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Abstract 
 
We describe a hedging strategy of CDO tranches based upon dynamic trading of the corresponding 
credit default swap index. We rely upon a homogeneous Markovian contagion framework, where only 
single defaults occur. In our framework, a CDO tranche can be perfectly replicated by dynamically 
trading the credit default swap index and a risk-free asset. Default intensities of the names only depend 
upon the number of defaults and are calibrated onto an input loss surface. Numerical implementation 
can be carried out fairly easily thanks to a recombining tree describing the dynamics of the aggregate 
loss. Both continuous time market and its discrete approximation are complete. The computed credit 
deltas can be seen as a credit default hedge and may also be used as a benchmark to be compared with 
the market credit deltas. Though the model is quite simple, it provides some meaningful results which 
are discussed in detail. We study the robustness of the hedging strategies with respect to recovery rate 
and examine how input loss distributions drive the credit deltas. Using market inputs, we find that the 
deltas of the equity tranche are lower than those computed in the standard base correlation framework 
and relate this to the dynamics of dependence between defaults. 
 
 
Keywords: CDOs, hedging, complete markets, contagion model, Markov chain, recombining 
tree. 
 
 
Introduction 
 
When dealing with CDO tranches, the market approach to the derivation of credit default 
swap deltas consists in bumping the credit curves of the names and computing the ratios of 
changes in present value of the CDO tranches and the hedging credit default swaps. This 
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involves a pricing engine for CDO tranches, usually some mixture of copula and base 
correlation approaches, leading to so-called sticky deltas. The only rationale of this modus 
operandi is local hedging with respect to credit spread risks, provided that the trading books 
are marked-to-market with the same pricing engine. Even when dealing with small changes in 
credit spreads, there is no guarantee that this would lead to appropriate credit deltas. For 
instance one can think of changes in base correlation correlated with changes in credit 
spreads. Moreover, the standard approach is not associated with a replicating theory, thus 
inducing the possibility of unexplained drifts and time decay effects in the present value of 
hedged portfolios (see Petrelli et al. (2006)). 
 
Unfortunately, the trading desks cannot rely on a sound theory to determine replicating prices 
of CDO tranches. This is partly due to the dimensionality issue, partly to the stacking of credit 
spread and default risks. Laurent (2006) considers the case of multivariate intensities in a 
conditionally independent framework and shows that for large portfolios where default risks 
are well diversified, one can concentrate on the hedging of credit spread risks and control the 
hedging errors. In this approach, the key assumption is the absence of contagion effects which 
implies that credit spreads of survival names do not jump at default times, or equivalently that 
defaults are not informative. Whether one should rely on this assumption is to be considered 
with caution as discussed in Das et al. (2007). Anecdotal evidence such as the failures of 
Delphi, Enron, Parmalat and WorldCom also show mixed results. 
 
In this paper, we take an alternative route, concentrating on contagion effects and default risks 
and neglecting specific credit spread dynamics. Contagion models were introduced to the 
credit field by Davis and Lo (2001), Jarrow and Yu (2001) and further studied by Yu (2007). 
Schönbucher and Schubert (2001) show that copula models exhibit some contagion effects 
and relate jumps of credit spreads at default times to the partial derivatives of the copula. This 
is also the framework used by Bielecki et al. (2007) to address the hedging issue. A similar 
but somehow more tractable approach has been considered by Frey and Backhaus (2007a), 
since the latter paper considers some Markovian models of contagion. In a copula model, the 
contagion effects are computed from the dependence structure of default times, while in 
contagion models the intensity dynamics are the inputs from which the dependence structure 
of default times is derived. In both approaches, credit spreads shifts occur only at default 
times. Thanks to this quite simplistic assumption, and provided that no simultaneous defaults 
occurs, it can be shown that the CDO market is complete, i.e. CDO tranche cash-flows can be 
fully replicated by dynamically trading individual credit spread swaps or, in some cases, by 
trading the credit default swap index.  
 
Lately, Frey and Backhaus (2007b) have considered the hedging of CDO tranches in a 
Markov chain credit risk model allowing for spread and contagion risk. In this framework, 
when the hedging instruments are credit default swaps with a given maturity, the market is 
incomplete. In order to derive dynamic hedging strategies, Frey and Backhaus (2007b) use 
risk minimization techniques. In a multivariate Poisson model, Elouerkhaoui (2006) also 
addresses the hedging problem thanks to the risk minimization approach. As can be seen from 
the previous papers, practical implementation can be cumbersome, especially when dealing 
the hedging ratios at different points in time and different states. 
 
As far as applications are concerned, calibration of the credit dynamics to market inputs is 
critical. Calibration of Markov chain models similar to ours have recently been considered by 
a number of authors including van der Voort (2006), Schönbucher (2006), Arnsdorf and 
Halperin (2007), de Koch and Kraft (2007), Epple et al. (2007), Lopatin and Misirpashaev 



3 

(2007), Herbertsson (2007a, 2007b), Cont and Savescu (2007). The aim of the previous 
papers is to construct arbitrage-free, consistent with some market inputs, Markovian models 
of aggregate losses, possibly in incomplete markets, without detailing the feasibility and 
implementation of replication strategies. Regarding the hedging issues, a nice feature of our 
specification is that the market inputs completely determine the credit dynamics, thanks to the 
forward Kolmogorov equations. This parallels the approach of Dupire (1994) in the equity 
derivatives context. Thanks to this feature and the completeness of the market, one can 
unambiguously derive dynamic hedging strategies of CDO tranches. This can be seen as a 
benchmark for the study of more sophisticated, model or criteria dependent, hedging 
strategies. 
 
For the paper to be self-contained, we recall in Section 1 the mathematics behind the perfect 
replicating strategy. The main tool there is a martingale representation theorem for 
multivariate point processes. In Section 2, we restrict ourselves to the case of homogeneous 
portfolios with Markovian intensities which results in a dramatic dimensionality reduction for 
the (risk-neutral) valuation of CDO tranches and the hedging of such tranches as well. We 
find out that the aggregate loss is associated with a pure birth process, which is now well 
documented in the credit literature. In line with several new papers, Section 3 provides some 
calibration procedures of such contagion models based on the marginal distributions of the 
number of defaults. Section 4 details the computation of replicating strategies of CDO 
tranches with respect to the credit default swap index, through a recombining tree on the 
aggregate loss. We look for the dependency of the hedging strategy upon the chosen recovery 
rate. We eventually discuss how hedging strategies are related to dependence assumptions in  
Gaussian copula and base correlation frameworks. 
 
1 Theoretical framework 
 
1.1 Default times 
 
Throughout the paper, we will consider n obligors and a random vector of default times 
( )1, , nτ τ…  defined on a probability space ( ), ,A PΩ . We denote by { }11( ) 1 , ,tN t τ ≤= …  

{ }( ) 1
nn tN t τ ≤=  the default indicator processes and by ( ), ( ),i t iH N s s tσ= ≤ , 1, ,i n= … , 

,1

n

t i ti
H H

=
= ∨ . ( )t t

H +∈\
 is the natural filtration associated with the default times.  

 
We denote by 1, , nτ τ…  the ordered default times and assume that no simultaneous defaults 
can occur, i.e. 1 nτ τ< <… , .P a s− . This assumption is important with respect to the 
completeness of the market. As shown below, it allows to dynamically hedge basket default 
swaps and CDOs with n credit default swaps2. 
 

                                                 
2 In the general case where multiple defaults could occur, we have to consider possibly 2n  
states, and we would require non standard credit default swaps with default payments 
conditionally on all sets of multiple defaults to hedge CDO tranches. 
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We moreover assume that there exists some ( ), tP H  intensities for the counting processes 

( )iN t , 1, ,i n= … , i.e. there exists some (non negative) tH – predictable processes 1 , ,P P
nα α… , 

such that 
0

( ) ( )
t

P
i it N t s dsα→ − ∫  are ( ), tP H  martingales. 

1.2 Market assumptions 
 
For the sake of simplicity, let us assume for a while that instantaneous digital default swaps 
are traded on the names. An instantaneous digital credit default swap on name i  traded at t, 
provides a payoff equal to ( ) ( )Q

i idN t t dtα−  at t dt+ . ( )idN t  is the payment on the default leg 
and ( )Q

i tα  is the (short term) premium on the default swap. Note that considering such 
instantaneous digital default swaps rather than actually traded credit default swaps is not a 
limitation of our purpose. This can rather be seen as a convenient choice of basis from a 
theoretical point of view. Of course, we will compute credit deltas with respect to traded 
credit default swaps in the applications below. 
 
Since we deal with the filtration generated by default times, the credit default swap premiums 
are deterministic between two default events. Therefore, we restrain ourselves to a market 
where only default risks occurs and credit spreads themselves are driven by the occurrence of 
defaults. In our simple setting, there is no specific credit spread risk. This corresponds to the 
framework of Bielecki et al. (2007). 
 
For simplicity, we further assume that (continuously compounded) default-free interest rates 
are constant and equal to r . Given some initial investment 0V  and some tH – predictable 
processes ( ) ( )1 , , nδ δi … i  associated with some self-financed trading strategy in instantaneous 
digital credit default swaps, we attain at time T the payoff 

( ) ( )( )
0

1 0

( ) ( )
Tn

rT r T s Q
i i i

i
V e s e dN s s dsδ α−

=

+ −∑∫ . ( )i sδ  is the nominal amount of instantaneous 

digital credit default swap on name i  held at time s . This induces a net cash-flow of 
( )( ) ( ) ( )Q

i i is dN s s dsδ α× −  at time s ds+ , which has to be invested in the default-free savings 
account up to time T . 
 
1.3 Hedging and martingale representation theorem 
 
From the absence of arbitrage opportunities, 1 , ,Q Q

nα α…  are non negative tH – predictable 

processes. From the same reason, { } { }
. .

( ) 0 ( ) 0
P a s

Q P
i it tα α

−

> = > . Under mild regularity 

assumptions, there thus exists a probability Q  equivalent to P such that, 1 , ,Q Q
nα α…  are the 

( ), tQ H  intensities associated with the default times (see Brémaud, chapter VI)3.  
 
Let us consider some TH  – measurable Q  – integrable payoff M . Since M  depends upon 
the default indicators of the names up to time T , this encompasses the cases of CDO tranches 
and basket default swaps, provided that recovery rates are deterministic. Thanks to the 

                                                 
3 Let us remark that the assumption of no simultaneous defaults also holds for Q . 
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integral representation theorem of point process martingales (see Brémaud, chapter III), there 
exists some tH - predictable processes 1, , nθ θ…  such that: 

 [ ] ( )
1 0

( ) ( ) ( )
Tn

Q Q
i i i

i
M E M s dN s s dsθ α

=

= + −∑∫ . 

