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Abstract 
 
We describe a hedging strategy of CDO tranches based upon dynamic trading of the corresponding 
credit default swap index. We rely upon a homogeneous Markovian contagion framework, where only 
single defaults occur. In our framework, a CDO tranche can be perfectly replicated by dynamically 
trading the credit default swap index and a risk-free asset. Default intensities of the names only depend 
upon the number of defaults and are calibrated onto an input loss surface. Moreover, numerical 
implementation can be carried out fairly easily thanks to a recombining tree describing the dynamics 
of the aggregate loss. Both continuous time market and its discrete approximation are complete. The 
computed credit deltas can be seen as a credit default hedge and may also be used as a benchmark to 
be compared with the market credit deltas. 
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Introduction 
 
When dealing with CDO tranches, the market approach to the derivation of credit default 
swap deltas consists in bumping the credit curves of the names and computing the ratios of 
changes in present value of the CDO tranches and the hedging credit default swaps. This 
involves a pricing engine for CDO tranches, usually some mixture of copula and base 
correlation approaches, leading to so-called sticky deltas. The only rationale of this modus 
operandi is local hedging with respect to credit spread risks, provided that the trading books 
are marked-to-market with the same pricing engine. Even when dealing with small changes in 
credit spreads, there is no guarantee that this would lead to appropriate credit deltas. For 
instance one can think of changes in base correlation correlated with changes in credit 
spreads. Moreover, the standard approach is not associated with a replicating theory, thus 
inducing the possibility of unexplained drifts and time decay effects in the present value of 
hedged portfolios. 
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Unfortunately, the trading desks cannot rely on a sound theory to determine replicating prices 
of CDO tranches. This is partly due to the dimensionality issue, partly to the stacking of credit 
spread and default risks. Laurent (2006) considers the case of multivariate intensities in a 
conditionally independent framework and shows that for large portfolios where default risks 
are well diversified, one can concentrate on the hedging of credit spread risks and control the 
hedging errors. In this approach, the key assumption is the absence of contagion effects which 
implies that credit spreads of survival names do not jump at default times, or equivalently that 
defaults are not informative.  
 
In this paper, we take an alternative route, concentrating on contagion effects and default risks 
and neglecting specific credit spread dynamics. Contagion models were introduced to the 
credit field by Davis and Lo (2001), Jarrow and Yu (2001) and further studied by Yu (2007).  
Schönbucher and Schubert (2001) show that copula models exhibit some contagion effects 
and relate jumps of credit spreads at default times to the partial derivatives of the copula. This 
is also the framework used by Bielecki, Jeanblanc & Rutkowski (2007) to address the hedging 
issue. A similar but somehow more tractable approach has been considered by Frey & 
Backhaus (2006), since the latter paper considers some Markovian models of contagion. In a 
copula model, the contagion effects are computed from the dependence structure of default 
times, while in contagion models the intensity dynamics are the inputs from which the 
dependence structure of default times is derived. In both approaches, credit spreads shifts 
occur only at default times. Thanks to this quite simplistic assumption, and provided that no 
simultaneous defaults occur, it can be shown that the CDO market is complete, i.e. CDO 
tranche cash-flows can be fully replicated by dynamically trading individual credit spread 
swaps. 
 
For the paper to be self-contained, we recall in Section 1 the mathematics behind the perfect 
replicating strategy. The main tool there is a martingale representation theorem for 
multivariate point processes. In Section 2, we restrict ourselves to the case of homogeneous 
portfolios with Markovian intensities which results in a dramatic dimensionality reduction for 
the (risk-neutral) valuation of CDO tranches and the hedging of such tranches as well. We 
find out that the aggregate loss is associated with a pure birth process, which is now well 
documented in the credit literature. In line with several new papers, Section 3 provides some 
calibration procedures of such contagion models based on quotes of CDO tranches or on a 
“loss surface”. Section 4 details the computation of dynamic hedging strategies, involving the 
credit default swap index, through a recombining tree on the aggregate loss. We eventually 
study the dynamic deltas involved in the replication of CDO tranches through a simple case 
study. 
 
1 Theoretical framework 
 
1.1 Default times 
 
Throughout the paper, we will consider n obligors and a random vector of default times 
( )1, , nτ τ…  defined on a probabilistic space ( ), ,A PΩ . We denote by { }11( ) 1 , ,tN t τ ≤= …   

{ }( ) 1
nn tN t τ ≤=  the default indicator processes and by ( ), ( ),i t iH N s s tσ= ≤ , 1, ,i n= … , 

,1

n

t i ti
H H

=
= ∨ . ( )t t

H +∈\
 is the natural filtration associated with the default times.  
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We denote by 1, , nτ τ…  the ordered default times and assume that no simultaneous defaults 
can occur, i.e. 1 nτ τ< <… , .P a s− . This assumption is important with respect to the 
completeness of the market. As shown below, it allows to dynamically hedge basket default 
swaps and CDOs with n credit default swaps2. 
 
We moreover assume that there exists some ( ), tP H  intensities for the counting processes 

( )iN t , 1, ,i n= … , i.e. there exists some (non negative) tH -predictable  processes 1 , ,P P
nα α… , 

such that 
0

( ) ( )
t

P
i it N t s dsα→ − ∫  are ( ), tP H  martingales. 

1.2 Market assumptions 
 
For the sake of simplicity, let us assume for a while that instantaneous digital default swaps 
are traded on the names. An instantaneous digital credit default swap on name i  traded at t, 
provides a payoff equal to ( ) ( )Q

i idN t t dtα−  at t dt+ . ( )idN t  is the payment on the default leg 
and ( )Q

i tα  is the (short term) premium on the default swap.  
 
Since we deal with the filtration generated by default times, the credit default swap premiums 
are deterministic between two default events. Therefore, we restrain ourselves to a market 
where only default risks occurs and credit spreads themselves are driven by the occurrence of 
defaults. In our simple setting, there is no specific credit spread risk. This corresponds to the 
framework of Bielecki, Jeanblanc & Rutkowski (2007). 
 
For simplicity, we further assume that (continuously compounded) default-free interest rates 
are constant and equal to r . Given some initial investment 0V  and some tH - predictable 
processes ( ) ( )1 , , nδ δi … i  associated with some self-financed trading strategy in instantaneous 
digital credit default swaps, we attain at time T the payoff 

( ) ( )( )
0

1 0

( ) ( )
Tn

rT r T s Q
i i i

i
V e s e dN s s dsδ α−

=

+ −∑∫ . ( )i sδ  is the nominal amount of instantaneous 

digital credit default swap on name i  held at time s . This induces a net cash-flow of 
( )( ) ( ) ( )Q

i i is dN s s dsδ α× −  at time s ds+ , which has to be invested in the default-free savings 
account up to time T . 
 
