the paper.

Proposition 2.2. For i0 ∈ {1, . . . ,m}, 0 ≤ s ≤ t and ȳ ∈ SY with ȳi0 = 0, the density of τi0
with respect to P(s,ȳ) equals

P(s,ȳ)(τi0 ∈ dt) =
∑

{y∈SY: yi0
=0}

λi0(t,y) p(s, t, ȳ,y) . (5)

Moreover, we have for y ∈ SY

P(s,ȳ)

(
Yt = y | τi0 = t

)
= yi0P(s,ȳ)(τi0 ∈ dt)−1λi0(t,y

i0) p(s, t, ȳ,yi0). (6)

Proof. It suffices to consider the case (s, ȳ) = (0,0). We first show that for y ∈ SY with yi0 = 1
we have

lim
ε→0+

1
ε
P

(
Yt = y, τi0 ∈ (t− ε, t]

)
= λi0(t,y

i0)P
(
Yt = yi0

)
. (7)

To verify (7) we argue as follows. The probability to have more than one default in (t− ε, t] is
of order o(ε). Thus we have P

(
Yt = y, τi0 ∈ (t− ε, t]

)
= P

(
Yt−ε = yi0 , τi0 ∈ (t− ε, t]

)
+ o(ε).

Now we get, using the Markov property of Y,

P
(
Yt−ε = yi0 , τi0 ∈ (t− ε, t]

)
= E

(
E

(
1{Yt−ε=yi0}1{τi0

∈(t−ε,t]} | Ht−ε

))
= E

(
1{Yt−ε=yi0}1{τi0

>t−ε}P(t−ε,Yt−ε)(τi0 ≤ ε)
)
. (8)

Moreover, P(t−ε,yi0 )(τi0 ≤ ε) = ελi0(t − ε,yi0) + o(ε), and τi0 > t − ε on {Yt−ε = yi0}. Hence

(8) equals εE
(
1{Yt−ε=yi0}λi0(t− ε,yi0)

)
+ o(ε), and (7) follows.

The proof of the proposition is now straightforward. Relation (5) follows from (7) and the
fact that P

(
τi0 ∈ (t−ε, t]) =

∑
{y∈SY: yi0

=1} P
(
Yt = y, τi0 ∈ (t−ε, t]

)
; relation (6) follows from

(7), the definition of the elementary conditional expectation and a standard limit argument.

2.2 Models with Homogeneous-Group Structure

If the portfolio sizem is large it is natural to assume that the portfolio has a homogeneous-group
structure. This assumption gives rise to intuitive parameterizations for the default intensities;
moreover, the homogeneous-group structure leads to a substantial reduction in the size of the
state space of the model.

Homogeneous-group structure. Assume that we can divide our portfolio of m firms into
k groups (typically k � m) within which risks are exchangeable. A group might corre-
spond to firms with identical credit rating or to firms from the same industrial sector. Let
κ(i) ∈ {1, . . . , k} give the group membership of firm i and denote by mκ :=

∑m
i=1 1{κ(i)=κ} the

number of firms in group κ. Define functions M, Mκ : SY→ {1, . . . ,m} by M(y) :=
∑m

i=1 yi

respectively Mκ(y) :=
∑m

i=1 1{κ(i)=κ}yi , and put Mt := M(Yt) respectively Mt,κ := Mκ(Yt),
so that Mt and Mt,κ give the number of firms which have defaulted by time t in the entire
portfolio respectively in group κ. Define the vector process M = (Mt,1, . . . ,Mt,k)t≥0. Note
that M takes values in the set SM :=

{
l = (l1, . . . , lk

)
: lκ ∈ {0, . . . ,mκ}, 1 ≤ κ ≤ k

}
.
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Assumption 2.3 (Homogeneous-group structure). The default intensities of firms be-
longing to the same group are identical and of the form λi (t,Yt) = hκ(i)

(
t,M t

)
for bounded

and measurable functions hκ : [0,∞)× SM → [0,∞), 1 ≤ κ ≤ k.

Assumption 2.3 implies that for all κ the default indicator processes {(Yt,i)t≥0 : 1 ≤ i ≤
m, κ(i) = κ} of firms belonging to the same group are exchangeable. Conversely, consider
an arbitrary portfolio of m firms with default indicators satisfying Assumption 2.1, and sup-
pose that the portfolio can be split in k < m homogeneous groups. Homogeneity implies that
a) the default intensities are invariant under permutations π of {1, . . . ,m} leaving the group
structure invariant (λi(t,y) = λi(t, π(y)) for all i and all permutations π with κ(π(j)) = κ(j)
for all j), and b) that default intensities of different firms from the same group are iden-
tical. Condition a) immediately yields that λi(t,y) = hi(t,M1(y), . . . ,Mk(y)) for functions
hi : [0,∞)×SM → [0,∞); together with b) this implies that the default intensities necessarily
satisfy Assumption 2.3.

Examples. For later use we introduce several parameterizations for default intensities sat-
isfying Assumption 2.3. We begin with exchangeable models where the entire portfolio forms
a single homogeneous group; these form a very useful benchmark case. As just discussed, in
exchangeable models default intensities are necessarily of the form λi(t,Yt) = h(t,Mt) for some
h : [0,∞)× {0, . . . ,m} → R+, and the process M is a standard pure death process. Note that
the assumption that default intensities depend on Yt via the overall number of defaulted firms
M(Yt) makes sense also from an economic viewpoint, as unusually many defaults might have
a negative impact on the liquidity of credit markets or on the business climate in general.

The simplest exchangeable model is the linear counterparty-risk model. Here

h(t, l) = λ0 + λ1l , λ0 > 0, λ1 ≥ 0. (9)

The interpretation of (9) is straightforward: upon default of some firm the default intensity of
the surviving firms increases by the constant amount λ1 so that default dependence increases
with λ1; for λ1 = 0 defaults are independent. Model (9) is the homogeneous version of the
so-called looping-defaults model of Jarrow & Yu (2001).