As a consequence, we can replicate M  with the initial investment Q rTE Me−⎡ ⎤⎣ ⎦  and the 
trading strategy based on instantaneous digital credit default swaps defined by 

( )( ) ( ) r T s
i is s eδ θ − −=  for 0 s T≤ ≤  and 1, ,i n= … . Let us remark that the replication price at 

time t, is provided by ( )Q r T t
t tV E Me H− −⎡ ⎤= ⎣ ⎦

4. 
 
While the use of the representation theorem guarantees that, in our framework, any basket 
default swap can be perfectly hedged with respect to default risks, it does not provide a 
practical way to construct hedging strategies. As is the case with interest rate or equity 
derivatives, exhibiting hedging strategies involves some Markovian assumptions (see 
Subsection 2.3 and Section 4). 
 
2 Homogeneous Markovian contagion models 
 
2.1 Intensity specification 
 
In the contagion approach, one starts from a specification of the risk-neutral pre-default 
default intensities 1 , ,Q Q

nα α… 5. In the previous section framework, the risk-neutral default 
intensities depend upon the complete history of defaults. More simplistically, it is often 
assumed that they depend only upon the current credit status, i.e. the default indicators; thus 

{ }( ),  1, ,Q
i t i nα ∈ …  is a deterministic function of 1( ), , ( )nN t N t… . In this paper, we will 

further remain in this Markovian framework, i.e. the pre-default intensities will take the form 
( )1, ( ), , ( )Q

i nt N t N tα … 6. Popular examples are the models of Kusuoka (1999), Jarrow and Yu 
(2001), Yu (2007), where the intensities are affine functions of the default indicators. 
 
Another practical issue is related to name heterogeneity. Modelling all possible interactions 
amongst names leads to a huge number of contagion parameters and high dimensional 
problems, thus to numerical issues. For this practical purpose, we will further restrict to 

                                                 
4 Let us notice that ( )

1
( ) ( ) ( )

Tn
Q Q

t i i i
i t

M E M H s dN s s dsθ α
=

= + −⎡ ⎤⎣ ⎦ ∑∫ . As a consequence, we 

readily get ( )( )

1
( ) ( ) ( )

Tn
r T t Q

t i i i
i t

M V e s dN s s dsθ α−

=

= + −∑∫  which provides the time t  replication 

price of M . 
5 After default of name i , the intensity is equal to zero: ( ) 0Q

i tα =  on { }( ) 1iN t = . 
6 This Markovian assumption may be questionable, since the contagion effect of a default 
event may vanish as time goes by. The Hawkes process, that was used in the credit field by 
Gieseke and Goldberg (2006), Errais et al. (2007), provides such an example of a more 
complex time dependence. 
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models where all the names share the same risk-neutral intensity7. This can be viewed as a 
reasonable assumption for CDO tranches on large indices, although this is obviously an issue 
with equity tranches for which idiosyncratic risk is an important feature. Since pre-default 
risk-neutral default intensities, 1 , ,Q Q

nα α…  are equal, we will further denote these individual 
intensities by Qαi .  
 
For further tractability, we will further rely on a strong name homogeneity assumption, that 
individual default intensities only depend upon the number of defaults. Let us denote by 

1
( ) ( )

n

i
i

N t N t
=

= ∑  the number of defaults at time t  within the pool of assets. Intensities thus 

take the form ( ), ( )Q t N tαi . This is related to mean-field approaches (see Frey and Backhaus 
(2007a)). As for parametric specifications, we can think of some additive effects, i.e. the pre-
default name intensities take the form ( ) ( )Q t N tα α β= +i  for some constants ,α β  as 
mentioned in Frey and Backhaus (2007a), corresponding to the “linear counterparty risk 
model”, or multiplicative effects in the spirit of Davis and Lo (2001), i.e. the pre-default 
intensities take the form ( )( )Q N ttα α β= ×i . Of course, we could think of a non-parametric 
model. Later on, we provide a calibration procedure of such unconstrained intensities onto 
market inputs. 
 
For simplicity, we will further assume a constant recovery rate equal to R  and a constant 
exposure among the underlying names. The aggregate fractional loss at time t  is given by: 

( ) ( )( ) 1 N tL t R
n

= − . As a consequence of the no simultaneous defaults assumption, the 

intensity of ( )L t  or of ( )N t  is simply the sum of the individual default intensities and is itself 
only a function of the number of defaults process. Let us denote by ( ), ( )t N tλ  the risk-neutral 
loss intensity. It is related to the individual risk-intensities by:  

( ) ( )( , ( )) ( ) , ( )Qt N t n N t t N tλ α= − × i . 
We are thus typically in a bottom-up approach, where one starts with the specification of 
name intensities and thus derives the dynamics of the aggregate loss. 
 
2.2 Risk-neutral pricing 
 
Let us remark that in a Markovian homogeneous contagion model, the process ( )N t  is a 
Markov chain (under the risk-neutral probability Q ), and more precisely a pure birth process, 
according to Karlin and Taylor (1975) terminology8, since only single defaults can occur. The 
generator of the chain, ( )tΛ  is quite simple:  
 

                                                 
7 This means that the pre-default intensities have the same functional dependence to the 
default indicators. 
8 According to Feller’s terminology, we should speak of a pure death process. Since, we later 
refer to Karlin and Taylor (1975), we will use that latter terminology. 
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( ,0) ( ,0) 0 0 0 0 0
0 ( ,1) ( ,1) 0 0
0 0

( ) 0 0
0 0
0 ( , 1) ( , 1)
0 0 0 0 0 0 0

t t
t t

t

t n t n

λ λ
λ λ

λ λ

−⎛ ⎞
⎜ ⎟−⎜ ⎟
⎜ ⎟
⎜ ⎟Λ = ⎜ ⎟
⎜ ⎟
⎜ ⎟

− − −⎜ ⎟
⎜ ⎟
⎝ ⎠

i i
i

i
 

 
Such a simple model of the number of defaults dynamics was considered by Schönbucher 
(2006) where it is called the “one-step representation of the loss distribution”. Our paper is a 
bottom-up view of the previous model, where the risk-neutral prices can actually be viewed as 
replicating prices. As an example of this approach, let us consider the replication price of a 
European payoff with payment date T , such as a “zero-coupon tranchelet”, paying { }( )1 N T k=  at 

time T  for some { }0,1, ,k n∈ … . Let us denote by ( ) ( )( ), ( ) ( ) ( )r T tV t N t e Q N T k N t− −= =  the 
time t replication price and by ( , )V t i  the price vector whose components are 

( ,0), ( ,1), , ( , )V t V t V t n…  for 0 t T≤ ≤ . We can thus relate the price vector ( , )V t i  to the 
terminal payoff, using the transition matrix: 

( )( , ) ( , ) ( , )r T tV t e Q t T V T− −=i i , 
where ( )( , ( )) ( )kV T N T N Tδ=  and where the transition matrix between dates t  and T  is 

given by ( ), exp ( )
T

t

Q t T s ds
⎛ ⎞

= Λ⎜ ⎟
⎝ ⎠
∫ 9.  

 
These ideas have been put in practice by van der Voort (2006), Herbertsson and Rootzén 
(2006), Arnsdorf and Halperin (2007), de Koch and Kraft (2007), Epple et al. (2007), 
Herbertsson (2007a) and Lopatin and Misirpashaev (2007). These papers focus on the pricing 
of credit derivatives, while our concern here is the feasibility and implementation of 
replicating strategies. 
 
2.3 Computation of credit deltas 
 
A nice feature of homogeneous contagion models is that the credit deltas, i.e. the holdings in 
the instantaneous defaults swaps are the same for all (the non-defaulted) names, which results 
in a dramatic dimensionality reduction.  
 
Let us consider a European10 type payoff and denote its replication price at time t , ( , )V t i . In 
order to compute the credit deltas, let us remark that: 

                                                 
9 Since ( ), ( )rte V t N t− ×  is a ( ), tQ H  martingale and using Ito-Doeblin’s formula, it can be 
seen that V  solves for the backward Kolmogorov equations: 

( ) ( ) ( ) ( )( ) ( ), ( )
, ( ) , ( ) 1 , ( ) , ( )

V t N t
t N t V t N t V t N t rV t N t

t
λ

∂
+ × + − =

∂
. 
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( ) ( ) ( ) ( )( ), ( )
, ( ) , ( ) 1 , ( ) ( )

V t N t
dV t N t dt V t N t V t N t dN t

t
∂

= + + −
∂

. 

( ) ( ), ( ) 1 , ( )V t N t V t N t+ −  is associated with the jump in the price process when a default 
occurs in the credit portfolio, i.e. ( ) 1dN t = . Thanks to the name homogeneity, 

( )

1
( ) ( )

n N t

i
i

dN t dN t
−

=

= ∑ 11 and using: 

( ) ( ) ( ) ( )( ) ( ), ( )
, ( ) , ( ) 1 , ( ) , ( )

V t N t
t N t V t N t V t N t rV t N t

t
λ

∂
+ × + − =

∂
, 

we end up with: 

( ) ( ) ( ) ( )( ) ( )( )
( )

1
, ( ) , ( ) , ( ) 1 , ( ) ( ) , ( )

n N t
Q

i
i

dV t N t rV t N t dt V t N t V t N t dN t t N t dtα
−

=

= + + − × −∑ i . 

As a consequence the credit deltas with respect to the individual instantaneous default swaps 
are equal to:  

( ) ( )( ) ( )( )( ) , ( ) 1 , ( ) 1 ( )r T t
i it e V t N t V t N t N tδ − −= + − × − , 

for 0 t T≤ ≤  and 1, ,i n= … . 
 

Let us denote by ( ) ( )( , ) 1 ( )r T t Q
I

N TV t k e E N t k
n

− − ⎡ ⎤= − =⎢ ⎥⎣ ⎦
 the time t  price of the equally 

weighted portfolio involving defaultable discount bonds and set 

( ) ( ) ( )
( ) ( )

, ( ) 1 , ( )
, ( )

, ( ) 1 , ( )I
I I

V t N t V t N t
t N t

V t N t V t N t
δ

+ −
=

+ −
. It can readily be seen that: 

 
( ) ( ) ( ) ( )( ) ( ) ( ), ( ) , ( ) , ( ) , ( ) , ( ) , ( )I I I IdV t N t r V t N t t N t V t N t dt t N t dV t N tδ δ= × − + . 

 
As a consequence, we can perfectly hedge a European type payoff, say a zero-coupon CDO 
tranche, using only the index portfolio and the risk-free asset12. The hedge ratio, with respect 

to the index portfolio is actually equal to ( ) ( ) ( )
( ) ( )

, ( ) 1 , ( )
, ( )

, ( ) 1 , ( )I
I I

V t N t V t N t
t N t

V t N t V t N t
δ

+ −
=

+ −
. The 

previous hedging strategy is feasible provided that ( ) ( ), ( ) 1 , ( )I IV t N t V t N t+ ≠ . The usual 

case corresponds to some positive dependence, thus ( ) ( ) ( ),0 ,1 , 1Q Q Qt t t nα α α≤ ≤ ≤ −i i i" . 