1.3 Hedging and martingale representation theorem 
 
From the absence of arbitrage opportunities, 1 , ,Q Q

nα α…  are non negative tH - predictable 

processes. From the same reason, { } { }
. .

( ) 0 ( ) 0
P a s

Q P
i it tα α

−

> = > . Under mild regularity 

                                                 
2 In the general case where multiple defaults could occur, we have to consider possibly 2n  
states, and we would require non standard credit default swaps with default payments 
conditionally on all sets of multiple defaults to hedge CDO tranches. 
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assumptions, there thus exists a probability Q  equivalent to P such that, 1 , ,Q Q
nα α…  are the 

( ), tQ H  intensities associated with the default times3.  
 
Let us consider some TH  measurable Q  - integrable payoff M . Since M  depends upon the 
default indicators of the names up to time T , this encompasses the cases of CDO tranches and 
basket default swaps, provided that recovery rates are deterministic. Thanks to the integral 
representation theorem of point process martingales (see Brémaud, chapter III), there exists 
some tH - predictable processes 1, , nθ θ…  such that: 

 [ ] ( )
1 0

( ) ( ) ( )
Tn

Q Q
i i i

i
M E M s dN s s dsθ α

=

= + −∑∫ . 

As a consequence, we can replicate M  with the initial investment Q rTE Me−⎡ ⎤⎣ ⎦  and the 
trading strategy based on instantaneous digital credit default swaps defined by 

( )( ) ( ) r T s
i is s eδ θ − −=  for 0 s T≤ ≤  and 1, ,i n= … . Let us remark that the replication price at 

time t, is provided by ( )Q r T t
t tV E Me H− −⎡ ⎤= ⎣ ⎦ . 

 
While the use of the representation theorem guarantees that, in our framework, any basket 
default swap can be perfectly hedged with respect to default risks, it does not provide a 
practical way to construct hedging strategies. As is the case with interest rate or equity 
derivatives, exhibiting hedging strategies involves some Markovian assumptions. 
 
2 Homogeneous Markovian contagion models 
 
2.1 Intensity specification 
 
In the contagion approach, one starts from a specification of the (risk-neutral) default 
intensities 1 , ,Q Q

nα α… . Generally speaking, the risk-neutral default intensities depend upon the 
complete history of defaults. More simplistically, it is often assumed that they depend only 
upon the current credit status, i.e. the default indicators; thus { }( ),  1, ,Q

i t i nα ∈ …  is a 
deterministic function of 1( ), , ( )nN t N t… . This is the case of the models of Kusuoka (1999), 
Jarrow & Yu (2001), Yu (2007), where the intensities are affine functions of the default 
indicators4. 
 

                                                 
3 To avoid unnecessary mathematical difficulty, let us assume that the intensities remain 

.P a s−  positive, meaning that there is actually some default risk at any point in time. Let us 
define the default risk premium processes 1, , nφ φ…  from ( )( ) ( ) 1 ( )Q P

i i it t tα α φ= × + , t +∈\ , 
1, ,i n= … . The density of  Q  with respect to P is such that: 

( )
1

( ) ( ) ( )
n

P
i i i

i

dQ t dN t t dt
dP

ε φ α
=

⎛ ⎞= −⎜ ⎟
⎝ ⎠
∑∫  where ε  denotes the Doleans-Dade exponential. 

4 This Markovian assumption may be questionable, since the contagion effect of a default 
event may vanish as time goes by. The Hawkes process, that was used in the credit field by 
Gieseke and Goldberg (2006), Errais et al. (2007), provides such an example of a more 
complex time dependence. 
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Another practical issue is related to name heterogeneity. Modelling all possible interactions 
amongst names leads to a huge number of contagion parameters and high dimensional 
problems, thus to numerical issues. For this practical purpose, we will further restrict to 
homogeneous models, where all the names share the same risk-neutral intensity. This can be 
viewed as a reasonable assumption for CDO tranches on large indices, although this is 
obviously an issue with equity tranches for which idiosyncratic risk is an important feature. 
Since (risk-neutral) default intensities, 1 , ,Q Q

nα α…  are equal, we will further denote these 
individual risk-neutral intensities Qαi .  
 

We will further denote by 
1

( ) ( )
n

i
i

N t N t
=

= ∑  the number of defaults at time t  within the pool of 

assets. For simplicity, we will further assume a constant recovery rate equal to R . The 

aggregate fractional loss at time t  is given by: ( ) ( )( ) 1 N tL t R
n

= − . As a consequence of the 

no simultaneous defaults assumption, the loss intensity is simply the sum of the individual 
default intensities and is itself only a function of the number of defaults process. We are thus 
typically in a bottom-up approach, where one starts with the specification of name intensities 
and thus derives the dynamics of the aggregate loss.  
 
In a homogeneous and Markovian model, both individual and loss intensities depend only 
upon ( )N t . Intensities depending upon the number of defaults are related to mean-field 
approaches (see Frey & Backhaus (2006)). We will denote by ( ), ( )t N tλ  the risk-neutral loss 
intensity which is related to the individual risk-intensities by:   
 

( ) ( )( , ( )) ( ) , ( )Qt N t n N t t N tλ α= − × i . 
 
As for parametric specifications, we can think of some additive effects, i.e. the pre-default 
name intensities take the form ( ) ( )Q t N tα α β= +i  for some constants ,α β  as in Herbertsson 
(2007) or multiplicative effects in the spirit of Davis & Lo (2001), i.e. the pre-default 
intensities take the form ( )( )Q N ttα α β= ×i . Another possibility is a model of the form 

( ) ( )( ) ( )Q t t N tα α β= +i  which splits the time and number of defaults effects. Of course, we 

could think of an unconstrained model ( ), ( )Q t N tαi . This is discussed in van der Voort 
(2006), Arnsdorf & Halperin (2007) or Lopatin & Misirpashaev (2007). Later on, we provide 
a calibration procedure of such unconstrained intensities onto market inputs such as expected 
losses on CDO tranches. 
 
2.2 Risk-neutral pricing 
 
Let us remark that in a Markovian homogeneous contagion model, the process ( )N t  is a 
Markov chain (under the risk-neutral probability Q ), and more precisely a pure birth process 
since only single defaults can occur. The generator of the chain, ( )tΛ  is quite simple:  
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( ,0) ( ,0) 0 0 0 0 0
0 ( ,1) ( ,1) 0 0
0 0

( ) 0 0
0 0
0 ( , 1) ( , 1)
0 0 0 0 0 0 0

t t
t t

t

t n t n

λ λ
λ λ

λ λ

−⎛ ⎞
⎜ ⎟−⎜ ⎟
⎜ ⎟
⎜ ⎟Λ = ⎜ ⎟
⎜ ⎟
⎜ ⎟

− − −⎜ ⎟
⎜ ⎟
⎝ ⎠

i i
i

i
 

 

The transition matrix between dates t  and 't  is given by ( )
'

, ' exp ( )
t

t

Q t t s ds
⎛ ⎞

= Λ⎜ ⎟
⎝ ⎠
∫ . 