The next model generalizes the linear counterparty-risk model in two important ways: first,
we introduce time-dependence and assume that a default event at time t increases the default
intensity of surviving firms only if Mt exceeds some deterministic threshold µ(t) measuring
the expected number of defaulted firms up to time t; second, we assume that on {l > µ(t)}
the function h(t, ·) is strictly convex. Convexity of h implies that large values of Mt lead to
very high values of default intensities, thus triggering a cascade of further defaults. This will
be important in explaining properties of observed CDO prices in Section 3.3. The following
specific model with the above features will be particularly useful:

h(t, l) = λ0 +
λ1

λ2

(
exp

(
λ2

(l − µ(t))+

m

)
− 1

)
, λ0 > 0, λ1 ≥ 0, λ2 ≥ 0 ; (10)

in the sequel we call (10) convex counterparty-risk model. In (10) λ0 is a level parameter that
mainly influences credit quality. λ1 gives the slope of h(t, l) at µ(t); intuitively this parameter
models the strength of default interaction for “normal” realisations of Mt. The parameter λ2
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controls the degree of convexity of h and hence the tendency of the model to generate default
cascades; note that for λ2 → 0 (and µ(t) ≡ 0) (10) reduces to the linear model (9).

In order to illustrate the modelling possibilities under Assumption 2.3, we finally introduce
a model which might be suitable for firms from k different industry groups. It is well-known
that defaults of firms from the same industry exhibit stronger dependence than defaults of firms
from different industries. To mimic this effect the default intensity of firms from group κ is
modelled by the function

hκ(t, l) = λκ,0 +
λ1

λ2

{
exp

(
λ2γ

(
lκ − µκ(t)

)+ + λ2(1− γ)
( k∑

i=1

li − µ(t)
)+)

− 1
}
, (11)

with parameters λκ,0 > 0, λ1 ≥ 0, λ2 ≥ 0 and γ ∈ [0, 1]. The first term in the argument of
the exponential function in (11) reflects the interaction between firms from the same industry
group; the second term captures the global interaction between defaults in the entire portfolio.
The relative strength of these effects is governed by the parameter γ.

Now we turn to certain mathematical properties of the homogeneous-group model.

Lemma 2.4 (Markov property of M). Assume that the default intensities satisfy Assump-
tion 2.3. Then under P(t,y) the process (M s)s≥t follows a time-inhomogeneous Markov chain
with state space SM , initial value M t = (M1(y), . . . ,Mk(y)), and generator

GM
[s]f (l) =

k∑
κ=1

(mκ − lκ)hκ(s, l)
(
f(l + eκ)− f(l)

)
, eκ the κth unit vector in Rk. (12)

Proof. Suppose that M s = (l1, . . . , lk). Since there are no joint defaults, M s can only jump to
the points {M s + eκ : 1 ≤ κ ≤ k, Ms,κ < mκ}. Now M s jumps to M s + eκ if and only if the
next defaulting firm belongs to group κ. Hence the transition rate from M s to M s +eκ equals

m∑
i=1

1{κ(i)=κ} (1− Ys,i) λi(s,Ys) = hκ(s,M s)
(
mκ −Ms,κ

)
.

The Markovianity of M follows, as this transition-rate depends on Ys only via M s. The form
of the generator GM

[s] is obvious.

The law of the chain (M s)s≥t starting at time t in the point l ∈ SM will be denoted by P(t,l).
Lemma 2.4 is useful for the numerical analysis of the model: note that the cardinality of the
state space of M is |SM | = (m1 + 1) · · · (mk + 1), so that for k fixed |SM | grows in m at
most at rate (m/k)k (polynomial growth) whereas

∣∣SY
∣∣ = 2m grows exponentially. Hence for

k small the distribution of M t can be inferred via the Kolmogorov equations for M even for
m relatively large. Moreover, under Assumption 2.3 the random variables {YT,i : κ(i) = κ}
are exchangeable, so that the probability function of YT can be expressed in terms of the
probability function of MT . Consider y ∈ SY and put l := (M1(y), . . .Mk(y)). We have

P (YT = y) =
P (MT = l)

|{x ∈ SY : M1(x) = l1, . . . ,Mk(x) = lk}|
=
P (MT = l)∏k

κ=1

(
mκ

lκ

) . (13)

Default probabilities can therefore be inferred from the probability function of MT . We get
P

(
YT,i = 1 |MT,κ(i)

)
= MT,κ(i)/mκ(i), and hence

P (YT,i = 1) = E
(
P (YT,i = 1 |MT,κ(i))

)
= m−1

κ(i)E(MT,κ(i)).

6



In the homogeneous-group case Proposition 2.2 can be refined as well:

Corollary 2.5. Consider a model that satisfies Assumption 2.3. We have for 1 ≤ i ≤ m

P (τi ∈ dt) =
∑

{l:lκ(i)>0}

mκ(i) − lκ(i) + 1
mκ(i)

hκ(i)(t, l− eκ(i))P (M t = l− eκ(i)) (14)

and for l̄ ∈ SM fixed,

P
(
M t = l̄ | τi = t

)
=

(mκ(i) − l̄κ(i) + 1)hκ(i)(t, l̄− eκ(i))P (M t = l̄− eκ(i))∑
{l:lκ(i)>0}

{
(mκ(i) − lκ(i) + 1)hκ(i)(t, l− eκ(i))P (M t = l− eκ(i))

} . (15)

The result follows from Proposition 2.2 via combinatoric arguments; we omit the details.