Therefore ( ) ( ), ( ) 1 , ( )I IV t N t V t N t+ < 13. The decrease in the index portfolio value is the 

                                                                                                                                                         
10 At this stage, for notational simplicity, we assume that there are no intermediate payments. 
This corresponds for instance to the case of zero-coupon CDO tranches with up-front 
premiums. The more general case is considered in Section 4. 
11 The last ( )N t  names have defaulted. 
12 As above, in order to ease the exposition, we neglect at this stage actual payoff features 
such as premium payments, amortization schemes, and so on. This is detailed in Section 4. 
13 In the case where ( ) ( ) ( ),0 ,1 , 1Q Q Qt t t nα α α= = = −i i i" , there are no contagion effects and 

default dates are independent. We still have ( ) ( ), ( ) 1 , ( )I IV t N t V t N t+ <  since ( ), ( )IV t N t  is 
linear in k . 
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consequence of a direct default effect (one name defaults) and an indirect effect related to a 
positive shift in the credit spreads associated with the non-defaulted names. 
 
The idea of building a hedging strategy based on the change in value at default times was 
introduced in Arvanitis and Laurent (1999). The rigorous construction of a dynamic hedging 
strategy in a univariate case can be found in Blanchet-Scalliet and Jeanblanc (2004). Our 
result can be seen as a natural extension to the multivariate case, provided that we deal with 
Markovian homogeneous models: we simply need to deal with the number of defaults ( )N t  
and the index portfolio ( ), ( )IV t N t  instead of a single default indicator ( )iN t  and the 
corresponding defaultable discount bond price. 
 
Though this is not further needed in the computation of dynamic hedging strategies, we can 
actually build a bridge between the above Markov chain approach for the aggregate loss and 
well-known models involving credit migrations (see Appendix A). 
 
3 Calibration of loss intensities 
 
Another nice feature of the homogeneous Markovian contagion model is that the loss 
dynamics or equivalently the default intensities can be determined from market inputs such as 
CDO tranche premiums. Since the risk neutral dynamics are unambiguously derived from 
market inputs, so will be for dynamic hedging strategies of CDO tranches. This greatly 
facilitates empirical studies, since the replicating figures do not depend upon unobserved and 
difficult to calibrate parameters. 
 
The construction of the implied Markov chain for the aggregate loss parallels the one made by 
Dupire (1994) to construct a local volatility model from call option prices. The local dynamics 
are derived thanks to the forward Kolmogorov equations. The main difference is the use of 
Markov chains instead of diffusion processes. 
 
The calibration procedure depends on the available inputs. For a complete set of CDO tranche 
premiums or equivalently for a complete set of number of default distributions, Schönbucher 
(2006) provided the construction of the loss intensities. For the paper to be self-contained, we 
detail and comment this in the Appendix B. 
 
In practical applications, we think that it is more appropriate to use a discrete set of loss 
distributions corresponding to liquid CDO tranche maturities. In the examples below, we will 
calibrate the loss intensities given a single calibration date T . For simplicity, we will be given 
the number of defaults probabilities ( , ),  0,1, ,p T k k n= … 14. As for the computation of the 
latter quantities from quoted CDO tranche premiums, we refer to Krekel and Partenheimer 
(2006), Galiani et al. (2006), Meyer-Dautrich and Wagner (2007), Walker (2007a) and 
Torresetti et al. (2007). 
 
For the sake of calibration on real market quotes, we have to put some restrictions on the 
previous model specifications. Now and in the sequel, we assume that the loss intensities are 
time homogeneous: the intensities do not depend on time but only on the number of realized 
defaults. We further denote by ( , )k t kλ λ=  for 0 t T≤ ≤ , the loss intensity for 

                                                 
14 Clearly, this involves more information that one could directly access through the quotes of 
liquid CDO tranches, especially with respect to small and large number of defaults. 
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0,1, , 1k n= −… 15. Our procedure is quite similar to Epple et al. (2007). For the paper to be 
self-contained, it is detailed in the Appendix C. Extensions to the calibration on several 
maturities are detailed in the Appendix D. Regarding the assumption of no simultaneous 
defaults, we also refer to Walker (2007b). Allowing for multiple defaults could actually ease 
the calibration onto senior CDO tranche quotes. 
 
Alternative calibrating approaches can be found in Herbertsson (2007a) or in Arnsdorf and 
Halperin (2007). In Herbertsson (2007a), the name intensities ( ), ( )Q t N tαi  are time 
homogeneous, piecewise linear in the number of defaults (the node points are given by 
standard detachment points) and they are fitted to spread quotes by a mean square numerical 
procedure. Arnsdorf and Halperin (2007) propose a piecewise constant parameterization of 
name intensities (which are referred to as “contagion factors”) in time. When intensities are 
piecewise linear in the number of defaults too, they use a “multi-dimensional solver” to 
calibrate onto the observed tranche prices16. In the same vein, Frey and Backhaus (2007a, 
2007b) introduce a parametric form for the function ( , )t kλ , a variant of the “convex 
counterparty risk model”, and fit the parameters to some tranche spreads.  
 
4 Computation of credit deltas through a recombining tree 
 
4.1 Building up a tree 
 
We now address the computation of CDO tranche deltas with respect to the credit default 
swap index of the same maturity. As for the hedging instrument, the premium is set at the 
inception of the deal and remains fixed. Dealing with the credit default swap index at current 
market conditions would have been another possible choice. This would have led to a change 
of the hedging instrument at every step, due to changes in the par spread and to accrued 
coupon effects. We do not take either into account roll dates every six months and trade the 
same index series up to maturity. The former choice involves the same hedging instrument 
throughout the trading period17. Switching from one hedging instrument to another could be 
dealt with very easily in our framework and closer to market practice but we thought that 
using the same underlying across the tree would simplify the exposition. 
 

The (fractional) loss at time t  is given by ( )( ) (1 ) N tL t R
n

= − . Let us consider a tranche with 

attachment point a  and detachment point b , 0 1a b≤ ≤ ≤ . Up to some minor adjustment for 
the premium leg (see below), the credit default swap index is a [ ]0,1  tranche. We denote by 

( )( )O N t  the outstanding nominal on a tranche. It is equal to b a−  if ( )L t a< , to ( )b L t−  if 
( )a L t b≤ <  and to 0  if ( )L t b≥ . 

 
Let us recall that, for a European type payoff the price vector fulfils 

( ' )( , ) ( , ') ( ', )r t tV t e Q t t V t− −=i i  for 0 't t T≤ ≤ ≤ . The transition matrix can be expressed as 

                                                 
15 Therefore, the pre-default name intensity is such that ( ) ( ), ( )

( )
N tQ t N t

n N t
λ

α =
−i . Let us recall 

that ( , ) 0t nλ = . 
16 In both approaches, there are as many unknown parameters as available market quotes. 
17 Actually, the credit deltas at inception are the same whatever the choice.  
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( )
'

, ' exp ( )
t

t

Q t t s ds
⎛ ⎞

= Λ⎜ ⎟
⎝ ⎠
∫  where ( )tΛ  is the generator matrix associated with the number of 

defaults process. In the time homogeneous framework discussed in the previous section, the 
generator matrix does not depend on time.  
 
For practical implementation, we will be given a set of node dates 0 0, , , ,

si nt t t T= =… … . For 
simplicity, we will further consider a constant time step 1 0 1i it t t t −Δ = − = = − =" " ; this 
assumption can easily be relaxed. The most simple discrete time approximation one can think 
of is ( ) ( ) ( )1 1,i i i i iQ t t Id t t t+ += + Λ × − , which leads to ( )1( ) 1 ( )i i kQ N t k N t k λ+ = + = = Δ  and 

( )1( ) ( ) 1i i kQ N t k N t k λ+ = = = − Δ . For large kλ , the transition probabilities can become 

negative. Thus, we will rather use ( )1( ) 1 ( ) 1 k
i iQ N t k N t k e λ− Δ
+ = + = = −  and 

( )1( ) ( ) k
i iQ N t k N t k e λ− Δ
+ = = = . 

 
Under the previous approximation the number of defaults process can be described through a 
recombining tree as in van der Voort (2006). One could clearly think of more sophisticated 
continuous Markov chain techniques18, but we think that the tree implementation is quite 
intuitive from a financial point of view. Convergence of the discrete time Markov chain to its 
continuous limit is a rather standard issue and will not be detailed here. 
 

 

 
Figure 1. Number of defaults tree 

 
4.2 Computation of hedge ratios for CDO tranches 
 
Let us denote by ( , )d i k  the value at time it  when ( )iN t k=  of the default payment leg of the 
CDO tranche19. The default payment at time 1it +  is equal to ( ) ( )1( ) ( )i iO N t O N t +− . Thus, 

( , )d i k  is given by the following recurrence equation: 

                                                 
18 For such approaches, we refer to Herbertsson (2007a) and Moler and Van Loan (2003) 
regarding the numerical issues. However, we found that the tree approach led to efficient 
implementation. Clearly, the time step must be kept under control for large intensities. 
19 We consider the value of the default leg immediately after it . Thus, we do not consider a 
possible default payment at it  in the calculation of ( , )d i k . 
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( ) ( )( )( , ) 1 ( 1, 1) ( ) ( 1) ( 1, )k krd i k e e d i k O k O k e d i kλ λ− Δ − Δ− Δ= − × + + + − + + + . 

 
Let us now deal with a (unitary) premium leg. We denote the regular premium payment dates 
by 1, , pT T…  and for simplicity we assume that: { } { }1 0, , , ,

sp nT T t t⊂… … . Let us consider some 

date 1it +  and set l  such that 1 1l i lT t T+ +< ≤ . Whatever 1it + , there is an accrued premium 

payment of ( ) ( )( ) ( )1 1( ) ( )i i i lO N t O N t t T+ +− × − . if 1 1i lt T+ += , i.e. 1it +  is a regular premium 

payment date, there is an extra premium cash-flow at time 1it +  of ( ) ( )1 1( )l l lO N T T T+ +× − . 
Thus, if 1it +  is a regular premium payment date, the total premium payment is equal to 
( ) ( )1( )i l lO N t T T+× − . 

 
Let us denote by ( , )r i k  the value at time it  when ( )iN t k=  of the unitary premium leg20. If 

{ }1 1, ,i pt T T+ ∈ … , ( , )r i k  is provided by: 

( ) ( )( )1( , ) ( ) 1 ( 1, 1) ( 1, )k kr
l lr i k e O k T T e r i k e r i kλ λ− Δ − Δ− Δ
+= × − + − × + + + +  

If { }1 1, ,i pt T T+ ∉ … , then: 

( ) ( ) ( )( )( )1( , ) 1 ( 1, 1) ( ) ( 1) ( 1, )k kr
i lr i k e e r i k O k O k t T e r i kλ λ− Δ − Δ− Δ
+= − × + + + − + × − + + . 