{ }( )N t n=  is an absorbing state. Such ideas have been put in practice by Arnsdorf & 
Halperin (2007), de Koch & Kraft (2007), Herbertsson (2007), Lopatin & Misirpashaev 
(2007) and Herbertsson & Rootzén (2006) for the pricing of basket credit derivatives and also 
with respect to calibration issues. 
 
As an example of the above approach, let us consider the replication of a European payoff 
with payment date T , such as a “zero-coupon tranchelet”, paying { }( )1 N T k=  at time T  for some 

{ }0,1, ,k n∈ … . Let us denote by ( ) ( )( ), ( ) ( ) ( )r T tV t N t e Q N T k N t− −= =  the time t replication 
price and by ( , )V t i  the price vector whose components are ( ,0), ( ,1), ( , )V t V t V t n…  for 
0 t T≤ ≤ . We can thus relate the price vector ( , )V t i  to the terminal payoff, using the 
transition matrix: 

( )( , ) ( , ) ( , )r T tV t e Q t T V T− −=i i , 
where ( )( , ( )) ( )kV T N T N Tδ= .  
 
Since ( ), ( )rte V t N t− ×  is a ( ), tQ H  martingale and using Ito-Doeblin’s formula, it can be seen 

that V  solves for: ( ) ( ) ( ) ( )( ) ( ), ( )
, ( ) , ( ) 1 , ( ) , ( )

V t N t
t N t V t N t V t N t rV t N t

t
λ

∂
+ × + − =

∂
5. 

 
2.3 Computation of credit deltas 
 
A nice feature of homogeneous contagion models is that the credit deltas, i.e. the holdings in 
the instantaneous defaults swaps are the same for all (the non-defaulted) names, which results 
in a dramatic dimensionality reduction.  
 
Let us consider a European6 type payoff and denote its replication price at time t , ( , )V t i . In 
order to compute the credit deltas, let us remark that: 

                                                 
5 This leads to the system of backward Kolmogorov differential equations: 

( ) ( )( , ) , ( , 1) ( , ) ( , )V t j t j V t j V t j rV t j
t

λ∂
+ × + − =

∂
, 0,1, , 1,0j n t T= − ≤ ≤… , 

subject to the boundary conditions: ( ), ( )kV T j jδ= , 0,1, ,j n= …  and, in the example of a 

zero-coupon tranchelet, to ( )( , ) ( ) r T t
kV t n n eδ − −= . 
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( ) ( ) ( ) ( )( ), ( )
, ( ) , ( ) 1 , ( ) ( )

V t N t
dV t N t dt V t N t V t N t dN t

t
∂

= + + −
∂

. 

( ) ( ), ( ) 1 , ( )V t N t V t N t+ −  is associated with the jump in the price process when a default 
occurs in the credit portfolio, i.e. ( ) 1dN t = . Thanks to the name homogeneity, 

( )

1
( ) ( )

n N t

i
i

dN t dN t
−

=

= ∑ 7 and using: 

( ) ( ) ( ) ( )( ) ( ), ( )
, ( ) , ( ) 1 , ( ) , ( )

V t N t
t N t V t N t V t N t rV t N t

t
λ

∂
+ × + − =

∂
, 

we end up with: 

( ) ( ) ( ) ( )( ) ( )( )
( )

1
, ( ) , ( ) , ( ) 1 , ( ) ( ) , ( )

n N t
Q

i
i

dV t N t rV t N t dt V t N t V t N t dN t t N t dtα
−

=

= + + − × −∑ i . 

As a consequence the credit deltas with respect to the individual instantaneous default swaps 
are equal to:  

( ) ( )( ) ( )( )( ) , ( ) 1 , ( ) 1 ( )r T t
i it e V t N t V t N t N tδ − −= + − × − , 

for 0 t T≤ ≤  and 1, ,i n= … . 
 
Let us recall that ( ), ( )IV t N t  denotes the time t  price of the equally weighted portfolio 

involving the defaultable bonds. Let us denote ( ) ( ) ( )
( ) ( )

, ( ) 1 , ( )
, ( )

, ( ) 1 , ( )I
I I

V t N t V t N t
t N t

V t N t V t N t
δ

+ −
=

+ −
. It 

can readily be seen that: 
 

( ) ( ) ( ) ( )( ) ( ) ( ), ( ) , ( ) , ( ) , ( ) , ( ) , ( )I I I IdV t N t r V t N t t N t V t N t dt t N t dV t N tδ δ= × − + . 
 
As a consequence, we can perfectly hedge a European type payoff, say a zero-coupon CDO 
tranche, using only the index portfolio and the risk-free asset. The hedge ratio, with respect to 

the index portfolio is actually equal to ( ) ( ) ( )
( ) ( )

, ( ) 1 , ( )
, ( )

, ( ) 1 , ( )I
I I

V t N t V t N t
t N t

V t N t V t N t
δ

+ −
=

+ −
. The previous 

hedging strategy is feasible provided that ( ) ( ), ( ) 1 , ( )I IV t N t V t N t+ ≠ . The usual case 

corresponds to some positive dependence, thus ( ) ( ) ( ),0 ,1 , 1Q Q Qt t t nα α α≤ ≤ ≤ −i i i" . 

Therefore ( ) ( ), ( ) 1 , ( )I IV t N t V t N t+ < 8. The decrease in the index portfolio value is the 
consequence of a direct default effect (one name defaults) and an indirect effect related to a 
positive shift in the credit spreads associated with the non-defaulted names. 
 
                                                                                                                                                         
6 At this stage, for notational simplicity, we assume that there are no intermediate payments. 
This corresponds for instance to the case of zero-coupon CDO tranches with up-front 
premiums. The more general case is considered below. 
7 The last ( )N t  names have defaulted. 
8 In the case where ( ) ( ) ( ),0 ,1 , 1Q Q Qt t t nα α α= = = −i i i" , there are no contagion effects and 

default dates are independent. We still have ( ) ( ), ( ) 1 , ( )I IV t N t V t N t+ <  since 

( ) ( )( , ) 1 ( )r T t Q
I

N TV t k e E N t k
n

− − ⎡ ⎤= − =⎢ ⎥⎣ ⎦
 is linear in k . 
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The idea of building a hedging strategy based on the change in value at default times was 
introduced in Arvanitis and Laurent (1999). The rigorous construction of a dynamic hedging 
strategy in a univariate case can be found in Blanchet-Scalliet and Jeanblanc (2004). Our 
result can be seen as a natural extension to the multivariate case, provided that we deal with 
Markovian homogeneous models: we simply need to deal with the number of defaults ( )N t  
and the index portfolio ( ), ( )IV t N t  instead of a single default indicator ( )iN t  and the 
corresponding defaultable discount bond price. 
 