3 Pricing of Credit Derivatives

3.1 Our Setup

We consider a fixed portfolio of m firms with default indicator process Y. The following
assumptions on the structure of the market will be in force in the remainder of the paper.

Assumption 3.1 (Market structure).

(i) The investor-information at time t is given by the default history Ht = σ(Ys : s ≤ t).

(ii) The default-free interest rate is deterministic and equal to r(t) ≥ 0; p0(t, T ) = e−
∫ T

t r(s)ds

denotes the default-free zero-coupon bond with maturity T ≥ t.

(iii) (Martingale modelling.) There is a risk neutral pricing measure, denoted P , such that the
price in t of any HT -measurable claim H is given by Ht := p0(t, T )E(H | Ht) . Moreover,
Y satisfies Assumption 2.1 under P .

Comments. (i) The choice of (Ht) as underlying filtration is natural in view of the structure
of our model (see Assumption 2.1); it is moreover in line with the literature on the dynamic
structure of factor copula models such as Schönbucher (2004).
(ii) The assumption of deterministic interest rates is routinely made in the literature on portfolio
credit derivatives, as the additional complexity of stochastic interest rates is not warranted given
the huge degree of uncertainty in the modelling of the dependence structure of default times.
(iii) Martingale modelling is standard practice in the literature, because credit derivatives are
usually priced relative to traded credit products such as corporate bonds or single-name credit
default swaps (CDSs). Note however that from a methodological point of view, the choice of P
as pricing measure is unambiguously justified only if there are enough traded credit products
so that the market for credit derivatives can be considered complete. We come back to this
issue in Section 4.

7



Single-name credit derivatives. Throughout, we will calibrate the model to observed
prices of single-name credit derivatives (defaultable bonds or single-name CDSs). In the spirit
of Lando (1998), we reduce the pricing of these claims to the analysis of two building blocks,
survival claims and default payments. A survival claim (zero-recovery defaultable zero-coupon
bond) with maturity T on firm i has payoff 1 − YT,i. By the Markov-property of Y, the price
of this claim in t < T is given by

pi(t, T ) = p0(t, T )E(t,Yt)

(
(1− YT,i)

)
=: vi(t,Yt) . (16)

The function vi(t,Yt) can be computed using the Kolmogorov backward equation for Y, or,
under Assumption 2.3, the backward equation for M ; see the discussion following (13). A
default payment with deterministic payoff δ and maturity T on firm i is a claim which pays δ
at the default time τi if τi ≤ T ; otherwise there is no payment. On {τi > t} the price equals

Ht = δE
(
exp

(
−

∫ τi

t
r(s) ds

)
YT,i | Ht

)
= δ

∫ T

t
p0(t, s)P(t,Yt)(τi ∈ ds) ds ; (17)

this expression can be evaluated numerically using (5) or, in the homogeneous-group model,
(14). Of course, (16) or (17) can alternatively be computed via Monte Carlo simulation; see
Appendix A. Assuming a deterministic loss given default δ, the price of a defaultable zero-
coupon bonds under various recovery models as well as the fair swap spread of a plain vanilla
single-name CDS is easily computed from the pricing formulas for survival claims and default
payments; see for instance Section 9.4 of McNeil et al. (2005) for details.

3.2 Pricing of kth-to-default swaps

Payoff description. We consider a portfolio of m names with nominal Ni and deterministic
loss given default (LGD)i = δiNi, 1 ≤ i ≤ m, δi ∈ (0, 1). We start with a description of the
default payment leg of the structure. If the kth default time Tk is smaller than the maturity
T of the swap, the protection buyer receives at time Tk the loss of the portfolio incurred at
the kth default given by (LGD)ξk

. Note that the size of this payment is typically unknown at
time 0, as it depends on the identity ξk of the kth defaulting firm. The premium payment leg
consists of regular premium payments of size xkth(tn − tn−1) at fixed dates t1, t2, . . . , tN = T ,
provided tn ≤ Tk; after Tk the regular premium payments stop. The quantity xkth is the swap
spread of the kth-to-default swap. Moreover, if Tk ∈ (tn−1, tn), the protection seller is entitled
to an accrued premium payment at Tk of size xkth(Tk − tn−1). This structure can be priced
using Proposition 2.2:

Default payment leg. Under the above assumptions the value of the default payment leg
at t = 0 can be written as

V def :=
m∑

j=1

(LGD)j E
(

exp
(
−

∫ τj

0
r(s) ds

)
1{τj≤T}1{Mτj =k}

)
.

Now we obtain by conditioning on τj

E
(

exp
(
−

∫ τj

0
r(s) ds

)
1{τj≤T}1{Mτj =k}

)
=

∫ T

0
p0(0, t)P

(
Mt = k

∣∣τj = t
)
P (τj ∈ dt) dt. (18)
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Defining for l, j ∈ {1, . . . ,m} the set A1(l, j) := {y ∈ SY : M(y) = l, yj = 1}, we have
P

(
Mt = k | τj = t

)
=

∑
y∈A1(k,j) P (Yt = y | τj = t). Hence we get from (6) and (18)

V def =
m∑

j=1

(LGD)j

∑
y∈A1(k,j)

∫ T

0
p0(0, t)λj(t,yj)P (Yt = yj) dt ; (19)

for m small this expression can be computed using the forward equation for Y and numerical
integration. Under Assumption 2.3, Corollary 2.5 and the forward equation for M can be
used to evaluate (18). For instance, we get in an exchangeable model with only one group the
relation

V def =
∫ T

0
p0(0, t)

m− k + 1
m

h(t, k − 1)P (Mt = k − 1) dt
( m∑

j=1

(LGD)j

)
. (20)

Premium payment leg. The premium payment leg consists of the sum of the value of the
regular premium payments and the accrued premium payment; since {Tk ≤ t} = {Mt ≥ k},
given a generic swap spread x, its value in t = 0 can be written as

V prem(x) = x

N∑
n=1

{
(tn− tn−1)p0(0, tn)P

(
Mtn < k

)
+E

(
e−

∫ Tk
0 r(s)ds(Tk− tn−1)1{tn−1<Tk≤tn}

)}
. (21)

Using partial integration we get for the second term

E
(
e−

∫ Tk
0 r(s)ds(Tk − tn−1)1{tn−1<Tk≤tn}

)
=

∫ tn

tn−1

p0(0, t)(t− tn−1)P (Tk ∈ dt) dt

= p0(0, tn)(tn − tn−1)P (Mtn ≥ k)−
∫ tn

tn−1

p0(0, t)
(
1− r(t)(t− tn−1)

)
P (Mt ≥ k)dt .