 

The CDO tranche premium is equal to (0,0)
(0,0)

ds
r

= . The value of the CDO tranche (buy 

protection case) at time it  when ( )iN t k=  is given by ( , ) ( , ) ( , )CDOV i k d i k sr i k= − . The equity 
tranche needs to be dealt with slightly differently since its spread is set to 500bps = . 
However, the value of the CDO equity tranche is still given by ( , ) ( , )d i k sr i k− . 
 
As for the credit default swap index, we will denote by ( , )ISr i k  and ( , )ISd i k  the values of the 
premium and default legs. The credit default swap index spread at time it  when ( )iN t k=  is 
given by ( , ) ( , ) ( , )IS IS ISs i k r i k d i k× = 21. The value of the credit default swap index, bought at 
inception, at node ( ),i k  is given by ( , ) ( , ) (0,0) ( , )IS IS IS ISV i k d i k s r i k= − × . The default leg of 

the credit default swap index is computed as a standard default leg of a [ ]0,100%  CDO 
tranche. Thus, in the recursion equation giving ( , )ISd i k  we write the outstanding nominal for 

k  defaults as (1 )( ) 1 k RO k
n
−

= − , where R  is the recovery rate and n  the number of names. 

According to standard market rules, the premium leg of the credit default swap index needs a 
slight adaptation since the premium payments are based only upon the number of non-
defaulted names and do not take into account recovery rates. As a consequence, the 

                                                 
20 As for the default leg, we consider the value of the premium leg immediately after it . Thus, 
we do not take into account a possible premium payment at it  in the calculation of ( , )r i k  

either. 
21 This is an approximation of the index spread since, according to market rules, the first 
premium payment is reduced. 
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outstanding nominal to be used in the recursion equations providing ( , )ISr i k  is such that 

( ) 1 kO k
n

= − . 

 
As usual in binomial trees, ( , )i kδ  is the ratio of the difference of the option value (at time 

1it + ) in the upper state ( 1k +  defaults) and lower state ( k  defaults) and the corresponding 
difference for the underlying asset. In our case, both the CDO tranche and the credit default 
swap index are “dividend-baring”. For instance, when the number of defaults switches for k  
to 1k + , the default leg of the CDO tranche is associated with a default payment of 

( ) ( 1)O k O k− + . Similarly, given the above discussion, when the number of defaults switches 
for k  to 1k + , the premium leg of the CDO tranche is associated with an accrued premium 
payment of { } ( ) ( )

1 1
1, ,

1 ( ) ( 1)
i p

i lt T T
s O k O k t T

+
+∉

− × − + × −
…

22. Thus, when a default occurs the 

change in value of the CDO tranche is the outcome of a capital gain of 
( ) ( )1, 1 1,CDO CDOV i k V i k+ + − +  and of a cash-flow of 

( ) { } ( )( )1 1
1, ,

( ) ( 1) 1 1
i p

i lt T T
O k O k s t T

+
+∉

− + × − × × −
…

.  

 
The credit delta of the CDO tranche at node ( ),i k  with respect to the credit default swap 
index is thus given by: 

( ) ( ) ( ) { } ( )( )
( ) ( ) { } ( )

1 1

1 1

1, ,

1, ,

1, 1 1, ( ) ( 1) 1 1
( , ) 1 11, 1 1, (0,0) 1

i p

i p

CDO CDO i lt T T

IS IS IS i lt T T

V i k V i k O k O k s t T
i k RV i k V i k s t T

n n

δ +

+

+∉

+∉

+ + − + + − + × − × × −
= −+ + − + + − × × × −

…

…

. 

 
Let us remark that using the previous credit deltas leads to a perfect replication of a CDO 
tranche within the tree, which is feasible since the approximating discrete market is complete.  
 
We also remark that we can easily compute credit deltas with respect to the credit default 
swap index traded at current market conditions by using ( , )ISs i k  instead of (0,0)ISs  when 
computing ISV  at time 1it +  and in the ( , )i kδ  expression. 
 
4.3 Model calibrated on a loss distribution associated with a Gaussian copula 
 
In this numerical illustration, the loss intensities kλ  are computed from a loss distribution 
generated from a one factor Gaussian copula. The correlation parameter is equal to 30%ρ = , 
the credit spreads are all equal to 20 basis points per annum, the recovery rate is such that 

40%R =  and the maturity is 5T =  years. The number of names is 125n = . Figure 2 shows 
the number of defaults distribution. 
 

                                                 
22 If { }1 1, ,i pt T T+ ∈ … , the premium payment is the same whether the number of defaults is 
equal to k  or 1k + . So, it does not appear in the computation of the credit delta. 
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Figure 2. Number of defaults distribution. Number of defaults on the x – axis. 

 
Loss intensities kλ  are calibrated as previously discussed up to 49k =  defaults (see Table 1). 
 

0 1 2 3 4 5 6 7 8 9
0.27 0.41 0.57 0.75 0.94 1.15 1.36 1.59 1.82 2.05
10 11 12 13 14 15 16 17 18 19

2.29 2.54 2.79 3.04 3.29 3.55 3.80 4.06 4.32 4.58
20 21 22 23 24 25 26 27 28 29

4.84 5.10 5.35 5.61 5.87 6.12 6.38 6.63 6.88 7.13
30 31 32 33 34 35 36 37 38 39

7.37 7.62 7.86 8.10 8.34 8.57 8.80 9.03 9.25 9.47
40 41 42 43 44 45 46 47 48 49

9.69 9.91 10.12 10.32 10.53 10.72 10.92 11.11 11.30 11.48  
Table 1. max, 0, , 1k k nλ = −…  
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Figure 3. , 0, ,49k kλ = …  

 

As can be seen from Figure 3, the loss intensity kλ  changes almost linearly with respect to the 
number of defaults. Under the Gaussian copula assumption, the default probabilities (5, )p k  
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are insignificant for 49k > 23. To avoid numerical difficulties, we computed the 
corresponding kλ  by linear extrapolation. We checked that various choices of loss intensities 
for high number of defaults had no effect on the computation of deltas24. 
 
 

0 14 28 42 56 70 84
0 20 19 19 18 18 17 17
1 0 31 30 29 28 27 26
2 0 46 45 43 41 40 38
3 0 64 62 59 57 54 52
4 0 84 81 77 74 71 68
5 0 106 102 97 93 89 85
6 0 130 125 119 114 109 104
7 0 156 149 142 136 130 123
8 0 184 175 167 159 152 144
9 0 212 202 193 184 175 166
10 0 242 231 220 209 199 189
11 0 273 260 248 236 224 213
12 0 305 291 277 263 250 238
13 0 338 322 306 291 277 263
14 0 372 354 337 320 304 289
15 0 407 387 368 350 332 315

N
b 

D
ef

au
lts

Weeks

 
Table 2. ( , )ISs i k  in basis points per annum 

 
Table 2 shows the dynamics of the credit default swap index spreads ( , )ISs i k  along the nodes 
of the tree. The continuously compounded default free rate is 3%r =  and the time step is 

1
365

Δ = . It can be seen that default arrivals are associated with rather large jumps of credit 

spreads. For instance, if a (first) default occurs after a quarter, the credit default swap index 
spread jumps from 19 bps to 31 bps. An extra default by this time leads to an index spread of 
46 bps (see Table 2). 
 
The credit deltas with respect to the credit default swap index ( , )i kδ  have been computed for 
the[ ]0,3% , [ ]3,6%  and [ ]6,9%  CDO tranches (see Tables 3, 6 and 7). As for the equity 
tranche, it can be seen that the credit deltas are positive and decrease up to zero. This is not 
surprising given that a buy protection equity tranche involves a short put position over the 
aggregate loss with a 3% strike. This is associated with positive deltas, negative gammas and 
thus decreasing deltas. When the number of defaults is above 6, the equity tranche is 
exhausted and the deltas obviously are equal to zero.  
 

                                                 
23 9

50

(5, ) 2 10
k

p k −

≥

×∑ � , 10(5,50) 6.1 10p −×� , 33(5,125) 2 10p −×�  
24 Let us stress that this applies for the Gaussian copula case since the loss distribution has 
thin tails. For the market case example, we proceeded differently. 
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0 14 28 42 56 70 84
0 3.00% 0.958 0.984 1.007 1.027 1.044 1.057 1.068
1 2.52% 0.000 0.736 0.780 0.822 0.862 0.900 0.935
2 2.04% 0.000 0.438 0.483 0.530 0.580 0.633 0.687
3 1.56% 0.000 0.208 0.235 0.266 0.303 0.344 0.391
4 1.08% 0.000 0.085 0.095 0.108 0.124 0.143 0.167
5 0.60% 0.000 0.031 0.034 0.038 0.042 0.047 0.054
6 0.12% 0.000 0.005 0.005 0.006 0.006 0.007 0.008
7 0.00% 0.000 0.000 0.000 0.000 0.000 0.000 0.000

N
b 

D
ef

au
lts

WeeksOutStanding 
Nominal

 
Table 3.  ( , )i kδ  for the [ ]0,3%  equity tranche 

 
The credit deltas ( , )i kδ  can be decomposed into a default leg delta ( , )d i kδ  and a premium 
leg delta ( , )r i kδ  as follows: ( , ) ( , ) ( , )d ri k i k s i kδ δ δ= −  with: 
 

( ) ( )
( ) ( ) { } ( )

1 1
1, ,

1, 1 1, ( ) ( 1)
( , ) 1 11, 1 1, (0,0) 1

i p

d

IS IS IS i lt T T

d i k d i k O k O k
i k RV i k V i k s t T

n n

δ

+
+∉

+ + − + + − +
= −

+ + − + + − × × × −…

, 

and: 
 

( ) ( ) ( ) { } ( )

( ) ( ) { } ( )
1 1

1 1

1, ,

1, ,

1, 1 1, ( ) ( 1) 1
( , ) 1 11, 1 1, (0,0) 1

i p

i p

i lt T T
r

IS IS IS i lt T T

r i k r i k O k O k t T
i k RV i k V i k s t T

n n

δ +

+

+∉

+∉

+ + − + + − + × −
= −

+ + − + + − × × × −

…

…

. 

 
Tables 4 and 5 detail the credit deltas associated with the default and premium legs of the 
equity tranche. As can be seen from Table 3, credit deltas for the equity tranche may be 
slightly above one when no default has occurred. Table 5 shows that this is due to the 
amortization scheme of the premium leg which is associated with significant negative deltas. 
Let us recall that premium payments are based on the outstanding nominal. Arrival of defaults 
thus reduces the commitment to pay. Furthermore, the increase in credit spreads due to 
contagion effects involves a decrease in the expected outstanding nominal. When considering 
the default leg only, we are led to credit deltas that actually remain within the standard 0%-
100% range. The default leg of the equity tranche with respect to the credit default swap index 
is initially equal to 81.4%. Let us also remark that credit deltas of the default leg gradually 
increase with time which is consistent with a decrease in time value. 
 