2.4 Dynamics of defaultable discount bonds and credit spreads 
 
We can actually build a bridge between the above Markov chain approach for the aggregate 
loss and the well known models involving credit migrations. For this purpose, we will derive 
the dynamics of a (digital) defaultable discount bond associated with name { }1, ,i n∈ …  and 
maturity T . The corresponding payoff at time T  is equal to { }1 1 ( )

i iT N Tτ > = − . Let us now 

consider a portfolio of the previously defined defaultable bonds with holdings equal to 1
n

 for 

all names. The portfolio payoff is equal to ( ) ( ), ( ) 1I
N TV T N T

n
= − . The replication price at 

time t  given that ( )N t k=  of such a portfolio is equal to 
( ) ( )( , ) 1 ( )r T t Q

I
N TV t k e E N t k

n
− − ⎡ ⎤= − =⎢ ⎥⎣ ⎦

. Since the names are exchangeable, the n k−  non 

defaulted names have the same price which is thus ( , )IV t k
n k−

. Thus the price time t  of the 

defaultable discount bond, ( ),iB t T  is given by: 

( ) ( ) ( ), ( )
, 1 ( )

( )
I

i i

V t N t
B t T N t

n N t
= − ×

−
, ( ) ( ) ( )( ), , ,r T t

I IV t e Q t T V T− −=i i  

where the pre-default intensity of iτ  is equal to ( ) ( ), ( )
, ( )

( )
Q t N t

t N t
n N t
λ

α =
−i . When ( )N t n= , 

( ), ( ) 0Q t N tα =i  and ( ), 0iB t T = . Let us remark that the defaultable discount bond price 

follows a Markov chain with 1n +  states { } { }( ) 0, ( ) 0 , , ( ) 1, ( ) 0i iN t N t N t n N t= = = − =…  and 

{ }( ) 1iN t = . The generator matrix, ( )tΛ , is equal to: 
 

( )
( )

( ,0) ( 1) / ( ,0) 0 0 0 0 ( ,0) /
0 ( ,1) ( 2) /( 1) ( ,1) 0 ( ,1) /( 1)
0 0
0
0
0 ( , 1) ( , 1)
0 0 0 0 0 0 0

t n n t t n
t n n t t n

t n t n

λ λ λ
λ λ λ

λ λ

− −⎛ ⎞
⎜ ⎟− − − −⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟

− − −⎜ ⎟
⎜ ⎟
⎝ ⎠

i i i
i i

i
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Thus, the dynamics of the defaultable bond prices can be viewed as a special case of the one 
studied by Jarrow, Lando and Turnbull (1997) though the economic interpretation of the 
states slightly differs. 
 
3 Calibration issues 
 
As usual, calibration of a model on input prices is a critical issue. We discuss here several 
procedures to recover loss intensities from a loss surface or more simply from number of 
default probabilities. Once the loss intensities are computed, we will be able to compute some 
dynamic credit deltas of CDO tranches. While the pricing and thus the hedging involves a 
backward procedure, calibration is associated with forward Kolmogorov differential 
equations9. 
 
3.1 Loss surface and marginal number of defaults probabilities 
 
Here, for the paper to be self-contained, we recall how the number of defaults distributions 
can be recovered from the loss-surface which is closely related to the quotes of CDO tranches. 
The material here is quite standard 
 
We will further denote the marginal number of defaults probabilities by 

( )( , ) ( )p t k Q N t k= =  for 0 t T≤ ≤ , 0,1, ,k n= … .  
 
Given a recovery rate of R , the (fractional) loss at time t  on the credit portfolio is such that 

( )( ) (1 ) N tL t R
n

= − . A zero-coupon base correlation tranche with detachment point k� , 

0 1k≤ ≤�  and maturity t is associated with a payoff equal to: ( )min , ( )k L t� . We will denote by 

( ) ( ), min , ( )QEL t k E k L t⎡ ⎤= ⎣ ⎦
� �  the (risk-neutral) expected loss on such a tranche. The mapping 

( ) [ ] [ ] ( ), 0, 0,1 ,t k T EL t k∈ × →� �  is commonly known as the “loss surface”10.  

 

We readily get ( )
1

(1 )( , ) min , ,
n

m

m REL t k k p t m
n=

−⎛ ⎞= ⎜ ⎟
⎝ ⎠

∑� � . Conversely: 

( ) ( ) ( ) ( ) ( )1 1 1 1 1
( , ) , 2 , ,

1
k R k R k Rnp t k EL t EL t EL t

R n n n
⎛ ⎞− × − × − + × −⎛ ⎞ ⎛ ⎞ ⎛ ⎞

= − × − +⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟− ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠
, 

for 1, , 1k n= −…  and ( ) ( )1( , ) ,1 , 1
1

n np t n EL t R EL t R
R n

−⎛ ⎞⎛ ⎞= × − − × −⎜ ⎟⎜ ⎟− ⎝ ⎠⎝ ⎠
. Eventually, 

( ,0)p t  is obtained from 
0

( , ) 1
n

k

p t k
=

=∑ . Thus, given a loss surface we can derive the marginal 

distribution of the number of defaults for any time horizon. 
                                                 
9 Let us remark that the forward Kolmogorov equations have been used with a different 
purpose by Schönbucher (2006) (see equation (2.7)). The aim of the previous paper is to 
construct arbitrage-free, consistent with some complete loss surface, Markovian models of 
aggregate losses, possibly in incomplete markets, without detailing the feasibility and 
implementation of replication strategies. 
10  See Walker (2006) and Torresetti  et al. (2007) for details about the issues at hand. 
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3.2 Calibration equations on a complete loss surface 
 
We show here a non-parametric fitting procedure of a possibly non time homogeneous pure 
birth process onto a complete loss surface or equivalently onto the set of marginal 
distributions of number of defaults11. Proceeding heuristically and conditioning on the number 
of defaults at time t, we get: 

( )( , ) ( , ) 1 ( , ) ( , 1) ( , 1)p t dt k p t k t k dt p t k t k dtλ λ+ = × − + − × − , 

for 1, ,k n= …  and ( )( ,0) ( ,0) 1 ( ,0)p t dt p t t dtλ+ = × − , which yields: 
( , ) ( , 1) ( , 1) ( , ) ( , )dp t k t k p t k t k p t k
dt

λ λ= − − − , for 1, ,k n= … , ( ,0) ( ,0) ( ,0)dp t t p t
dt

λ= − . 