Hence we get from (21)

V prem(x) = x
N∑

n=1

{
p0(0, tn)(tn− tn−1)−

∫ tn

tn−1

p0(0, t)
(
1− r(t)(t− tn−1)

)
P (Mt ≥ k) dt

}
, (22)

which is easily computed given the distribution of M . The fair spread xkth is finally obtained
by solving the equation V def = V prem(xkth).

Example 3.2. We consider a portfolio of m = 5 firms with corresponding 5-year CDS spreads
of 80bp, 90bp, 100bp, 110bp and 120bp (1bp =0.01%). Exposure N and loss given default δ
are identical across firms and given by N ≡ 1 and δ = 0.6. For simplicity we set r(t) ≡ 0.
Default intensities are given by a variant of the convex counterparty-risk model:

λi(t,Yt) = λ0,i +
λ1

λ2

(
eλ2

(
(M(Yt)−µ(t))+

m
∧0.37

)
− 1

)
; (23)

the cap at 0.37 has been introduced in order to avoid an “explosion” of the intensity for
high values of λ2. Since the average CDS spread of the portfolio is 0.01 (100bp) we take
µ(t) := 5

(
1− exp(−0.01

0.6 t)
)

as approximation for the expected number of defaulted firms. It is
interesting to compare the results of the Markov model with the industry standard one-factor
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kth-to-default spreads in bp k = 1 k = 2 k = 3 k = 4 k = 5

Gauss copula with ρ = 10% 469.73 81.18 11.32 1.07 0.05
Markov model with λ2 = 0 469.73 80.34 11.62 0.94 0.03
Markov model with λ2 = 5 469.73 77.47 13.76 1.51 0.07
Markov model with λ2 = 10 469.73 73.11 16.63 2.74 0.19

Table 1: Fair spread of kth-to-default swaps in Gauss copula model and Markov model for varying
convexity parameter λ2. Details are given in the text.

Gauss copula model, as this reveals the impact of the convexity parameter λ2 on swap spreads.
For this we first computed the fair kth-to default spreads in the one-dimensional Gauss copula
model. Then the basket swap was priced in the Markov model for varying values of λ2; λ0,i and
λ1 were calibrated to the single-name CDS spreads and the first-to-default spread x1st obtained
in the copula model. The results are contained in Table 1: as we increase λ2 the higher order
spreads x3rd, . . . , x5th increase even for x1st fixed. This shows that higher values of λ2 lead
to a fatter right tail of the portfolio loss distribution even if the left tail and the mean of the
distribution are kept fixed.

3.3 Synthetic CDO-Tranches

In this section we turn to an analysis of synthetic CDO tranches; in particular, we are interested
in modelling the well-known implied correlation skew.

Payoff description. A synthetic CDO tranche is based on a portfolio of m single-name
CDSs on m different reference entities. Let Ni denote the nominal exposure of the ith swap,
δi the percentage loss given default of company i and N :=

∑m
i=1Ni the overall exposure.

The cumulative loss of the portfolio up to time t due to default events is then given by Lt =∑m
i=1 δiNiYt,i . A synthetic CDO tranche is characterized by a maturity date T and fixed

percentage lower and upper attachment points 0 ≤ l ≤ u ≤ 1. The tranche consists of a default
payment leg and a premium payment leg. In order to describe the corresponding payments we
define the cumulative loss of the tranche by

L
[l,u]
t := v[l,u](Lt) := (Lt − lN)+ − (Lt − uN)+; (24)

note that L[l,u]
t gives the part of the cumulative loss falling in the layer [lN, uN ]. The notional

of the tranche at time t is defined as n[l,u](Lt) := (u− l)N −v[l,u](Lt). At a default time Tk ≤ T

there is a default payment of size ∆L[l,u]
Tk

:= L
[l,u]
Tk

− L
[l,u]
Tk−.

The premium payment leg consists of regular premium payments, to be made at fixed dates
0 = t0 < t1 < · · · < tN = T , and of accrued premium payments, to be made at the default times
Tk with Tk ≤ T . The regular premium payment at date tn is given by x[l,u](tn−tn−1)n[l,u](Ltn),
where x[l,u] is the fair annualized tranche spread. At a default time Tk ∈ (tn, tn+1] there is an
accrued payment of size x[l,u](Tk − tn)∆L[l,u]

Tk
. There are no initial payments so that the fair

tranche spread x[l,u] is computed by equating the value of default- and premium payment leg
of the structure.