0 14 28 42 56 70 84
0 3.00% 0.810 0.839 0.865 0.889 0.911 0.929 0.946
1 2.52% 0 0.613 0.657 0.701 0.743 0.785 0.823
2 2.04% 0 0.343 0.386 0.432 0.483 0.536 0.591
3 1.56% 0 0.142 0.167 0.197 0.231 0.271 0.318
4 1.08% 0 0.046 0.055 0.066 0.080 0.097 0.119
5 0.60% 0 0.014 0.015 0.018 0.021 0.025 0.031
6 0.12% 0 0.002 0.002 0.002 0.003 0.003 0.004
7 0.00% 0 0 0 0 0 0 0

OutStanding 
Nominal

Weeks

N
b 

D
ef

au
lts

 
Table 4.  ( , )d i kδ  for the [ ]0,3%  equity tranche 
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0 14 28 42 56 70 84
0 3.00% -0.150 -0.147 -0.143 -0.139 -0.134 -0.129 -0.123
1 2.52% 0 -0.127 -0.126 -0.124 -0.121 -0.118 -0.114
2 2.04% 0 -0.099 -0.100 -0.101 -0.101 -0.101 -0.099
3 1.56% 0 -0.067 -0.070 -0.072 -0.074 -0.076 -0.077
4 1.08% 0 -0.039 -0.042 -0.044 -0.046 -0.048 -0.050
5 0.60% 0 -0.018 -0.019 -0.021 -0.022 -0.023 -0.024
6 0.12% 0 -0.003 -0.003 -0.003 -0.004 -0.004 -0.004
7 0.00% 0 0 0 0 0 0 0

N
b 

D
ef

au
lts

OutStanding 
Nominal

Weeks

 
Table 5.  ( , )rs i kδ  for the [ ]0,3%  equity tranche 

 
This previous decomposition is useless for the [ ]3,6%  and [ ]6,9%  tranches since the impact 
of the CDO tranche premium leg becomes negligible.  
 

0 14 28 42 56 70 84
0 3.00% 0.162 0.139 0.118 0.097 0.078 0.061 0.046
1 3.00% 0 0.325 0.296 0.265 0.232 0.198 0.164
2 3.00% 0 0.492 0.484 0.468 0.444 0.413 0.374
3 3.00% 0 0.516 0.546 0.570 0.584 0.588 0.580
4 3.00% 0 0.399 0.451 0.505 0.556 0.604 0.645
5 3.00% 0 0.242 0.289 0.344 0.405 0.471 0.540
6 3.00% 0 0.126 0.156 0.193 0.238 0.293 0.359
7 2.64% 0 0.061 0.075 0.093 0.118 0.150 0.193
8 2.16% 0 0.032 0.037 0.044 0.054 0.068 0.089
9 1.68% 0 0.019 0.021 0.023 0.027 0.032 0.039
10 1.20% 0 0.012 0.012 0.013 0.015 0.016 0.018
11 0.72% 0 0.006 0.007 0.007 0.008 0.008 0.009
12 0.24% 0 0.002 0.002 0.002 0.002 0.002 0.003
13 0.00% 0 0 0 0 0 0 0

N
b 

D
ef

au
lts

WeeksOutStanding 
Nominal

 
Table 6.  ( , )i kδ  for the [ ]3,6%  tranche  

 
At inception, the credit delta of the junior mezzanine tranche is equal to 16.2% whilst it is 
only equal to 1.7% for the [ ]6,9%  tranche which is deeper out of the money (see Tables 6 
and 7). The [ ]3,6%  and [ ]6,9%  CDO tranches involve a call spread position over the 
aggregate loss. As a consequence the credit deltas are positive and firstly increase (positive 
gamma effect) and then decrease (negative gamma) up to zero as soon as the tranche is fully 
amortized. 
 
Given the recovery rate assumption of 40%, the outstanding nominal of the [ ]3,6%  is equal to 
3% for six defaults and to 2.64% for seven defaults. One might thus think that at the sixth 
default the [ ]3,6%  should behave almost like an equity tranche. However, as can be seen 
from Table 6, the credit delta is much lower, 12.6% instead of 84% for the default leg of the 
equity tranche. This is due to dramatic shifts in credit spreads from 19 bps to 127 bps (see 
Table 2) when moving from the no-defaults to the six defaults state. In the latter case, the 
expected loss on the tranche is much larger, which is consistent with smaller deltas given the 
call spread payoff. 
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Let us remark that the sum of the default leg cash-flows of the CDO tranches is equal to the 
default leg cash-flows of the credit default swap index. On the other hand, apart from the 
equity tranche, the premium effects are quite small. The sum of the credit deltas of the default 
leg of the equity tranche and of the [ ]3,6%  and [ ]6,9%  tranches is actually close to one when 
the number of defaults is equal to 0 or 1. For larger number of defaults, one has to take into 
account the credit deltas of the most senior tranches that gradually increase.  
 

0 14 28 42 56 70 84
0 3.00% 0.018 0.012 0.008 0.006 0.003 0.002 0.001
1 3.00% 0 0.050 0.037 0.026 0.018 0.012 0.007
2 3.00% 0 0.134 0.108 0.084 0.063 0.045 0.030
3 3.00% 0 0.256 0.226 0.193 0.158 0.124 0.092
4 3.00% 0 0.365 0.350 0.326 0.292 0.252 0.207
5 3.00% 0 0.399 0.416 0.421 0.413 0.391 0.354
6 3.00% 0 0.344 0.389 0.428 0.458 0.474 0.473
7 3.00% 0 0.242 0.294 0.349 0.406 0.459 0.502
8 3.00% 0 0.144 0.185 0.236 0.296 0.363 0.433
9 3.00% 0 0.077 0.103 0.137 0.182 0.240 0.310
10 3.00% 0 0.043 0.055 0.074 0.100 0.137 0.189
11 3.00% 0 0.028 0.034 0.042 0.054 0.074 0.103
12 3.00% 0 0.023 0.025 0.029 0.034 0.042 0.056
13 2.76% 0 0.019 0.020 0.022 0.024 0.027 0.033
14 2.28% 0 0.014 0.015 0.016 0.017 0.019 0.021
15 1.80% 0 0.011 0.011 0.012 0.013 0.013 0.014
16 1.32% 0 0.007 0.008 0.008 0.009 0.009 0.010
17 0.84% 0 0.004 0.005 0.005 0.005 0.006 0.006
18 0.36% 0 0.002 0.002 0.002 0.002 0.002 0.002
19 0.00% 0 0 0 0 0 0 0

OutStanding 
Nominal

N
b 

D
ef

au
lts

Weeks

 
Table 7.  ( , )i kδ  for the [ ]6,9%  tranche 

 
4.4 Sensitivity of hedging strategies to the recovery rate assumption 
 
The previous deltas have been computed under the assumption that the recovery rate was 
equal to 40% which is a standard but somehow arbitrary assumption. We further investigate 
the dependence of the dynamic hedging strategy with respect to the choice of recovery rate. 
Of course, changing only the recovery rate and not the number of defaults distribution would 
lead to a change in the expected losses of the CDO tranches and of the CDO premiums. For 
our robustness study to be meaningful, we will modify recovery rates but keep the loss 
surface (or equivalently the CDO tranche premiums) unchanged. This implies a change in the 
number of defaults distribution. The procedure is detailed in Appendix E. 
 

Tranches 10% 20% 30% 40% 50% 60%
[0-3%] 0.9924 0.9774 0.9680 0.9585 0.9418 0.9321
[3-6%] 0.1545 0.1605 0.1607 0.1618 0.1659 0.1668
[6-9%] 0.0169 0.0171 0.0174 0.0175 0.0177 0.0179

Recovery Rates

 
Table 8.  (0,0)δ  for different recovery rates 
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Table 8 shows the credit deltas at the initial date for various CDO tranches under different 
recovery assumptions. Fortunately, the recovery rate assumption has a very small effect on the 
computed credit deltas. Table 9 shows the dynamic credit deltas of the equity tranche when 
the recovery rate is shifted from 40%R =  to 30%R∗ = . This should be compared with the 
figures in Table 3 exhibiting the credit deltas under a 40% recovery rate assumption. Up to 
one default, the credit deltas are fairly close. As the number of defaults increase, the credit 
deltas gradually depart one from the other, which is not surprising given that the amortization 
scheme now differs. 
 
 

0 14 28 42 56 70 84
0 3.00% 0.968 0.991 1.011 1.029 1.044 1.056 1.066
1 2.44% 0.000 0.731 0.771 0.809 0.847 0.883 0.916
2 1.88% 0.000 0.417 0.456 0.498 0.542 0.589 0.638
3 1.32% 0.000 0.181 0.202 0.227 0.255 0.288 0.325
4 0.76% 0.000 0.062 0.069 0.077 0.087 0.098 0.113
5 0.20% 0.000 0.012 0.012 0.013 0.015 0.016 0.019
6 0.00% 0.000 0.000 0.000 0.000 0.000 0.000 0.000

WeeksOutStanding 
Nominal

N
b 

D
ef

au
lts

 
Table 9. ( , )i kδ ∗  for the [ ]0,3%  equity tranche, 30%R∗ =  

 
4.5 Dependence of hedging strategies upon the correlation parameter 
 
Let us recall that the recombining tree is calibrated on a loss distribution over a given time 
horizon. The shape of the loss distribution depends critically upon the correlation parameter 
which was set up to now to 30%ρ = . Decreasing the dependence between default events 
leads to a thinner right-tail of the loss distribution and smaller contagion effects. We detail 
here the effects of varying the correlation parameter on the hedging strategies.  
 
For simplicity, we firstly focus the analysis on the default leg of the equity tranche and shift 
the correlation parameter from 30% to 10%. It can be seen from Tables 4 and 10 that the 
credit deltas are much higher in the latter case. After 14 weeks, prior to the first default, the 
credit delta is equal to 84% for a 30% correlation and to 97% when the correlation parameter 
is equal to 10%.  
 

0 14 28 42 56 70 84
0 3.00% 0.963 0.968 0.973 0.977 0.980 0.983 0.985
1 2.52% 0 0.928 0.939 0.948 0.957 0.965 0.971
2 2.04% 0 0.831 0.852 0.872 0.891 0.908 0.924
3 1.56% 0 0.652 0.681 0.711 0.742 0.772 0.801
4 1.08% 0 0.405 0.434 0.464 0.497 0.531 0.568
5 0.60% 0 0.171 0.186 0.203 0.223 0.244 0.269
6 0.12% 0 0.028 0.030 0.033 0.037 0.041 0.046
7 0.00% 0 0 0 0 0 0 0

OutStanding 
Nominal

Weeks

N
b 

D
ef

au
lts

 
Table 10.  ( , )d i kδ  for the [ ]0,3%  equity tranche, 10%ρ =  

 
To further investigate how changes in correlation levels alter credit deltas, we computed the 
market value of the default leg of the equity tranche at a 14 weeks horizon as a function of the 
number of defaults under different correlation assumptions (see Figure 5). The market value 
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of the default leg, on the y  – axis, is computed as the sum of expected discounted cash-flows 
posterior to this 14 weeks horizon date and the accumulated  defaults cash-flows paid before. 
We also plotted the accumulated losses which represents the intrinsic value of the equity 
tranche default leg. Unsurprisingly, we recognize some typical concave patterns associated 
with a short put option payoff.  
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Figure 5. Market value of equity default leg under different correlation assumptions. 