We refer to Karlin and Taylor (1975) for more details about the forward equations in the case 
of a pure birth process. The forward equations can be used to compute the loss intensity 
dynamics [ ]0, ( , ( ))t T t N tλ∈ → , thanks to: 

1 ( ,0)( ,0)
( ,0)

dp tt
p t dt

λ = − , 1 ( , )( , ) ( , 1) ( , 1)
( , )

dp t kt k t k p t k
p t k dt

λ λ⎡ ⎤= − − −⎢ ⎥⎣ ⎦
 for 1, ,k n= … , 

Let us remark that we can also write:  

( )
( )0

( , ) ( )1 1( , )
( , ) ( )

k

m
d p t m dQ N t k

t k
p t k dt Q N t k dt

λ = ≤
= − = −

=

∑
. 

 
Let us recall the standard no arbitrage requirements on the marginal number of defaults 

probabilities: 0 ( , ) 1p t m≤ ≤ , ( ) [ ] { }, 0, 0,1, , 1t m T n∀ ∈ × −… , 
0

( , ) 1
n

m
p t m

=

=∑ , [ ]0,t T∀ ∈  and 

since ( )N t  is non decreasing, 
0 0

( , ) ( ', )
k k

m m
p t m p t m

= =

≥∑ ∑ , { }0,1, ,k n∀ ∈ … , [ ], ' 0,t t T∀ ∈  and 

't t≤ .  
 
Thus, ( , ) 0t kλ ≥  thanks to the no arbitrage constraints on the loss surface. Moreover, since 

0
( , ) 1

n

m
p t m

=

=∑ ,  0

( , )
0

n

m

d p t m

dt
= =
∑

, thus ( , ) 0t nλ = , i.e. { }( )N t n=  is absorbing. In other words, 

the no-arbitrage constraints on the loss surface guarantee the existence of a non-negative loss 
intensity with the required boundary conditions. Eventually, the name intensities are provided 

by: ( ) ( , ( )), ( )
( )

Q t N tt N t
n N t
λα =
−i . 

 
However, despite its simplicity, the previous approach involves some theoretical and practical 
issues. Firstly, the loss surface may not be consistent with the assumption of no simultaneous 

defaults. This implies that ( ),
0

dp t m i
dt

+
=  for 0t = , 0,1, , 2m n= −…  and 2, ,i n m= −… . A 

loss surface computed under some arbitrary smoothing procedure is unlikely to fulfil such 

                                                 
11 The calibration idea parallels Dupire (1994), since local dynamics of the underlying process 
are derived from marginal distributions of options prices thanks to a forward equation. 
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constraints and will be associated with simultaneous defaults. Though some loss intensity can 
still be computed, this will not lead to an accurate pricing of CDO tranches, which is actually 
a failure of the calibration process. Moreover, the computation of expected losses for small 
time horizons or low detachment points consists in hazardous extrapolations far way from the 
quotes of liquid tranches. For these reasons, we think that it is more appropriate and 
reasonable to calibrate the Markov chain of aggregate losses on a discrete set of meaningful 
expected losses, corresponding to liquid maturities and attachment – detachment points. 
 
3.3 Calibration on a discrete set of expected losses 
 
We detail below the process given a single calibration date T . For simplicity, we will be 
given the number of defaults probabilities ( , ),  0,1, ,p T k k n= … . Clearly, this involves more 
information that one could directly access through the quotes of liquid CDO tranches, 
especially with respect to small and large number of defaults, and some kind of interpolation 
for non standard attachment points is required. 
 
The assumption of time homogeneous loss intensities is the most simple. We further denote 
by ( , )k t kλ λ=  for 0 t T≤ ≤ , the loss intensity for 0,1, , 1k n= −… 12. In the case of a discrete 
set of calibration dates, as in Arnsdorf & Halperin (2007), we may think of time homogeneous 
loss intensities between two calibration dates and a bootstrap calibration procedure. 
 
Solving for the forward equations provides 0( ,0) Tp T e λ−=  and 

( )
1

0

( , ) ( , 1)k

T
T s

kp T k e p s k dsλλ − −
−= −∫  for 1 1k n≤ ≤ − . The previous equations can be used to 

determine 0 1, , nλ λ −…  iteratively. When 0 1, , nλ λ −…  are positive and distinct, it can be seen that 
for any { }0, , 1k n∈ −… , ( , )p T k  is a decreasing function of kλ , taking value  

1
0

( , 1)
T

k p s k dsλ − −∫  for 0kλ =  and with a limit equal to zero as kλ  tends to infinity. As a 

consequence, there might not exist a solution to the calibration equations13 but if there is some 
solution, it is unique.  
 

When 0 1, , nλ λ −…  are positive and distinct, we can check that ,
0

( , ) i

k
t

k i
i

p t k a e λ−

=

= ∑  for 0 t T≤ ≤  

and 0, , 1k n= −… 14. Using the forward equations and starting from 0,0 1a = , we obtain the 

                                                 
12 Therefore, the pre-default name intensity is such that ( ) ( ), ( )

( )
N tQ t N t

n N t
λ

α =
−i . Let us recall 

that ( , ) 0t nλ = . 

13  Whenever 1
0

( , ) ( , 1)
T

kp T k p s k dsλ −> −∫  for some 1, , 1k n= −… . 

14 Since 0nλ = , ( , )p t n  takes a slightly different form. Its detailed expression is useless here 
since we only need to deal with ( ,0), ( , 1)p t p t n −…  to calibrate 0 1, , nλ λ −… . Let us also 
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recurrence equations 1
, 1,

k
k i k i

k i

a aλ
λ λ

−
−=

−
 for  0,1, , 1i k= −… , 1, , 1k n= −…  and, using 

(0, ) 0p k = , 
1

, ,
0

k

k k k i
i

a a
−

=

= −∑ . We can compute iteratively 1 1, , nλ λ −…  by solving the univariate 

non linear equations: 
( )1

1,
0 1

1 ( , )k i
i

Tk
T

k i
i k i k

e p T ka e
λ λ

λ

λ λ λ

− −−
−

−
= −

⎛ ⎞−
× =⎜ ⎟−⎝ ⎠

∑ , 1, , 1k n= −… . The previous 

equations have a unique solution provided that: 
1

1 1,
0

1( , )
iTk

k k i
i i

ep T k a
λ

λ
λ

−−

− −
=

⎛ ⎞⎛ ⎞−
< × ×⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
∑  for 

1, , 1k n= −… . 
 