10



Computation of tranche spreads. Given a generic tranche spread x, the value of the
regular payments equals

V prem,1
[l,u] (x) := x

N∑
n=1

p0(0, tn)(tn − tn−1)E
(
n[l,u](Ltn)

)
. (25)

The value of the default payments in t = 0 is given by

V def
[l,u] := E

(∫ T

0
exp

(
−

∫ t

0
r(s)ds

)
dL

[l,u]
t

)
. (26)

Theses expressions can be computed via standard Monte Carlo using Algorithm A.1. For most
synthetic CDO tranches it is assumed that Ni ≡ N and δi ≡ δ for some δ ∈ (0, 1]. If we
moreover assume that default intensities have the homogeneous group structure of Assumption
2.3, we can alternatively use a semi-analytic pricing approach based on the Kolmogorov forward
equation for M : first, we transform the Stieltjes integral in (26) using partial integration; since
L

[l,u]
0 = 0 and since L[l,u]

t = v[l,u](Lt) we get

V def
[l,u] = p0(0, T )E

(
v[l,u](LT )

)
+

∫ T

0
r(t)p0(0, t)E

(
v[l,u](Lt)

)
dt. (27)

The value of the accrued premium payment V prem,2
[l,u] (x) can be transformed via partial integra-

tion using a similar argument as in (27); we omit the details. Under our homogeneity assump-
tions, Lt = δNMt = δN

∑K
κ=1Mt,κ; moreover, the distribution of M t can be determined via

the Kolmogorov forward equation (38) for M .2

Implied correlation skews. By now there exists a liquid market for synthetic CDO tranches
on major CDS indices, and the properties of the corresponding tranche-spreads serve as refer-
ence point for many academic studies. In these markets spreads of synthetic CDO tranches are
usually expressed in terms of implied correlation in an exchangeable Gauss copula model with
Exp(γ)-distributed margins and exchangeable Gauss copula with correlation parameter ρ. The
parameter γ is calibrated to the CDS-index level, and the correlation parameter ρ is calibrated
to the observed tranche spread. Here to different notions of implied correlation are being used:
implied tranche correlation is the value of ρ that leads to the observed tranche spread; im-
plied base correlation is the implied tranche correlation corresponding to a hypothetical set of
tranche spreads for equity tranches [0, uk]; see for instance McGinty, Beinstein, Ahluwalia &
Watts (2004) for details.

Implied correlations show a typical pattern known as the implied correlation skew. As a
benchmark case we present the tranche spreads on the DJ iTraxx Europe (the major European
CDS index) on August 4, 2004. Standardized CDO-tranches on this index have a maturity of
3, 5, 7 or 10 years with 5 year tranches being particularly liquid, quaterly premium payments
and attachment points equal to 0%, 3%, 6%, 9%, 12%, 22%. Table 2 gives the CDO-spreads
observed on the market that day and the corresponding implied correlations. We observe that
implied tranche correlations are first decreasing and then increasing, whereas implied base
correlations are strictly increasing. Moreover, spreads for senior tranches (tranches with high
upper attachment point) are comparatively high. This behavior is typical for CDO markets.3

2Of course, this is computationally feasible only if the number of groups k is relatively small.
3While tranche spreads have changed a lot since 2004, the qualitative properties of tranche spreads are

unchanged; see also Table 4 in the appendix.
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Index [0,3] [3,6] [6,9] [9,12] [12,22]

market spread 42bp 27.6% 168bp 70bp 43bp 20bp
tranche correlation 22.4% 5.0% 15.3% 22.6% 30.6%
base correlation 22.4% 32.1% 38.8% 43.8% 57.1%

Table 2: Market quotes and implied correlations for the underlying index and synthetic CDO-tranche
spreads and corresponding implied correlations for the DJ iTraxx Europe. Note that the value of 27.6%
for the equity tranche corresponds to an upfront payment of 27.6% of the notional; the running spread
is set to 5% by market convention. The intensity parameter was calibrated to γ = 0.007. Spread data
are from Hull and White (2004).

Explaining Correlation Skews Implied correlation skews reflect deficiencies of the ex-
changeable Gauss copula model. In particular, the high implied correlations for the senior
tranches show that market participants expect large clusters of defaults to occur more fre-
quently than is consistent with a Gauss copula model. Most attempts to explain correlation
skews start from this observation. For instance Hull & White (2004), Kalemanova, Schmid &
Werner (2005), Guegan & Houdain (2005) or Elouerkhaoui (2006) consider models based on
alternative copulas leading to more frequently occurring default clusters. Graziano & Rogers
(2006) use a model with conditionally independent defaults driven by a Markov-chain; jumps
of the chain may moreover cause simultaneous defaults of several names.

We show next that is possible to generate correlation skews in the convex counterparty
risk model (10) respectively (23). The basic idea is simple: by increasing λ2 we can generate
occasional large clusters of defaults without affecting the left tail of the distribution of Lt too
much; in this way we can reproduce the high spread of the CDO tranches in a way which is
consistent with the observed spread of the equity tranche. To confirm this intuition we consider
the market data introduced in Table 2. In Table 3 we give the CDO spreads if the convexity
parameter λ2 is varied; λ0 and λ1 were calibrated to the index level and the observed market
quote of the equity tranche. The results show that for appropriate values of λ2 the model can
reproduce the qualitative behavior of the observed tranche spreads in a very satisfactory way.
This observation is interesting as it provides an explanation of correlation skews of CDOs in
terms of the dynamics of the default indicator process.4 Similarly as in Andersen & Sidenius
(2004), the model fit can be improved further by considering a state-dependent loss given default
of the form δt = δ0 + δ1Mt for δ0 and δ1 > 0; see again Table 3 for details.

Implied correlations for CDO tranches on the iTraxx Europe have changed substantially
since August 2004. More importantly, the analysis presented in Table 3 presents only a “snap-
shot” of the CDO market at a single day. For these reasons we recalibrated the convex coun-
terparty risk model 23 to 6 months of observed 5-year tranche spreads on the iTraxx Europe in
the period 23.9.2005–03.03.2006. In order to assess the issue of parameter-stability over time
we compared two different calibration approaches: first we did a full calibration where at a
given day λ0, λ1andλ2 were calibrated to the index level and the tranche spread of equity and
junior mezzanine tranche observed at that day; second, we did a partial calibration where at a
given day λ0 was calibrated to the index level observed at that day whereas for λ1 and λ2 we
used the values obtained by full calibration on Sept, 23 2005 (the first day of the sample). The

4Qualitatively similar results were recently obtained in the related paper Herbertsson (2007).
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tranches [0,3] [3,6] [6,9] [9,12] [12,22]

market spreads 27.6% 168.0bp 70.0bp 43.0bp 20.0bp

model spreads
∑

abs. err.