Number of defaults on the x  – axis 
 
As can be seen from Figure 5, prior to the first default, the value of the default leg of the 
equity tranche decreases as the correlation parameter increases from 0% to 40%25. However, 
after the first default the ordering of default leg values is reversed. This can be easily 
understood since larger correlations are associated with larger jumps in credit spreads at 
default arrivals and thus larger changes in the expected discounted cash-flows associated with 
the default leg of the equity tranche26. 
 
Therefore, varying the correlation parameter is associated with two opposite mechanisms:  
 

- The first one is related to a typical negative vanna effect. Increasing correlation lowers 
loss “volatility” and leads to smaller expected losses on the equity tranche. In a 
standard option pricing framework, this should lead to an increase in the credit delta of 
the short put position on the loss.  

- This is superseded by the shifts due to contagion effects. Increasing correlation is 
associated with bigger contagion effects and thus larger jumps in credit spreads at the 
arrival of defaults. This, in turn leads to a larger jump in the market value of the credit 
index default swap. Let us recall that the default leg of the equity tranche exhibit a 
concave payoff and thus a negative gamma. As a consequence the credit delta, i.e. the 

                                                 
25 See Burtschell et al. (2005) for a formal proof of this well-known result. 
26 Let us remark that the larger the correlation the larger the change in market value of the 
default leg of the equity tranche at the arrival of the first default. This is not inconsistent with 
the previous results showing a decrease in credit deltas when the correlation parameter 
increases. The credit delta is the ratio of the change in value in the equity tranche and of the 
change in value in the credit default swap index. For a larger correlation parameter, the 
change in value in the credit default swap index is also larger due to magnified contagion 
effects. 
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ratio between the change in value of the option and the change in value of the 
underlying, decreases. 

 
Let us also notice that for the 10% correlation example, the decrease in the credit delta when 
shifting from the no defaults case to the single default case is less pronounced than in the 30% 
correlation example. At the first default, the credit delta is still equal to 93% in the low 
correlation case and has dropped to 61% in the high correlation case. In other words, we have 
a smaller gamma at inception in the former case, but the gamma is ultimately larger after a 
few defaults since the deltas have to decrease to zero. 
 
4.6 Taking into account a base correlation structure 
 
Up to now, the probabilities of number of defaults were computed thanks to a Gaussian 
copula. In this example, we use a steep upward sloping base correlation curve for the iTraxx, 
typical of June 2007, as an input to derive the distribution of the probabilities of number of 
defaults (see Table 11). The maturity is still equal to 5 years, the recovery rate to 40% and the 
credit spreads to 20 bps. The default-free rate is now equal to 4%. 

 
3% 6% 9% 12% 22%

16% 24% 30% 35% 50%  
Table 11. base correlation with respect to attachment points 

 
Rather than spline interpolation, we used a parametric model to fit the market quotes and 
compute the probabilities of the number of defaults. This produces arbitrage free and smooth 
distributions that ease the calculation of the loss intensities27. Figure 6 shows the number of 
defaults distribution. This is rather different from the Gaussian copula case both for small and 
large losses. For instance, the probability of no defaults dropped from 25.6% to 19.5% while 
the probability of a single default rose from 25.1% to 36.5%. Let us stress that these figures 
are for illustrative purpose. The market does not provide direct information on first losses and 
thus the shape of the left tail of the loss distribution is a controversial issue. As for the right-
tail, we have 3

50

(5, ) 1.4 10
k

p k −

≥

×∑ �  and 6(5,50) 3.3 10p −×� , 3(5,125) 1.38 10p −×� . The 

probabilities of large number of defaults, compared with the Gaussian copula case are much 
larger. The probability of the names defaulting altogether is also quite large, corresponding to 
some kind of Armageddon risk. Once again these figures need to be considered with caution, 
corresponding to high senior and super-senior tranche premiums and disputable assumptions 
about the probability of all names defaulting. 

 

                                                 
27 We also computed the number of defaults distribution using entropic calibration. Although 
we could still compute loss intensities, the pattern with respect to the number of defaults was 
not monotonic. Such oscillations of the loss intensities can also be found in Cont and Savescu 
(2007): depending on market inputs, direct calibration onto CDO tranche quotes can lead to 
shaky figures. 
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Figure 6. Number of defaults distribution. Number of defaults on the x – axis. 

 
Figure 7 shows the loss intensities calibrated onto market inputs compared with the loss 
intensities based on Gaussian copula inputs up to 39 defaults28. As can be seen, the loss 
intensity increases much quickly with the number of defaults as compared with the Gaussian 
copula approach. The average relative change in the loss intensities is equal to 19% when it is 
only equal to 10% when computed under the Gaussian copula assumption. Unsurprisingly, a 
steep base correlation curve is associated with fatter upper tails of the loss distribution and 
magnified contagion effects.  
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Figure 7. Loss intensities for the Gaussian copula and market case examples. Number of 

defaults on the x – axis. 
 
Table 12 shows the dynamics of the credit default swap index spreads ( , )ISs i k  along the 

nodes of the tree. As for tree implementation, the time step is still 1
365

Δ = . Table 12 

confirms the previous figure with much bigger contagion effects than in the Gaussian copula 
case. However, we notice that when going from the no default state to a single default at a 14 
week horizon, credit spreads jump from 19 bps to 31 bps as in the Gaussian copula case. A 
further default leads to an index spread of 95 bps to be compared with only 46 bps in the 
Gaussian copula case. As mentioned above, this detailed pattern has to be considered with 

                                                 
28 Contrary to the Gaussian copula example, we computed the complete set of loss intensities 
using the procedure described in subsection 3.2. 
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caution, since it involves the probability of 0, 1 and 2 defaults which are not directly observed 
in the market. After a few defaults, credit spreads become so large, that it is likely that most of 
the names will default by the 5 year time horizon. 
 

0 14 28 42 56 70 84
0 20 19 18 18 17 16 16
1 0 31 28 25 23 21 20
2 0 95 80 67 57 49 43
3 0 269 225 185 150 121 98
4 0 592 515 437 361 290 228
5 0 1022 934 834 723 607 490
6 0 1466 1395 1305 1193 1059 905
7 0 1870 1825 1764 1680 1567 1420
8 0 2243 2214 2177 2126 2052 1945
9 0 2623 2597 2568 2534 2488 2423
10 0 3035 3003 2971 2939 2903 2859
11 0 3491 3450 3410 3371 3331 3290
12 0 4001 3947 3896 3845 3795 3747
13 0 4570 4501 4434 4369 4306 4245
14 0 5206 5117 5031 4948 4868 4790
15 0 5915 5801 5691 5586 5484 5386

Weeks
N

b 
D

ef
au

lts

 
Table 12. ( , )ISs i k  in basis points per annum 
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Figure 8. Expected loss on the credit portfolio after 14 weeks over a five year horizon ( y  – 

axis) with respect to the number of defaults ( x  – axis). 
 
Figure 8 allows to further investigate the credit dynamics as deduced from market inputs. We 
plotted the conditional (with respect to the number of defaults) expected loss ( ) ( )E L T N t⎡ ⎤⎣ ⎦  
for 5T =  years and 14t = weeks for the previous market inputs and for the 30% flat 
correlation Gaussian copula case. The conditional expected loss is expressed as a percentage 
of the nominal of the portfolio29. We also plotted the realized (or accumulated) losses on the 
portfolio. The expected losses are greater than the accumulated losses due to positive 
contagion effects. There are some dramatic differences between the Gaussian copula and the 
market inputs examples. In the Gaussian copula case, the expected loss is almost linear with 

                                                 
29 Thus, given a recovery rate of 40%, the maximum expected loss is equal to 60% 
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respect to the number of defaults in a wide range (say up to 35 defaults). The pattern is quite 
different when using market inputs with huge non linearity effects. This shows large 
contagion effects after a few defaults as can also be seen from Table 12 and Figure 7. This 
rather explosive behaviour was also observed by Herbertsson (2007b), Tables 3 and 4. 
 

0 14 28 42 56 70 84
0 3.00% 0.645 0.731 0.814 0.890 0.953 1.003 1.038
1 2.52% 0.000 0.329 0.402 0.488 0.584 0.684 0.777
2 2.04% 0.000 0.091 0.115 0.149 0.197 0.264 0.351
3 1.56% 0.000 0.023 0.028 0.035 0.045 0.062 0.090
4 1.08% 0.000 0.008 0.008 0.009 0.011 0.013 0.018
5 0.60% 0.000 0.004 0.004 0.003 0.003 0.003 0.004
6 0.12% 0.000 0.001 0.001 0.001 0.001 0.001 0.001
7 0.00% 0.000 0.000 0.000 0.000 0.000 0.000 0.000

N
b 

D
ef

au
lts

WeeksOutStanding 
Nominal

 
Table 13. ( , )i kδ  for the [ ]0,3%  equity tranche 

 

0 14 28 42 56 70 84
0 3.00% 0.546 0.622 0.697 0.767 0.826 0.874 0.911
1 2.52% 0 0.283 0.349 0.427 0.516 0.608 0.695
2 2.04% 0 0.073 0.095 0.125 0.169 0.229 0.310
3 1.56% 0 0.016 0.020 0.026 0.035 0.050 0.074
4 1.08% 0 0.004 0.005 0.005 0.007 0.009 0.012
5 0.60% 0 0.002 0.002 0.002 0.002 0.002 0.002
6 0.12% 0 0.000 0.000 0.000 0.000 0.000 0.000
7 0.00% 0 0 0 0 0 0 0

OutStanding 
Nominal

Weeks

N
b 

D
ef

au
lts

 
Table 14. ( , )d i kδ  for the [ ]0,3%  equity tranche 

 
Table 13 shows the dynamic deltas associated with the equity tranche. Table 14 focuses on 
the deltas of the default leg of the equity tranche30. We also notice that the credit deltas drop 
quite quickly to zero with the occurrence of defaults. This is not surprising given the surge in 
credit spreads and dependencies after the first default (see Figure 8): after only a few defaults 
the equity tranche is virtually exhausted. 
 