4 Computation of credit deltas through a recombining tree 
 
4.1 Building up a tree 
 
We now address the computation of CDO tranche deltas with respect to the credit default 
swap index of the same maturity. As for the hedging instrument, the premium is set at the 
inception of the deal and remains fixed. Dealing with the credit default swap index at current 
market conditions would have been another possible choice. The former choice involves the 
same hedging instrument throughout the trading period. Similarly, we do not take into account 
roll dates every six months and trade the same index series up to maturity. Switching from 
one hedging instrument to another could be dealt with very easily in our framework but we 
thought the computation of the credit deltas with respect to a fixed underlying would be more 
meaningful. 
 

We recall that the aggregate loss is given by ( )( ) (1 ) N tL t R
n

= − . Let us consider a tranche 

with attachment point a  and detachment point b , 0 1a b≤ ≤ ≤ . The credit default swap index 
is simply a [ ]0,1  tranche. We denote by ( )( )O N t  the outstanding nominal on the previous 
tranche. It is equal to b a−  if ( )L t a< , to ( )b a L t− −  if ( )a L t b≤ <  and to 0  if ( )L t b≥ . 
 
Let us recall that, for a European type payoff the price vector fulfils 

( ' )( , ) ( , ') ( ', )r t tV t e Q t t V t− −=i i  for 0 't t T≤ ≤ ≤ . The transition matrix can be expressed as 

( )
'

, ' exp ( )
t

t

Q t t s ds
⎛ ⎞

= Λ⎜ ⎟
⎝ ⎠
∫  where ( )tΛ  is the generator matrix associated with the number of 

defaults process. We will be given a set of node dates 0 0, , , ,
si nt t t T= =… …  and denote by 

1i i it t+Δ = −  the corresponding time steps. The most simple discrete time approximation one 
can think of is ( ) ( ) ( )1 1,i i i i iQ t t Id t t t+ += + Λ × − . In the time homogeneous framework 
discussed in the previous section, the generator matrix does not depend on time. We readily 

                                                                                                                                                         

remark that ( , )p t n  can equally be recovered from 1
0

( , ) ( , 1)
t

np t n p s n dsλ −= −∫  or from 

0
( , ) 1

n

k
p t k

=

=∑ . 
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have ( )1( ) 1 ( )i i k iQ N t k N t k λ+ = + = = Δ  and ( )1( ) ( ) 1i i k iQ N t k N t k λ+ = = = − Δ . Thus, the 
number of defaults process can described through a recombining tree as in van der Voort 
(2006). One could clearly think of more sophisticated continuous Markov chain techniques, 
but we think that the tree implementation is quite intuitive from a financial point of view. 
Convergence of the discrete time Markov chain to its continuous limit is a rather standard 
issue and will not be detailed here. 
 
Let us denote by ( , )d i k  the value at time  it  when ( )iN t k=  of the default payment leg of the 
CDO tranche15. The default payment at time 1it +  is equal to ( ) ( )1( ) ( )i iO N t O N t +− . Thus, 

( , )d i k  is given by the following recurrence equation: 
( ) ( )( )( , ) ( 1, 1) ( ) ( 1) 1 ( 1, )ir

k i k id i k e d i k O k O k d i kλ λ− Δ= Δ × + + + − + + − Δ + . 
 
Let us now deal with a (unitary) premium leg. We denote the regular premium payment dates 
by 1, , pT T…  and for simplicity we assume that: { } { }1 0, , , ,

sp nT T t t⊂… … . Let us consider some 

date 1it +  and set l  such that 1 1l i lT t T+ +< ≤ . The premium cash-flows can be described as 
follows: if 1 1i lt T+ += , i.e. 1it +  is a regular premium payment date, there is a regular premium 
cash-flow at time 1it +  of ( ) ( )1 1( )l l lO N T T T+ +× − . Whatever 1it + , there is an extra accrued 

premium payment of ( ) ( )( ) ( )1 1( ) ( )i i i lO N t O N t t T+ +− × − . Thus, if 1it +  is a regular premium 

payment date, the total premium payment is equal to ( ) ( )1( )l l lO N T T T+× − . If  1it +  is not a 
regular premium payment date, we only need to account for a possible accrued premium 
payment equal to ( ) ( )( ) ( )1 1( ) ( )i i i lO N t O N t t T+ +− × − .  
 
Let us denote by ( , )r i k  the value at time it  when ( )iN t k=  of the unitary premium leg16. If 

{ }1 1, ,i pt T T+ ∈ … , ( , )r i k  is provided by: 

( ) ( ) ( )( )1( , ) ( ) ( 1, 1) 1 ( 1, )ir
l l k i k ir i k e O k T T r i k r i kλ λ− Δ
+= × − + Δ × + + + − Δ +  

If { }1 1, ,i pt T T+ ∉ … , then: 

( ) ( )( ) ( )( )1( , ) ( 1, 1) ( ) ( 1) 1 ( 1, )ir
k i i l k ir i k e r i k O k O k t T r i kλ λ− Δ

+= Δ × + + + − + × − + − Δ + . 

 

The CDO tranche premium is equal to (0,0)
(0,0)

ds
r

= . The value of the CDO tranche (buy 

protection case) at time  it  when ( )iN t k=  is given by ( , ) ( , ) ( , )CDOV i k d i k sr i k= − . The 
equity tranche needs to be dealt with slightly differently since its spread is set to 500bps = . 
However, the value of the CDO equity tranche is still given by ( , ) ( , )d i k sr i k− . 
 

                                                 
15 We consider the value of the default leg immediately after it . Thus, we do not consider a 
possible default payment at it . 
16 As for the default leg, we consider the value of the premium leg immediately after it . Thus, 
we do not take into account possible premium payments at it  either. 
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As for the credit default swap index, we will denote by ( , )ISr i k  and ( , )ISd i k  the values of the 
premium and default legs. The credit default swap index spread at time it  when ( )iN t k=  is 
given by ( , ) ( , ) ( , )IS IS ISs i k r i k d i k× = . The value of the credit default swap index at node ( ),i k  
is given by ( , ) ( , ) (0,0) ( , )IS IS IS ISV i k d i k s r i k= − × .  
 