λ2 = 0 27.60% 223.1bp 114.5bp 61.1bp 16.9bp 120.8bp
λ2 = 5 27.60% 194.2bp 95.7bp 54.9bp 23.3bp 67.1bp
λ2 = 8 27.60% 172.1bp 80.0bp 46.7bp 23.7bp 21.5bp
λ2 = 8.54 27.60% 168.0bp 77.1bp 45.1bp 23.5bp 12.7bp
λ2 = 10 27.60% 156.9bp 69.4bp 40.7bp 22.7bp 16.7bp
state-dependent LGD
δ0 = 0.5; δ1 = 7.5

27.60% 168.0bp 71.2bp 39.3bp 19.6bp 5.3bp

Table 3: CDO-spreads in the convex counterparty risk model (23) for varying λ2. λ0 and λ1 were
calibrated to the index level of 42bp and the market quote for the equity tranche, assuming δ = 0.6.
For λ2 ∈ [8, 10] the qualitative properties of the model-generated CDO-spreads resemble closely the
behaviour of the market spreads; with state-dependent LGD the fit is almost perfect.

motivation for this distinction is as follows: λ0 is a level parameter which is mainly influenced
by the randomly fluctuating index spread so that one expects a lot of variability in this param-
eter; λ1 and λ2 on the other hand are structure parameters which should be reasonably stable
over time The results are contained in Table 4 in the appendix. A comparison of the tranche
spreads obtained via full and partial calibration shows that partial calibration performs quite
good, indicating that the model does indeed give a reasonable description of the dynamics of
CDO markets.

4 Hedging Credit Derivatives

In this section we study the hedging of credit derivatives under Assumption 3.1. In particular,
we give conditions ensuring that every HT -measurable claim can be replicated by dynamic
trading in a portfolio of defaultable zero-coupon bonds and cash. Not surprisingly, it turns
out that our results depend strongly on the dynamic structure of the model, in particular
on the choice of (Ht) as underlying filtration. This highlights a point made already in the
introduction: starting directly with assumptions on the joint distribution of τ1, . . . , τm and
neglecting the dynamic aspects of the model - as it is done in most of the literature on factor
copula models - might be bad modelling practice. The hedging of credit risky securities is also
studied in (Bielecki, Jeanblanc & Rutkowski 2004) and (Elouerkhaoui 2006).

The hedging problem. We use the setup introduced in Assumption 3.1. The set of hedging
instruments consists of defaultable zero-coupon bonds issued by the m firms in the portfolio;
for simplicity the bonds are assumed to have a zero recovery rate and fixed common maturity
T . Recall that the price of the bond issued by firm j is vj(t,Yt) := p0(t, T )E(t,Yt)

(
(1− YT,j)

)
.

In the sequel we will work with discounted quantities using the default-free zero coupon bond
p0(·, T ) as numéraire; the discounted price of the bond issued by firm j is then

ṽj(t,Yt) = E(t,Yt)

(
(1− YT,j)

)
. (28)
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We are aware that this choice of hedging instruments is not in line with market practice -
most practitioners regard single-name CDSs as natural hedging instruments for portfolio credit
derivatives - but it is a useful first step. In principle, our arguments apply also to the problem
of hedging with CDSs. However, the gains-from-trade process of these instruments takes on a
quite cumbersome form, thus complicating the analysis considerably.

We consider the problem of hedging a claim with maturity T , HT -measurable payoff H

and discounted price process H̃t = E(H | Ht); since Y is Markov, in most cases of interest H̃t

is in fact of the form ṽH(t,Yt) for some function ṽH : [0, T ] × SY → R. We are looking for
a selffinancing portfolio strategy θH = (θH

t,0, . . . , θ
H
t,m)0≤t≤T in the savings account and in the

defaultable zero-coupon bonds pj(·, T ), 1 ≤ j ≤ m, that replicates the claim H. By standard
results on numéraire-invariance, this is equivalent to finding a representation of the martingale
H̃ of the form

H̃t = H̃0 +
m∑

j=1

∫ t

0
θH
s,j dp̃j(s, T ) , 0 ≤ t ≤ T . (29)

We will approach this problem in two steps. First, we derive a martingale representation
of H̃ in terms of the compensated default indicator processes Nt,i := Yt,i −

∫ t∧τi

0 λi(s,Ys)ds,
1 ≤ i ≤ m; in Step 2 we use this representation to give conditions for the existence of a
martingale representation of H̃ in terms of the discounted bond price processes p̃j(·, T ).

Step 1. Since there are no joint defaults in our model, the mark space of the marked point
process (Tn, ξn)1≤n≤m, is given by the set {1, . . . ,m}. By standard results from stochastic
calculus - see for instance Jacod (1975) - every (Ht)-martingale can therefore be represented
as stochastic integral with respect to the m martingales Nt,i, . . . , Nt,m, i.e. there are predicable
processes φH

t,1, . . . , φ
H
t,m such that

H̃t = H̃0 +
m∑

i=1

∫ t

0
φH

s,idNs,i. (30)

The process φH is in fact easily determined: denote by At := {1 ≤ i ≤ m : Yt,i = 0} the set of
surviving firms at time t. Since ∆H̃t =

∑m
i=1 φ

H
t,i∆Yt,i we get that

φH
t,i0 =

m−1∑
n=0

1]]Tn Tn+1]](t)1ATn
(i0)

(
E

(
H̃T | HTn , Tn+1 = t, ξn+1 = i0

)
− H̃t

)
; (31)

if H̃t = ṽH(t,Yt), (31) reduces to φH
t,i0

= 1At(i0)
(
ṽH(t,Yi0

t ) − ṽH(t,Yt)
)
. Note that φH is by

definition left-continuous.