It can be seen that the equity tranche deltas are much lower when taking into account a steep 
upward base correlation curve: for instance, at inception, the delta of the default leg is equal 
to 54.6% (see Table 14) while it was equal to 81% with a 30% flat correlation structure (see 
Table 4). Such a decrease in the credit delta is not related to a spread effect, since at 14 weeks 
the credit spreads of the index are the same in the no default and the single default cases. As a 
consequence, the change in value of the underlying credit default swap index when shifting to 
the first default is the same in the Gaussian copula and market inputs examples. The decrease 
in the credit delta is associated with a smaller value of the numerator in the delta computation 
(see Subsection 4.2) when using market inputs instead of Gaussian copula inputs. Let us recall 
that the numerator in the delta computation is the change of value of the equity tranche when 

                                                 
30 As for the Gaussian copula example, we can see that the premium leg of the equity tranche 
significantly contributes to the total credit delta. We also found that the premium leg of the 
credit index default swap had some visible effect on the credit deltas after some defaults, 
when credit deltas are small. 
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shifting the number of defaults. Given the discussion in Subsection 4.5 about the dependence 
of credit deltas with respect to correlation parameters, the stated decrease in the credit delta of 
the equity tranche may look paradoxical: indeed the base correlation for the equity tranche in 
our market example is equal to 16% to be compared with 30% in the Gaussian copula 
example. As a consequence, one might wrongly conclude to an increase in the credit deltas 
when using market inputs. 
 
The stated figures can be fully understood from the dynamics of correlation which is 
embedded in the model. When using market inputs and when considering the pricing of an 
equity tranche after a single default, the further contagion effects are much larger than when 
using Gaussian copula inputs (see Figure 8). Since larger contagion effects are associated with 
bigger dependencies between default dates, it is also associated with smaller values of equity 
tranches and thus with smaller deltas.  
 
Let us further examine the credit deltas of the different tranches at inception. These are 
compared with the “sticky credit deltas” as computed by market participants under the 
previous base correlation structure assumption (see Table 15). These sticky deltas are 
computed by bumping the credit curves and computing the changes in present value of the 
tranches and of the credit default swap index. Once the credit curves are bumped, the 
moneyness varies, which is taken into account by using an updated base correlation when 
calculating the CDO tranches, thus the term “sticky”. The delta is the ratio of the change in 
present value of the tranche and of the credit default swap index divided by the tranche’s 
nominal. For example, a credit delta of an equity tranche previously equal to one would now 
lead to a figure of 33.33.  
 

[0-3%] [3-6%] [6-9%] [9-12%] [12-22%]
market deltas 27 4.5 1.25 0.6 0.25
model deltas 21.5 4.63 1.63 0.9 NA  

Table 15. market and model deltas at inception 
 
First of all we can see that the outlines are roughly the same, which is already noticeable since 
the two approaches are completely different. Then, we can remark that the model deltas are 
smaller for the equity tranche as compared with the market deltas, while there are larger for 
the other tranches. This is not surprising given the above discussion about the dynamic 
correlation effects. We actually believe that the sticky delta market approach understates the 
shifts in correlation associated with the arrival of defaults31 due to contagion effects. 
 
Next, we thought that it was insightful to compare the previous table and the results provided 
by Arnsdorf and Halperin (2007), Figure 7 (see Table 16).  
 

[0-3%] [3-6%] [6-9%] [9-12%] [12-22%]
market deltas 26.5 4.5 1.25 0.65 0.25
model deltas 21.9 4.81 1.64 0.79 0.38  

Table 16. market and model deltas as in Arnsdorf and Halperin (2007). 
 

                                                 
31 Or with parallel shifts in the CDS spreads. The summer 2007 crisis is a good example of 
such effects with large increase of credit spreads and simultaneously large increases of 
correlation. Such inconsistencies are not surprising since the Gaussian copula fails to properly 
account for dynamic effects. 
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The market conditions are slightly different since the computations were done in March 2007, 
thus the maturity is slightly smaller than five years. The market deltas are quoted deltas 
provided by major trading firms. We can see that these are quite close to the previous market 
deltas since the computation methodology involving Gaussian copula and base correlation is 
quite standard. The models deltas (corresponding to “model B” in Arnsdorf and Halperin 
(2007)) have a quite different meaning from ours: there are related to credit spread deltas 
rather that then default risk deltas and are not related to a dynamical replicating strategy. 
However, it is noteworthy that these model deltas are similar to ours. Though this is not a 
formal proof, it appears from Figure 5, that (systemic) gammas are rather small prior to the 
first default. If we could view a shock on the credit spreads as a small shock on the expected 
loss while a default event induces a larger shock (but not so large given the risk 
diversification at the index level) on the expected loss, the similarity between the different 
model deltas are not so surprising. As above, model deltas are lower for the equity tranche 
and larger for the other tranches. 
 
Conclusion 
 
The lack of internally consistent methods to hedge CDO tranches has paved the way to a 
variety of local hedging approaches that do not guarantee the full replication of tranche 
payoffs. Such incompleteness of the market may not look as such a practical issue as far as 
trade margins are high and holding periods short. However, we think that there might be a 
growing concern from investment banks about the long term credit risk management of 
trading books as the market matures. 
 
A homogeneous Markovian contagion model can be implemented as a recombining binomial 
tree and thus provides a strikingly easy way to compute dynamic replicating strategies of 
CDO tranches. While such models have recently been considered for the pricing of exotic 
basket credit derivatives, our main concern here is to provide a rigorous framework to the 
hedging issue.  
 
We do not aim at providing a definitive answer to the thorny issue of hedging CDO tranches. 
For this purpose, we would also need to tackle name heterogeneity, possible non Markovian 
effects in the dynamics of credit spreads, non deterministic intensities between two default 
dates, the occurrence of multiple defaults, … A fully comprehensive approach to the hedging 
of CDO tranches is likely to be quite cumbersome both on economic and numerical grounds. 
 
However, from a practical perspective, we think that our approach might be useful to assess 
the default exposure of CDO tranches by quantifying the credit contagion effects in a 
reasonable way. We also found some noticeable similarities between credit spread deltas as 
computed under the standard base correlation methodology and the default risk deltas as 
computed from our recombining tree. A closer look at the discrepancies between the two 
approaches suggests some inconsistency in the market approach as far as the dynamics of the 
correlation is involved. Taking into account such dynamic effects lowers credit deltas of the 
equity tranche and therefore increases the credit deltas of the senior tranches. From a risk 
management perspective, understanding how credit deltas are related to base correlation 
curves requires a coupling of standard vanna analysis and the study of contagion and dynamic 
dependence effects. 
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Appendix A: dynamics of defaultable discount bonds and credit spreads 
 
Let us derive the dynamics of a (digital) defaultable discount bond associated with name 

{ }1, ,i n∈ …  and maturity T . The corresponding payoff at time T  is equal to 

{ }1 1 ( )
i iT N Tτ > = − . Let us now consider a portfolio of the previously defined defaultable bonds 

with holdings equal to 1
n

 for all names. The portfolio payoff is equal to 

( ) ( ), ( ) 1I
N TV T N T

n
= − . The replication price at time t  given that ( )N t k=  of such a 

portfolio is equal to ( ) ( )( , ) 1 ( )r T t Q
I

N TV t k e E N t k
n

− − ⎡ ⎤= − =⎢ ⎥⎣ ⎦
. Since the names are 

exchangeable, the n k−  non defaulted names have the same price which is thus ( , )IV t k
n k−

. 

Thus the price time t  of the defaultable discount bond, ( ),iB t T  is given by: 

( ) ( ) ( ), ( )
, 1 ( )

( )
I

i i

V t N t
B t T N t

n N t
= − ×

−
, ( ) ( ) ( )( ), , ,r T t

I IV t e Q t T V T− −=i i  

where the pre-default intensity of iτ  is equal to ( ) ( ), ( )
, ( )

( )
Q t N t

t N t
n N t
λ

α =
−i . When ( )N t n= , 

( ), ( ) 0Q t N tα =i  and ( ), 0iB t T = . Let us remark that the defaultable discount bond price 

follows a Markov chain with 1n +  states { } { }( ) 0, ( ) 0 , , ( ) 1, ( ) 0i iN t N t N t n N t= = = − =…  and 

{ }( ) 1iN t = . The generator matrix, ( )tΛ , is equal to: 
 

( )
( )

( ,0) ( 1) / ( ,0) 0 0 0 0 ( ,0) /
0 ( ,1) ( 2) /( 1) ( ,1) 0 ( ,1) /( 1)
0 0
0
0
0 ( , 1) ( , 1)
0 0 0 0 0 0 0

t n n t t n
t n n t t n

t n t n

λ λ λ
λ λ λ

λ λ

− −⎛ ⎞
⎜ ⎟− − − −⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟

− − −⎜ ⎟
⎜ ⎟
⎝ ⎠

i i i
i i

i
 

 
Thus, the dynamics of the defaultable bond prices can be viewed as a special case of the one 
studied by Jarrow, Lando and Turnbull (1997) though the economic interpretation of the 
states slightly differs. 
 
Appendix B: Calibration equations on a complete set of number of defaults 
probabilities 
 
While the pricing and thus the hedging involves a backward procedure, calibration is 
associated with forward Kolmogorov differential equations. We show here a non-parametric 
fitting procedure of a possibly non time homogeneous pure birth process onto a complete set 
of marginal distributions of number of defaults. This is quite similar to the one described in 
Schönbucher (2006), though the purpose is somehow different since the aim of the previous 
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paper is to construct arbitrage-free, consistent with some complete loss surface, Markovian 
models of aggregate losses, possibly in incomplete markets, without detailing the feasibility 
and implementation of replication strategies. 
 
We will further denote the marginal number of defaults probabilities by 

( )( , ) ( )p t k Q N t k= =  for 0 t T≤ ≤ , 0,1, ,k n= … . 
 
In the case of a pure birth process, the forward Kolmogorov equations can be written as: 

( , ) ( , 1) ( , 1) ( , ) ( , )dp t k t k p t k t k p t k
dt

λ λ= − − − , for 1, ,k n= … , ( ,0) ( ,0) ( ,0)dp t t p t
dt

λ= − . 

Since the space state is finite, there are no regularity issues and these equations admit a unique 
solution (see below for practical implementation). We refer to Karlin and Taylor (1975) for 
more details about the forward equations in the case of a pure birth process. These forward 
equations can be used to compute the loss intensity dynamics [ ]0, ( , ( ))t T t N tλ∈ → , thanks 
to: 

1 ( ,0)( ,0)
( ,0)

dp tt
p t dt

λ = − , 1 ( , )( , ) ( , 1) ( , 1)
( , )

dp t kt k t k p t k
p t k dt

λ λ⎡ ⎤= − − −⎢ ⎥⎣ ⎦
 for 1, ,k n= … , 

and 0 t T≤ ≤ . Let us remark that we can also write:  

( )
( )0

( , ) ( )1 1( , )
( , ) ( )

k

m

d p t m dQ N t k
t k

p t k dt Q N t k dt
λ = ≤

= − = −
=

∑
. 

 

Eventually, the name intensities are provided by: ( ) ( , ( )), ( )
( )

Q t N tt N t
n N t
λα =
−i . This shows that, 

under the assumption of no simultaneous defaults, we can fully recover the loss intensities 
from the marginal distributions of the number of defaults. However, despite its simplicity, the 
previous approach (the inference of the ),( ktλ from the default probabilities ),( mtp ) involves 
some theoretical and practical issues. 
 