As usual in binomial trees, ( , )i kδ  is the ratio of the difference of the option value (at time 

1it + ) in the upper state ( 1k +  defaults) and lower state ( k  defaults) and the corresponding 
difference for the underlying asset. In our case, both the CDO tranche and the credit default 
swap index are “dividend-baring”. For instance, when the number of defaults switches for k  
to 1k + , the default leg of the CDO tranche is associated with a default payment of 

( ) ( 1)O k O k− + . Similarly, given the above discussion, when the number of defaults switches 
for k  to 1k + , the premium leg of the CDO tranche is associated with an accrued premium 
payment of { } ( ) ( )

1 1
1, ,

1 ( ) ( 1)
i p

i lt T T
s O k O k t T

+
+∉

− × − + × −
…

. Thus, when a default occurs the 

change in value of the CDO tranche is the outcome of a capital gain of 
( ) ( )1, 1 1,CDO CDOV i k V i k+ + − +  and of a cash-flow of 

( ) { } ( )( )1 1
1, ,

( ) ( 1) 1 1
i p

i lt T T
O k O k s t T

+
+∉

− + × − × × −
…

. As for the credit default swap index, the 

change in the outstanding nominal is simply 1 R
n
−  where R  is the recovery rate and n  the 

number of names.  
 
The credit delta of the CDO tranche at node ( ),i k  with respect to the credit default swap 
index is thus given by: 

( ) ( ) ( ) { } ( )( )
( ) ( ) { } ( )( )

1 1

1 1

1, ,

1, ,

1, 1 1, ( ) ( 1) 1 1
( , ) 11, 1 1, 1 (0,0) 1

i p

i p

CDO CDO i lt T T

IS IS IS i lt T T

V i k V i k O k O k s t T
i k RV i k V i k s t T

n

δ +

+

+∉

+∉

+ + − + + − + × − × × −
= −+ + − + + × − × × −

…

…

. 

 
Let us remark that using the previous credit deltas leads to a perfect replication of a CDO 
tranche within the tree, which is feasible since the approximating discrete market is complete.  
 
We also remark that we can easily compute credit deltas with respect to the credit default 
swap index traded at current market conditions by using ( , )ISs i k  instead of (0,0)ISs  when 
computing ISV  at time 1it +  and in the ( , )i kδ  expression. 
 
4.2 Numerical results 
 
In this numerical illustration, the loss intensities kλ  are computed from a loss distribution 
generated from a one factor Gaussian copula. The correlation parameter is equal to 0.3ρ = , 
the credit spreads are all equal to 20 basis points per annum, the recovery rate is such that 

40%R =   and the maturity is 5T =  years. The number of names is 125n = . The 
continuously compounded default free rate is 3%r = . 
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Loss intensities kλ  are calibrated as previously discussed. Since the default probabilities 
( , )p T k  are insignificant for large number of defaults, we consider that 0kλ =  for 

max , ,k n n= … . Thus, the number of default cannot exceed max 50n =  or in probabilistic terms 
{ }max 50n =  is absorbing. Table 1 shows the calibrated loss intensities kλ  for 

max0, , 1k n= −… . 
 
 

0 1 2 3 4 5 6 7 8 9
0.27 0.41 0.57 0.75 0.94 1.15 1.36 1.59 1.82 2.05
10 11 12 13 14 15 16 17 18 19

2.29 2.54 2.79 3.04 3.29 3.55 3.80 4.06 4.32 4.58
20 21 22 23 24 25 26 27 28 29

4.84 5.10 5.35 5.61 5.87 6.12 6.38 6.63 6.88 7.13
30 31 32 33 34 35 36 37 38 39

7.37 7.62 7.86 8.10 8.34 8.57 8.80 9.03 9.25 9.47
40 41 42 43 44 45 46 47 48 49

9.69 9.91 10.12 10.32 10.53 10.72 10.92 11.11 11.30 11.48  
Table 1. max, 0, , 1k k nλ = −…  
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Figure 2. max, 0, , 1k k nλ = −…  

 
As can be seen from Figure 2, the loss intensity kλ  changes almost linearly with respect to the 
number of defaults. Table 2 shows the dynamics of the credit default swap index spreads 

( , )ISs i k  along the nodes of the tree. 
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0 14 28 42 56 70 84
0 20 19 19 18 18 17 17
1 0 31 30 29 28 27 26
2 0 46 44 43 41 40 38
3 0 63 61 58 56 54 52
4 0 83 79 76 73 70 67
5 0 104 99 95 91 87 83
6 0 127 121 116 111 106 101
7 0 151 144 138 132 126 120
8 0 176 169 161 154 146 140
9 0 203 194 185 176 168 160
10 0 230 219 209 200 190 181
11 0 257 246 235 224 213 203
12 0 284 272 260 248 237 225
13 0 310 298 286 273 260 248
14 0 336 324 311 298 284 271
15 0 0 348 336 323 308 294

N
b 

D
ef

au
lts

Weeks

 
Table 2. ( , )ISs i k  in basis points per annum 

 
The credit deltas ( , )i kδ  have been computed for the[ ]0,3% , [ ]3,6%  and  [ ]6,9%  CDO 
tranches (see Tables 3, 6 and 7).   
 
 

0 14 28 42 56 70 84
0 3.00% 0.967 0.993 1.016 1.035 1.052 1.065 1.075
1 2.52% 0 0.742 0.786 0.828 0.869 0.908 0.943
2 2.04% 0 0.439 0.484 0.532 0.583 0.637 0.691
3 1.56% 0 0.206 0.233 0.265 0.301 0.343 0.391
4 1.08% 0 0.082 0.093 0.106 0.121 0.141 0.164
5 0.60% 0 0.029 0.032 0.035 0.039 0.045 0.051
6 0.12% 0 0.004 0.005 0.005 0.006 0.006 0.007
7 0.00% 0 0 0 0 0 0 0

N
b 

D
ef

au
lts

WeeksOutStanding 
Nominal

 
Table 3.  ( , )i kδ  for the [ ]0,3%  equity tranche 

 
The credit deltas ( , )i kδ  can be decomposed into a default leg delta ( , )d i kδ  and a premium 
leg delta ( , )r i kδ  as follows: ( , ) ( , ) ( , )d ri k i k s i kδ δ δ= −  with 
 

( ) ( )
( ) ( ) { } ( )( )1 1

1, ,

1, 1 1, ( ) ( 1)
( , ) 11, 1 1, 1 (0,0) 1

i p

d

IS IS IS i lt T T

d i k d i k O k O k
i k RV i k V i k s t T

n

δ

+
+∉

+ + − + + − +
= −

+ + − + + × − × × −
…

 

and  
 

( ) ( ) ( ) { } ( )