Step 2. In analogy with (30), there are predictable vector-valued processes φj such that

p̃j(t, T ) = p̃j(0, T ) +
m∑

i=1

∫ t

0
φj

s,idNs,i, 1 ≤ j ≤ m. (32)

Hence the desired representation (29) can be written in the form

H̃t = H̃0 +
m∑

j=1

∫ t

0
θH
s,j d

( m∑
i=1

∫ s

0
φj

u,i dNu,i

)
= H̃0 +

m∑
i=1

∫ t

0

( m∑
j=1

θH
s,jφ

j
s,i

)
dNs,i . (33)
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Comparing (30) and (33), we obtain the following equations for the random variables θH
t,j ,

j ∈ At, ∑
j∈At

φj
t,i θ

H
t,j = φH

t,i, i ∈ At , 0 ≤ t ≤ T ; (34)

for j /∈ At we let θH
t,j = 0. Note that (34) is a linear system of |At| equations for |At| unknowns

with coefficient matrix Φt :=
(
φj

t,i

)
i,j∈At

. Summing up, we therefore have

Proposition 4.1. Suppose that almost surely the matrix Φt has full rank for all t ∈ [0, T ].
Then every HT -measurable claim can be replicated by dynamic trading in the savings account
and the defaultable zero-coupon bonds pj(·, T ), 1 ≤ j ≤ m. The trading strategy (θH

t,1, . . . , θ
H
t,m)

is given as solution to the linear system (34) with coefficients φj
t,i determined in (32) and right

hand side φH
t,i determined in (30); θH

0 is determined by the selffinancing-condition.

Comments. 1. The system (34) can be simplified in the homogeneous-group case. In that
case φj

t,i = η
κ(j)
t,κ(i) and φH

t,i = ηH
κ(i) for stochastic processes ηκ

t,ν , η
H
t,ν , 1 ≤ ν, κ ≤ k. Hence also

θH
t,j = ψH

t,κ(j) and the stochastic processes ψH
t,κ, 1 ≤ κ ≤ k are determined by the following

system of k equations:

k∑
κ=1

(mκ −Mt,κ)ηκ
t,νψ

H
t,κ = ηH

t,ν , 1 ≤ ν ≤ k. (35)

2. The same argument applies to other hedging instruments such as single-name CDSs; the
only thing that changes is the form of the integrands in the martingale representation of the
corresponding discounted gains-from-trade process with respect to Nt,1, . . . , Nt,m.
3. The assumption that asset price processes are (Ht)-adapted is crucial for our analysis; with-
out this assumption the martingale representations (30) and (32) break down. This assumption
is not as innocent as it may seem: it implies that prices or spreads evolve deterministically
between defaults and react in a predictable way to default events in the portfolio. In market-
language, in our model there is event risk but between default times there is no spread- or
market risk. This is admittedly unrealistic, so that our analysis constitutes only a first step in
the development of a systematic theory for hedging credit derivatives. In particular, we expect
that in more realistic models markets will typically be incomplete. On the other hand, at least
from a conceptual point of view, the model-based hedging theory derived in Proposition 4.1 is
clearly an advance over the ad hoc hedging approaches that are currently being used in practice;
see for instance Neugebauer (2006).

The full-rank condition on Φt. For a given model and a given set of hedging instruments
the full rank condition is straightforward to verify. In the case of zero-recovery zero coupon
bonds as hedging instruments we can expect the full-rank condition to hold if the interaction
between defaults is not too strong or if the time-to maturity is not too large, as we now show.
By a similar reasoning as in (31), we obtain for i, j ∈ At

φj
t,i = ṽj(t,Yi

t)− ṽj(t,Yt) . (36)

Note that for j ∈ At the element φj
t,j = −ṽj(t,Yt) corresponds to the change in the value of

the bond due to default of the issuing firm j, whereas the off-diagonal elements φj
t,i, i 6= j,
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reflect the change in the value of the bond caused by the impact of the default of firm i on the
conditional survival probability of the issuer j. In particular, with independent defaults φj

t,i = 0
for i 6= j and φj

t,j < 0 for all j ∈ At. Hence Φt is a diagonal matrix with non-vanishing diagonal
elements, and the full-rank condition is obviously satisfied. Now recall the following simple
result from linear algebra: a generic matrix (aij)1≤i,j≤n is non-singular if it has a dominant
diagonal, i.e. if |aii| >

∑
i6=j |aij | for all i ∈ {1, . . . , n}. Since with independent defaults Φt is

diagonal, we expect that Φt has a dominant diagonal and therefore full rank, if the interaction
between default intensities is not to strong. A similar qualitative statement applies in the case
of a small time to maturity: Since ṽj(T,y) = p0(0, T )(1− yj), we get that

ΦT = diag
(
−p0(0, T ), . . . ,−p0(0, T )

)
.

Hence Φt has a dominant diagonal for t close to T (note that ṽ is continuous in t).

Example 4.2 (Hedging of a survival claim and a first-to-default swap). We consider
a portfolio of m = 5 firms with intensity function λi(t,Yt) = λ0,i + λ1

(M(Yt)
m ∧ 0.37

)
. Model

parameters are calibrated to the spread data of Example 3.2; for simplicity we take r(t) ≡ 0.
Throughout we use zero-coupon bonds with zero recovery rate and a maturity of T = 5 years
as hedging instruments.