As for the theoretical issues, we should deal with the assumption of no simultaneous defaults. 
We show below that, under standard no arbitrage requirements, (pseudo)-loss intensities 
might still be computed but that they may fail to reconstruct the input number of defaults 
distributions. Whatever the model, the marginal number of defaults probabilities must fulfil: 

0 ( , ) 1p t m≤ ≤ , ( ) [ ] { }, 0, 0,1, , 1t m T n∀ ∈ × −… , 
0

( , ) 1
n

m

p t m
=

=∑ , [ ]0,t T∀ ∈  and since ( )N t  is 

non decreasing, 
0 0

( , ) ( ', )
k k

m m
p t m p t m

= =

≥∑ ∑ , { }0,1, ,k n∀ ∈ … , [ ], ' 0,t t T∀ ∈  and 't t≤ . This 

implies that the ( , )t kλ , as computed from the above equation, are non-negative. Moreover, 

since 
0

( , ) 1
n

m

p t m
=

=∑ , 0

( , )
0

n

m

d p t m

dt
= =
∑

, thus ( , ) 0t nλ = , i.e. { }( )N t n=  is absorbing. In other 

words, standard no-arbitrage constraints on the probabilities of the number of defaults 
guarantee the existence of non-negative (pseudo)-loss intensities with the required boundary 
conditions. However, concluding that this (pseudo)-loss intensities may fail to reconstruct the 
input number of defaults distributions. The no simultaneous defaults assumption implies 
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particularly that 0),(
=

dt
mtdp  for 0t =  and 1>m . If this constraint is not fulfilled by market 

inputs, we will not be able to reconstruct the input ( ),p t m  from the (pseudo) -loss intensities. 
 
On practical grounds, the computation of the ( , )p t m  usually involves some arbitrary 
smoothing procedure and hazardous extrapolations for small time horizons.  
 
For these reasons, we think that it is more appropriate and reasonable to calibrate the Markov 
chain of aggregate losses on a discrete set of meaningful market inputs corresponding to 
liquid maturities. 
 
Appendix C: calibration of time homogeneous loss intensities 
 
Solving for the forward equations provides 0( ,0) Tp T e λ−=  and 

( )
1

0

( , ) ( , 1)k

T
T s

kp T k e p s k dsλλ − −
−= −∫  for 1 1k n≤ ≤ −  (see Karlin and Taylor (1975) for more 

details). The previous equations can be used to determine 0 1, , nλ λ −…  iteratively, even if our 
calibration inputs are the defaults probabilities at the single date T .  
 
Assume for the moment that the intensities 0 1, , nλ λ −…  are known, positive and distinct32. To 
solve the forward equations, we assume that the default probabilities can be written as 

,
0

( , ) i

k
t

k i
i

p t k a e λ−

=

= ∑  for 0 t T≤ ≤  and 0, , 1k n= −… 33. Set 0,0 1a = , the recurrence equations 

1
, 1,

k
k i k i

k i

a aλ
λ λ

−
−=

−
 for 0,1, , 1i k= −… , 1, , 1k n= −…  and 

1

, ,
0

k

k k k i
i

a a
−

=

= −∑ . Then, we check 

easily that, if satisfied, these equations provide some solutions of the forward PDE. Since it is 
well-known that these solutions are unique, it means we have obtained explicitly the solution 
of the forward PDE, knowing the intensities 1,...,( )k k nλ = .  
 
Therefore, using (0, ) 0p k =  and TTp /))0,(ln(0 −=λ , we can compute iteratively 1 1, , nλ λ −…  

by solving the univariate non linear implicit equations ,
0

( , ) i

k
T

k i
i

p T k a e λ−

=

= ∑ , or equivalently  

                                                 
32 Due to the last assumption, the described calibration approach is not highly regarded by 
numerical analysts (see Moler and Van Loan (2003) for a discussion). However, it is well 
suited in our case studies. 
33 Since 0nλ = , ( , )p t n  takes a slightly different form. Its detailed expression is useless here 
since we only need to deal with ( ,0), ( , 1)p t p t n −…  to calibrate 0 1, , nλ λ −… . Let us also 

remark that ( , )p t n  can equally be recovered from 1
0

( , ) ( , 1)
t

np t n p s n dsλ −= −∫  or from 

0
( , ) 1

n

k
p t k

=

=∑ . 
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( )1

1,
0 1

1 ( , )k i
i

Tk
T

k i
i k i k

e p T ka e
λ λ

λ

λ λ λ

− −−
−

−
= −

⎛ ⎞−
× =⎜ ⎟−⎝ ⎠

∑ , 1, , 1k n= −… . 

It can be seen easily that for any { }0, , 1k n∈ −… , ( , )p T k  is a decreasing function of kλ , 

taking value 1
0

( , 1)
T

k p s k dsλ − −∫  for 0kλ =  and with a limit equal to zero as kλ  tends to 

infinity. In other words, the previous kλ  equations have a unique solution provided that: 
1

1 1,
0

1( , )
iTk

k k i
i i

ep T k a
λ

λ
λ

−−

− −
=

⎛ ⎞⎛ ⎞−
< × ×⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
∑  for 1, , 1k n= −… . Note that, in practice, all the 

intensities kλ will be different (almost surely). Thus, starting from the −T default probabilities 
only, we have found the explicit solutions of the forward equations and the intensities 

1,...,( )k k nλ =  that would be consistent with these probabilities.  
 
It is possible to extend this calibration procedure to fit simultaneously several maturities (for 
instance the usual tenors of credit indices), i.e. to fit the default probabilities ( , )jp T k for 

1,...,j J=  and 0,..., .k n=  Some details of a bootstrap procedure are provided in the 
Appendix D.  
 
Appendix D: multi-maturity calibration procedure 
 
Now, the calibration set is the distribution of the number of defaults ( , )jp T k at several time 
horizons 1,..., pT T . The intensities ( , )t kλ will be assumed piecewise constant in time: 

( )( , ) j
kt kλ λ=  for all integer k and all 1] , ]j jt T T−∈ , for every 1,...,j p= (we have set 0 0T = ).  

The general solution of the forward equations is 0
( ,0)

( ,0)
t

s ds
p t e

λ−∫=  and  

0 0
( , ) ( , )

0

( , ) ( , 1) ( , 1)
t st

u k du u k du
p t k e s k e p s k ds

λ λ
λ

−∫ ∫= − −∫ , 

for all time t and 1 1k n≤ ≤ − .  
 

The previous equations can be used to determine the intensities ( )j
kλ iteratively, by starting 

with the shorter maturities. As previously, to solve the forward equations, we assume that the 

default probabilities can be written as ( ) ( )
, 1

0
( , ) exp( ( ))

k
j j

k i i j
i

p t k a t Tλ −
=

= − −∑  for 1j jT t T− ≤ ≤ , 

0, , 1k n= −…  and 1,...,j p= . Here, it is sufficient to set the recurrence equations: 
1

( ) ( )
0,0 0 1

1
exp( ( ))

j
j l

l l
l

a T Tλ
−

−
=

= − −∑ , 

( )
( ) ( )1
, 1,( ) ( )

j
j jk

k i k ij j
k i

a aλ
λ λ

−
−=

−
, and 

1
( ) ( )
, 1 ,

0
( , )

k
j j

k k j k i
i

a p T k a
−

−
=

= −∑ , 

for 0,1, , 1i k= −… , 1, , 1k n= −… and 1,...,j p= . Then, we can check that, if satisfied, these 
equations provide the solution of the forward PDE, knowing the intensities ( )

1,..., ; 1,...,( )j
k k n j pλ = = .  
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Therefore, using (0, ) 0p k =  and ( )
0 1 1[ln( ( ,0)) ln( ( ,0))] /( )j

j j j jp T p T T Tλ − −= − − , we can 
compute iteratively the model default intensities by solving the univariate non linear implicit 
equations  

( ) ( ) ( )
1 1 1

( ) ( )1
( ) ( ) ( )1 1,

1( ) ( )
0

[e e ] ( , ) e ( , )
j j j

i j j j j j jk k

j jk
T T T T T Tk k i

j jj j
i k i

a
p T k p T kλ λ λλ

λ λ
− − −

−
− − − − − −− −

−
=

− + =
−∑  

for all 1, , 1k n= −… and 1,...,j p= . 
 
Since, for any { }0, , 1k n∈ −… , ( , )jp T k  is a decreasing function of ( )j

kλ , the previous ( )j
kλ  

equations have a unique solution provided that  
( )

1

( ) ( )1
( )1 1,

1( ) ( )
0

( , ) [e 1] ( , )
j

i j j

j jk
T Tk k i

j jj j
i k i

a
p T k p T kλλ

λ λ
−

−
− −− −

−
=

< − +
−∑ . 

Thus, starting from a set of default probabilities for p different time horizons, we have found 
the explicit solutions of the forward equations and the intensities 1,...,( )k k nλ =  that would be 
consistent with these probabilities.  
 
 
Appendix E: tree computations for different recovery rates 
 
Given a recovery rate of R , the (fractional) loss at time t  on the credit portfolio is such that 

( )( ) (1 ) N tL t R
n

= − . The mapping ( ) [ ] [ ] ( ) ( ), 0, 0,1 , min , ( )Qt k T EL t k E k L t⎡ ⎤∈ × → = ⎣ ⎦
� � �  is 

known as the “loss surface”. We readily relate the loss surface to the number of defaults 

distributions: ( )
1

(1 )( , ) min , ,
n

m

m REL t k k p t m
n=

−⎛ ⎞= ⎜ ⎟
⎝ ⎠

∑� � . Conversely, we can compute the 

probabilities of number of defaults from the ( ),EL t k�  (see below). Figure 4 plots the expected 

loss ( ),EL T k�  for 5T Y= , 40%R = . The ( ),p T m  are computed as above from a Gaussian 

copula dependence structure.  
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Figure 4.  ( ),EL T k� , 0 1k≤ ≤� , 40%R =  

 
Let us change the recovery rate from R  to R∗ . Then, it can be quickly checked that the new 
probabilities of number of defaults are given by: 
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( ) ( ) ( ) ( ) ( )1 1 1 1 1

( , ) , 2 , ,
1

k R k R k Rnp t k EL t EL t EL t
R n n n

∗ ∗ ∗
∗

∗

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞− × − × − + × −
⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟= × − +

⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟− ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠
, 

for 1, , 1k n= −…  and ( ) ( )1( , ) ,1 , 1
1

n np t n EL t R EL t R
R n

∗ ∗ ∗
∗

−⎛ ⎞⎛ ⎞= × − − × −⎜ ⎟⎜ ⎟− ⎝ ⎠⎝ ⎠
. Eventually, 

( ,0)p t∗  is obtained from 
0

( , ) 1
n

k

p t k∗

=

=∑ . Once we have obtained a new set of probabilities of 

number of defaults, we calibrated some new loss intensities kλ
∗ , reconstructed a tree and 

recomputed some dynamic hedging strategies ( ),i kδ ∗ . 
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