( ) ( ) { } ( )( )
1 1

1 1

1, ,

1, ,

1, 1 1, ( ) ( 1) 1
( , ) 11, 1 1, 1 (0,0) 1

i p

i p

i lt T T
r

IS IS IS i lt T T

r i k r i k O k O k t T
i k RV i k V i k s t T

n

δ +

+

+∉

+∉

+ + − + + − + × −
=

−
+ + − + + × − × × −

…

…
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0 14 28 42 56 70 84
0 3.00% 0.814 0.843 0.869 0.893 0.915 0.933 0.949
1 2.52% 0 0.614 0.658 0.702 0.746 0.787 0.827
2 2.04% 0 0.341 0.384 0.431 0.482 0.535 0.591
3 1.56% 0 0.140 0.165 0.194 0.229 0.269 0.315
4 1.08% 0 0.045 0.054 0.064 0.078 0.095 0.117
5 0.60% 0 0.013 0.015 0.017 0.020 0.024 0.030
6 0.12% 0 0.002 0.002 0.002 0.003 0.003 0.003
7 0.00% 0 0 0 0 0 0 0

OutStanding 
Nominal

Weeks

N
b 

D
ef

au
lts

 
Table 4.  ( , )d i kδ  for the [ ]0,3%  equity tranche 

 
 

0 14 28 42 56 70 84
0 3.00% -0.153 -0.150 -0.146 -0.142 -0.137 -0.132 -0.126
1 2.52% 0 -0.128 -0.127 -0.126 -0.124 -0.120 -0.116
2 2.04% 0 -0.098 -0.100 -0.101 -0.102 -0.101 -0.100
3 1.56% 0 -0.066 -0.068 -0.071 -0.073 -0.074 -0.076
4 1.08% 0 -0.037 -0.039 -0.041 -0.043 -0.045 -0.047
5 0.60% 0 -0.016 -0.017 -0.018 -0.019 -0.020 -0.021
6 0.12% 0 -0.003 -0.003 -0.003 -0.003 -0.003 -0.003
7 0.00% 0 0 0 0 0 0 0

OutStanding 
Nominal

Weeks

N
b 

D
ef

au
lts

 
Table 5.  ( , )rs i kδ  for the [ ]0,3%  equity tranche 

 
This previous decomposition is useless for the two next tranches [ ]3,6%  and [ ]6,9%  since 
the impact of the CDO tranche premium leg becomes negligible. 
 

0 14 28 42 56 70 84
0 3.00% 0.162 0.139 0.117 0.096 0.077 0.059 0.045
1 3.00% 0 0.327 0.298 0.266 0.232 0.197 0.162
2 3.00% 0 0.497 0.489 0.473 0.448 0.415 0.376
3 3.00% 0 0.521 0.552 0.576 0.591 0.595 0.586
4 3.00% 0 0.400 0.454 0.508 0.562 0.611 0.652
5 3.00% 0 0.239 0.288 0.343 0.405 0.473 0.544
6 3.00% 0 0.123 0.153 0.190 0.236 0.291 0.358
7 2.64% 0 0.059 0.073 0.090 0.115 0.147 0.189
8 2.16% 0 0.031 0.036 0.043 0.052 0.066 0.086
9 1.68% 0 0.019 0.020 0.023 0.026 0.030 0.037
10 1.20% 0 0.012 0.012 0.013 0.014 0.016 0.018
11 0.72% 0 0.007 0.007 0.007 0.007 0.008 0.009
12 0.24% 0 0.002 0.002 0.002 0.002 0.002 0.003
13 0.00% 0 0 0 0 0 0 0

N
b 

D
ef

au
lts

WeeksOutStanding 
Nominal

 
Table 6.  ( , )i kδ  for the [ ]3,6%  tranche  
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0 14 28 42 56 70 84
0 3.00% 0.017 0.012 0.008 0.005 0.003 0.002 0.001
1 3.00% 0 0.048 0.036 0.025 0.017 0.011 0.006
2 3.00% 0 0.133 0.107 0.083 0.061 0.043 0.029
3 3.00% 0 0.259 0.227 0.193 0.157 0.122 0.090
4 3.00% 0 0.371 0.356 0.330 0.295 0.253 0.206
5 3.00% 0 0.405 0.423 0.428 0.420 0.396 0.358
6 3.00% 0 0.346 0.392 0.433 0.465 0.482 0.481
7 3.00% 0 0.239 0.292 0.350 0.409 0.465 0.510
8 3.00% 0 0.139 0.181 0.232 0.293 0.363 0.436
9 3.00% 0 0.074 0.098 0.132 0.177 0.235 0.307
10 3.00% 0 0.042 0.053 0.070 0.095 0.132 0.183
11 3.00% 0 0.029 0.033 0.040 0.051 0.070 0.098
12 3.00% 0 0.025 0.026 0.028 0.033 0.040 0.053
13 2.76% 0 0.022 0.022 0.022 0.024 0.026 0.031
14 2.28% 0 0.020 0.018 0.018 0.018 0.019 0.020
15 1.80% 0 0 0.015 0.014 0.014 0.014 0.014
16 1.32% 0 0 0.013 0.011 0.010 0.010 0.010
17 0.84% 0 0 0.009 0.008 0.007 0.006 0.006
18 0.36% 0 0 0.005 0.004 0.003 0.003 0.003
19 0.00% 0 0 0 0 0 0 0

OutStanding 
Nominal

N
b 

D
ef

au
lts

Weeks

 
Table 7.  ( , )i kδ  for the [ ]6,9%  tranche 

 
 
Conclusion 
 
This paper does not aim at providing a definitive answer to the thorny issue of hedging CDO 
tranches. For this purpose, we would also need to tackle name heterogeneity, possible non 
Markovian effects in the dynamics of credit spreads, non deterministic intensities between 
two default dates, the occurrence of multiple defaults, … A fully comprehensive approach to 
the hedging of CDO tranches is likely to be quite cumbersome both on economic and 
numerical grounds. 
 
The lack of internally consistent methods to hedging CDO tranches has paved the way to a 
variety of local hedging approaches that do not guarantee the full replication of tranche 
payoffs. Such incompleteness of the market may not look as such a practical issue as far as 
trade margins are high and holding periods short. However, we think that there might be a 
growing concern from investment banks about the long term credit risk management of 
trading books as the market matures. 
 
A homogeneous Markovian contagion model can be implemented as a recombining binomial 
tree and thus provides a strikingly easy way to compute dynamic replicating strategies of 
CDO tranches. While such models have recently been considered for the pricing of exotic 
basket credit derivatives, our main concern here is to provide a rigorous framework to the 
hedging issue. From a practical perspective, the assessment of such hedging strategies it is yet 
unclear. One would obviously think of hedging with respect to default risks only and not with 
respect to day to day changes in credit spreads. Meanwhile, we think that our approach might 
be useful to assess the default exposure of CDO tranches by quantifying the credit contagion 
effects in a reasonable way. 
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