We start with the replication of a zero-coupon bond issued by Firm 1 with a maturity of
T0 = 0.5. With independent defaults (λ1 = 0), the hedge portfolio is constant and given by
θt,1 ≡ p1(0, T0)/p1(0, T ); the cash position and the position in the bonds issued by Firm 2–
5 (the firms not underlying the transaction) are identically zero. For λ1 > 0 the situation
changes. In that case the default of, say, Firm 2 leads to an increase in the default intensity
of Firm 1, reducing the value of zero coupon bonds issued by Firm 1. This effect becomes
stronger with increasing time to maturity, so that |∆p1(τ2, T0)| < |∆p1(τ2, T )|. To make up
for the ensuing loss, the hedger has to take a short position in p2(·, T ). A similar argument
applies to Firm 3, 4 and 5. Numerical values for the position in the risky zero-coupon bonds are
plotted in Figure 1. The example shows that in the presence of default contagion the replicating
portfolio of a single-name credit derivative may contain defaultable securities issued by firms
not directly underlying the transaction.

Next we consider the default payment of a first-to-default swap. The corresponding hedging
strategy is illustrated numerically in Figure 2. The portfolio consists of a short position in all
the defaultable bonds underlying the transaction; in this way the portfolio produces a gain at
T1 which compensates the default payment. For λ1 > 0 the absolute size of this short-position
is reduced compared to the case of independent defaults. Intuitively, this is due to the fact that
with default contagion ∆pi(T1, T ) < 0 also for the surviving firms i ∈ AT1 . Since θT1,i < 0 this
leads to a an additional increase in the value of the hedge portfolio at T1 which contributes to
financing the payoff of the claim.

A Numerical tools for the Markov model

We present standard approaches for the numerical treatment of (time-inhomogeneous) finite-
state markov chains; see for instance Norris (1997) for the theoretical foundations.
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A.1 Monte Carlo

For the convenience of the reader we recall the standard algorithm for generating trajectories
of Y (or equivalently realisations of the sequence (Tn, ξn)1≤n≤m).

Algorithm A.1. 1. Generate independent random variables Z1, . . . , Zm, U1, . . . , Um with
Zi ∼ Exp(1), Ui ∼ U(0, 1). Put T0 = 0, y(0) = 0, n = 1, and define λ̄(1)

t :=
∑m

i=1(1 −
y

(0)
i )λi(t,y(0)).

2. Given Tn−1, y(n−1), (λ̄(n)
t )t≥Tn−1 , let Tn := inf

{
t ≥ Tn−1 :

∫ t
Tn−1

λ̄
(n)
s ds ≥ Zn

}
and let

ξn := i if
∑i−1

j=1(1− y
(n−1)
j )λj(Tn,y

(n−1)) ≤ λ̄
(n)
Tn
Un <

∑i
j=1(1− y

(n−1)
j )λj(Tn,y

(n−1)).

3. If n = m stop. Else, set y(n) :=
(
y

(n−1)
1 , . . . , 1 − y

(n−1)
ξn

, . . . , y
(n−1)
m

)
, define for t ≥ Tn

λ̄
(n+1)
t :=

∑m
i=1(1− y

(n)
i )λi(t,y(n)), replace n with n+ 1 and continue with Step 2.

A.2 Kolmogorov equations

The backward equation is an ODE system for the function (t,y1) → p(t, s,y1,y2), 0 ≤ t ≤ s;
s and y2 are considered as parameters. The equation has the form

∂

∂t
p(t, s,y1,y2) +G[t]p(t, s,y1,y2) = 0 for 0 ≤ t < s, p(s, s,y1,y2) = 1{y2}(y1). (37)

The forward-equation is an ODE-System for the function (s,y2) → p(t, s,y1,y2), s ≥ t,
which is governed by the adjoint operator G∗[s]. In its general form the forward equation reads
∂
∂sp(t, s,y1,y2) = G∗[s]p(t, s,y1,y2) with initial condition p(t, t,y1,y2) = 1{y1}(y2). This leads
to the following system of ODEs:

∂p(t, s,y1,y2)
∂s

=
∑

{j : y1,j=1}

λj(s,y
j
2)p(t, s,y1,y

j
2) −

∑
{j : y2,j=0}

λj(s,y2)p(t, s,y1,y2); (38)

for a formal proof see Appendix A.2 of Frey & Backhaus (2004). Note that the first term on
the right in (38) gives the instantaneous increase in the probability p(t, s,y1,y2) due to jumps
from neighboring states yj

2 into the state y2; the second term gives the instantaneous decrease
due to jumps from y2 to the neighboring states yj

2, 1 ≤ j ≤ m.
Of course, it is also possible to derive the Kolmogorov equations for the transition proba-

bilities of M . The exact form of the ODE-system for the backward equation is obvious. For
the forward equation we obtain the following ODE-system

∂pM (t, s, l1, l2)
∂s

=
k∑

κ=1

1{l2κ>0}
(
mκ − l2κ) + 1

)
hκ

(
s, l2 − eκ

)
pM

(
t, s, l1, l2 − eκ

)
−

k∑
κ=1

mκ − l2κhκ(s, l2)pM (t, s, l1, l2)

with initial condition pM (t, t, l1, l2) = 1{l1}(l
2).
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Figure 1: Evolution over time of the hedge portfolio of a survival claim with maturity date T = 0.5
(only positions in the defaultable zero-coupon bonds). Upper row: hedge portfolio if T1 > 0.5; lower
row: hedge portfolio if T1 = 0.25. Details are given in the text
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Figure 2: Evolution over time of the hedge portfolio for the default payment of a first-to-default swap
if t < T1. Left picture: cash-position θt,0; right picture: position θt,1, . . . , θt,5 in the defaultable zero-
coupon bonds.
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